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Abstract 

Height has long been recognised as associated with better outcomes: the question is whether this association 

is causal. We use children’s genetic variants as instrumental variables (IV) to deal with possible unobserved 

confounders and examine the effect of child and adolescent height on a wide range of outcomes: academic 

performance, IQ, self-esteem, symptoms related to depression and behavioural problems, including 

hyperactivity, emotional, conduct and peer problems. OLS findings show that taller children have higher IQ 

scores, perform better in school tests, and are less likely to have emotional or peer problems. The IV results 

differ. They show that taller children have better cognitive performance but, in contrast to the OLS, indicate 

that taller children are more likely to have behavioural problems. The magnitude of these IV estimates is large. 

For example, the effect of one standard deviation increase in height on IQ is comparable to the IQ difference 

for children born approximately 6 months apart within the same school year, while the increase in 

hyperactivity is comparable to the raw difference in hyperactivity between boys and girls.  
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Introduction 

The association between height and wealth has been noted in the academic literature for many 

decades. As early as the 17
th

 Century, Guarinoni – one of the founders of preventive medicine – 

pointed to the difference in growth rates between the rich in towns and the poor in the countryside 

(Tanner, 1982). More recent studies find height to be positively related to education (Magnusson, 

Rasmussen and Gyllensten, 2006) and income (Persico, Postlewaite and Silverman, 2004). The 

advantages associated with greater height have also been reported for children. For example, Case 

and Paxson (2008) find that taller children perform better in school tests compared to shorter 

children and suggest that the relationship between childhood height and income and education in 

adulthood is due to height being associated with greater intelligence.  

One problem in estimating the relationship between height and outcomes is that the relationship 

may not be causal. Height is influenced by a wide range of environmental factors experienced in 

childhood which may be the determinants of the outcomes, rather than height per se, for example, 

unobserved family wealth or differences in children’s nutrition. To the extent that these unobserved 

differences are family specific, one approach is to identify the causal impact from twin or sibling 

differences in height and outcomes. Case and Paxson (2010) use this approach, exploiting differences 

between siblings. They conclude that taller children perform better in school, progress faster through 

school and consider themselves more scholastically competent than their shorter siblings.  

However, accounting for fixed unobserved family effects using twin (or sibling) differences does not 

necessarily eliminate the inconsistency of the conventional cross-sectional estimator and can even 

aggravate it (Griliches, 1979; Bound and Solon, 1999). The intuition is that taking twin or sibling 

differences filters out some, but not all, endogenous variation but also filters out exogenous 

variation. If the endogenous variation comprises as large a proportion of the remaining within-sibling 

variation as it does of the between-sibling variation, the parameters using within-sibling estimation 

are as vulnerable to endogeneity bias as that found in between-sibling estimation. The inconsistency 

of the within-sibling estimator is less than the between-sibling estimator only if the endogenous 

variation comprises a smaller share of the within-sibling variation in height than it does of the 

between-sibling variation (Bound and Solon, 1999). There is no reason to be confident that this is the 

case. 

This paper therefore takes a different approach to estimate the causal effect of child height on 

children’s cognitive and non-cognitive outcomes. We exploit differences in children’s genetic make-
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up as instrumental variables (IV) for their height.
1
 At conception, genes are randomly allocated from 

parents to offspring. Whilst this random allocation is at a family trio level, at a population level it has 

been demonstrated that genetic variants are largely unrelated to the many socioeconomic and 

behavioural characteristics that are closely linked with each other and that confound conventional 

observational studies (Bhatti et al., 2005; Davey Smith et al., 2008; Kivimäki et al., 2008; Lawlor et al., 

2008). Furthermore, since genetic variation is determined at conception, it cannot be affected by 

later outcomes. Hence, in addition to dealing with reverse causality and fixed characteristics that 

affect both height and the outcome, Mendelian randomization can also deal with time-varying 

characteristics that affect height and outcomes. Therefore, under certain assumptions that we 

discuss below, genetic variants will allow us to isolate the causal effect of child height on the 

outcome of interest.  

This paper is the first to exploit genetic variants for height in an attempt to estimate the causal effect 

of height on cognitive and non-cognitive outcomes for children. We begin therefore by outlining the 

conditions needed to use genetic variants as instruments.  To examine and test the validity of the IV 

approach in our context, we show first that the genetic variants are uncorrelated with a large set of 

family background variables which may confound the relationship between height and outcomes.  

We then run a ‘falsification check’ in which we investigate the effect of height on body weight. As 

weight and height are causally related, we should find strong positive effects in both the OLS and IV 

models. Any substantially different or negative effects in the IV estimates would cast doubt on the IV 

specification and/or the instruments used. Finding no significant differences between the OLS and IV, 

we then use the genetic variants as instruments to examine the relationship between height and an 

extensive set of cognitive, mental health and behavioural outcomes. In so doing, we add to the range 

of outcomes examined in the previous literature. In addition to children’s academic attainment, 

scholastic competence and self-worth studied by Case and Paxson (2010), we investigate the effects 

of height on IQ, symptoms of depression and behavioural problems, including hyperactivity, 

emotional, conduct and peer problems.  

We use data from a cohort of UK children currently in their late teens (the ALSPAC survey, described 

below).  The OLS results show that taller children perform better in school tests, have higher IQ, and 

are less likely to have emotional and peer problems, though these relationships differ slightly by 

gender. Tall girls have higher depression scores, but we find no evidence of differences in self-esteem 

for children of different heights. The IV results suggest there is a causal relationship between height 

                                                 
1
 This approach is also known as Mendelian randomization, see e.g. Davey Smith and Ebrahim (2003). It is closely related to 

Randomised Controlled Trials, where the allocation of treatment is randomised over all eligible individuals, as there is an 

equal probability that either parental allele is transmitted to offspring (Davey Smith and Ebrahim, 2003). For a brief 

overview of genetics and some of the terms used here, see Appendix A. 
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and IQ, though this is not reflected in test scores. However, in contrast to Case and Paxson (2010), 

we find no evidence that height explains variation in scholastic self-esteem, global self-worth or 

depression. Further, we find evidence that height confers disadvantage rather than advantage as it 

increases hyperactive behaviour, emotional and peer problems.  

The next section begins by examining the possible mechanisms through which height may be related 

to the outcomes of interest. In section three we set out our methodology and section four describes 

the data. The results are presented in section five; section six concludes. 

 

1. Mechanisms  

 

We examine a large set of outcomes: academic attainment, IQ, self-esteem, depression symptoms, 

and behavioural problems. There are two ways in which height may be related to these outcomes. 

First, being tall could cause differences in the outcome of interest. We define ‘causal’ however, not 

necessarily as height per se affecting the outcome, but as height triggering social reactions that in 

turn affect the outcome. Hence, we hypothesize the effect of height to run via different pathways, 

which we discuss below. We represent this causal effect in a Directed Acyclic Graph (DAG) in Figure 

1, where child height iH  affects the outcome iC  via various pathways P  rather than it affecting iC  

directly (which would be indicated by the dashed directed edge).
2
 Second, instead of there being a 

causal relationship, the association between height and the outcome of interest may be driven by 

other unobserved factors that affect both. In Figure 1, this is shown by the unobservables ie  that 

affect both iH  and iC .
3
 

Several pathways through which height can causally affect outcomes are discussed in the literature, 

including taller people enjoying social dominance (Hensley, 1993) and having higher self-esteem 

(Judge and Cable, 2004). The (sociological and psychological) literature posits several theories as to 

why (physical) characteristics may affect behaviour or achievement. First, the possession of certain 

characteristics (like being tall) can trigger expectations from others (like peers or teachers). These 

expectations may influence their behaviour towards the ‘possessor’, which in turn affects the 

possessor’s behaviour, often confirming the expectations. This self-fulfilling prophecy is also referred 

to as the ‘expectancy effect’ (see for example Darley and Fazio, 1980). For example, some evidence 

                                                 
2
 In the DAG, each node represents a variable, with square nodes being observed and circular nodes being unobserved. 

3
 In theory, poor outcomes could lead children to change their eating patterns, which may affect their growth resulting in 

reverse causation. We argue however, that this is very unlikely and consider this to be less of an issue than (for example) in 

the case of body weight. However, even if there is reverse causation, our identification strategy would deal with this. 
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suggests that taller people are perceived as more attractive (Macintyre and West, 1991). 

Attractiveness can in turn influence the behaviour and assessment of teachers (Clifford and Walster, 

1973) or potential employers (Dipboye et al., 1975), causing taller children to behave and perform 

differently.  

Second, short children are believed to have negative social experiences, including bullying, less social 

acceptance, and fewer friends (Sandberg and Voss, 2002; Voss and Mulligan, 2000),
4
 though it is 

worth noting that tallness in girls has also been shown to have similar negative psychological effects 

(Pyett et al., 2005; Binder et al., 1997). Having problematic social relationships can in turn affect self-

esteem, social adjustment, behaviour, and scholastic performance (Morison and Masten, 1991; 

Parker and Asher, 1987; Wentzel, 2009). Related to this is the question of whether parents 

compensate or reinforce children’s endowments. The former may mean that parents spend relatively 

more time with a small compared to a tall child, to compensate for the potential negative 

experiences related to short stature. As the child develops through childhood, this additional 

attention and support can in turn increase their cognitive skills, or reduce their behavioural 

problems.
5
  

Another strand of the literature suggests that individuals (peers, parents, teachers as well as medical 

personnel) treat children at a ‘size-appropriate’ rather than ‘age-appropriate’ level: tall children are 

generally perceived to be (and treated as) older, whereas smaller children are treated as younger 

(Jones and Bayley, 1950; Rotnem et al., 1977; Underwood, 1991; Sandberg et al., 2004). Adults in 

turn may have different expectations depending on children’s heights (Skuse et al., 1994), which can 

subsequently affect children’s behaviour. Children who ‘look young’ according to their peers are 

perceived to be less (physically and verbally) aggressive and more emotional and passive (Sandberg 

et al., 2004). In addition, the literature has found taller children to have more behavioural problems, 

such as aggression or violent behaviour. Raine et al. (1998) find that height in 3-year-old children is 

associated with increased aggressiveness at age 11, and Farrington (1989) find that height at age 8-

10 years is associated with violence at age 16-18 years. They argue that their early life may have 

taught them that it is an effective strategy in winning social conflicts, reinforcing this behaviour. In 

                                                 
4
 In fact, the treatment of short children with growth hormone is, in part, based on the belief that being taller will improve 

short children’s peer relationships (Sandberg et al., 2004; Sandberg and Voss, 2002). However, the evidence showing that 

short children have more negative experiences is ambiguous: a review by Sandberg and Voss (2002) for example, concludes 

that the psychological adaptation of shorter-than-average individuals is largely indistinguishable from others, whether in 

childhood, adolescence or adulthood. Others however, argue that short people may simply be discriminated against 

(Magnusson, Rasmussen and Gyllensten, 2006; West, 1991). Persico, Postlewaite and Silverman (2004) instead suggest that 

taller adolescents are more likely to participate in social activities that develop human capital. Hamermesh and Biddle 

(1994) also argue that (labour market) discrimination does not arise from correlations with height. Instead, they claim it is 

mainly based on the employee’s looks (‘beauty’). 
5
 The evidence on whether parents compensate or reinforce children’s endowments is mixed, see e.g. Griliches (1979) and 

Behrman et al. (1994). 
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contrast, smaller and physically weaker children lack the physical capacity to execute this behaviour 

(Raine et al., 1998).  

As opposed to a causal effect, there may be other factors (represented by the unobservables ie  in 

Figure 1) that relate to both height and the outcome of interest and that drive the associations. One 

set of candidates is the pre- and postnatal environment. Regarding the latter, the fastest growth in 

children occurs up to age 2. There is evidence of links between early (post-natal) nutrition and child 

height, and between nutrition and cognitive and social development.
6
 But although early nutrition is 

a possible candidate, several studies have shown that even under conditions of severe malnutrition 

(prenatal, such as foetuses subjected to war-time famine and postnatal, such as starvation in the 

early years of life) complete equality in height with siblings or peers is attained before puberty 

(Tanner, 1978). In terms of the pre-natal diet, there is evidence that nutrition in utero plays an 

important role in child development. But nutriments which help development (such as the omega 3 

fatty acids in fish and seafood consumption) may also hurt development. For example, fish and 

seafood are the primary source of (non-occupational) mercury exposure (Oken and Bellinger, 2008) 

and several studies have shown prenatal methylmercury exposure to be associated with decreased 

IQ and test scores (Axelrad et al, 2007; Cohen et al., 2005). Likewise, some studies find that maternal 

alcohol consumption and smoking during pregnancy negatively affect birth weight and child growth 

(Mills et al., 1984; Gilman, Gardener and Buka, 2008). Lower birth weights in turn are associated with 

poorer cognitive performance (Richards et al., 2002; Ericson and Kallen, 1998) and behavioural 

development (Elgen et al., 2002), though the literature suggests that this relationship is driven by 

family background characteristics rather than a specific intrauterine effect (Yang et al., 2008).
7
  

This discussion suggests that the use of both OLS and mother fixed effects to estimate a causal effect 

can result in bias that can go in either direction. If parents compensate for their child’s endowment 

by spending more time with shorter children, this would increase short children’s performance 

relative to taller children, and hence including mother fixed effects would lead to the estimates being 

a lower bound. Similarly, if a well-balanced diet or the family’s socio-economic position positively 

affects height, but also leads to fewer behavioural problems, the OLS is likely to under-estimate the 

true effect of height on behavioural problems. If, however, this same diet leads to better educational 

outcomes, OLS is likely to over-estimate the true effect on education. However, if certain dietary 

components lead to decreased cognitive functioning, the OLS may under-estimate the true effect on 

                                                 
6
 For example, iron-deficiency in infants and children is associated with poorer cognitive, motor and socio-emotional 

function (see e.g. Lozoff et al., 2006). In addition, some studies report that iron supplementation positively affects height 

(Angeles et al., 1993).  
7
 There is mixed evidence on the effects of maternal smoking and alcohol consumption during pregnancy on child 

outcomes, with some arguing it lowers outcomes and others finding no effect (see for example Olds et al., 1994; Gilman, 

Gardener and Buka 2008; Kafouri et al., 2009; Davey Smith, 2008; Nilsson, 2008; Russell, 1991).  
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educational outcomes and IQ. Under the assumptions we discuss in detail below, the use of the 

child’s genetic markers as instrumental variables will shed more light on these issues and will allow 

us to estimate the causal effect of child height.  

 

2. Methodology  

 

3.1. The Child Human Capital Production Function 

We examine the impact of child height on three sets of outcomes: (1) cognitive skills, (2) mental 

health, and (3) behavioural problems.
8
 We discuss the outcomes in more detail below. As both height 

and outcomes differ by gender, we allow for differential effects by interacting height with gender in 

all analyses. We model the relationship between height and outcomes in terms of a human capital 

production function: 

 

( )iiii eXHfC ,,= ,  (1) 

where iC , the outcome of interest for child i, is a function of child height ( iH , measured 

contemporaneously) and a set of child and family background characteristics ( iX ). ie  represents any 

unobserved confounders. We begin with OLS using a linear version of (1): 

 

iiii eXHC +++= 210 βββ .  (2) 

The parameter of interest, the relationship between child height and the outcome variable, is 1β . 

The possible endogeneity of height is characterised by the fact that the unobservable confounders ie  

determine the outcome of interest iC , but also determine height iH , leading to biased OLS 

estimates. We use IV to deal with this, specifying the child’s genetic variants iZ  as instruments for 

height. These variants are associated with iH , and we assume that they are only associated with iC  

indirectly through their association with iH . In the absence of a constant treatment effect, we 

                                                 
8
 Although available in our data, we do not examine physical health, as the IV assumptions are more likely to be 

problematic: genetic variants that affect height may also affect physical health. For example, individuals with higher levels 

of GDF5 on average have increased bone and cartilage growth. The latter in turn is protective against osteoarthritis (Sanna 

et al., 2008). Similarly, HMGA2 is associated with height, but is also over-abundant in many types of cancerous tumours 

(Ligon et al., 2005; Weedon et al., 2007), suggesting that some variants of genes that encourage growth may also cause 

uncontrolled cell growth in tissues leading to cancer (McEvoy and Visscher, 2009). 
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identify the average causal response using the standard linear IV estimator in (2) within a potential 

outcomes framework, following Angrist, Graddy and Imbens (2000). We briefly summarize their 

assumptions here. 

Let C , H  and Z  denote random variables representing, respectively, the outcome of interest, child 

height and the genetic variant as IV. For simplicity, we discuss the case of a binary instrument, 

though in the estimation we use multiple instruments as is more common in Mendelian 

randomization experiments. Let ( )zhCi ,  be the potential outcome for individual i  that would be 

obtained if height, the treatment variable, was set to h  and the instrument set to z . Equivalently, 

let ( )zH i  be the potential height for individual i  when the instrument is set equal to z . We make 

the following assumptions: 

 

Assumption 1. (Independence and Exclusion) 

( ) ( ){ } zhiii zHzhCZ ,,,⊥  

( ) ( ),0,1, hChC ii =  for all h . 

Independence implies that the instrument is independent of the potential outcome and the potential 

height, for all values of h  and z . In other words, the instrument is as good as randomly assigned. 

This is reflected by the missing edge between Z and e  in the DAG in Figure 1. The missing edge 

between Z and C reflects the conditional independence assumption implied by the model for C, H 

and e: ( )eHZC ,|⊥ , i.e. the entire effect of Z on C is mediated through its association with H. 

Exclusion implies that the potential outcomes, at any height h , are unchanged by the presence or 

absence of the genetic variant.  

 

Assumption 2. (Nonzero effect of instrument on height) 

( ) ( )[ ] 001 ≠− ii HHE  

This implies that expected potential height is affected by the genetic variant and that therefore the 

coefficient in the (first stage) regression of iH  on iZ  is non-zero. Assumption 2 is reflected by the 

edge between G  and H  in Figure 1. 

 

Assumption 3. (Monotonicity) 

( ) ( )[ ] 101 =≥ ii HHP  
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This means that the potential height for individual i with the genetic variant is at least as high as the 

potential height for the same individual without the genetic variant. 

From the exclusion restriction, it follows that ( ) ( )hCzhC ii =, . Specifying heterogeneous responses, 

the potential outcome for individual i  can be written as a general function of h , say ( ) ( )hghC ii ≡ . 

Omitting characteristics iX  for simplicity, the IV (or Wald) estimator in equation (2) is then equal to 

 

[ ] [ ]
[ ] [ ]

( ) ( ) ( )[ ] ( ) ( ){ }
( ) ( ){ }∫

∫
≤<

≤<≤<
=

=−=
=−=

=

dqHqHP

dqHqHPHqHqgE

ZHEZHE

ZCEZCE

ii

iiiii

iiii

iiii
IV

10

10 10|

0|1|

0|1|ˆ

'

β

 

where ( )ig q′  is the derivative of ( )hg i  w.r.t. h  evaluated at q . Therefore, the IV estimator is a 

weighted average of the derivative function.  

As Angrist, Graddy and Imbens (2000) show, when the causal response function is linear 

( ) hhg iii βα += , 

then 

( ) ( ){ }[ ]
( ) ( )[ ]01

01ˆ
ii

iii
IV HHE

HHE

−
−

=
ββ ,     (3) 

 

i.e. the IV estimate is a weighted average of the random coefficients iβ , with the weights 

proportional to the height change induced by the genetic variant.
9
  

 

3.2 The Genetic Variants  

We use a set of nine genetic variants (SNPs) that have all been robustly associated with height: 

HMGA2 (rs1042725), ZBTB38 (rs6440003), GDF5 (rs6060373), LOC387103 (rs4549631), EFEMP1 

(rs3791675), SCMH1 (rs6686842), ADAMTSL3 (rs10906982), DYM (rs8099594) and C6orf106 

                                                 
9
 This easily extends to the case of multiple and multi-valued (rather than binary) instruments, as discussed in Angrist and 

Pischke (2009) and Angrist, Graddy and Imbens (2000). For a more detailed discussion of the use of genetic markers as 

instrumental variables from an economic perspective using a similar framework as the above, see von Hinke Kessler 

Scholder et al. (2010). Lawlor et al. (2008) includes a more general discussion of the situations and (biological) processes 

that may invalidate Mendelian randomization studies. 
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(rs2814993) (Weedon et al., 2007, 2008; Lettre et al., 2008; Gudbjartsson et al., 2008).
10

 This prior 

knowledge, and the fact that these associations have been replicated in different independent 

samples, justify the use of these variants and their compliance with Assumption 2. In section 5.2 we 

examine this assumption using the standard statistical tests. Note however, that although the 

relationships between the SNPs we use and height are robust, their phenotypic effects are small: 20 

SNPs, which include the nine that we use only explain up to 3% of the variation in height (Weedon et 

al. 2008). We therefore combine the different SNPs into a count of the number of ‘tall’ alleles carried 

by each child to get around the problem of low power (see section 4.4 below for details).  

Assumption 1, independence and exclusion, is not directly testable. Based on the science literature 

however, we argue that the instruments are valid and so that Assumption 1 holds. We also examine 

its validity indirectly. Violations of this Assumption can take several forms.  

First, genetic confounding may occur because of population stratification, for example, due to 

ethnicity. This would imply that there is a systematic relationship between the allele frequency and 

the outcome in different ethnic groups, resulting in an association between the two at the 

population level but without a causal effect, violating Assumption 1. This is unlikely to affect our 

sample, as our cohort is recruited from a specific geographically defined region with a predominantly 

white population, and in our analysis, we only examine children whose mothers describe themselves 

and the child’s father as white.  

Second, if the variants have multiple functions (known as pleiotropy), Assumption 1 could be violated 

if – over and above the association with height – any additional functions directly influence the 

outcome of interest. Similarly, if a variant is co-inherited with another genetic variant (known as 

being in linkage disequilibrium (LD)), violation of Assumption 1 depends on the effect of the co-

inherited variant on the outcome of interest. The current evidence suggests that some height 

variants may indeed be pleiotropic or in LD with other variants. For example, individuals with higher 

levels of GDF5 on average have both increased bone and cartilage growth (Sanna et al., 2008). 

However, there is currently no evidence that the variants used here also affect (or are in LD with 

variants that affect) our outcomes of interest.
11

  

                                                 
10

 For example, Weedon et al. (2007) identify a common variant of the HMGA2 gene, using 4,921 individuals of European 

ancestry. To validate the robustness of this finding, they genotyped an additional 29,098 individuals from five further 

studies, including 6,827 children from the age of 7. Their findings show each copy of the height-increasing allele to be 

associated with an increase in height of 0.4 cm, with no differences between males and females. Similarly, Weedon et al. 

(2008) use data from a total of 30,147 individuals of European ancestry and identify 20 loci that robustly affect stature, 

including all those used here. These have since been confirmed in more independent samples (see e.g. Lettre et al., 2008; 

Gudbjartsson et al., 2008). 
11

 Some literature suggests that part of the height-intelligence association is driven by a genetic component (Sundet et al., 

2005), though others find no evidence of this genetic component in the height-education association (Silventoinen et al., 

2000). Similarly, Magnusson et al. (2006), comparing first and second born biological brothers in Sweden, find that the taller 
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Although (in common with all IV approaches) we cannot test Assumption 1 directly, we can do so 

indirectly. In section 4.4 we examine the relationship between the genetic variants and a large set of 

child and family background characteristics. We find no association, suggesting that the genetic 

variants do not affect these potential confounders.  

However, even after examining this broad range of background variables, there may still be other 

variables unobserved to the researcher. We therefore rely on the theory of random allocation of 

genetic variants and on the more general empirical evidence that shows that genetic variants are 

unlikely to be related to unmeasured confounders (see for example, Bhatti et al., 2005; Davey Smith 

et al., 2008; Kivimäki et al., 2008; Lawlor et al., 2008).   

Given random allocation of genetic variants and the fact that individuals do not know their 

genotypes, we assume that an individual who carries a ‘tall’ allele is at least as tall as the same 

individual, had she not carried the ‘tall’ allele, thus satisfying the monotonicity Assumption 3.
12

   

 

3. Data 

 

We use data from a cohort of children born in the Avon area of England. Avon has approximately 1 

million inhabitants, including 0.5 million in its main city, Bristol. Women eligible for enrolment in the 

population-based Avon Longitudinal Study of Parents and Children (ALSPAC) had an expected 

delivery date between 1 April 1991 and 31 December 1992. Approximately 85% of these mothers 

enrolled, leading to about 14,000 pregnancies. The Avon area is broadly representative of the UK, 

though mothers were slightly more affluent compared to the general population (Golding et al., 

2001).
13

 

Detailed information on the children and their families has been collected from a variety of sources, 

                                                                                                                                                         
brother is significantly more likely to attend higher education. However, the height effect estimated between brothers is 

almost identical to that across all men, suggesting that the correlation between height and intelligence is not driven solely 

by genetic or environmental factors common to brothers. However, even if some genetic component affects both height 

and the outcome of interest, it does not necessarily imply that a specific genetic variant causes this through (for example) 

pleiotropy or LD. It may be caused, for example, by interactions between genes (from simple pairs to complex networks), 

other variation in DNA, such as Copy Number Variants (CNV, where whole sections of DNA are duplicated or deleted), and 

so on. To date, about 50 genes and regions of the genome have been associated with human height, explaining only 5% of 

its total variation. Hundreds, maybe thousands more effects are still lost in the genome (McEvoy and Visscher, 2009). Yang 

et al. (2010) show that the reason why most of these have not yet been detected, is because the individual SNP effects are 

too small to pass the stringent significance tests. Hence, it is possible for one (or more) of the nine instruments used here to 

be pleiotropic or in LD with a variant that directly affects our outcome. Based on the best available evidence however, we 

assume this is not the case and that assumption 1 holds. 
12

 As this relies on knowing each individual’s counterfactual this remains an assumption. The literature only shows that at a 

group or population level those who possess the genetic variant are taller than those who do not. The monotonicity 

assumption could, for example, be violated in the presence of gene-environment interactions. 
13

 See www.bris.ac.uk/alspac for a more detailed description of the sample, its enrolment, and response rates. 
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including self-completed questionnaires, data extraction from medical and educational records, in-

depth interviews, and clinical assessments and so our data set contains a large range of child health 

and development, family background, family inputs and school measures.  

A total of 12,620 children survived past the age of 1 and returned at least one questionnaire. Of 

these, 642 were excluded because either their mother or father is of non-white ethnic origin, leaving 

11,978 potential participants. Our sample selection process is as follows. First, we select those 

children for whom we observe all nine genotypes, leaving us with approximately 7,100 children. 

Second, we drop children for whom we do not observe their height. Children were invited to attend 

specially designed clinics, where their anthropometric measures were recorded. As not all children 

attended these clinics, our sample sizes reduce to between 4,594 (age 8) and 3,867 (age 13). Finally, 

we restrict the sample to those children for whom we observe the outcome of interest, leading to a 

final sample size of around 3,900 at age 8 and 3,300 at age 13. We deal with missing values on other 

covariates by using multivariate imputation (Royston, 2004).  

 

4.1. Outcome Measures  

We examine three sets of outcomes. First, we observe two measures of cognitive function. These are 

the child’s score on the nationally set Key Stage 3 (KS3) exam (taken by all 14-year-olds educated in 

the state sector) and the child’s IQ, measured as age 8.
14

 Both measures are objective and 

comparable across all children. Increasing scores indicate better performance. It is important to note 

that IQ does not only measure ‘innate’ ability. Instead, our measure of IQ (WISC-III) is an index of 

general intellectual functioning, which is shaped by both inherited and acquired attributes, including 

any family and environmental influences. For example, there is evidence of differences in IQ between 

children of different quality home environments and socio-economic position (see e.g. Molfese et al. 

(1997) and references therein), so suggesting that the measure of IQ is not innate but rather reflects 

a large set of family and environmental influences that also affect children’s development.  

Second, we examine three measures of mental health or self-esteem: depression symptoms, 

scholastic competence and global self-worth. The latter two are measured at age 8, using the 

Harter’s Self Perception Profile for Children (Harter, 1985), with increasing scores indicating higher 

self-esteem. The depression score is self-reported by the teenager at age 13 using the Moods and 

Feelings Questionnaire (Angold et al., 1995). Increasing scores indicate more depression symptoms.  

                                                 
14

 The KS3 scores are averaged over three subjects (English, maths and science) and obtained from the National Pupil 

Database, a census of all pupils in England within the state school system (this includes 93% of English children), which is 

matched into ALSPAC. IQ is measured using the Wechsler Intelligence Scale for Children (WISC-III; Wechsler et al., 1992) 

and is administered by the ALSPAC psychology team. 
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Third, we examine the child’s behavioural problems, as measured by the mother’s report on the 

Strength and Difficulties Questionnaire (SDQ; Goodman, 1997) administered at age 13. SDQ has four 

sub-scores, which we examine separately (as is common in the literature). These are hyperactivity, 

emotional problems, conduct problems and peer problems. Increasing scores indicate increasing 

problems. For comparability, all outcomes are standardised on the full sample of children for whom 

data is available, with mean 100, standard deviation 10.  

 

4.2. Measures of Child Height and the Genetic Variants 

We examine the effect of contemporaneous height on each outcome. Height is adjusted for the exact 

age in month at which it is measured and standardised to have mean 100, standard deviation 10. All 

measurements are taken by trained nurses. We instrument height with a set of SNPs that have been 

consistently shown to relate to stature. These are: HMGA2, ZBTB38, GDF5, LOC387103, EFEMP1, 

SCMH1, ADAMTSL3, DYM and C6orf106.
15

 We combine these into a count of the number of ‘tall’ 

alleles carried by each child (see section 4.4 for more details). 

 

4.3. Controls 

We observe a rich set of child and family background characteristics that we include as covariates. 

We control for the child’s birth weight and for the number of older and younger siblings under 18 in 

the household. As the outcomes of interest may vary with within-year-age, we also account for the 

child’s age (in months) at the time the outcome is measured. We control for the family’s socio-

economic position with various measures: log equivalised family income and its square, four binary 

variables for mother’s and father’s educational level, the mother’s parents’ educational level, an 

indicator for whether the child is raised by the natural father, variables indicating the family’s social 

class, and parents’ employment status when the child is 21 months. As a further measure, we include 

a measure of small (local) area deprivation, as measured at the child’s birth.
16

 

In addition to these generally observed controls, our data allow us to also account for several further 

                                                 
15

 All genotyping was performed by KBioscience (http://www.kbioscience.co.uk). SNPs were genotyped using the KASPar 

chemistry, which is a competitive allele-specific PCR SNP genotyping system using FRET quencher cassette oligos 

(http://www.kbioscience.co.uk/genotyping/genotyping-chemistry.htm). 
16

 Family income is an average of two observations (when the child is aged 3 and 4) and is in 1995 prices. The educational 

indicators are: less than ordinary (O) level, O-level only, advanced (A) level that permits higher educational study, and 

having a university degree. We use the standard UK classification of social class based on occupation (professional (I), 

managerial and technical (II), non-manual skilled (IIInm), manual skilled (IIIm), semi-skilled (IV) and unskilled (V)). The Index 

of Multiple Deprivation (IMD) is based on six deprivation domains, including health deprivation and disability; employment; 

income; education, skills and training; housing; and geographical barriers to services. Increasing IMD scores indicate greater 

deprivation. The IMD measure relates to areas containing around 8000 persons. 
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measures of mother’s health and behaviour, which may be correlated with both child height and the 

outcome of interest. We use two binary variables which measure whether the mother smoked or 

drank alcohol in the first three months of pregnancy; an ordered indicator for the intensity of 

mother’s breastfeeding (never, <1 month, 1-3 months and 3+ months);  mother’s age at birth (20-24, 

25-29, 30-34, 35+); mother’s ‘locus of control’, a psychological concept that describes whether 

individuals attribute successes and failures to internal or external causes (those with an external 

locus of control attribute success and failure to chance); two further measures of maternal mental 

health; and finally several measures of parental involvement or interest in the child’s development.
17

 

We also use these covariates in a test of Assumption 1 above, examining whether they differ for the 

different genotypes. 

 

4.4. Descriptive Statistics 

Table 1 presents mean height (at age 8) for each of the SNPs, distinguishing between children who 

are homozygous for the height-increasing allele, heterozygous and homozygous for the height non-

increasing allele. These show that each of the individual SNPs explain little of the variation in child 

height. This would imply that the first stage regressions have low explanatory power. For this reason 

(and as Weedon et al. (2008) and Lettre et al. (2009)), we create a count of the total number of 

height-increasing alleles carried by each child and use this as the instrument for child height. With 

nine SNPs, this variable has a possible range from 0 (homozygous for the non-height-increasing allele 

at all variants) to 18 (homozygous for the height-increasing allele at all variants). The left panel of 

Figure 2 presents a histogram of the number of ‘tall’ alleles carried by each child, showing a bell-

shaped distribution. The linear prediction of child height, obtained from a regression on the number 

of ‘tall’ alleles, is presented by the straight line. On average, each ‘tall’ allele increases the child’s 

height at age 8 by 0.043 standard deviations (approximately 0.25 cm). There is, however, a 

considerable amount of unexplained variation in height (R
2
 = 0.8%), as shown in the right panel of 

Figure 1, where the linear prediction is presented by the same straight line.  

Columns 1 and 2 in Table 2 present the descriptive statistics (mean, standard deviation) of the 

variables used in the analyses. This shows an average height at age 8 of 132.2 cm and of 163.3 cm at 

                                                 
17

 Maternal mental health is measured by the Edinburgh Post-natal Depression Score (EPDS) and Crown-Crisp Experimental 

Index (CCEI) at 18 weeks gestation. EPDS indicates the extent of post-natal depression; CCEI captures a broader definition of 

mental health, measuring general anxiety, depression and somaticism. Higher scores mean the mother is more affected. 

The mother’s ‘teaching score’ is constructed from questions that measure whether the mother is involved in teaching her 

child (depending on the child’s age) songs, the alphabet, being polite, etc. We use an average score from three measures at 

ages 18, 30 and 42 months to capture longer-term involvement. Likewise, a variable is included indicating whether the 

mother reads/sings to the child, allows the child to build towers/other creations etc, measured at age 24 months. Finally, 

we also account for the extent to which parents engage in active (outdoor) activities with their children, such as going to 

the park or playground and going swimming. 



 14

age 13. In the analysis, we use standardised heights. Columns 3 to 5 show the raw association 

between this measure, the covariates and the number of ‘tall’ alleles, obtained from a regression of 

standardised height or each covariate on the number of height-increasing alleles.  The top two rows 

of these columns present the relationship between child height and the instrument, showing a strong 

relationship for height at both ages. On average, each ‘tall’ allele is associated with a 0.043-0.047 

standard deviation increase in child height (note, as mentioned above, that height is distributed with 

mean 100, standard deviation 10). The rest of columns (3) – (5) show no clear patterns or (with three 

exceptions) statistically significant associations in the relationship between the contextual variables 

and the number of height-increasing alleles. Using a two-sided binomial probability test at the 5% 

level, a comparison of the observed versus expected number of significant correlations suggests that 

the genetic variants show no greater association with the child and family background characteristics 

than what would be expected by chance (p = 0.15), providing support for Assumption 1.
18

  

 

4.5 IV Falsification Check  

Another way to examine the robustness of our IV approach and the validity of our instruments is by 

undertaking a ‘falsification check’. If we examine the effect of height on body weight, controlling for 

other covariates, we expect (a) to find strong positive effects in both OLS and IV, as the two are 

highly (positively) correlated particularly in children who are still growing (e.g. see any children’s 

growth charts), and (b) for the two estimates to give similar coefficients. There would be a slight 

downward bias of the OLS estimates in some case; for example, a healthy (unobserved) diet might 

positively affect height and negatively affect weight. As shown by Tanner (1978) and discussed above 

however, even with severe (prenatal or postnatal) malnutrition, children attain similar heights as 

their siblings or peers. Hence, even if any bias exists, we do not expect this to be large. A 

substantially different or null IV finding would therefore cast doubt on our IV strategy. 

Table 3 shows strong positive estimates of body weight on height at different ages in both the OLS 

and IV. A one standard deviation increase in height is associated with a 0.52 – 0.69 standard 

deviation increase in weight in the OLS, and a 0.26 – 0.98 standard deviation increase in weight in the 

IV. The point estimates are similar in both models, though the standard errors are much larger in the 

IV as expected. Using the Durbin-Wu-Hausman test, we can statistically distinguish the OLS from IV in 

                                                 
18

 To shed more light on whether the variants are likely to be related to other background characteristics, we also examine 

the relationship between the genetic variants and a wide set of further variables (64 additional pairwise comparisons) that 

are not included in our analysis (such as whether the child had sleeping difficulties, the child’s ‘locus of control’, whether 

the mother had a caesarean section, mother’s self-esteem, anxiety, depression, whether the family owns their own home, 

whether they have financial difficulties, etc.). The findings (available from the authors upon request) also suggest the 

genetic variants are unrelated to these other variables (using a two-sided binomial probability test, p = 0.77 at the 5% level; 

p = 0.83 at the 10% level). 
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only one case (11 year-old girls); the majority of the IV estimates are indistinguishable from those 

estimated by OLS. 

This suggests that our instruments perform well and that the IV approach correctly identifies the 

causal effect of height on body weight. Although this does not guarantee that our IV approach also 

correctly identifies the causal effect on the other outcomes of interest, it does provide support for 

our argument that both the approach and the instruments are valid to obtain causal estimates of the 

effects of stature. 

 

4. Results 

 

5.1. OLS Results 

We begin by examining the OLS association between height, cognitive skills and mental health. 

Columns (1) and (2) of Table 4 show a positive association between height, test scores and IQ that 

halves when controlling for the background characteristics. However, the actual magnitude of the 

association is small: controlling for all covariates (the ‘adjusted’ results), a one standard deviation 

increase in height is associated, for example, with a 0.056 standard deviation increase in girls’ IQ. 

Comparing this to the effect of within-school-year age on IQ in our data, this corresponds to a 

difference in test scores between children born approximately one month apart.  

Columns (3) to (5) examine the relationship between height, the two measures of self-esteem and 

symptoms of depression. This shows that height is related to increases in self-esteem and depression 

scores, though the estimates decrease and become indistinguishable from the null when controlling 

for the covariates (the positive association with depression symptoms within girls is the one 

exception).  

Table 5 presents both the unadjusted (raw) and adjusted (controlling for all covariates) associations 

between height and behavioural problems. The latter shows that height is unrelated to hyperactivity 

and conduct problems, but there is a negative relationship with emotional problems. The effects are 

again small: a one standard deviation increase in height is associated with 0.06-0.07 standard 

deviations decrease in emotional problems. The results also show a small negative association 

between height and peer problems for girls.  
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5.2. IV results 

Table 6 presents the IV results for cognitive skills and mental health. The estimates are obtained from 

a pooled (by gender) first stage regression of height (e.g. at age 8) on the number of height-

increasing alleles carried by each child. Our instrument predicts height well, with a first stage F-

statistic between 34 and 42, satisfying Assumption 2.
19

 To obtain gender-specific second stage 

results, we regress the outcome on the predicted height interacted with the child’s gender, 

bootstrapping the standard errors.   

Column 1, Table 6, shows the IV estimates for KS3. These are larger than the OLS but also have large 

standard errors. We cannot reject the null of no effect, nor can we reject the Durbin-Wu-Hausman 

(DWH) test, which is a test of the hypothesis that the IV estimates are the same as those in the OLS. 

Column 2 shows a positive effect of instrumented height on IQ for both boys and girls and the DWH 

test rejects the null of exogenous height at the 10% level. The IV estimate is larger than the OLS, 

suggesting that the latter underestimates the true effect: a one standard deviation increase in 

instrumented height increases IQ by 0.3 standard deviations (we discuss possible reasons for this 

difference below). 

The IV estimates suggest, in contrast to the OLS estimates, that height is negatively related to the 

mental health outcomes. Columns 3 to 5 of Table 6 show that for self-esteem, global self worth and 

depression symptoms, the large standard errors mean we cannot reject the null of no effect. But all 

three sets of IV coefficients relate increasing height to worse outcomes.  

Table 7 presents the IV regression results for behavioural problems. In contrast to the OLS results in 

Table 5, the IV estimates in Column 1 of Table 7 show height to be a predictor of hyperactivity in 

girls, with the DWH test rejecting the exogeneity assumption of height. A one standard deviation 

increase in instrumented height increases the hyperactivity score by 0.34 standard deviations. The 

estimate for boys is also positive, though smaller and not statistically distinguishable from the null. 

Similarly, height appears to be a positive predictor of boys’ emotional and peer problems (columns 2 

and 4) and the estimated effect, although not statistically significant, is of a similar magnitude for 

girls’ emotional problems. Column 3 shows there is no effect of height on conduct problems for 

either gender. 

                                                 
19

 As a general test of gene-environment interactions, we explore whether our genetic variants are only expressed in 

specific environments, and therefore whether there is any direct evidence of violation of the monotonicity assumption. We 

estimate the first stage regression, interacting the genetic variants with indicators for various subgroups and test whether 

the instrument coefficient is the same across groups. We specify the following subgroups: gender, duration of 

breastfeeding, social class, mother’s educational level, and quartiles for birth weight, log income, the Index of Multiple 

Deprivation (IMD) and mother’s teaching score. With one interaction (breastfeeding for 11+ girls, but not for boys) showing 

p=0.057, and all other p-values between 0.138 and 0.977, the results (available from the authors) show no more significant 

differences than what would be expected by chance, suggesting that gene-environment interactions do not play an 

important role for the genetic variants used here. 
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5.3 Non-linearities 

As discussed in section 2, the existing literature has found both tallness and shortness to have 

negative psychological effects in children. The estimates discussed above only examine differences in 

the outcome of interest at the mean, but the relationship between height and the outcomes may 

differ at different points in the distribution. We therefore investigate different cut-points and 

examine the effects of being below the 25
th

 and above the 75
th

 percentile of the age- and gender 

specific height distribution. The results (available upon request) confirm our main findings. OLS 

estimates show that shorter children have lower IQ and do worse in school tests, and vice versa for 

taller children.  The IV results also show that shorter children have lower IQ. But, as above, the IV 

estimates show no evidence of a relationship between height and scholastic competence, self-worth 

or depression. The IV effects of being tall or short on the child’s behavioural problems also show 

similar patterns to those above: relatively short girls are less hyperactive and have fewer emotional 

problems, and vice versa for tall girls. For boys, shortness decreases and tallness increases emotional 

and peer problems. 

 

5. Conclusion and discussion 

 

This paper is the first to exploit genetic variation in height to examine the causal effects of height on 

human capital accumulation. OLS results show that taller children perform better in terms of 

cognitive performance and are less likely to have emotional and peer problems (girls), though tall 

girls are more likely to show symptoms of depression. Using genetic variation in height in an IV 

specification, we attempt to deal with the problems of endogeneity. The IV findings are similar to the 

OLS for cognitive performance; we find a positive effect of height on IQ. However, we find a negative 

relationship with behaviour. We show that the OLS results are downwardly biased and that height 

increases rather than decreases behavioural problems. Taller children are more hyperactive and are 

more likely to have emotional and peer problems.  

In many of our results, the IV estimates indicate that OLS is biased downwards. One possible 

explanation for the difference between IV and OLS could be a genetic one. For example, (one of) our 

SNPs could be pleiotropic or in LD with another variant that directly affects IQ or cognition.  But from 

the evidence discussed in footnote 11 and from the fact that we use only nine SNPs out of possibly 

hundreds or thousands SNPs coding for height, we make the assumption that this is not the case. 

More generally, the literature does not give any reason to expect violation of the IV assumption 
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based on the known function of these genes. In addition, there is no reason to expect violation given 

our tests of associations with known confounders and our falsification check. However, as we cannot 

directly test this, this has to remain an assumption.
20

  

One possible explanation for our IV findings that indicate that being taller increases rather than 

decreases behavioural problems could be the differential treatment of children of different stature. A 

‘size-appropriate’ rather than ‘age-appropriate’ treatment of tall children may trigger behavioural 

problems. Expectations and reactions to ‘tall-for-age’ children’s (what may seem childish) behaviour 

can in turn affect children’s development. As factors such as socio-economic position are positively 

related to height and negatively related to behavioural problems, the OLS estimates will be 

downward biased if these factors are insufficiently controlled for. Though possible, these are 

speculations as we currently have no further evidence to confirm these. However, the finding of 

increased behavioural problems is consistent with the psychological literature that has shown a 

positive relationship between height and children’s behavioural problems, though this literature has 

mainly examined outcomes such as aggression and violence (Raine et al., 1998; Farrington, 1989) 

rather than those we examine here. 

Finally, the IV effects we find for behaviour and IQ are large: a one standard deviation increase in 

height raises these scores by about 0.3 standard deviations. This is a similar magnitude to the lower 

bound of our estimate of the causal effect of height on weight, suggesting that these effects are not 

trivial. In fact, comparison of these effects with those of other child characteristics shows they are 

large. For example, a 0.34 standard deviation difference in IQ is comparable to the difference in this 

score for children born approximately 6 months apart within the same school year. Likewise, the 

difference between girls’ and boys’ raw hyperactivity scores is approximately 0.37 standard 

deviations which is similar to the estimated effect of one standard deviation increase in height on 

hyperactivity.  

In conclusion, our findings suggest that height is an important factor in children’s human capital 

accumulation in both childhood and adolescence, likely as a result of the social reactions that are 

triggered by variations in height. We show that being tall may not only confer advantage but also 

disadvantage; our examination of behavioural problems contrasts with the more positive view of 

height that emerges from the existing empirical literature on height and children’s cognitive 

performance.  

                                                 
20

 As discussed in Davey Smith (in press), genetic confounding can be tested indirectly by obtaining many IV estimates that 

use different independent (combinations of) variants. These estimates will not plausibly be influenced by any common 

pleiotropy or LD-induced confounding. Therefore, if they display consistency, it provides evidence against genetic 

confounding. Using this approach, we specified each variant separately as the instrumental variable. This greatly reduces 

the power in the first stage, and generally more than doubles the standard errors in the second stage, but it broadly 

supports the findings reported above (results available from the authors upon request).  
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Figures and Tables 

 

Figure 1: A directed acyclic graph (DAG) showing that the effect of height iH  on the outcome of 

interest iC can run via different pathways P . The unobservables ie  may be related to both iH  and 

iC . The instrument iZ only affects iC  via its effect on iH . 

 

 

 

 

 

 

 

 

Figure 2: Histogram of children’s height at age 8 by the number of height-increasing alleles 
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Table 1: Mean and standard deviation of height at age 8 (in cm) for each SNP.  

   

‘tall’ 

 Homozygous for  

‘non-tall’ allele 

Heterozygous Homozygous for  

‘tall’ allele 

SNP rs number allele  Mean Std. dev. Mean Std. dev. Mean Std. dev. 

          

HMGA2 rs1042725 C/T  132.0 (5.47) 132.0 (5.59) 132.7 (5.71) 

ZBTB38 rs6440003 A/G  131.8 (5.53) 132.3 (5.68) 132.4 (5.47) 

GDF5 rs6060373 C/T  132.2 (5.58) 132.2 (5.59) 132.2 (5.71) 

LOC387103 rs4549631 C/T  131.6 (5.45) 132.5 (5.68) 132.1 (5.54) 

EFEMP1 rs3791675 A/G  131.0 (5.75) 131.9 (5.52) 132.4 (5.61) 

SCMH1 rs6686842 A/G  131.9 (5.51) 132.2 (5.62) 132.4 (5.68) 

ADAMTSL3 rs10906982 A/T  131.8 (5.53) 132.1 (5.64) 132.5 (5.57) 

DYM rs8099594 T/C  131.9 (5.72) 132.2 (5.51) 132.2 (5.65) 

C6orf106 rs2814993 T/C  132.2 (5.70) 132.1 (5.34) 132.5 (5.19) 

          

Note: The height-increasing allele is bold and underlined 

 

Table 2: Descriptive statistics of control variables: Columns 1-2 show their mean and standard deviation. 

Columns 3-5 present the coefficients, standard error and p-value of the variables shown in the first column 

regressed on the instrument (a count of the number of height-increasing alleles). 

 (1) 

Mean  

(2) 

Std. dev. 

 (3) 

Coeff. 

(4) 

Std. err. 

(5) 

p-value 

       

       

Height (columns 1-2: in cm; columns 3-5: standardised)      

Age 8  132.2 (5.6)  0.430 0.081 <0.000 

Age 13 163.3 (7.6)  0.474 0.089 <0.000 

       

Control variables       

Age in months at Focus@8 clinic 103.1 (2.21)  0.018 0.017 0.284 

Age in months at Teen Focus 2 clinic 166.0 (2.12)  0.011 0.015 0.466 

Age in months at KS3 exam 169.6 (3.76)  -0.033 0.025 0.194 

Birth weight (g) 3422 (549)  -1.505 3.699 0.684 

Younger siblings under 18 in the household 0.51 (0.65)  -0.003 0.004 0.543 

Older siblings under 18 in the household 0.74 (0.74)  0.000 0.005 0.972 

       

Ln(income) 5.32 (0.45)  0.000 0.003 0.995 

Father’s education 2.43 (1.01)  0.000 0.007 0.986 

Mother’s education 2.36 (0.88)  0.003 0.006 0.615 

Mother’s mother’s education 1.73 (0.75)  -0.001 0.005 0.829 

Mother’s father’s education 1.84 (0.79)  -0.003 0.005 0.610 

Child is not raised by natural father 0.06 (0.23)  0.001 0.002 0.628 

Father’s social class at the child’s birth 3.04 (1.28)  -0.001 0.009 0.894 

Mother is employed part-time at 21 months 0.40 (0.49)  0.008 0.003 0.020 

Mother is employed full-time at 21 months 0.10 (0.30)  -0.000 0.002 0.906 

Father is employed at 21 months 0.92 (0.28)  0.004 0.002 0.038 

Index of Multiple Deprivation (IMD) 19.50 (13.95)  -0.014 0.100 0.891 

       

Mother: alcohol in month 1-3 of pregnancy 0.57 (0.50)  0.004 0.003 0.266 

Mother: smoked in month 1-3 of pregnancy 0.18 (0.39)  -0.000 0.003 0.917 

Breastfeeding 1.88 (1.20)  0.011 0.008 0.207 

Mother’s age 3.38 (0.91)  0.002 0.006 0.711 

Mother’s ‘locus of control’ 98.88 (9.44)  -0.020 0.065 0.764 

Mother’s EPDS 6.46 (4.54)  0.025 0.031 0.412 

Mother’s CCEI 12.88 (7.19)  0.038 0.049 0.443 

Teaching score 7.02 (0.93)  0.001 0.007 0.916 

Activities (indoor) score 0.69 (0.20)  0.003 0.001 0.032 

Activities (outdoor) score 27.89 (4.61)  -0.008 0.032 0.810 

       

Note: Rather than height in cm, the analysis uses standardised heights (with mean 100, standard deviation 10). 
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Table 3: Falsification check: The effects of contemporaneous height on body weight, OLS and IV  

 Weight (measured at the same age as height) 

 OLS IV 

 Boys Girls Boys Girls 

     

Height, age 3 0.645*** 0.614*** 0.638*** 0.576*** 

 (0.016) (0.016) (0.122) (0.124) 

p-value DWH test   0.954 0.757 

No. of observations 5248 5248 

    

     

Height, age 5 0.571*** 0.569*** 0.981*** 0.822*** 

 (0.027) (0.031) (0.305) (0.271) 

p-value DWH test   0.177 0.347 

No. of observations  3359 3359 

    

     

Height, age 8 0.673*** 0.689*** 0.543 *** 0.467*** 

 (0.018) (0.020) (0.122) (0.142) 

p-value DWH test   0.281 0.114 

No. of observations 4335 4335 

    

     

Height, age 11 0.648*** 0.637*** 0.469*** 0.260** 

 (0.018) (0.017) (0.119) (0.114) 

p-value DWH test   0.128 0.001 

No. of observations 4442 4442 

    

     

Height, age 13 0.600*** 0.555*** 0.637*** 0.333** 

 (0.017) (0.023) (0.135) (0.146) 

p-value DWH test   0.782 0.124 

No. of observations 3865 3865 

    

     

Height, age 15 0.609*** 0.521*** 0.792*** 0.568*** 

 (0.024) (0.029) (0.180) (0.160) 

p-value DWH test   0.305 0.765 

No. of observations 3383 3383 

    

     

Notes: The estimates come from regressions of body weight on contemporaneous height interacted with 

gender; controls include: birth weight, age in months, number of older and younger siblings, log equivalised 

family income and its square, mother’s -, father’s -, and mother’s parents’ educational level, raised by natural 

father, social class, maternal age at birth, parents’ employment status, IMD at birth, mother’s smoking and 

drinking during pregnancy, breastfeeding, mother’s ‘locus of control’ and mental health (EPDS and CCEI), 

parental involvement or interest in the child’s development, and parents’ engagement in active (outdoor) 

activities with their child; DWH test = Durbin-Wu-Hausman test (H0:
 1β  is exogenous); * p<0.1, ** p<0.05, *** 

p<0.01. 
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Table 4: OLS – The unadjusted and adjusted effects of contemporaneous height (ages 8 and 13) on cognitive skills and mental health  

 (1) 

Key Stage 3,  

Age 14 

(2) 

IQ test score,  

Age 8 

(3) 

Scholastic self-esteem, 

Age 8 

(4) 

Global self-worth, 

Age 8 

(5) 

Depression, 

Age 13 

 Boys Girls Boys Girls Boys Girls Boys Girls Boys Girls 

           

Unadjusted           

   Height 0.091*** 0.106*** 0.113*** 0.111*** 0.029* 0.030* 0.019 0.027* 0.011 0.048*** 

 (0.016) (0.017) (0.015) (0.015) (0.015) (0.016) (0.016) (0.016) (0.016) (0.017) 

           

           

Adjusted for all covariates           

   Height  0.039** 0.084*** 0.063*** 0.056*** 0.008 0.020 0.012 0.020 -0.004 0.054* 

 (0.017) (0.022) (0.020) (0.018) (0.023) (0.022) (0.023) (0.022) (0.019) (0.030) 

No. of obs. 3149 4522 4270 4270 3828 

           

Notes: The estimates come from regressions of the outcome on contemporaneous height interacted with gender; controls are listed in the note to Table 3; * p<0.1, ** 

p<0.05, *** p<0.01. 

 

Table 5: OLS – The unadjusted and adjusted effects of contemporaneous height on behaviour at age 13  

 (1) 

Hyperactivity 

(2) 

Emotional problems 

(3) 

Conduct problems 

(4) 

Peer problems 

 Boys Girls Boys Girls Boys Girls Boys Girls 

         

Unadjusted 0.003 -0.034* -0.076*** -0.058*** -0.004 -0.012 0.010 -0.029 

   Height (age 13) (0.018) (0.018) (0.017) (0.018) (0.017) (0.017) (0.018) (0.019) 

         

         

         

Adjusted for all covariates         

   Height (age 13) -0.002 0.022 -0.060*** -0.070** 0.001 0.009 0.017 -0.057* 

 (0.023) (0.027) (0.020) (0.032) (0.021) (0.028) (0.024) (0.028) 

No. of obs. 3315 3314 3314 3312 

         

Notes: The estimates come from regressions of the outcome on contemporaneous height interacted with gender; Controls are listed in the note to Table 3; * p<0.1, ** 

p<0.05, *** p<0.01. 
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Table 6: IV – The (adjusted) effects of contemporaneous height (ages 8 and 13) on cognitive skills and mental health  

 (1) 

Key Stage 3,  

Age 14 

(2) 

IQ test score,  

Age 8 

(3) 

Scholastic self-esteem, 

Age 8 

(4) 

Global self-worth, 

Age 8 

(5) 

Depression, 

Age 13 

 Boys Girls Boys Girls Boys Girls Boys Girls Boys Girls 

           

Height at age 8 0.061 0.153 0.352** 0.344** -0.063 -0.102 -0.088 -0.103 0.103 0.249 

 (0.130) (0.127) (0.163) (0.174) (0.184) (0.203) (0.176) (0.167) (0.183) (0.175) 

p-value DWH test 0.885 0.549 0.074 0.096 0.697 0.545 0.567 0.457 0.557 0.258 

First stage F-statistic 34.2 40.0 38.5 38.5 42.0 

           

Notes: Estimates are obtained from a first stage regression of height (e.g. at age 8) on the number of height-increasing alleles carried by each child. The second stage 

regresses the outcome on the predicted height interacted with a variable indicating the child’s gender. Standard errors are obtained using bootstrapping; All controls 

included, these are listed in the note to Table 3; DWH test = Durbin-Wu-Hausman test (H0:
 1β  is exogenous); * p<0.1, ** p<0.05, *** p<0.01. 

 

 

 

 

Table 7: IV – The (adjusted) effects of contemporaneous height on behaviour at age 13  

 (1) 

Hyperactivity 

(2) 

Emotional problems 

(3) 

Conduct problems 

(4) 

Peer problems 

 Boys Girls Boys Girls Boys Girls Boys Girls 

         

Height at age 13 0.168 0.340** 0.322* 0.256 -0.231 -0.010 0.312* -0.010 

 (0.141) (0.156) (0.178) (0.203) (0.192) (0.198) (0.172) (0.160) 

p-value DWH test 0.222 0.038 0.031 0.104 0.224 0.923 0.083 0.765 

F-statistic 38.4 38.9 39.0 38.7 

     

Notes: Estimates are obtained from a first stage regression of height (e.g. at age 8) on the number of height-increasing alleles carried by each child. The second stage 

regresses the outcome on the predicted height interacted with a variable indicating the child’s gender. Standard errors are obtained using bootstrapping; All controls 

included; these are listed in the notes to Table 3. DWH test = Durbin-Wu-Hausman test (H0:
1β  is exogenous); * p<0.1, ** p<0.05, *** p<0.01. 
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Appendix A:  A Brief Introduction to Genetics 

Each cell in the human body contains a nucleus in which most DNA (99.9995%) is kept. DNA is stored 

in structures called chromosomes, where each chromosome contains a single continuous piece of 

DNA. All cells in the human body apart from gametes (i.e. germ cells) contain 46 chromosomes, 

organised into 23 chromosome pairs: one copy of chromosome 1-22 from each parent, plus an X-

chromosome from the mother and either an X or a Y chromosome from the father.  

Locations (or loci) where DNA varies between people are called polymorphisms. The most commonly 

studied form of polymorphism is a Single Nucleotide Polymorphism (SNP): a single base-pair variation 

in a DNA locus. As chromosomes come in pairs, humans have two base-pairs at each locus, called 

alleles. These alleles can either be the same or different. The term genotype is used to describe the 

specific set of alleles inherited at a particular chromosome locus. For example, individuals can have 

one of three genotypes of the HMGA2 SNP (one of the genetic variants used here): they can be 

homozygous for the common allele (TT), heterozygous (CT), and homozygous for the rare allele of 

HMGA2 (CC). The visible or measurable effect of a particular genotype is called the phenotype.  

The phenotype we examine in this paper is child height. Studies that examine the heritability of 

human height generally report large proportions of the variance that are due to genetics: up to 0.9 

(Silventoinen et al., 2003; Macgregor et al., 2006).
21

 A high heritability however, does not imply that 

any individual genetic variant has large phenotypic effects. For example, there are many different 

SNPs that affect human height, though all with small effects: so-called ‘polygenes’. Together, these 

variants may have a large phenotypic effect. 

 

                                                 
21

 The heritability of a characteristic is defined as the proportion of the total variance that is explained by genetic factors. It 

is most commonly calculated from twin studies by comparing intra-pair correlations for the characteristic in monozygotic 

(MZ) twins with intra-pair correlation in dizygotic (DZ) twins. The implicit assumption is that the effects of shared 

environmental factors are similar for MZ and DZ twins. The heritability is of a characteristic is calculated as twice the 

difference between MZ and DZ intra-pair correlations (h
2
 = 2*(rMZ-rDZ)). 


