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Abstract

For sevaal decades the stated Holy Grail of chemical, biological and y8igdd research into neocortical
information processing has been to reduce such neocortical phenomena into specific bottom-up molecular
and smaller-scale processeé3ver the past three decades, withard to short-term memory (STM) and
long-term memory (LTM) phenomena, which themselves aedyligomponents of other phenomena lik
attention and consciousness, a statistical mechanics of neocortical interactions (SMNI) approach has
yielded specific details of STM capagcitiuration and stability not present in molecular approaches, but it

is clear that most molecular approaches consider ititaide that their reductionist approaches at
molecular and possiblywen gquantum scales will yet pve o be @usal explanations of such phenomena.

The SMNI approach is a bottom-up agga@n from synaptic scales to columnar and regional scales of
neocort&, and has been merged with larger norasive EEG scales with other colleagues -- all at scales
much coarser than molecular scales. As with yn@nusades for some truths, other truths can be
trampled. Itis proposed that an SMNI vector potential (SMNI-VP) constructed from magiedts f
induced by neuronal electrical firings, at thresholds of collectiinicolumnar activity with laminar
specifcation, can gie lise to causal top-down mechanisms that effect molecular excitatory and inhibitory
processes in STM and’M. A specifc example might be causal influences on momenpush C&* ions

by the SMNI-VPA, as alculated by the canonical momentiim = p - gA, whereq = —2e for C&*, e

is the electron coulomb chge, which may be applied either classically or quantum-mechani&Gith a

smoking gun for top-down effectsvaits forensic in wo experimental erification, requiring appreciating

the necessity and due diligence of including true multiple-scale interactions across orders of magnitude in
the compl& neocortical environment.
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1. Introduction and Rational

The phenomenon of short-term memory (STM) hasynapects and obsexd as well as conjectured
mechanisms. Thapproach here is to talone approach based on a statistical mechanics of neocortical
interactions (SMNI) which has been successful in calculatimgalemportant features of STM based on
columnar structures in neocorteThisis taken as starting point to seevhaomplementary processes at
some larger and some smaller scales can be bridged to better understand STM

The next section describes thesedlepment of SMNI STM, folloved by a section deted to a summary

of the mathematical @elopment of SMNI. This helps to keep the rest of the paper vehattlear of
some of these details, while still giving Bafent background toxplain the deelopment. Thefollowing
section describes a larger context of STM, taking into account otrkram smaller scales of neuronal as
astrogte interactions, as well as\wwahe SMNI processes at columnar scales effecgetacale rgional
activity. This discussion is ceeniently described as bottom-up versus top-down processhs.
following section deals with o SMNI processes at columnar scales, tuned to STM processing, can
affect molecular scales of adgtly, via the electromagnetic vector potential, thereby describing a process
that requires a casual threshold of columnawiagtto influence ionic processes strongly implicated in
STM at molecular keels. Thelast section is a conclusion emphasizing the importance of somewwop-do
processes in STM phenomena.

2. SMNI STM

Neocorta has e&olved to use minicolumns of neurons interacting via short-ranged interactions in
macrocolumns, and interacting via long-ranged interactions acragiense of macrocolumns
(Mountcastle, 1978; Buxhweden & Casang, 2002; Rakic, 2008).This common architecture processes
patterns of information within and amongfdifent regions of sensqgmnotor, associatie rtex, etc. The

SMNI approach s the first physical application of a nonlinear mraftate calculus desloped by other
mathematical physicists in the late 19%/@ cefine a statistical mechanics of mudtiiate nonlinear
nonequilibrium systems (Graham, 1977; Langouwstha, 1982).

SMNI builds minicolumngrmacrocolumnarand ragional interactions in neocore Sincel1981, SMNI
has been deloped to model columns and regions of neocprepanning mm to cm of tissue, As
depicted in Figure 1, SMNI delops three biophysical scales of neocortical interactions: (Y3
microscopic neurons; (b)-(b’) mesocolumnar domains; (c)-(c’) macroscogionss SMNI has
developed appropriate conditional probability distributions at eaeHl,laggreaing up from the smallest
levels of interactions. In (3 synaptic inter-neuronal interactionsyepaged @er by mesocolumns, are
phenomenologically described by the mean and variance of a wistnib¥. Smilarly, in (a)
intraneuronal transmissions are phenomenologically described by the meanargmtcey of I'.
Mesocolumnar \seraged excitatoryK) and inhibitory () neuronal frings M are represented in (a’)n
(b) the vertical aganization of minicolumns is stched together with their horizontal strattion,
yielding a physiological entitythe mesocolumn. In (b’) theverlap of interacting mesocolumns at
locationsr andr’ from timest andt +r, r on the order of 10 msec, isetkhed. In(c) macroscopic
regions of neocorte are depicted as arising from mamesocolumnar domains. (c’) sketcheswho
regions may be coupled by long-ranged interactions.

Most of these papers V& cealt explicitly with calculating properties of STM and scalp EEG in order to
test the basic formulation of this approach (Ingd&81; Ingber 1982; Ingber 1983; Ingber 1984;
Ingber 1985b; Ingber1985c; Ingber1986; Ingber & Nunez, 1990; Inghet991; Ingber 1992; Ingber
1994; Ingber & Nunez, 1995; Inghd995a; Ingber1995b; Ingber1996b; Ingber1996a; Ingber1997;
Ingber 1998). TheSMNI modeling of local mesocolumnar interactions (@gence and diergence
between minicolumnar and macrocolumnar interactiors3 vested on STM phenomena. The SMNI
modeling of macrocolumnar interactions across regions was tested on EEG phenomena.

2.1. STMCapacity

SMNI studies hee cetailed that maximal numbers of attractors lie within the physical firing spadé€ of
where G = {Excitatory Inhibitory} minicolumnar frings, consistent with experimentally obseav
capacities of auditory STM (Milled956; Ericsson & Chase, 1982) and visual STM (G. Zhang & Simon,
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T M >0

l M <0

Fig. 1. lllustrated are three biophysical scales of neocortical interactions:” X&xja
microscopic neurons; (b)-(b") mesocolumnar domains; (c)-(c’) macroscogonse
Reprinted with permission from (Inghd©83) by the American Physical Society.

1985), when a “centering” mechanism (CM), as detailedwpatoenforced by shifting background noise

in synaptic interactions, consistent witkperimental observations under conditions of seleditention
(Mountcastleet al, 1981; Ingber1984; Ingber 1985c; Ingber1994; Ingber & Nunez, 1995). This leads

to all attractors of the short-time diswiipn lying along a diagonal line i space, déctively defining

a narrowv parabolic trough containing these most likely firing states. This essentially collapsesthe tw
dimensionalM® space dan to a one-dimensional space of most importance. Thus, the predominant
physics of STM and of (shortder contribution to) EEG phenomena takes place in awanparabolic
trough” in M€ space, roughly along a diagonal line (Inglieg4).

These calculations were further supported by high-resolutioluteon of the two-variable short-time
conditional-probability propagator using\PHINT (Ingber & Nunez, 1995). SMNI correctly calculated
the stability and duration of STM, random access to memories within tenths of a second as observed, and
the observed % 2 capacity rule of auditory memory (Millet956) and the observedt® capacity rule of
visual memory (G. Zhang & Simon, 1985).

Figure 2 shows thevelution of a Balanced Centered model (BC) after 500 foldingAtcf 0. 01,0r 5
unit of relaxation timer. Note the existence of ten well\doped peaks or possible trappings iohf
patterns (Ingber & Nunez, 1995T.his seems to be able to describe the 27 rule. The BC model is
described in more detail b&lo

Figure 3 shows thevelution of a Balanced Centered Visual model (BCV) after 1000 foldings of

At =0.01,0r 10 unit of relaxation time. Note the existence of four well woped peaks or possible
trappings of firing patterns. Also note that other peaks at lower scales are clearly present, numbering on
the same order as in the BC' model, as the strength in the original peaks dissipates thraimghout f
space, but these are much smaller and therefore much less probable to be accessed (Ingber & Nunez,
1995). Thisseems to be able to describe the2' rule for visual STM.
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Fig. 2. llustrated is SMNI STM Model BC at thevatution at 5. Reprinted with
permission from (Ingber & Nunez, 1995) by the American Physical Society.
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Fig. 3. lllustrated is SMNI STM Model BCV at theratution at 1G. Reprinted with
permission from (Ingber & Nunez, 1995) by the American Physical Society.

2.2. STMDuration

While early papers (Ingbel984; Ingber 1985c), suggested the possibility of sustenance of S¥é o
epochs of tens of seconds just due to localized columnar interactiorss itl@ar that longeanged
influences also are important to thevelepment of the SMNI approach (Inghei981; Ingber 1982;
Ingbet 1983). For example, calculations slahat this duration of STM may not be possible if only
localized columnar interactions are considered (Ingld®94; Ingber & Nunez, 1995).After
approximately B, the clear separations between peaks of moslyliktates in thewvelving conditional
probability distribution soonwerlap. After approximately 10, the separations hardlyists. All four
models considered, described beltepresenting dominant inhibition, dominant excitation, a “balanced”
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case in between theseavimodel BC' illustrated here), and the latter for the visual neocordbie
similar decays of their peakyveas these time scaled-uture calculations, including all nonlinear SMNI
effects might change this numerical result, but still the action of long-ranged neuron-neurorfumad dif
neuromodulator interactions are known to be important to neocortical function, andntis¢ be
addressed.

2.3. Pmopagation of Information Across Minicolumns

In the sub-section beloon Mathematical Deglopment, it is noted that Euler-Lagrange (EL) equations
are denved from the SMNI Lagrangian, the gaive d the argument of the exponential describing the
short-time conditional probability distribution of columndriny states. Linearization of the EL
equations permits the @®@opment of stability analyses and dispersion relations in fregueace
number space (Ingherl982; Ingber 1983; Ingber 1985b). It is noted in this mgard that the
corresponding ave propa@tion velocities pace interactionyep sevaal minicolumns, of magnitude
sufficient to permit simultaneous information processing within aboutse® with interactions mediated
by long-ranged fibers possessing much greater padipagvelocities about 600-900 cm/sec (Ingber
1985bh). E.g.detailed auditory and visual processing can feed information to the associatiarnmtmie

it can be processed simultaneougbgssibly giving feedback to the primary sensorgioas. The
propagtion \elocities calculated by SMNI, about 1 cm/sec, also are consistent with obsemnadents

of attention (Tsal, 1983) and of hallucinations \(@o, 1982) across the visuakld. This strongly
suggests that nearest-neighbor (NN) mesocolumnar interactions are an important mechanism in these
movements.

2.4. PrimacyVersus Recency Rule

Another phenomenon of STM capacity explained by the SMNI is the prineasus recenceffect in

STM serial processing, wherein first-learned items are recalled most error-free, with last-learned items
still more error-free than those in the middle (Murdock, 198®)e primag versus recencrule is
verified for acoustical STM, but visual or semantic STM typically requires longer times for rehearsal in a
hypothesized articulatory loop of individual items (G. Zhang & Simon, 1986)he SMNI approach, the
basic assumption is made that a pattern of neuronal firing that persists for mates is a candidate to
store the “memory” of activity thatayerise to this pattern. If seral firing patterns can simultaneously
exist, then there is the capability of storingr@@al memories. The short-time conditional probability
distribution derved for the neocorteis the primary tool to seek such firing patterns. The deepest minima
of the Lagrangian, defined b&lpessentially the argument of this probability distribution, are mordylik
accessed than the others of this probability distribution, and thdegsvare sharper than the othets.,

they are more readily accessed and sustain their pattemiasadluctuations more accurately than the
relatively more shallav minima. Themore recent memories or newer patterns may be presumed to be
those having synaptic parameters more recently tuned and/or muelyaetiearsed.

2.5. Hick’s Law

SMNI supports random access to memories within tenths of a second as observed, and thereby helps to
explain Hick's law d linearity of reaction time (RT) with STM information (Hick, 1952; Jensen, 1987;
Ingber 1999).

The R necessary to “visit” the states under control during the span of STM can be calculated as the mean
time of “first passage” between multiple states of this digtidn, in terms of the probabilitf as an

outer intgral J' dt (sum) wer refraction times of synaptic interactions during STM timend an inner
integraIJ'dM (sum) taken wer the mesocolumnar firing statdd (Risken, 1989), which has been
explicitly”calculated to be within observed STM time scales (Inglgs4),

RT:—Idt tJ’nd(IjltD. )

The probability distributiorP is defined bela.
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As demonstrated by prieus SMNI STM calculations, within tenths of a second, the conditional
probability of visiting one state from anothBr can be well approximated by a short-time probability
distribution expressed in terms of the previously mentioned Lagrahgian

1

P = g OPCLAD. @)

whereg is the determinant of the eariance matrix of the distributioR in the space of columnar firings.
This expression foRT can be approximately rewritten as

RT=KJ’dtJ’dM PInP, ©)

where K is a constant when the Lagrangian is approximately constentttte time scales obsad.

Since the peaks of the mostdlif M states ofP are to a very good approximation well-separated
Gaussian peaks (Inghd®84), these states may be treated as independent entities undegtiaé ifitieis

last expression is essentially the “information” content weighted by the time during which processing of
information is observed.

The calculation of the heights of peaks corresponding to mady I&ates includes the combinatoric
factors of their possible columnar manifestations as well as the dynamics of synaptic and columnar
interactions. Inthe approximation that we only consider the combinatorics of items of STM as
contrituting to most likely states measured®yi.e., thatP measures the frequanof occurrences ofall

possible combinations of these items, we obtain itk the observed linear relationship of Rersus

STM information storageFor example, when the bits of information are measured by the probability
being the frequernycof accessing a gen number of items in STM, the bits of information in 2, 4 and 8
states are gen as gpproximately multiples of IR of items, i.e., In2, 2 and 3n 2, resp. (Thdimit of

taking the logarithm of all combinations of independent items yields a constant times thesesum o

p; In p;, wherep; is the frequengof occurrence of itenn.)

2.6. STMTransference to LTM

SMNI also calculates wo STM patterns (e.g., from agn regon or even aggregaed from multiple
regions) may be encoded by dynamic mimdifion of synaptic parameters (withirkpgrimentally
obsened ranges) into long-term memory patterns (LTM) (Ingt@83). Thiscalculation simply shes
how rates of firing can be encoded into synaptic parametrgloes not address yarmolecular
mechanisms to cause such encodings, e.g., such as those referemeed belo

2.7. SMNI Description of EEG

Using the power of the SMNI structure and the optimization algorithm Adaftinulated Annealing
(ASA), sets of EEG andveked potential data from an NIH studyuestigating genetic predispositions to
alcoholism (X.L. Zhanget al, 1995), were fitted to an SMNI model on a lattice dafiomal electrodes to
extract brain “signatures” of STM (Inghel997; Ingber 1998). Eachelectrode site was represented by
an SMNI distrilution of independent stochastic macrocolunsealedM® variables, interconnected by
long-ranged circuitry with delays appropriate to loigef communication in neocore The global
optimization algorithm ASA was used to perform maximunelihood fits of Lagrangians defined by
path integrals of muleriate conditional probabilities.Canonical momenta indicators (CMI) were
thereby denied for individual's EEG data. The CMI g tetter signal recognition than thewaata, and
were used to advantage as correlates of behavioral stateample data was used for training (Ingber
1997), and out-of-sample data was used for testing (Ini@@8) these fits.

These results aye strong quantitatie sipport for an accurate intuié gcture, portraying neocortical
interactions as having common algebraic physics mechanisms that scale across quite disparate spatial
scales and functional or betaral phenomena, i.e., describing interactions among neurons, columns of
neurons, and regional masses of neurons.

Note that there are other models of EEG which alse lsaund experimental supporiSome of the
models can be shown to be indeed complementary to SMNI (Ingber & Nunez, ZxH). potentials
(EEG) are generated by synaptic current sources at small scales; each cubic millimeter of cortical tissue
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contains more than 100 million synapses. In contrast to this small scaiy aeEG data are recorded at
macroscopic (centimeter) scales. All dependeamiables are expressed as functions of time and cortical
location. The basic approach ignores embedded netwosktygcthough networks hae teen included

in more advanced models (Nunez, 1989; Jirsa & Haken, 1996).

Below, some details of the SMNI approach lead to further icomtion of overlaps with some other
approaches to EEG studies.

3. Mathematical Development

3.1. Neuonal Firings from Synaptic Aggregation

Figure 1 gies a usual representation of weral stages of agggetion developed in SMNI (Ingber1982;
Ingber 1983). Neocorticalneurons typically hae mary dendrites that rece¢ quanta of chemical
postsynaptic stimulation from manother neurons. The distribution of quanta transmitted across
synapses takes place on the scale 6f ih. Eachquantum has thousands of molecules of chemical
neurotransmitters that affect the chemically gated postsynaptic memi@hemical transmissions in the
neocorte are belieed to be d@her excitatory E), such as glutamic acid, or inhibitory)( such asy
aminolutyric acid. There exist mgrtransmitters as well as other chemicals that modulate theatsf

but it is assumed that after millions of synapses between hundreds of neuromsragea wer, then it is
reasonable to ascribe a distribution functidnwith a mean and variance f& and | interneuronal
interactions.

Some neuroscientists do not accept the assumption that simple algebraic summatioitatafrye
depolarizations and inhibitoryherpolarizations at the base of the inner axonal membrane determines the
firing depolarization response of a neuron within its absolute andseetetiactory periods (Shepherd,
1979), i.e., including the absolute refractory time after a firing during which nospikes can be
generated, and the relati refractory period during which spikes can be produced only at a decreased
sensitvity (Sommerhoff, 1974).However, mary other neuroscientists agree that this assumption is
reasonable when describing the i of large ensembles of neocortical neurons, each one typically
having mawg thousands of synaptic interactions.

This same eraging procedure makes it reasonable to ascribe a distribution fuhctiith a mean and
variance forE and | intraneuronal interactionsA Gaussianl is taken to describe the distribution of
electrical polarizations caused by chemical quanta impinging on the postsynaptic meniirase.
polarizations gie a esultant polarization at the base of the neuron, the axon. The base of the axon of a
large fiber may be myelinateddowever, smaller neurons typically lack these distinguishing features.
Experimental techniques are not yetfigiéntly advanced to attempt the explicitegaging procedure
necessary to establish the means and varianc®saoid ™, and their parameters vivo (Vu & Krasne,

1992). Diferential attenuations of polarizations from synapses to the base of an axon are here only
phenomenologically accounted for by including these geometric and physiological effe€ts into

With a suficient depolarization of approximately 10 to 20 mV at the soma, within an absolute and relati
refractory period of approximately 5 msec, an action potential is pulsed the axon and its mgn
collaterals, affecting altage-@ted presynaptic membranes to release quanta of neurotransniittérs.
detailed here is the biopsics of membranes, of thickness5x 10 pm, composed of biomolecular
leaflets of phospholipid molecules (Caidieal, 1980; Scott, 1975;an der Hgdt et al, 1981). W andl

are taken to approximate this biophysics for use in macroscopic stuliesnical independence of
excitatory depolarizations and inhibitory hyperpolarizations are well established in the necmodtéhis
independence is retained throughout SMNI.

It should be noted thatxperimental studies initially used to inf& and ' (e.g., at neuromuscular
junctions) were made possible by deliberately reducing the number of quanta by lowaeimgle
calcium concentrations (Bd & Martin, 1956; Katz, 1966)W was found to be Poissonian, but in that
system, where hundreds of quanta are transmittedvo, ¥ may well be otherwise; forxample,
Gaussian with independent mean aandance. Currentesearch suggests a binomial distributionvitg

a Poisson limit (Ingber1982; Korn, Mallet& Faber 1981; Perkel & Feldman, 1979). Note that some
investigators hae $rowvn a Bernoulli distrilbtion to be more accurate in some cases (Perkel & Feldman,
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1979; Ingber1982; Korn & Mallet, 1984), and that theny concept of quantal transmission, albeit that
good fits to experimental data are agkkwith this concept, is underview. In the neocortex, probably

small numbers of quanta are transmitted at synapses, but other effects, such as nonuniformity and
nonstationarity of presynaptic release sites, and nonlinear summation of postsynaptic potentials, may
detract from a simple phenomenological Poisson description (Shepherd, 1979).

This short description serves to point out possibléerdinces inW resulting from may sources.
However, the dervation of synaptic interactions\gn here maks it plausible that for reasonable neuronal
parameters, the statistical folding Wfandrl is essentially independent of the functional form assumed
for W, just requiring specification of its numerical mean and variance.

The result of this analysis is to calculate the transition probability of the firing of nd;ungn given its
interaction with its neighbors that also may fire or ndd.f Theresult is gien as he tabulated error
function. Within the range where the total influences of excitatory and inhibitong$ match and
exceed the erage threshold potential of avgh neuron, the probability of that neuron firing raesi its
major contribution to increase from Guards 1.

This is similar to mathematical results obtained by others (Little, 1974; Little &,SI9¥8; Shav &
Vasuderan, 1974) who hee nodeled the neocorteafter magnetic systems (Cragg &fMperlg, 1954).
However, in SMINI, this is derved more generallyand has the neural parameters more sjpadliy
denoted with different statistical significancegegito W andl", as dscribed abee.

Consider 16 <N < 10% neurons, labeled by, interacting with a gien neuron j. Each neuron may
contritute maiyy synaptic interactions to marother neurons.A neuron may hee & mary as 0* - 10°
synaptic interactionsWithin timer,, =5 msec,W is the distribution ofj quanta of chemical transmitter
released from neurdato neuronj (k # j) with meana;, where

ai = Ajk(ak + 1)/2+ Bjk . (4)
Aj is the conductivity weighting transmission of polarization, dependekffisimg,
U1, Kk fires,
Ok = (5)

- B—l, k does nofire

and B is a background including some nonsynaptic and long-rangatyctOf course, A and B are
highly complicated functions okj. This definition of o, permits a decomposition dfj into two
different physical contributions.

Further SMNI deelopment vyields the conditional probabilitpgj, of neuron j firing given previous
firings withinr of other neuronk:

00

pﬂjzﬂ

Nl

dzexp(-2%) 1 [1 - erf(o;Fvmi2)],

V] - % ajijk
((712) 3 aje (v + #):

“erf” is the tabulated error function, simply related to the normal probability function (Matie
Walker, 1970). F; is a “threshold dctor” as Po, increases from 0 to 1 betweem>oF; >- oo sharply
within the range of; = 0.

(6)

Fi

If
loFil <1 (7)
then an asymptotic expression tn;;J is
exp(-o;F))

“ e (F)) + exp(-F))
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3.2. Mesocolumns

The SMNI formulation of a mulariate nonlinear nonequilibrium system requires\@tion in a proper
Riemannian geometry to study proper limits of short-time conditional probability distris. Priorto

the late 197® and early 1980’s, manuses of path integrals for mulériate systems nonlinear in their

drifts and diffusions were too edier in taking continuum limits. In general, results of datibns may

be formally written as continuum limits, but these should be understood to be implemented as discrete in
derivations as well as in numerical work (Langou&heal 1982; Schulman, 1981).

A sampling of these details can be seen in the context of SMNIproperly deal with multiariate
nonlinear multiplicatie-noise systems, researchersvéhalad to properly discretize the yfeman
LagrangianLg, in terms of the Feynman Actid®:, including Riemannian induced with the Strateich
midpoint discretization (Langouclet al, 1982). TheEinstein comention of summing weer factors with
repeated indices is assumethe Feynman probability distributiorver the entire cortex, consisting 6f
mesocolumns spanning a total cortical deaan be written formallyi.e., with discretization understood
to be necessary in all deed uses and numerical calculations, as

S =minAQt [dt’ [d?r Lg,
Jof

1 ..,,..6 . ,
L = > N*M” - h®)gee(M® -h®) -V,

1 _ ;
he = gC - 5 9 1/2(gll2gGG)’G, ,

1

V=V _(E h% + R6)/N

V' =V'E+Vv'! =MCJ5/(2NT)
hGG — g—1/2(g1/2hG) G

9 =9 |l = det@ce) = Jeedn

Jee = (9°°)7",

_ 1 _
R=g l(gEE,II + 0 ge) ~ > g2 x{g [Oeeei e+ (gEE,I)z] + Oeel9i,1 9ee, + (gu,E)z]} )

[+16=@OMO)- 1. 9)

The Riemannian cuatureR arises from the nonlineanierse \arianceggg, Which is abona fde metric
of this parameter space (Graham, 1978he discretization of the determinant prefactor of the
conditional probability distribution requires additional care (Langoetiz 1982).

Some of the algebra behind SMNI depicts variables and distributions that populate each repessentati
macrocolumn in each geon. While Riemannian terms were calculated when using the Stnatdno
midpoint discretization of the probability distribution (Ingb&982; Ingber 1983), in order to xplicitly

deal with the multiariate nonlinearities, here it dides to use the more readable Ito prepoint
discretization, which is an egaent numerical distribution when used consistently (Langowstha,

1982). Codedor all SMNI algebra were written in w&ral languages and found tovgi the same
numerical answers: algebraic languages Macsyma (and its éaséorv Maxima) and Reduce, Fortran and

C, and alphanumeric coding of magnetic strips for the hand calculator HP-41C.

A derived mesoscopic Lagrangiah,, defines the short-time probability distribution of firings in a
minicolumn, composed of aboutZ0eurons, gien its just preious interactions with all other neurons in

its macrocolumnar surrounds is used to represent excitatorg)(and inhibitory () contributions. G
designates contributions from bdihandl .
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Puw = PGIMC(r; t+1)MC(r; 1)]
G

0 00 OnN
=X oMx o - ME(t+ )@ o - M (st + )] py,
o [JiE 0o i

=1 (2mrg®®) " exp(-N7LF) ,
G
Pu=(2rr) ™ ?g"?exp(-N1Ly) ,

Ly = L&+ L = @N)YM® - g®)gee(M® - g%) + MCJg/(2NT) - V'

V' = ZV"gt(pDMG’)Z ,
G
g% = -7 (M® + N®tanhF®), g°¢ = (go) ™ = 6§ 7 "NC®seciF® , g = det(@se) ,

] (VG - aSVEING - % INSVSIVES ol y
" (IO + B YAEEIN + L Aoy T2 TR 0
2

where AS, and BE are minicolumnaaveraged inter-neuronal synapticfiehcies, vS and ¢ are
avaaged means and variances of contiins to neuronal electric polarizationsl® andN® in F€ are
afferent macrocolumnar firings, scaled to efferent minicoluminagé by N/N* = 1073, whereN * is the
number of neurons in a macrocolumn, about. 1G@milarly, AS and BE have keen scaled by
N*/N =10 to keep F® invariant. V' is mesocolumnar NN interactions. Otheslues taken are
consistent with experimental data, e} =10 mV, v& =0.1mV, ¢& =0.03/> mV. Note that these
values and the factorn(2)'/? in the denominator of ®, give identical numerical values fde€ as in
earlier papers with values o = 0. 1mV and a factorr*.

It is notes that, as originally deed (Ingber 1982; Ingber 1983), the numerator oF® contains
information dewed from presynaptic firing interactionshe location of most stable states of this SMNI
system is highly dependent on the interactions presented in this huméragodenominator of ©

contains information deréd from factors of presynaptic and postsynaptic neuromodular and electrical
processing of thesérihgs. Thenonlinearities present in this denominator dramatically affect the number
and nature of stable states at scales zoomed in at magnifications on the order of a thousand times,
representing neocortical processing of detailed information within a sea of stochastic activity.

FG

3.3. Inclusionof Macroscopic Circuitry

The most important features of thisvdlepment are described by the Lagrangighand the “threshold
factor” FC describing an important sensitivity of the disaion to changes in its variables and
parameters.

To more properly include long-rangeibérs between macrocolumns, the terms can be dropped, and
more realistically replaced by a modified threshold faEtoy

1 ' 1 '
. (Ve - aShSInNe - . ASNVEIM® - afEVE N - S AEVEM'E)
F*> =

G G GInG 2 L AlGInvc 1 , '
(T12(vE )2 + (75121 (aG NE + AGIMC + al NIE +  AEMIE))12

1
alt = ; A + BIE (11)
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Here, afferent contributions froN*E long-ranged excitatory fibers, e.g., cortico-cortical neuronge ha
been added, whertl*® might be on the order of 10% @i Of the approximately 1§ to 10
neocortical neurons, estimates of the number of pyramidal cells range from 2/3 up to 4/5 (M&rkram
2004). Nearlyevey pyramidal cell has an axon branch that esa& cortico-cortical connection; i.e., the
number of cortico-corticalifers is of the order 0. This development is used in the SMNI description
of scalp EEG across regions.

3.4. CenteringMechanism (CM)

It was discwered that more minima of the static Lagrangiaare created, i.e., brought into theypical
firing ranges, if the numerator &® contains terms only im©, tending to centelt aboutM® =0
(Ingber 1984). Thais, B® is modified such that the numeratorff is transformed to

1 Gl JGl\,G'
- 5 AGr VGy M

Fe = ,
(2D + (gENA(EING + ASMo))?

1
ag = > AS+BG, (12)

The most likely states of the centered systems lie along diagondl$ Bpace, a line determined by the
numerator of the threshold factorfif, essentially

AEME - AEM' =0, 3)

noting that inF' | — | connectiity is experimentally observed to be very small re&i cther pairings,

so that At ME — Al M') is typically small only for smalME.

Of course, ayp mechanism producing more as well as deeper minima is statistiaathed. Havever,
this particular CM has plausible suppoht®(t+7) =0 is the state of afferent firing with highest
statistical weight.l.e., there are more combinations of neuronalds, o; = +1, yielding this state than
ary other MC(t + 1), e.g.,= 2V*M2(7N®)12 relative © the statesM® = +NC. Similarly, MS(t) is the
state of efferent firing with highest statistical weigftherefore, it is natural to explore mechanisms
which favar common highly weighted efferent and affereminfs in ranges consistent witlaviorable
firing threshold factor§ ©=0.

In general,BE and BS (and possiblyAS and A® due to actions of neuromodulators, ahgdconstraints
from long-ranged fibers) arevalable to zero the constant in the numeragiving an extra dgree(s) of
freedom to this mechamsn@lf B'S would be ngative, this leads to unpfsical results in the square-root
denominator ofF®. In dl examples where this occurs, it is possible to instead find po®tic to
appropriately shlft the numerator &©.) In this context, it is empirically observed that the synaptic
sensitvity of neurons engged in seleote dtention is altered, presumably by the influence of chemical
neuromodulators on postsynaptic neurons at their presynaptic sites (Moumticakti681).

3.5. Pmwototypical Cases

Three Cases of neurondlirigs were considered in the first introduction of STM applications of SMNI
(Ingber 1984). Belav is a $1ort summary of these details. Note that while ifisaf to define these
Cases using-°, the full Lagrangian and probability distution, upon which the destion of the EL
equations are based, are themselves quite nonlinear functidt, efg., via typerbolic trigonometric
functions, etc.

Since STM duration is long relaé o 7, sationary solutions of the Lagrangian L, can be inestigated
to determine he mary stable minima < MC > may simultaneously exist within this duratioBetailed
calculations of time-dependent folding of the full time-dependent probability distiib supports
persistence of these stable states within SMNI calculations of edsdecay rates of STM (Ingber &
Nunez, 1995).
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A model of dominant inhibition describeswaaninicolumnar frings are suppressed by their neighboring
minicolumns. Br example, this could be effected byweeping NN mesocolumnar interactions (Ingber
1983), but here theveraged diect is established by inhibitory mesocolumns (Case 1) by setting
AL = AF =2AE =0.0IN"/N. Since there appears to be relaly little | —1 connectivity set
=0.000NN /N. The background synaptic noise is taken t@pe= BL = 2BE = 10B] = 0. 002N"/N.
As minicolumns are observed tovieadbout 110 neurons (visual coxt@ppears to hae gproximately
twice this density) (Mountcastle 1978), and as there appear to be a predomlnEnoeeol neurons
(Nunez 1981), here takN® =80 andN' =30. UseN'/N =10 V&, and ¢ as estimated pviously.
represents tlmevaeragedMG The threshold factorSC for this | model are then

¢ (0.5M'-0.25MF +3.0)
' 20, 10" +0.09MF + 9. 80)2

. (0.008v' -0.5M" -45.8)
F| = " — £ : (14)
2(0.00M" +0.1IM "™ +11. 2)/2

In the prepoint-discretized determlnlstlc limit, the threshold factors determine when \arwjnbothly
the step-function forms tarFI?]G in g S(t) changeMG(t) to MC(t + 7). F| will cause aﬂerentM to fire
for most of its walues, asM' = -N' tanhF| will be positve for most values o€ in F!, which is
already weighted heaV|Iy with a term -45.8. LookingFt, it is seen that the relatély high positive
vaIéJes of eferentM’ require at least moderate values of pmeltﬁerentM to cause firings of &rent
M-,
The centering effect of the | model, labeled here as the IC model, is quite easy for retmcorte
accommodate. df example, this can be accomplished simply by readjusting the synaptic background
noise fromB¢ to B'E,

1 1
[VE - (5 AP +BRVPN' -2 ABVENF]
VENG
for both G=E and G =1. In general, BE and B® (and possiblyAS and A® due to actions of
neuromodulators, andg constraints from long-rangedbérs) are taallable to zero the constant in the
numeratorgiving an extra degree(s) of freedom to this mechanighB'S would be negdive, this leads
to unphysical results in the square-root denominatoF%f In dll examples where this occurs, it is
possible to instead find posiéi B’ to appropriately shift the numerator BF.) In this context, it is
empirically observed that the synaptic sensitivity of neurons engaged inveelgteintion is altered,

presumably by the influence of chemical neuromodulators on postsynaptic neurons at their presynaptic
sites (Mountcastlet al, 1981).

By this CM,B'E = 1. 38andB'| = 15. 3,andF_ is transformed td2, Case IC,
(0.5M' - 0.25uF)
742(0. IM" +0.05MF +10. 432

B'E = (15)

FE: =

| (0.008M' -0.5MF)
Fle = - = . (16)
742(0.00IM' +0. IME + 20. 432

Note that, aside from the enforced vanishing of the constant terms in the numerﬁﬁ)nhefonly other
changes ifF ¢ moderately affect the constant terms in the denominators.

The other extreme of normal neocorticalinjs is a model of dominant eXC|tat|on effected by
establishing exmtatory mesocolumns (Case E) by using the same parz{rﬁéterg qu ,Al} asinthe |
model, but settingh\E = 2AL = 2AF = 0. 0IN"/N. This yields

e (0.29v'-0.5MF - 24.5)
& m20.05M" +0.10MF +12. 332




Lester Ingber -13- Columnar EEG magnetic influences on STM

(0.008M' - 0.25MF - 25. 8)
74/2(0. 00IM' +0.05MF +7.24)/2
The n@aive mnstant in the numerator &f_ inhibits aferent M i rings. Althoughthere is also a
negaive mnstant in the numerator &%, the increased coétient of ME (relative © its corresponding

value in FF), and the fact that! = can range up tolF = 80, readily permits excitatory firings throughout
most of the range d¥ =.

Applying the CM to E,B'E =10.2and B'| =8.62. The net dect in FZ., Case EC, in addition to
removing the constant terms in the numeratorg gf is to change the constant terms in the denominators:
12.3inFE is changed to 17.2 iRE;, and 7.24 inFL is changed to 12.4 iR

Now it is matural to examine a balanced Case inter[nediate between | and E, labeled here asT@ise B.
is accomplished by changirf = AL = AF =0.005N"/N. This yields

£ (0.25M'-0.25MF - 4.50)
® " 420.050ME +0. 050" +8. 302

FL= (17)

(0.008M' - 0.25M°F - 25. 8)
74/2(0. 00IM' +0. 050V = +7. 242

Applying the CM to B,B'E =0.438and B’} =8.62. The net effect inF§., Case BC, in addition to
removing the constant terms in the numeratorE@f is to change the constant terms in the denominators:
8.30inFE is changed to 7.40 iRS., and 7.24 inF} is changed to 12.4 iRjc.

Previously calculations were performed for the three prototypicalg Cases, dominate excitatory (E),
dominate inhibitory (I) and balanced abouédy (B). More minima were brought within physicairig
ranges when a CM is voked (Ingber 1984), by tuning the presynaptic stochastic background, a
phenomena observed during seletitention, giving rise to Cases EC, IC and Bthe states BC are
obsened to yield properties of auditory STM, e.g., the Z capacity rule and times of duration of these
memory states (Inghet984; Ingber1985c).

It is observed that visual neocotthas twice the number of neurons per minicolumn as other regions of
neocort&. In the SMNI model this gies rise to fever and deeper STM states, consistent with the
obsened 4+ 2 capacity rule of these memory statéhese calculations are Cases EGWV and BCV
(Ingber 1994).

Fh= (18)

3.6. EulerLagrange (EL)

To investigate dynamics of multariate stochastic nonlinear systems, such as nesgmesents, it is not
sensible to simply apply simple mean-field theories which assume sharply peaked distributions, since the
dynamics of nonlinear difsions in particular are typically washed out. Here, pathgiate
representations of systems, otherwise \gitly represented by Lange or FokkerPlanck equations,
present elgant algorithms by use of variational principles leading to EL equations (Lang@icile

1982).

SMNI permits scaling to dere B in sevaal approximations which gé insight into other phenomena
that talke advantage of the SMNI STM approach.

3.6.1. ColumnarEL

The Lagrangian components and EL equations are essentially the counterpart to classical dynamics,
0°L

A(OME/ot)a(OM€C'/at) '

Momentum= M€ = _ oL :
3(@MS/an)

Mass= ggg =
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Force= ——
oMG "’

oL 0 oL
dMS  at a(@MS/at)

The EL equations are deed from the long-time conditional probability distribution of columriengs
over al cortex, represented by, in terms of the Actiors,

P[M (t)]dM(t) =J'---J'DI\7I exp(-N9) ,

t
M={M®} , é:Jdt'E,E:/\Q—ljder , L=LE+L",
0

F-ma=0: 6L=0= (19)

DN =111 F @ty (g2 dMS 5[M, = MOILSIMo = M(to)] (20)
s=1v=1 G

where v labels the two-dimensional laminarspace ofA =5x 10° mesocolumns spanning a typical
region of neocorte, Q, (total cortical area 4 x 10 umz); ands labels theu + 1 time intenals, each of
durationdt < 7, spanning { —ty). Ata gven value of ¢;t), M = {MC}.

The path integral has a variational principd, =0 which gives the EL equations for SMNI (Ingber
1982; Ingber1983). TheEinstein comention is used to designate summatimeraepeated indices, and
the following notation for devatives is tsed:

(-+)z =d(--)dz, z={xy},
¢ ) :6(---)/6MG, ¢ =6(---)/0(dMG/dt),
(-+ ), =0(- - )0(dMC/d2),

(--),06 = RO(- - YA(AMC/dx) + Yo(- - /a(dM®/dy). (21)
The EL equations are:
sL =0,

JGL = L!G - ‘:L,DG _L’Git =0,
0 |:I—vDG = I—’G;Z:z = (L’G:Z G’ )MG’ZZ + (I-aG:Z G, )MG’ZZZ

. G' - G'
Lgi=(Lg.e )M +(Lg.g)M ™. (22)
This exhibits the extremum condition as a set offeddhtial equations in the aviables
{M&,M® M® MC.,,MC.} inr —t=(x,y,t) space, with codicients nonlinear iM®. Note that tha/’
term for NN interactions in the Lagrangianwill introduce spatial devetive terms that appear in these
EL equations.

As noted abwee, linearization of the EL equations permit thevelepment of stability analyses and
dispersion relations in frequgnavavenumber space (Inghel982; Ingber1983; Ingber1985b), leading
to wave propagtion velocities of interactionsver sevaal minicolumns, consistent withxgeriments.
This calculation first linearizes the EL, then takes Fourier transforms in space and time variables.

M€ = ReM& exp[-i(¢ [ — wt)] ,

ME (r,t) = I d2edew Mo (&, w) expli (€ OF - wt)] . (23)
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For instance, a typical example (Ingh#985b). isspecifed by: extrinsic sources (used in earlier papers
as a centering mechanisi} = -2.63 and J, = 4.94, NE =125, N' =25, v =10 m\, AF =1.75,
A' =1.25 B® =0.25,v%0. 1my, and ¢ = 0.032mV. The global minima is aM® = 25 andM' = 5.
This set of conditions yields (dispamsj dispersion relations

wr = +{ —1.86+2.38¢p)% 1. 25 +1.51(ép)?} , (A8)

where & = |¢|. The propagtion velocity defined bydw/d¢ is about 1 cm/sec, taking typicalawe
numbersé to correspond to macrocolumnar distances abopt 3Malculated frequencies are on the

order of EEG frequencies of aboufE&c?. These mesoscopic propagation velocities permit processing
over sevaal minicolumns about I6 cm, simultaneous with processing of mesoscopic interactioss o

tens of cm via association fibers with propagation velocities about 600—900 cm/sec. l.e., both can occur
within about 10" sec.

Note that this propagation velocity is nslow’’: Visual selectve atention mwes at dout 8 msec/dgee
(Tsal, 1983), which is abouf2.mm/sec, if a macrocolumn of about il assumed to span 180gdees.
This suggests that NN interactions play some part in disengaging and orientingeseieciiion.

3.6.2. StringsEL

The nonlinear string model was dexd using the EL equation for the electric potentiaimeasured by
EEG, considering one firing variable along the parabolic trough of attractor states being proportonal to
(Ingber & Nunez, 1990).

Since only one ariable, the electric potential is being measured, is reasonable to assume that a single
independent firing variable offers a crude description of thysiph. Furthermorehe scalp potentiab

can be considered to be a function of tiriagd variable. (Here'potential” refers to the electric potential,

not ary potential term in the SMNI Lagrangianhn an abbreviated notation subscripting the time-
dependence,

O- < d>»>=d(ME, M) = a(MF- <« ME =) +b(M/- < M' >»), (24)

wherea andb are constants, ang < >> and < M® > represent typical minima in the trough the
context of fitting data to the dynamic variables, there are three effeotistants,{ a,b, ¢} ,

®, - ¢ = aMFE + bM| (25)

The mesoscopic columnar probability distibns, P, is scaled oer this columnar firing space to obtain
the macroscopic conditional probability distributiorecthe scalp-potential space:

Po[P] =IdMEdM'P[ME,M']cS[CD—CD’(ME,M')] (26)
The parabolic trough described &bqgustifies a form

Pe = (2rmo?) Y2 exp(-At I dx Lg) ,
Lo = % PD/OtR + g OD/OX + g |OP + F (),

o’ =20t/a (27)

whereF (®) contains nonlinearitieswaay from the troughg? is on the order of /N given the dervation
of L above, and the integral wer X is taken wer the spatial region of interest. In general, there also will
be terms linear i@®/0t and ind®/0x.

Here, the EL equation includes variation across the spatial exferitcolumns in regions,
0 oL +i oL oL 0
ot 0(0d/ot) 0x d(0P/Ox) 0P

The result is

(28)
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0’0 9% oF
—+f—+ydP-—=0 29
"o TP TP 0 ©9)
The determinant prattor g defined ab®e dso contains nonlinear details affecting the state of the
system. Sincey is often a small numb,edjstortion of the scale ok is avoided by normalizingg/go,
whereg is simplyg evduated atM® = M*E = M' = 0.
If there exist regions in neocortical parameter space suchgthat —c?, yla = w3, i.e., as rplicitly
calculated using the Centering Mechanism (CM) and agedéri previous SMNI EEG papers,

1 oF

— — =-0f(D), 30

55 = f(@) (30)
then the nonlinear string model is reeed.

Note that if the spatial extent is extended across the scalp via long-ranged fibers connecting columns with
M*E firings, this leads to a string of columns.

3.6.3. SpringsEL

For a gven column in terms of the probability descriptiorvgi above, the abee H. equations are
represented as

9 oL oL
ot A(OME/dt) OME ~
o oL oL

ot aOM'/ot) oMm! 0 G1)
Previous SMNI EEG studies had demonstrated that simple linearized dispersion relativad flem

the EL equations support the local generation of frequencies observed experimentally as weihgs deri
diffusive propagtion \elocities of information across minicolumns consistent with otlkpergmental
studies. Thenthe abwe ejuations can represent coupled springs. The earliest studies simply used a
driving force JgM€ in the Lagrangian to model long-ranged interactions among fibers (Jrifigs;

Ingber 1983). Subsequerstudies considered regional interactionsidg localized columnar aeity

within these regions (Inghet996b; Ingber1997; Ingber1998).

A recent set of calculationxamined these columnar EL equations to see if EEG oscillatorywibeha
could be supported at just this columnar scale, i.e., within a single colamiirst, the EL equations

were quasi-linearized, by extracting dogents of M and dM/dt. The nonlinear coéttients were
presented as graphsep al firing states (Ingber2009a). Thisexecise demonstrated that a spring-type
model of oscillations as plausible. Then a more detailed study was performedlogeng over two

million lines of C code from the algebra generated by an algebraic tool, Maxima, to see what range of
oscillatory behavior could be considered as optimal solutions satisfying the EL equations 2oQ®ie).

The answer was fafmative, in that ranges ofut = 1 were supported, implying that oscillatory solutions
might be sustainable just due to columnar dynamics at that sthdéefull probability distribution as

evdved with such oscillatory states, confirming this is true.

These results sume even with oscillatory input into minicolumns from long-ranged sources (Ingber &
Nunez, 2010), since the CM is independentraid states, and just depends aeraged synapticalues
used in SMNI.

3.7. ComputationalPhysics

3.7.1. Adaptve Smulated Annealing (ASA)

Adaptve Smulated Annealing (ASA) (Ingber1993) is used to optimize or importance-sample
parameters of systems.

ASA is a C-language code \d@#oped to statistically find the best global fit of a nonlinear constrained
non-covex a@st-function @er a D-dimensional space. This algorithm permits an annealing schedule for
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“temperature™T decreasingponentially in annealing-timk, T = T, exp(-ckP). Theintroduction of
re-annealing also permits adaptation to changing seétisgiin the multi-dimensional parametgace.
This annealing schedule is faster than fast Cawcimealing, wherel = Ty/k, and much faster than
Boltzmann annealing, whefe = To/Ink. ASA has oer 100 OPTIONS to praide robust tuning \er
mary classes of nonlinear stochastic systems (Ingdr2).

For example, ASA has ASA ARALLEL OPTIONS, hooks to use ASA on parallel processors, which
were first deeloped in 1994 when the author was Principaletigator (P1) of a National Science
Foundation grant, Parallelizing ASA andTHINT Project (RPP). Sincethen these OPTIONS ha
been used by people in various institutions.

3.7.2. ATHINT and PATHTREE

In some cases, it is desirable torelep a time golution of a short-time conditional probabilityfwo
useful algorithms hae keen deeloped and published by the author.

PATHINT (Ingber 1994) motiated the deelopment of RTHTREE (Ingber Chen et al 2001), an
algorithm that permits extremely fast accurate computation of probability distributions of a large class of
general nonlinear diffusion processes.

The natural metric of the space is used to first lawrdéhe mesh. Thevelving local short-time
distributions on this mesh are then dynamically calculated. The short-time probability dewsstshgi
correct result up to ordgd(At) for ary final point S, the order required to reeer the corresponding
partial differential equation.In fact, O(At*?) is available (Graham, 1978; Langouchs al 1979;

Langoucheet al, 1982).

PATHINT and ATHTREE hae demonstrated their utility in statistical mechanical studiesnante,
neuroscience, combat analyses, neuroscience, and other selected nonlineaiateultiystems (Ingbger
Fujio & Wehner 1991; Ingber & Nunez, 1995; Inghe2000). ATHTREE has been usedtensiely to
price financial options (IngbeiChenet al, 2001).

3.8. GenericMesoscopic Neural Networks (MNN)

SMNI was applied to a parallelized generic mesoscopic neural networks (MNN) (14§82), adding
computational power to a similar paradigm proposed for target recognition (16§88a).

“Learning” takes place by presenting the MNN with data, and parameterizing the data in terms of the
firings, or multvariate firings. The*weights] or coefficients of functions of firings appearing in the drifts

and diffusions, areitf to incoming data, considering the joint fesdtive” L agrangian (including the
logarithm of the prefactor in the probability distribution) as a dynamic cost function. This program of
fitting coeficients in Lagrangian uses methods of ASA.

“Prediction” takes advantage of a mathematically et representation of the Lagrangian path-
integral algorithm, i.e., a set of coupled Langevin rate-equatignsoarse deterministic estimate to
“predict” the eolution can be applied using the most probable path, BIHINT has been used.
PATHINT, even when parallelized, typically can be toosléor “predicting” evolution of these systems.
However, PATHTREE is much faster.

3.9. ldeasby Statistical Mechanics (ISM)

These kinds of applications of SMNI\ledovious counterparts in an Al approach to Ideas by Statistical
Mechanics (ISM). ISM is a generic program to modeVolution and propagation of ideas/patterns
throughout populations subjected to endogenous aogieaous interactions (Ingh&@006; Ingber2007;
Ingber 2008). Theprogram is based on SMNI, and uses the ASA code (In4®@8) for optimizations

of training sets, as well as for importance-sampling to apply the autbopula financial risk-
management codes, TRD (Ingh&005; Ingber 2010), for assessments of risk and uncertairftiis
product can be used for decision support for projects ranging from diplomatic, information, naiitary
economic (DIME) factors of propatjon/esolution of ideas, to commercial sales, trading indicators across
sectors of financial markets, advertising and political campaigns, etc.
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It seems appropriate to base an approach for padipagof ideas on the only system so far demonstrated
to develop and nurture ideas, i.e., the neocortical brdiitimately, ISM of course wuld not use
functional relationships deloped solely in neocortex, but rather those more appropriate teea gi
population. Bllowing the SMNI structure, ISM delops subsets of macrocolumnar activity of
multivariate stochastic descriptions of mhefd populations, with macrocolumns defined by their local
parameters within specific regions and with parameterized endogenousegiteal and rogenous
external connectities. Rarameters of subsets of macrocolumns are to be fit using ASA to patterns
representing ideasPaameters of external and integional interactions are to be determined that
promote or inhibit the spread of these ideas.

4. Top-Down Versus Bottom-Up

In regard to neocortical information processing at thesl®f STM, there are tw major paradigms that
have rot yet been reconciled, which is egniently understood in terms of top-down versus bottom-up
processes.

4.1. BottomUp

There has been muchovk done, both experimentally and theoreticadigtailing quite a fe specific
mechanisms at thevd of individual neurons and glial processes and their interactions, thakgkaine
information processing and codification of information that may be instrumental in STM (Amzica &
Massimini, 2002). In particulaa dass of glial cells, astrocytes, present in numbers greater than neurons
in human neocortex, is of interest here (Oberheimal, 2009). For example, astrocytes in neocortical
laminae 1 extend their mm processes across assefiathputing laminae 1-3, afferent laminae 4,
touching and communicating with other glia cells and neurons (Reisin & Colombo, 2002; Cebatbo
2005). Laminae-6 hae lamger astrocytes, and in laminae 5-6 with mostly efferent neuronal processes
there are some astrocytes with varicose projections (Obesdtedtin 2009). Havever, it appears that a
primary means of communication among astrocytes (and other glial cells) is¥Viwaes, propagting

at speeds up to 40 um/s (Belling2®05) oser hundreds of mm of neuronal structuréBhey influence
excitation and inhibition of neuromodulators, and recent research points to their diesit af
polarization thresholds via €awaves. For example, the influence of neuron firing on astroglial calcium
ions may be caused by mrement of sodium and potassium ions in and out the body and axon of neurons.

It should be noted that there are other mechanisms proposed, other than direct neuron-neuron interactions,
to describe arious aspects of neocortical information processing, e.g., soliton formationgi@geor
2003), and ephaptic excitation of neurons (Anastasdiali 2011).

There are manapproaches in this “bottom-up” context, including quantum computation in microtubles
(Haganet al, 2002), nonlinear systems approaches to neural processes (Retbitcal, 2006), magnetic
processes within astrocytes (Banaclocha, 2005; Banaclocha, 2007; Banaclocha & Banaclocha, 2010;
Banaclocha, Bokkon & Banaclocha, 2010), pulsating avaves in astrogites (Schipk et al, 2002;
Scemeset al, 2000; Goldbeg et al, 2010), neuron-astrocyte networks (Pereira & Furlan, 2009; Pereira &
Furlan, 2010), including glutamate-spécifC&*-induced signaling processes between neurons and
astrogtes (Postno et al, 2009), influences of blood fl® on reuronal processes (Moore & Cao, 2008),

and mathematical formulations of qualia based on neural information processing (Balduaaddi, T

2009).

4.2. Top Down

There has been much theoretical work done at t& & columnar and regional neocortical adiy,
detailing correlations of experimental brain activity with behavioral observations (Buedeoe &
Casanwa, 2002; Rakic, 2008).For example, various imaging techniques, both intra-cranial and non-
invasive, have demonstrated that specific brain &it}i often is correlated with STM as well as spiecif
processing of information and attentional states (Nunez &/@siaun, 2006).

There also has been much theoreticatktrying to bridge brain activity across multiples scales, e.g.,
from neuronal to columnar togmnal scales of asfity, with detailed calculations defining STM (Ingber
1981; Ingber 1983; Ingber 1984; Ingber & Nunez, 1995) and analyses of scalp EEG (Indbér;

Ingber 2009b; Ingber & Nunez, 2010). Using SMNI, minicolumnar EEG has been demonstrated to scale
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up to EEG observed atgienal scalp measurements. While minicolumnar EEG may not be the only
source of scalp EEG, it is didient to scale for detailed fits to observed scalp EEG data.

It is reasonable to state that, while most neuroscientistygdiiat ultimately Bottom Up processing will
explain all brain activity (Rabingch et al, 2006), some other neurophysiologists and psychologists
believe tat direct Top Down processes are important components of mammalian information processing,
which cannot be solely explained by Bottom Up processes.

4.2.1. SmokingGun

As yet, there does not seem to bg asmoking gun” for explicit Top to Down mechanisms that directly

drive Bottom Up STM processef course, there are maiop Down type studies demonstrating that
neuromodulator (Silberstein, 1995) and neuronal firing states, e.g., as defined by EEG frequencies, can
modify the milieu or context of indidual synaptic and neuronal agty, which is still consistent with
ultimate Bottom Up paradigmsHowever, there is a logical difference between Top Down milieu as
conditioned by some prioxternal or internal conditions, and some direct Top Down processes that direct
cause Bottom Up interactions specific to STM. Here, the operatird is “cause”.

4.3. Supportfor Top-Down Electromagnetic Mechanism

There is a body of evidence that suggests a $p€emifp to Down mechanism for neocortical STM
processing.

4.3.1. Magnetisminfluences in Living Systems

An example of a direct pgisical mechanism that affects neuronal processing not part of “standard
sensory influences is the strong possibility of magnetic influences in birds at quavdisnofiénteraction
(Kominis, 2009; Rodgers & Hore, 2009; Solmv & Schulten, 2009).1t should be noted that this is just

a proposed mechanism (Johnsen & Lohmann, 2008).

4.3.2. NeocorticaMagnetic Fields

There are manstudies on electric (Abanderet al, 2006) and magnetic fields in neocori@urakami &
Okada, 2006; McFadden, 2007; Iringaal, 2009; Georgig, 2003).

At the level of a angle neuron, electriddld strengths can be as high as about 10V/m for a summation of
excitatory or inhibitory postsynaptic potentials as a neuiras.f Theelectric fieldD

D=c¢E (32)

is rapidly attenuated as the dielectric constaseen by ions is close to aworders of magnitude times
that in \acuum, gy due to polarization of water (Nunez, 198 Magnetic field strengthbl in neocort&

are generally quite smallyen when estimated for the largest human axons at abo (T, Jdbout 1/300 of

the Earth$ magnetic field, based on ferrofluid approximation to the microtuble environment with a
magnetic permeability L,

B =pH (33)

about 10y (Georgie, 2003). Thusthe electromagnetic fields in neocortiffer substantially from those
in vacuum, i.e.,

£oloC? = 1 (34)

wherec is the speed of lightThese estimates of magnetic field strengths appear to be reliable when
comparisons between theoretical agppezimental measurements are made in crayfish axons (Roth &
Wikswo, 1985).

The abeoe estimates of electric and magnetieldl strengths do not consider collgetinteractions within

and among neighboring minicolumns, whichiggiise to field strengths much larger as typically measured
by nonirvasive EEG and MEG recordings. While electrical activity may be attenuated in the neocortical
ervironment, this is not true for magnetic fields which may increase colegtengths wer relatively

large neocortical distances. The strengths of magnadidsfin neocorte may be at a threshold to
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directly influence synaptic interactions with asyies, as proposed for long-term memoryl NI
(Gordon et al, 2009) and short-term memory (STM) (Banaclocha, 2007; Pereira & Furlan, 2010)
Magnetic strengths associated by collectHEG activity at a columnar Vel gives rise to &en gronger
magnetic ields. Columnaexcitatory and inhibitory processes largelydgkace in different neocortical
laminae, providing possibilities for more specific mechanisms.

4.3.3. ColumnarEEG

Details of STM hge keen calculated in the SMNI papefBhe Centering Mechanism (CM), associated in
these calculations with changes in background inhibitory synaptidtgatirive the columnar system into
multiple collectve firing states. This CM leads to detailed calculations of STM capadtyation and
stability that agrees with experimental observations.

Future work must consider magnetic fields produced at different laminae due to eelleaticolumnar
firings as detailed by SMNI for STM processes. These magnetic fields may affearOaaves that are
considered by some researchers as being vital processes for astrocyte-neural interactioesifigatagi
higher-order cognitie dates (Bellinger2005; Nakancet al, 2007).

The interactions between the momentum of thesé ®as and minicolumnar magnetic fields can be
approached classicallg.g., at a local minicolumnar scale, or quantum mechanjoatly, considering
possible entanglement across macrocolumnar scales.

4.4. Bottom-UpComplementary to SMNI STM

It is essential to recognize that, while SMNI STM has done well in calculating properties of STM,
neuronal firing states are likely the just first fast stages of STM, and it must be appreciated that other
molecular mechanisms are likely essential to understanding jusShibl and LTM are processed and
stored in some kind of coded neuronal-glial states.

A particularly plausible set of mechanisms has been proposed that reply on specific bio-magnetic
processes among neurons and astrocytes (BanaclBob&kon & Banaclocha, 2010; Banaclocha, 2011).

This proposal is that neurons synthesize and accumulate predominantly superparamagnetic magnetite,
while astrocytes generate and accumulate preferentially single-domain magnetite nano-particles which
have a grmanent magnetic momenthis set of interacting mechanisms can plausibly code both STM

and LTM. Thesemechanisms propose colleininicolumnar neuronal activity as possibly generating
strong enough magnetiefds. Also,collective C&#* waves are invoked that may generate strong enough
magnetic processes towvaop astrocyte magneticubbles. Thesdubbles are a éy @ncept in this
proposal for processing information.

The section belo on Vector Potential further details WdSMNI STM can interace with electromagnetic
processes affecting neuron-astrocyte interactions.

5. \ector Potential

To demonstrate that top-down influences can be appreciable, here a direct comparison is described
between the momentumof C&*, ions which already e been established as being influential in STM

and LTM, and an SMNI ector potential (SMNI-VP). The SMNI-VP is constructed from magnetids

induced by neuronal electrical firings, at thresholds of collectiinicolumnar activity with laminar
specifcation, can gie rise to causal top-down mechanisms that effect molecular excitatory and inhibitory
processes in STM and’M. A specifc example might be causal influences on momenpush C&* ions

by the SMNI-VPA, as @lculated by the canonical momentgm

q=p-gA (35)

whereq = —2e for C&*, e is the electron coulomb charge ad O x A is the magneticiéld B, which
may be applied either classically or quantum-mechanicalgte that gauge oA is not specified here,
and this can lead to important effects especially at quantum scales (Tokakge1010).

A can be calculated using the standard assumption that large-scale EB@dpedkfrom oscillatory
electrical dipole actity p exp(-iwt), the first moment of the charge distribution dengitgiving rise to
the dipole. The electromagnetic vector poteriglackson, 1962) is
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eiwr/c 3
A= Jd 36
cr I X (36)
for the electric current densidy which in the dipole approximation,
p= J'Xp(x)d3x (37)
gives rise to
H iwr/c
A=— lwpe (38)
cr

This is a dipole model for collegg minicolumnar oscillatory currents, corresponding to topAtlo
signaling, flowing in axons, not for individual neurons. The topatlgignal is claimed to cause nedat

effects on the surrounding milieu, but is not appropriate outside these surfaces due to strong attenuation of
electrical actrity. Howeve, the vector potentials produced by these dipoles due to axonal discharges do
survive far from the axons, and this can lead to important effects at the molecular scale, e.g., in the
environment of ions (Feynmaat al, 1964; Giuliani, 2010).

Note that this is not necessarily the only or most popular description of electromagnetic influences in
neocort&, which often describes dendritic presynaptic activity as inducirge lacale EEG (Nunez,
1981), or axonal firings directly fafcting astrocyte processes (McFadden, 2007). This work is only and
specifcally concerned with electromagnetic fields in colleetaxonal firings, directly associated with
columnar STM phenomena in SMNI calculations, which create vector potentials influencing ion momenta
just outside minicolumnar structures.

After fitting the electrical dipole momeptto minicolumnar electrical field near minicolumns, thidue

of A is then to be compared to the valugdbr C&*. Note that the magnetic fieBl derived from A,
B=0OxA (39)

is still attenuated in the glial areas wheré'Gaaves exist, but A derived near the minicolumns will be

used there as well since it is not so attenuated.

The electrical dipole for colleet ninicolumnar EEG devied fromA is

ic ic
E=—0xB=—0Ox0OxA (40)
w w
which in a near-field approximation for minicolumnsesgi
= _3n(np)-p
r3
iwn xp
B= 41
o2 (41)
wheren is the unit vector in the direction pf The far-field approximations are
E=Bxn
2 iwric
wn x pe
— 42
(cr)? (42)

The SMNI columnar probability distributions, desil from statistical aggggtion of synaptic and
neuronal interactions among minicolumns and macrocolumns, dstablished credibility at columnar
scales by detailed calculations of properties of STM. Under CM conditiong, e#igbit multiple
columnar collectie firing states. It must be stressed that these minicolumns are the entities which the
abose dpole moment is modeling. The Lagrangian of the SMNI distributions, although possessing
multivariate nonlinear means and vedance, hge functional forms similar to guments of ifing
distributions of indvidual neurons, so that the description of the columnar dipoleeaisoa nodel
faithful to the standard desdtion of a vector potential from an oscillating electric dipole.
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The efective wllective minicolumnar potential is estimated to be about 10 times as strong as a neuronal
postsynaptic eltage of 10°V, or 107 V, where V measures volts, egdent to nf-kg-/A-s> (A measures
amperes). Ag laminar thickness;, within axons, of about I8 m, theE field density dimension is on

the order of 1%/r V/Im. This gives a dpole value on the order of 72 C-m (C measures coulomb,
measured by A-s) at the near field.

This yields an estimate foaiues of A|, for w = 6. 366¢ps, corresponding to EEG frequencies of 40 s
A-s/m?, on te order of 10 V-m at he near field of firing minicolumnsin S| units, as can be
described by the Coulomb force, the eglgint units of C = (kg-ri1s?)Y2, or eAwill be in units of linear
momentum. @kingr to be a laminae thicknessvgs an stimate of 10" V-m, which decreases a# 1
awgy from the near field, all measured within axons for the purposes of describing electrical activity.

The contribution ofA to the canonical momentum is measureceBy wheree = 1. 602x 10°1° C. This
gives a nromentum contribution from on the order of 182 kg-m/s.

The mass of a Gaion is 6.6 x1072° kg. Assumingspeeds of 40 um/s, estimate the momentum of a
single ion is estimated to be about 50 kg-m/s.

This comparison op and A demonstrates it is possible for minicolumnar electromagnatidsf to
influence important ions wolved in cognitve and afective processes in neocore Our estimate of
minicolumnar electric dipole is quite consative, and a factor of 10 would makthese effectsven more
dramatic. Sincehis efect acts on all G ions, it may hae an even greater effect on CGa waves,
contrituting to their mean avefront movement. Consideringlower ion momenta would male this
comparison t&A even doser.

Such a smoking gun for top-down effectgsads forensic in wo experimental erification, requiring
appreciating the necessity and due diligence of including true multiple-scale interactions across orders of
magnitude in the compteneocortical environment.

6. Conclusion

For seveaal decades the stated Holy Grail of chemical, biological and biophysical research into neocortical
information processing has been to reduce such neocortical phenomena into specific bottom-up molecular
and smaller-scale processes (Rabicio et al, 2006). Ower the past three decades, witgard to short-

term memory (STM) and long-term memory (LTM) phenomena, which themselves are likely components
of other phenomena kkatention and consciousness, the SMNI approach has yieldedispketiils of

STM capacity duration and stability not present in molecular approaches,ithis clear that most
molecular approaches consider it inevitable that their reductionist approaches at molecular and possibly
even quantum scales will yet pve 1o be @usal explanations of such phenomehbhe SMNI approach is

a hottom-up aggrgaion from synaptic scales to columnar and regional scales of neocortex, and has been
memged with larger non-wasive EEG scales with other colleagues -- all at scales much coarser than
molecular scales. As with marCrusades for some truths, other truths can be tramptdad.proposed

that an SMNI vector potential (SMNI-VP) constructed from magneagtdd induced by neuronal
electrical firings, at thresholds of colleatinminicolumnar activity with laminar specification, carvgiise

to causal top-down mechanisms that effect molecweitagory and inhibitory processes in STM and

LTM. Sucha gnoking gun for top-down effectswaits forensic in wo experimental ‘erification,
requiring appreciating the necessity and due diligence of including true multiple-scale interactions across
orders of magnitude in the compleeocortical environment.

This work simply shows that electromagnetic fields within neurons candfacts outside of them, e.g.,

on ions that mediate interactions between and among neurons and astrocytes (Pereira & Furlan, 2010;
Pereira & Furlan, 2009). Other work has shown the important computational effects of such interactions,
including consideration of magnetic influences per se (Banaclocha, 2007; BanadBimbikon &
Banaclocha, 2010).

These minicolumnar processes of STM, as described by SMNI, wpsaffleet and are affected by
relatively regional macroscopic processes, and ag #fect and are affected by reladiy microscopic
ionic processes, will be emphasized in other papers (Inghkt).
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