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Abstract
For sev eral decades the stated Holy Grail of chemical, biological and biophysical research into neocortical
information processing has been to reduce such neocortical phenomena into specific bottom-up molecular
and smaller-scale processes.Over the past three decades, with regard to short-term memory (STM) and
long-term memory (LTM) phenomena, which themselves are likely components of other phenomena like
attention and consciousness, a statistical mechanics of neocortical interactions (SMNI) approach has
yielded specific details of STM capacity, duration and stability not present in molecular approaches, but it
is clear that most molecular approaches consider it inevitable that their reductionist approaches at
molecular and possibly even quantum scales will yet prove to be causal explanations of such phenomena.
The SMNI approach is a bottom-up aggregation from synaptic scales to columnar and regional scales of
neocortex, and has been merged with larger non-invasive EEG scales with other colleagues -- all at scales
much coarser than molecular scales. As with many Crusades for some truths, other truths can be
trampled. It is proposed that an SMNI vector potential (SMNI-VP) constructed from magnetic fields
induced by neuronal electrical firings, at thresholds of collective minicolumnar activity with laminar
specification, can give rise to causal top-down mechanisms that effect molecular excitatory and inhibitory
processes in STM and LTM. A specific example might be causal influences on momentump of Ca2+ ions
by the SMNI-VPA, as calculated by the canonical momentumΠ, Π = p − qA, whereq = −2e for Ca2+, e
is the electron coulomb charge, which may be applied either classically or quantum-mechanically. Such a
smoking gun for top-down effects awaits forensic in vivo experimental verification, requiring appreciating
the necessity and due diligence of including true multiple-scale interactions across orders of magnitude in
the complex neocortical environment.
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1. Intr oduction and Rational
The phenomenon of short-term memory (STM) has many aspects and observed as well as conjectured
mechanisms. Theapproach here is to take one approach based on a statistical mechanics of neocortical
interactions (SMNI) which has been successful in calculating several important features of STM based on
columnar structures in neocortex. This is taken as starting point to see how complementary processes at
some larger and some smaller scales can be bridged to better understand STM

The next section describes the development of SMNI STM, followed by a section devoted to a summary
of the mathematical development of SMNI. This helps to keep the rest of the paper relatively clear of
some of these details, while still giving sufficient background to explain the development. Thefollowing
section describes a larger context of STM, taking into account other work on smaller scales of neuronal as
astrocyte interactions, as well as how the SMNI processes at columnar scales effects larger-scale regional
activity. This discussion is conveniently described as bottom-up versus top-down processes.The
following section deals with how SMNI processes at columnar scales, tuned to STM processing, can
affect molecular scales of activity, via the electromagnetic vector potential, thereby describing a process
that requires a casual threshold of columnar activity to influence ionic processes strongly implicated in
STM at molecular levels. Thelast section is a conclusion emphasizing the importance of some top-down
processes in STM phenomena.

2. SMNI STM
Neocortex has evolved to use minicolumns of neurons interacting via short-ranged interactions in
macrocolumns, and interacting via long-ranged interactions across regions of macrocolumns
(Mountcastle, 1978; Buxhoeveden & Casanova, 2002; Rakic, 2008).This common architecture processes
patterns of information within and among different regions of sensory, motor, associative cortex, etc. The
SMNI approach was the first physical application of a nonlinear multivariate calculus developed by other
mathematical physicists in the late 1970’s to define a statistical mechanics of multivariate nonlinear
nonequilibrium systems (Graham, 1977; Langoucheet al, 1982).

SMNI builds minicolumnar, macrocolumnar, and regional interactions in neocortex. Since1981, SMNI
has been developed to model columns and regions of neocortex, spanning mm to cm of tissue, As
depicted in Figure 1, SMNI develops three biophysical scales of neocortical interactions: (a)-(a* )-(a’)
microscopic neurons; (b)-(b’) mesocolumnar domains; (c)-(c’) macroscopic regions. SMNI has
developed appropriate conditional probability distributions at each level, aggregating up from the smallest
levels of interactions. In (a* ) synaptic inter-neuronal interactions, averaged over by mesocolumns, are
phenomenologically described by the mean and variance of a distribution Ψ. Similarly, in (a)
intraneuronal transmissions are phenomenologically described by the mean and variance of Γ.
Mesocolumnar averaged excitatory (E) and inhibitory (I ) neuronal firings M are represented in (a’).In
(b) the vertical organization of minicolumns is sketched together with their horizontal stratification,
yielding a physiological entity, the mesocolumn. In (b’) the overlap of interacting mesocolumns at
locationsr and r ′ from times t and t + τ , τ on the order of 10 msec, is sketched. In(c) macroscopic
regions of neocortex are depicted as arising from many mesocolumnar domains. (c’) sketches how
regions may be coupled by long−ranged interactions.

Most of these papers have dealt explicitly with calculating properties of STM and scalp EEG in order to
test the basic formulation of this approach (Ingber, 1981; Ingber, 1982; Ingber, 1983; Ingber, 1984;
Ingber, 1985b; Ingber, 1985c; Ingber, 1986; Ingber & Nunez, 1990; Ingber, 1991; Ingber, 1992; Ingber,
1994; Ingber & Nunez, 1995; Ingber, 1995a; Ingber, 1995b; Ingber, 1996b; Ingber, 1996a; Ingber, 1997;
Ingber, 1998). TheSMNI modeling of local mesocolumnar interactions (convergence and divergence
between minicolumnar and macrocolumnar interactions) was tested on STM phenomena. The SMNI
modeling of macrocolumnar interactions across regions was tested on EEG phenomena.

2.1. STMCapacity

SMNI studies have detailed that maximal numbers of attractors lie within the physical firing space ofMG,
where G = {Excitatory, Inhibitory} minicolumnar firings, consistent with experimentally observed
capacities of auditory STM (Miller, 1956; Ericsson & Chase, 1982) and visual STM (G. Zhang & Simon,
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Fig. 1. Illustrated are three biophysical scales of neocortical interactions: (a)-(a* )-(a’)
microscopic neurons; (b)-(b’) mesocolumnar domains; (c)-(c’) macroscopic regions.
Reprinted with permission from (Ingber, 1983) by the American Physical Society.

1985), when a “centering” mechanism (CM), as detailed below, is enforced by shifting background noise
in synaptic interactions, consistent with experimental observations under conditions of selective attention
(Mountcastleet al, 1981; Ingber, 1984; Ingber, 1985c; Ingber, 1994; Ingber & Nunez, 1995). This leads
to all attractors of the short-time distribution lying along a diagonal line inMG space, effectively defining
a narrow parabolic trough containing these most likely firing states. This essentially collapses the two-
dimensionalMG space down to a one-dimensional space of most importance. Thus, the predominant
physics of STM and of (short-fiber contribution to) EEG phenomena takes place in a narrow “parabolic
trough” in MG space, roughly along a diagonal line (Ingber, 1984).

These calculations were further supported by high-resolution evolution of the two-variable short-time
conditional-probability propagator using PATHINT (Ingber & Nunez, 1995). SMNI correctly calculated
the stability and duration of STM, random access to memories within tenths of a second as observed, and
the observed 7± 2 capacity rule of auditory memory (Miller, 1956) and the observed 4± 2 capacity rule of
visual memory (G. Zhang & Simon, 1985).

Figure 2 shows the evolution of a Balanced Centered model (BC) after 500 foldings of∆t = 0. 01,or 5
unit of relaxation timeτ . Note the existence of ten well developed peaks or possible trappings of firing
patterns (Ingber & Nunez, 1995).This seems to be able to describe the “7± 2” rule. The BC model is
described in more detail below.

Figure 3 shows the evolution of a Balanced Centered Visual model (BCV) after 1000 foldings of
∆t = 0. 01,or 10 unit of relaxation timeτ . Note the existence of four well developed peaks or possible
trappings of firing patterns. Also note that other peaks at lower scales are clearly present, numbering on
the same order as in the BC’ model, as the strength in the original peaks dissipates throughout firing
space, but these are much smaller and therefore much less probable to be accessed (Ingber & Nunez,
1995). Thisseems to be able to describe the “4± 2” rule for visual STM.
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Fig. 2. Illustrated is SMNI STM Model BC at the evolution at 5τ . Reprinted with
permission from (Ingber & Nunez, 1995) by the American Physical Society.

Fig. 3. Illustrated is SMNI STM Model BCV at the evolution at 10τ . Reprinted with
permission from (Ingber & Nunez, 1995) by the American Physical Society.

2.2. STMDuration
While early papers (Ingber, 1984; Ingber, 1985c), suggested the possibility of sustenance of STM over
epochs of tens of seconds just due to localized columnar interactions, it was clear that longer-ranged
influences also are important to the development of the SMNI approach (Ingber, 1981; Ingber, 1982;
Ingber, 1983). For example, calculations show that this duration of STM may not be possible if only
localized columnar interactions are considered (Ingber, 1994; Ingber & Nunez, 1995).After
approximately 5τ , the clear separations between peaks of most-likely states in the evolving conditional
probability distribution soon overlap. After approximately 10τ , the separations hardly exists. All four
models considered, described below, representing dominant inhibition, dominant excitation, a “balanced”
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case in between these two (model BC’ illustrated here), and the latter for the visual neocortex, exhibit
similar decays of their peaks over these time scales.Future calculations, including all nonlinear SMNI
effects might change this numerical result, but still the action of long-ranged neuron-neuron and diffuse
neuromodulator interactions are known to be important to neocortical function, and they must be
addressed.

2.3. Propagation of Information Across Minicolumns
In the sub-section below on Mathematical Development, it is noted that Euler-Lagrange (EL) equations
are derived from the SMNI Lagrangian, the negative of the argument of the exponential describing the
short-time conditional probability distribution of columnar firing states. Linearization of the EL
equations permits the development of stability analyses and dispersion relations in frequency-wav e-
number space (Ingber, 1982; Ingber, 1983; Ingber, 1985b). It is noted in this regard that the
corresponding wav e propagation velocities pace interactions over sev eral minicolumns, of magnitude
sufficient to permit simultaneous information processing within about 10−1 sec with interactions mediated
by long-ranged fibers possessing much greater propagation velocities about 600−900 cm/sec (Ingber,
1985b). E.g.,detailed auditory and visual processing can feed information to the association cortex where
it can be processed simultaneously, possibly giving feedback to the primary sensory regions. The
propagation velocities calculated by SMNI, about 1 cm/sec, also are consistent with observed movements
of attention (Tsal, 1983) and of hallucinations (Cowan, 1982) across the visual field. This strongly
suggests that nearest-neighbor (NN) mesocolumnar interactions are an important mechanism in these
movements.

2.4. PrimacyVersus Recency Rule
Another phenomenon of STM capacity explained by the SMNI is the primacy versus recency effect in
STM serial processing, wherein first-learned items are recalled most error-free, with last-learned items
still more error-free than those in the middle (Murdock, 1983).The primacy versus recency rule is
verif ied for acoustical STM, but visual or semantic STM typically requires longer times for rehearsal in a
hypothesized articulatory loop of individual items (G. Zhang & Simon, 1985).In the SMNI approach, the
basic assumption is made that a pattern of neuronal firing that persists for many τ cycles is a candidate to
store the “memory” of activity that gav erise to this pattern. If several firing patterns can simultaneously
exist, then there is the capability of storing several memories. The short-time conditional probability
distribution derived for the neocortex is the primary tool to seek such firing patterns. The deepest minima
of the Lagrangian, defined below, essentially the argument of this probability distribution, are more likely
accessed than the others of this probability distribution, and these valleys are sharper than the others.I.e.,
they are more readily accessed and sustain their patterns against fluctuations more accurately than the
relatively more shallow minima. Themore recent memories or newer patterns may be presumed to be
those having synaptic parameters more recently tuned and/or more actively rehearsed.

2.5. Hick’s Law
SMNI supports random access to memories within tenths of a second as observed, and thereby helps to
explain Hick’s law of l inearity of reaction time (RT) with STM information (Hick, 1952; Jensen, 1987;
Ingber, 1999).

The RT necessary to “visit” the states under control during the span of STM can be calculated as the mean
time of “first passage” between multiple states of this distribution, in terms of the probabilityP as an
outer integral ∫ dt (sum) over refraction times of synaptic interactions during STM timet, and an inner

integral ∫ dM (sum) taken over the mesocolumnar firing statesM (Risken, 1989), which has been
explicitly calculated to be within observed STM time scales (Ingber, 1984),

RT = − ∫ dt t ∫ dM
dP

dt
. (1)

The probability distributionP is defined below.
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As demonstrated by previous SMNI STM calculations, within tenths of a second, the conditional
probability of visiting one state from anotherP, can be well approximated by a short-time probability
distribution expressed in terms of the previously mentioned LagrangianL as

P =
1

√ (2π dtg)
exp(−Ldt) ,  (2)

whereg is the determinant of the covariance matrix of the distributionP in the space of columnar firings.

This expression forRT can be approximately rewritten as

RT ≈ K ∫ dt ∫ dM P ln P , (3)

where K is a constant when the Lagrangian is approximately constant over the time scales observed.
Since the peaks of the most likely M states ofP are to a very good approximation well-separated
Gaussian peaks (Ingber, 1984), these states may be treated as independent entities under the integral. This
last expression is essentially the “information” content weighted by the time during which processing of
information is observed.

The calculation of the heights of peaks corresponding to most likely states includes the combinatoric
factors of their possible columnar manifestations as well as the dynamics of synaptic and columnar
interactions. Inthe approximation that we only consider the combinatorics of items of STM as
contributing to most likely states measured byP, i.e., thatP measures the frequency of occurrences ofall
possible combinations of these items, we obtain Hick’s Law, the observed linear relationship of RT versus
STM information storage.For example, when the bits of information are measured by the probabilityP
being the frequency of accessing a given number of items in STM, the bits of information in 2, 4 and 8
states are given as approximately multiples of ln2 of items, i.e., ln 2, 2ln 2 and 3ln 2, resp. (Thelimit of
taking the logarithm of all combinations of independent items yields a constant times the sum over
pi ln pi , wherepi is the frequency of occurrence of itemi .)

2.6. STMTr ansference to LTM
SMNI also calculates how STM patterns (e.g., from a given region or even aggregated from multiple
regions) may be encoded by dynamic modification of synaptic parameters (within experimentally
observed ranges) into long-term memory patterns (LTM) (Ingber, 1983). Thiscalculation simply shows
how rates of firing can be encoded into synaptic parameters.It does not address any molecular
mechanisms to cause such encodings, e.g., such as those referenced below.

2.7. SMNI Description of EEG
Using the power of the SMNI structure and the optimization algorithm Adaptive Simulated Annealing
(ASA), sets of EEG and evoked potential data from an NIH study investigating genetic predispositions to
alcoholism (X.L. Zhanget al, 1995), were fitted to an SMNI model on a lattice of regional electrodes to
extract brain “signatures” of STM (Ingber, 1997; Ingber, 1998). Eachelectrode site was represented by
an SMNI distribution of independent stochastic macrocolumnar-scaledMG variables, interconnected by
long-ranged circuitry with delays appropriate to long-fiber communication in neocortex. The global
optimization algorithm ASA was used to perform maximum likelihood fits of Lagrangians defined by
path integrals of multivariate conditional probabilities.Canonical momenta indicators (CMI) were
thereby derived for individual’s EEG data. The CMI give better signal recognition than the raw data, and
were used to advantage as correlates of behavioral states.In-sample data was used for training (Ingber,
1997), and out-of-sample data was used for testing (Ingber, 1998) these fits.

These results gav e strong quantitative support for an accurate intuitive picture, portraying neocortical
interactions as having common algebraic physics mechanisms that scale across quite disparate spatial
scales and functional or behavioral phenomena, i.e., describing interactions among neurons, columns of
neurons, and regional masses of neurons.

Note that there are other models of EEG which also have sound experimental support.Some of the
models can be shown to be indeed complementary to SMNI (Ingber & Nunez, 2010).Scalp potentials
(EEG) are generated by synaptic current sources at small scales; each cubic millimeter of cortical tissue
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contains more than 100 million synapses. In contrast to this small scale activity, EEG data are recorded at
macroscopic (centimeter) scales. All dependent variables are expressed as functions of time and cortical
location. The basic approach ignores embedded network activity, although networks have been included
in more advanced models (Nunez, 1989; Jirsa & Haken, 1996).

Below, some details of the SMNI approach lead to further confirmation of overlaps with some other
approaches to EEG studies.

3. MathematicalDevelopment

3.1. Neuronal Firings from Synaptic Aggregation
Figure 1 gives a visual representation of several stages of aggregation developed in SMNI (Ingber, 1982;
Ingber, 1983). Neocorticalneurons typically have many dendrites that receive quanta of chemical
postsynaptic stimulation from many other neurons. The distribution of quanta transmitted across
synapses takes place on the scale of 10−2 µm. Eachquantum has thousands of molecules of chemical
neurotransmitters that affect the chemically gated postsynaptic membrane.Chemical transmissions in the
neocortex are believed to be either excitatory (E), such as glutamic acid, or inhibitory (I ), such asγ
aminobutyric acid. There exist many transmitters as well as other chemicals that modulate their effects,
but it is assumed that after millions of synapses between hundreds of neurons are averaged over, then it is
reasonable to ascribe a distribution functionΨ with a mean and variance forE and I interneuronal
interactions.

Some neuroscientists do not accept the assumption that simple algebraic summation of excitatory
depolarizations and inhibitory hyperpolarizations at the base of the inner axonal membrane determines the
fi ring depolarization response of a neuron within its absolute and relative refractory periods (Shepherd,
1979), i.e., including the absolute refractory time after a firing during which no new spikes can be
generated, and the relative refractory period during which spikes can be produced only at a decreased
sensitivity (Sommerhoff, 1974).However, many other neuroscientists agree that this assumption is
reasonable when describing the activity of large ensembles of neocortical neurons, each one typically
having many thousands of synaptic interactions.

This same averaging procedure makes it reasonable to ascribe a distribution functionΓ with a mean and
variance forE and I intraneuronal interactions.A GaussianΓ is taken to describe the distribution of
electrical polarizations caused by chemical quanta impinging on the postsynaptic membrane.These
polarizations give a resultant polarization at the base of the neuron, the axon. The base of the axon of a
large fiber may be myelinated.However, smaller neurons typically lack these distinguishing features.
Experimental techniques are not yet sufficiently advanced to attempt the explicit averaging procedure
necessary to establish the means and variances ofΨ andΓ, and their parameters,in vivo (Vu & Krasne,
1992). Differential attenuations of polarizations from synapses to the base of an axon are here only
phenomenologically accounted for by including these geometric and physiological effects intoΓ.

With a sufficient depolarization of approximately 10 to 20 mV at the soma, within an absolute and relative
refractory period of approximately 5 msec, an action potential is pulsed down the axon and its many
collaterals, affecting voltage-gated presynaptic membranes to release quanta of neurotransmitters.Not
detailed here is the biophysics of membranes, of thickness≈ 5 × 10−3 µm, composed of biomolecular
leaflets of phospholipid molecules (Caille´ et al, 1980; Scott, 1975; von der Heydt et al, 1981). Ψ andΓ
are taken to approximate this biophysics for use in macroscopic studies.Chemical independence of
excitatory depolarizations and inhibitory hyperpolarizations are well established in the neocortex, and this
independence is retained throughout SMNI.

It should be noted that experimental studies initially used to inferΨ and Γ (e.g., at neuromuscular
junctions) were made possible by deliberately reducing the number of quanta by lowering external
calcium concentrations (Boyd & Martin, 1956; Katz, 1966).Ψ was found to be Poissonian, but in that
system, where hundreds of quanta are transmittedin vivo, Ψ may well be otherwise; for example,
Gaussian with independent mean and variance. Currentresearch suggests a binomial distribution, having
a Poisson limit (Ingber, 1982; Korn, Mallet& Faber, 1981; Perkel & Feldman, 1979). Note that some
investigators have shown a Bernoulli distribution to be more accurate in some cases (Perkel & Feldman,
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1979; Ingber, 1982; Korn & Mallet, 1984), and that the very concept of quantal transmission, albeit that
good fits to experimental data are achieved with this concept, is under review. In the neocortex, probably
small numbers of quanta are transmitted at synapses, but other effects, such as nonuniformity and
nonstationarity of presynaptic release sites, and nonlinear summation of postsynaptic potentials, may
detract from a simple phenomenological Poisson description (Shepherd, 1979).

This short description serves to point out possible differences inΨ resulting from many sources.
However, the derivation of synaptic interactions given here makes it plausible that for reasonable neuronal
parameters, the statistical folding ofΨ andΓ is essentially independent of the functional form assumed
for Ψ, just requiring specification of its numerical mean and variance.

The result of this analysis is to calculate the transition probability of the firing of neuronj , pσ j
, giv en its

interaction with its neighbors that also may fire or not fire. Theresult is given as the tabulated error
function. Within the range where the total influences of excitatory and inhibitory firings match and
exceed the average threshold potential of a given neuron, the probability of that neuron firing receives its
major contribution to increase from 0 towards 1.

This is similar to mathematical results obtained by others (Little, 1974; Little & Shaw, 1978; Shaw &
Vasudevan, 1974) who have modeled the neocortex after magnetic systems (Cragg & Temperley, 1954).
However, in SMNI, this is derived more generally, and has the neural parameters more specifically
denoted with different statistical significances given to Ψ andΓ, as described above.

Consider 102 < N < 103 neurons, labeled byk, interacting with a given neuron j . Each neuron may
contribute many synaptic interactions to many other neurons.A neuron may have as many as 104 − 105

synaptic interactions.Within timeτ n ≈ 5 msec,Ψ is the distribution ofq quanta of chemical transmitter
released from neuronk to neuronj (k ≠ j ) with meana jk , where

a jk = A jk(σ k + 1) / 2+ B jk . (4)

A jk is the conductivity weighting transmission of polarization, dependent onk fi ring,

σ k =




+1,

−1,

k fires,

k does notfire
(5)

and B jk is a background including some nonsynaptic and long-range activity. Of course,A and B are
highly complicated functions ofkj. This definition of σ k permits a decomposition ofa jk into two
different physical contributions.

Further SMNI development yields the conditional probability, pσ j
, of neuron j fi ring given previous

fi rings withinτ of other neuronsk:

pσ j
= π − 1

2

∞

(σ j F j √ π /2)
∫ dz exp(−z2) 1

2 [1 − erf (σ j F j √ π /2)],

F j =
V j −

k
Σ a jk v jk

(((π /2)
k′
Σ a jk′(v

2
jk′ + φ 2

jk′)))
1
2

. (6)

“erf” is the tabulated error function, simply related to the normal probability function (Mathews &
Walker, 1970). F j is a “threshold factor,” as pσ j

increases from 0 to 1 between∞ >σ j F j > − ∞ sharply
within the range ofF j ≈ 0.

If

|σ j F j | < 1, (7)

then an asymptotic expression forpσ j
is

pσ j
≈

exp(−σ j F j )

exp (F j ) + exp(−F j )
. (8)
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3.2. Mesocolumns
The SMNI formulation of a multivariate nonlinear nonequilibrium system requires derivation in a proper
Riemannian geometry to study proper limits of short-time conditional probability distributions. Priorto
the late 1970’s and early 1980’s, many uses of path integrals for multivariate systems nonlinear in their
drifts and diffusions were too cavalier in taking continuum limits. In general, results of derivations may
be formally written as continuum limits, but these should be understood to be implemented as discrete in
derivations as well as in numerical work (Langoucheet al, 1982; Schulman, 1981).

A sampling of these details can be seen in the context of SMNI.To properly deal with multivariate
nonlinear multiplicative-noise systems, researchers have had to properly discretize the Feynman
Lagrangian,LF , in terms of the Feynman ActioñSF , including Riemannian induced with the Stratonovich
midpoint discretization (Langoucheet al, 1982). TheEinstein convention of summing over factors with
repeated indices is assumed.The Feynman probability distribution over the entire cortex, consisting ofΛ
mesocolumns spanning a total cortical areaΩ, can be written formally, i.e., with discretization understood
to be necessary in all derived uses and numerical calculations, as

S̃F = minΛΩ−1 ∫ dt′ ∫ d2r L F ,

LF =
1

2
N−1(Ṁ

G − hG)gGG′(M
G′ − hG′) − V ,

hG = gG −
1

2
g−1/2(g1/2gGG′),G′ ,

V = V′ − (
1

2
hG

;G + R/6)/N ,

V′ = V′E + V′I − MGJG/(2Nτ ) ,

hG
;G = g−1/2(g1/2hG),G ,

g = ||gGG′|| = det(gGG′) = gEEgII ,

gGG′ = (gGG′)−1 ,

R = g−1(gEE,II + gII ,EE) −
1

2
g−2 × {gII [gEE,EgII ,E + (gEE,I )

2] + gEE[gII ,I gEE,I + (gII ,E)2]} ,

[. . .],G ≡ (∂/∂MG)[. . .] .  (9)

The Riemannian curvatureR arises from the nonlinear inverse variancegGG′, which is abona fide metric
of this parameter space (Graham, 1978).The discretization of the determinant prefactor of the
conditional probability distribution requires additional care (Langoucheet al, 1982).

Some of the algebra behind SMNI depicts variables and distributions that populate each representative
macrocolumn in each region. While Riemannian terms were calculated when using the Stratonovich
midpoint discretization of the probability distribution (Ingber, 1982; Ingber, 1983), in order to explicitly
deal with the multivariate nonlinearities, here it suffices to use the more readable Ito prepoint
discretization, which is an equivalent numerical distribution when used consistently (Langoucheet al,
1982). Codesfor all SMNI algebra were written in several languages and found to give the same
numerical answers: algebraic languages Macsyma (and its later version Maxima) and Reduce, Fortran and
C, and alphanumeric coding of magnetic strips for the hand calculator HP-41C.

A derived mesoscopic LagrangianLM defines the short-time probability distribution of firings in a
minicolumn, composed of about 102 neurons, given its just previous interactions with all other neurons in
its macrocolumnar surround.G is used to represent excitatory (E) and inhibitory (I ) contributions. G
designates contributions from bothE and I .
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PM =
G
Π PG

M [MG(r ; t + τ )|MG(r ′; t)]

=
σ j

Σ δ


 jE
Σσ j − M E(r ; t + τ )




δ



 jI
Σσ j − M I (r ; t + τ )





N

j
Π pσ j

≈
G
Π (2π τ gGG)−1/2 exp(−Nτ LG

M ) ,

PM ≈(2π τ )−1/2g1/2 exp(−Nτ LM ) ,

LM = LE
M + L I

M = (2N)−1(Ṁ
G − gG)gGG′(Ṁ

G′ − gG′) + MGJG/(2Nτ ) − V′ ,

V′ =
G
ΣV′′GG′(ρ∇MG′)2 ,

gG = −τ −1(MG + NG tanhFG) , gGG′ = (gGG′)
−1 = δ G′

G τ −1NGsech2FG , g = det(gGG′) ,

FG =
(VG − a|G|

G′ v
|G|
G′ NG′ −

1

2
A|G|

G′ v
|G|
G′ MG′)

(((π /2)[(v|G|
G′ )

2 + (φ |G|
G′ )

2](a|G|
G′ NG′ +

1

2
A|G|

G′ MG′)))1/2
, aG

G′ =
1

2
AG

G′ + BG
G′ , (10)

where AG
G′ and BG

G′ are minicolumnar-averaged inter-neuronal synaptic efficacies, vG
G′ and φ G

G′ are
av eraged means and variances of contributions to neuronal electric polarizations.MG′ andNG′ in FG are
afferent macrocolumnar firings, scaled to efferent minicolumnar firings byN/N* ≈ 10−3, whereN * is the
number of neurons in a macrocolumn, about 105. Similarly, AG′

G and BG′
G have been scaled by

N * / N ≈ 103 to keep FG invariant. V′ is mesocolumnar NN interactions. Other values taken are
consistent with experimental data, e.g.,VG = 10 mV, vG

G′ = 0. 1 mV, φ G
G′ = 0. 031/2 mV. Note that these

values and the factor (π /2)1/2 in the denominator ofFG, giv e identical numerical values forFG as in
earlier papers with values ofφ G

G′ = 0. 1mV and a factorπ 1/2.

It is notes that, as originally derived (Ingber, 1982; Ingber, 1983), the numerator ofFG contains
information derived from presynaptic firing interactions.The location of most stable states of this SMNI
system is highly dependent on the interactions presented in this numerator. The denominator ofFG

contains information derived from factors of presynaptic and postsynaptic neuromodular and electrical
processing of these firings. Thenonlinearities present in this denominator dramatically affect the number
and nature of stable states at scales zoomed in at magnifications on the order of a thousand times,
representing neocortical processing of detailed information within a sea of stochastic activity.

3.3. Inclusionof Macroscopic Circuitry

The most important features of this development are described by the LagrangianLG and the “threshold
factor” FG describing an important sensitivity of the distribution to changes in its variables and
parameters.

To more properly include long-ranged fibers between macrocolumns, theJG terms can be dropped, and
more realistically replaced by a modified threshold factorFG,

FG =
(VG − a|G|

G′ v
|G|
G′ NG′ −

1

2
A|G|

G′ v
|G|
G′ MG′ − a‡E

E′ vE
E′ N

‡E′ −
1

2
A‡E

E′ vE
E′ M

‡E′)

(((π /2)[(v|G|
G′ )

2 + (φ |G|
G′ )

2](a|G|
G′ NG′ +

1

2
A|G|

G′ MG′ + a‡E
E′ N‡E′ +

1

2
A‡E

E′ M‡E′)))1/2
,

a‡E
E′ =

1

2
A‡E

E′ + B‡E
E′ . (11)
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Here, afferent contributions fromN‡E long-ranged excitatory fibers, e.g., cortico-cortical neurons, have
been added, whereN‡E might be on the order of 10% ofN∗: Of the approximately 1010 to 1011

neocortical neurons, estimates of the number of pyramidal cells range from 2/3 up to 4/5 (Markramet al,
2004). Nearlyev ery pyramidal cell has an axon branch that makes a cortico-cortical connection; i.e., the
number of cortico-cortical fibers is of the order 1010. This development is used in the SMNI description
of scalp EEG across regions.

3.4. CenteringMechanism (CM)
It was discovered that more minima of the static LagrangianL are created, i.e., brought into the physical
fi ring ranges, if the numerator ofFG contains terms only inMG, tending to centerL about MG = 0
(Ingber, 1984). Thatis, BG is modified such that the numerator ofFG is transformed to

F ′G =
−

1

2
A|G|

G′ v
|G|
G′ MG′

(((π /2)[(v|G|
G′ )

2 + (φ |G|
G′ )

2](a′|G|
G′ NG′ +

1

2
A|G|

G′ MG′)))1/2
,

a′GG′ =
1

2
AG

G′ + B′GG′ , (12)

The most likely states of the centered systems lie along diagonals inMG space, a line determined by the
numerator of the threshold factor inF E, essentially

AE
E M E − AE

I M I ≈ 0 ,  (13)

noting that inF I I − I connectivity is experimentally observed to be very small relative to other pairings,
so that (AI

E M E − AI
I M I ) is typically small only for smallM E.

Of course, any mechanism producing more as well as deeper minima is statistically favored. However,
this particular CM has plausible support:MG(t + τ ) = 0 is the state of afferent firing with highest
statistical weight.I.e., there are more combinations of neuronal firings, σ j = ±1, yielding this state than
any other MG(t + τ ), e.g.,≈ 2NG+1/2(π NG)−1/2 relative to the statesMG = ±NG. Similarly, MG(t) is the
state of efferent firing with highest statistical weight.Therefore, it is natural to explore mechanisms
which favor common highly weighted efferent and afferent firings in ranges consistent with favorable
fi ring threshold factorsFG≈0.

In general,BG
E and BG

I (and possiblyAG
E and AG

I due to actions of neuromodulators, andJG constraints
from long-ranged fibers) are available to zero the constant in the numerator, giving an extra degree(s) of
freedom to this mechanism.(If B′GE would be negative, this leads to unphysical results in the square-root
denominator ofFG. In all examples where this occurs, it is possible to instead find positive B′GI to
appropriately shift the numerator ofFG.) In this context, it is empirically observed that the synaptic
sensitivity of neurons engaged in selective attention is altered, presumably by the influence of chemical
neuromodulators on postsynaptic neurons at their presynaptic sites (Mountcastleet al, 1981).

3.5. Prototypical Cases
Three Cases of neuronal firings were considered in the first introduction of STM applications of SMNI
(Ingber, 1984). Below is a short summary of these details. Note that while it suffices to define these
Cases usingFG, the full Lagrangian and probability distribution, upon which the derivation of the EL
equations are based, are themselves quite nonlinear functions ofFG, e.g., via hyperbolic trigonometric
functions, etc.

Since STM duration is long relative to τ , stationary solutions of the LagrangianL, L, can be investigated
to determine how many stable minima << MG >> may simultaneously exist within this duration.Detailed
calculations of time-dependent folding of the full time-dependent probability distribution supports
persistence of these stable states within SMNI calculations of observed decay rates of STM (Ingber &
Nunez, 1995).
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A model of dominant inhibition describes how minicolumnar firings are suppressed by their neighboring
minicolumns. For example, this could be effected by developing NN mesocolumnar interactions (Ingber,
1983), but here the averaged effect is established by inhibitory mesocolumns (Case I) by setting
AI

E = AE
I = 2AE

E = 0. 01N* /N. Since there appears to be relatively little I − I connectivity, set
AI

I = 0. 0001N* /N. The background synaptic noise is taken to beBE
I = BI

E = 2BE
E = 10BI

I = 0. 002N* /N.
As minicolumns are observed to have about 110 neurons (visual cortex appears to have approximately
twice this density) (Mountcastle, 1978), and as there appear to be a predominance ofE over I neurons
(Nunez, 1981), here take NE = 80 andN I = 30. UseN* /N = 103, vG

G′, and φ G
G′ as estimated previously.

MG represents time-averagedMG. The threshold factorsFG
I for this I model are then

F E
I =

(0. 5M I − 0. 25M E + 3. 0)

π 1/2(0. 1M I + 0. 05M E + 9. 80)1/2
,

F I
I =

(0. 005M I − 0. 5M E − 45. 8)

π 1/2(0. 001M I + 0. 1M E + 11. 2)1/2
. (14)

In the prepoint-discretized deterministic limit, the threshold factors determine when and how smoothly
the step-function forms tanhFG

I in gG(t) changeMG(t) to MG(t + τ ). F I
I will cause afferent M I to fire

for most of its values, asM I ≈ −N I tanhF I
I will be positive for most values ofMG in F I

I , which is
already weighted heavily with a term -45.8. Looking atF E

I , it is seen that the relatively high positive
values of efferentM I require at least moderate values of positive efferentM E to cause firings of afferent
M E.

The centering effect of the I model, labeled here as the IC model, is quite easy for neocortex to
accommodate. For example, this can be accomplished simply by readjusting the synaptic background
noise fromBG

E to B′GE ,

B′GE =
[VG − (

1

2
AG

I + BG
I )vG

I N I −
1

2
AG

EvG
E NE]

vG
E NG

(15)

for both G = E and G = I . In general, BG
E and BG

I (and possiblyAG
E and AG

I due to actions of
neuromodulators, andJG constraints from long-ranged fibers) are available to zero the constant in the
numerator, giving an extra degree(s) of freedom to this mechanism.(If B′GE would be negative, this leads
to unphysical results in the square-root denominator ofFG. In all examples where this occurs, it is
possible to instead find positive B′GI to appropriately shift the numerator ofFG.) In this context, it is
empirically observed that the synaptic sensitivity of neurons engaged in selective attention is altered,
presumably by the influence of chemical neuromodulators on postsynaptic neurons at their presynaptic
sites (Mountcastleet al, 1981).

By this CM,B′EE = 1. 38andB′II = 15. 3,andFG
I is transformed toFG

IC, Case IC,

F E
IC =

(0. 5M I − 0. 25M E)

π 1/2(0. 1M I + 0. 05M E + 10. 4)1/2
,

F I
IC =

(0. 005M I − 0. 5M E)

π 1/2(0. 001M I + 0. 1M E + 20. 4)1/2
. (16)

Note that, aside from the enforced vanishing of the constant terms in the numerators ofFG
I , the only other

changes inFG
I moderately affect the constant terms in the denominators.

The other extreme of normal neocortical firings is a model of dominant excitation, effected by
establishing excitatory mesocolumns (Case E) by using the same parameters{BG

G′, vG
G′,φ G

G′, AI
I } as in the I

model, but settingAE
E = 2AI

E = 2AE
I = 0. 01N* /N. This yields

F E
E =

(0. 25M I − 0. 5M E − 24. 5)

π 1/2(0. 05M I + 0. 10M E + 12. 3)1/2
,
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F I
E =

(0. 005M I − 0. 25M E − 25. 8)

π 1/2(0. 001M I + 0. 05M E + 7. 24)1/2
. (17)

The negative constant in the numerator ofF I
E inhibits afferent M I fi rings. Althoughthere is also a

negative constant in the numerator ofF E
E , the increased coefficient of M E (relative to its corresponding

value in F E
I ), and the fact thatM E can range up toNE = 80, readily permits excitatory firings throughout

most of the range ofM E.

Applying the CM to E,B′EI = 10. 2 and B′II = 8. 62. The net effect in FG
EC, Case EC, in addition to

removing the constant terms in the numerators ofFG
E , is to change the constant terms in the denominators:

12.3 inF E
E is changed to 17.2 inF E

EC, and 7.24 inF I
E is changed to 12.4 inF I

EC.

Now it is natural to examine a balanced Case intermediate between I and E, labeled here as Case B.This
is accomplished by changingAE

E = AI
E = AE

I = 0. 005N* /N. This yields

F E
B =

(0. 25M I − 0. 25M E − 4. 50)

π 1/2(0. 050M E + 0. 050M I + 8. 30)1/2
,

F I
B =

(0. 005M I − 0. 25M E − 25. 8)

π 1/2(0. 001M I + 0. 050M E + 7. 24)1/2
. (18)

Applying the CM to B,B′EE = 0. 438and B′II = 8. 62. The net effect inFG
BC, Case BC, in addition to

removing the constant terms in the numerators ofFG
B , is to change the constant terms in the denominators:

8.30 inF E
B is changed to 7.40 inF E

BC, and 7.24 inF I
B is changed to 12.4 inF I

BC.

Previously, calculations were performed for the three prototypical firing Cases, dominate excitatory (E),
dominate inhibitory (I) and balanced about evenly (B). More minima were brought within physical firing
ranges when a CM is invoked (Ingber, 1984), by tuning the presynaptic stochastic background, a
phenomena observed during selective attention, giving rise to Cases EC, IC and BC.The states BC are
observed to yield properties of auditory STM, e.g., the 7± 2 capacity rule and times of duration of these
memory states (Ingber, 1984; Ingber, 1985c).

It is observed that visual neocortex has twice the number of neurons per minicolumn as other regions of
neocortex. In the SMNI model this gives rise to fewer and deeper STM states, consistent with the
observed 4± 2 capacity rule of these memory states.These calculations are Cases ECV, ICV and BCV
(Ingber, 1994).

3.6. Euler-Lagrange (EL)
To inv estigate dynamics of multivariate stochastic nonlinear systems, such as neocortex presents, it is not
sensible to simply apply simple mean-field theories which assume sharply peaked distributions, since the
dynamics of nonlinear diffusions in particular are typically washed out. Here, path integral
representations of systems, otherwise equivalently represented by Langevin or Fokker-Planck equations,
present elegant algorithms by use of variational principles leading to EL equations (Langoucheet al,
1982).

SMNI permits scaling to derive EL in sev eral approximations which give insight into other phenomena
that take advantage of the SMNI STM approach.

3.6.1. ColumnarEL
The Lagrangian components and EL equations are essentially the counterpart to classical dynamics,

Mass= gGG′ =
∂2L

∂(∂MG/∂t)∂(∂MG′/∂t)
,

Momentum= ΠG =
∂L

∂(∂MG/∂t)
,
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Force=
∂L

∂MG
,

F − ma= 0: δ L = 0 =
∂L

∂MG
−

∂
∂t

∂L

∂(∂MG/∂t)
. (19)

The EL equations are derived from the long-time conditional probability distribution of columnar firings
over all cortex, represented bỹM , in terms of the ActionS,

P̃[M̃(t)]dM̃(t) = ∫ . . . ∫ DM̃ exp(−NS̃) ,

M̃ = {MGν } , S̃ =
t

t0

∫ dt′L̃ , L̃ = ΛΩ−1 ∫ d2rL , L = LE + L I ,

DM̃ =
u+1

s=1
Π

Λ

ν =1
Π

E,I

G
Π (2π dt)−1/2(gν

s)1/4dMGν
s δ [Mt = M(t)][δ [M0 = M(t0)] , (20)

whereν labels the two-dimensional laminar→r-space ofΛ ≈ 5 × 105 mesocolumns spanning a typical
region of neocortex, Ω, (total cortical area≈ 4 × 1011 µm2); ands labels theu + 1 time intervals, each of
durationdt ≤ τ , spanning (t − t0). At a giv en value of (r ; t), M = {MG}.

The path integral has a variational principle,δ L = 0 which gives the EL equations for SMNI (Ingber,
1982; Ingber, 1983). TheEinstein convention is used to designate summation over repeated indices, and
the following notation for derivatives is used:

(. . .):z = d(. . .)/dz, z = {x, y} ,

(. . .),G = ∂(. . .)/∂MG, (. . .),Ġ = ∂(. . .)/∂(dMG/dt),

(. . .),G:z
= ∂(. . .)/∂(dMG/dz),

(. . .),∇G = x̂∂(. . .)/∂(dMG/dx) + ŷ∂(. . .)/∂(dMG/dy). (21)

The EL equations are:

δ L = 0,

δGL = L,G −∇ ⋅ L,∇G −L,Ġ:t = 0,

∇ ⋅ L,∇G = L,G:z:z = (L,G:z
,G′ )MG′

:z + (L,G:z
,G′:z )MG′

:zz

L,Ġ:t = (L,Ġ ,G′ )Ṁ
G′ + (L,Ġ ,Ġ′ )M̈

G′
. (22)

This exhibits the extremum condition as a set of differential equations in the variables
{MG, Ṁ

G
, M̈

G
, MG

:z, MG
:zz} in r − t = (x, y, t) space, with coefficients nonlinear inMG. Note that theV′

term for NN interactions in the LagrangianL will introduce spatial derivative terms that appear in these
EL equations.

As noted above, linearization of the EL equations permit the development of stability analyses and
dispersion relations in frequency-wav e-number space (Ingber, 1982; Ingber, 1983; Ingber, 1985b), leading
to wav e propagation velocities of interactions over sev eral minicolumns, consistent with experiments.
This calculation first linearizes the EL, then takes Fourier transforms in space and time variables.

MG = ReMG
oscexp[−i(ξ ⋅ r − ω t)] ,

MG
osc(r , t) = ∫ d2ξ dω M̂

G
osc(ξ ,ω ) exp[i(ξ ⋅ r − ω t)] . (23)
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For instance, a typical example (Ingber, 1985b). isspecified by: extrinsic sources (used in earlier papers
as a centering mechanism)JE = −2. 63 and JI = 4. 94, NE = 125, N I = 25, VG = 10 mV, AE = 1. 75,
AI = 1. 25,BG = 0. 25,vG0. 1 mv, and φ G = 0. 031/2 mV. The global minima is atM E = 25 andM I = 5.
This set of conditions yields (dispersive) dispersion relations

ωτ = ±{ − 1. 86+ 2. 38(ξ ρ)2; −1. 25i + 1. 51i(ξ ρ)2} , (A8)

where ξ = |ξ |. The propagation velocity defined bydω /dξ is about 1 cm/sec, taking typical wav e-
numbersξ to correspond to macrocolumnar distances about 30ρ. Calculated frequenciesω are on the
order of EEG frequencies of about 102 sec−1. These mesoscopic propagation velocities permit processing
over sev eral minicolumns about 10−1 cm, simultaneous with processing of mesoscopic interactions over
tens of cm via association fibers with propagation velocities about 600—900 cm/sec. I.e., both can occur
within about 10−1 sec.

Note that this propagation velocity is not ‘‘slow’’: Visual selective attention moves at about 8 msec/degree
(Tsal, 1983), which is about 1/2 mm/sec, if a macrocolumn of about mm2 is assumed to span 180 degrees.
This suggests that NN interactions play some part in disengaging and orienting selective attention.

3.6.2. StringsEL
The nonlinear string model was derived using the EL equation for the electric potentialΦ measured by
EEG, considering one firing variable along the parabolic trough of attractor states being proportional toΦ
(Ingber & Nunez, 1990).

Since only one variable, the electric potential is being measured, is reasonable to assume that a single
independent firing variable offers a crude description of this physics. Furthermore,the scalp potentialΦ
can be considered to be a function of this firing variable. (Here,“potential” refers to the electric potential,
not any potential term in the SMNI Lagrangian.)In an abbreviated notation subscripting the time-
dependence,

Φt− << Φ >>= Φ(M E
t , M I

t ) ≈ a(M E
t − << M E >>) + b(M I

t − << M I >>) ,  (24)

wherea andb are constants, and << Φ >> and << MG >> represent typical minima in the trough.In the
context of fitting data to the dynamic variables, there are three effective constants,{ a, b,φ } ,

Φt − φ = aME
t + bM I

t (25)

The mesoscopic columnar probability distributions,P, is scaled over this columnar firing space to obtain
the macroscopic conditional probability distribution over the scalp-potential space:

PΦ[Φ] = ∫ dMEdM I P[M E, M I ]δ [Φ − Φ′(M E, M I )] (26)

The parabolic trough described above justifies a form

PΦ = (2π σ 2)−1/2 exp(−∆t ∫ dx LΦ) ,

LΦ =
α
2

|∂Φ/∂t|2 +
β
2

|∂Φ/∂x|2 +
γ
2

|Φ|2 + F(Φ) ,

σ 2 = 2∆t/α , (27)

whereF(Φ) contains nonlinearities away from the trough,σ 2 is on the order of 1/N given the derivation
of L above, and the integral over x is taken over the spatial region of interest. In general, there also will
be terms linear in∂Φ/∂t and in∂Φ/∂x.

Here, the EL equation includes variation across the spatial extent,x, of columns in regions,

∂
∂t

∂L

∂(∂Φ/∂t)
+

∂
∂x

∂L

∂(∂Φ/∂x)
−

∂L

∂Φ
= 0 (28)

The result is
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α
∂2Φ
∂t2

+ β
∂2Φ
∂x2

+ γ Φ −
∂F

∂Φ
= 0 (29)

The determinant prefactor g defined above also contains nonlinear details affecting the state of the
system. Sinceg is often a small number, distortion of the scale ofL is avoided by normalizingg/g0,
whereg0 is simplyg evaluated atM E = M‡E′ = M I = 0.

If there exist regions in neocortical parameter space such thatβ /α = −c2, γ /α = ω 2
0, i.e., as explicitly

calculated using the Centering Mechanism (CM) and as derived in previous SMNI EEG papers,

1

α
∂F

∂Φ
= −Φ f (Φ) ,  (30)

then the nonlinear string model is recovered.

Note that if the spatial extent is extended across the scalp via long-ranged fibers connecting columns with
M‡E′ fi rings, this leads to a string of columns.

3.6.3. SpringsEL
For a giv en column in terms of the probability description given above, the above EL equations are
represented as

∂
∂t

∂L

∂(∂M E/∂t)
−

∂L

∂M E
= 0 ,

∂
∂t

∂L

∂(∂M I /∂t)
−

∂L

∂M I
= 0 (31)

Previous SMNI EEG studies had demonstrated that simple linearized dispersion relations derived from
the EL equations support the local generation of frequencies observed experimentally as well as deriving
diffusive propagation velocities of information across minicolumns consistent with other experimental
studies. Then,the above equations can represent coupled springs. The earliest studies simply used a
driving force JGMG in the Lagrangian to model long-ranged interactions among fibers (Ingber, 1982;
Ingber, 1983). Subsequentstudies considered regional interactions driving localized columnar activity
within these regions (Ingber, 1996b; Ingber, 1997; Ingber, 1998).

A recent set of calculations examined these columnar EL equations to see if EEG oscillatory behavior
could be supported at just this columnar scale, i.e., within a single column.At first, the EL equations
were quasi-linearized, by extracting coefficients of M and dM/dt. The nonlinear coefficients were
presented as graphs over all firing states (Ingber, 2009a). Thisexercise demonstrated that a spring-type
model of oscillations was plausible. Then a more detailed study was performed, developing over two
million lines of C code from the algebra generated by an algebraic tool, Maxima, to see what range of
oscillatory behavior could be considered as optimal solutions satisfying the EL equations (Ingber, 2009b).
The answer was affi rmative, in that ranges ofω t ≈ 1 were supported, implying that oscillatory solutions
might be sustainable just due to columnar dynamics at that scale.The full probability distribution was
ev olved with such oscillatory states, confirming this is true.

These results survive even with oscillatory input into minicolumns from long-ranged sources (Ingber &
Nunez, 2010), since the CM is independent of firing states, and just depends on averaged synaptic values
used in SMNI.

3.7. ComputationalPhysics

3.7.1. Adaptive Simulated Annealing (ASA)
Adaptive Simulated Annealing (ASA) (Ingber, 1993) is used to optimize or importance-sample
parameters of systems.

ASA is a C-language code developed to statistically find the best global fit of a nonlinear constrained
non-convex cost-function over a D-dimensional space. This algorithm permits an annealing schedule for
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“temperature”T decreasing exponentially in annealing-timek, T = T0 exp(−ck1/D). Theintroduction of
re-annealing also permits adaptation to changing sensitivities in the multi-dimensional parameter-space.
This annealing schedule is faster than fast Cauchy annealing, whereT = T0/k, and much faster than
Boltzmann annealing, whereT = T0/ ln k. ASA has over 100 OPTIONS to provide robust tuning over
many classes of nonlinear stochastic systems (Ingber, 2012).

For example, ASA has ASA_PARALLEL OPTIONS, hooks to use ASA on parallel processors, which
were first developed in 1994 when the author was Principal Investigator (PI) of a National Science
Foundation grant, Parallelizing ASA and PATHINT Project (PAPP). Sincethen these OPTIONS have
been used by people in various institutions.

3.7.2. PATHINT and PATHTREE
In some cases, it is desirable to develop a time evolution of a short-time conditional probability. Two
useful algorithms have been developed and published by the author.

PATHINT (Ingber, 1994) motivated the development of PATHTREE (Ingber, Chen et al, 2001), an
algorithm that permits extremely fast accurate computation of probability distributions of a large class of
general nonlinear diffusion processes.

The natural metric of the space is used to first lay down the mesh. The evolving local short-time
distributions on this mesh are then dynamically calculated. The short-time probability density gives the
correct result up to orderO(∆t) for any final point S′, the order required to recover the corresponding
partial differential equation.In fact, O(∆t3/2) is available (Graham, 1978; Langoucheet al, 1979;
Langoucheet al, 1982).

PATHINT and PATHTREE have demonstrated their utility in statistical mechanical studies in finance,
neuroscience, combat analyses, neuroscience, and other selected nonlinear multivariate systems (Ingber,
Fujio & Wehner, 1991; Ingber & Nunez, 1995; Ingber, 2000). PATHTREE has been used extensively to
price financial options (Ingber, Chenet al, 2001).

3.8. GenericMesoscopic Neural Networks (MNN)
SMNI was applied to a parallelized generic mesoscopic neural networks (MNN) (Ingber, 1992), adding
computational power to a similar paradigm proposed for target recognition (Ingber, 1985a).

“Learning” takes place by presenting the MNN with data, and parameterizing the data in terms of the
fi rings, or multivariate firings. The“weights,” or coefficients of functions of firings appearing in the drifts
and diffusions, are fit to incoming data, considering the joint “effective” L agrangian (including the
logarithm of the prefactor in the probability distribution) as a dynamic cost function. This program of
fi tting coefficients in Lagrangian uses methods of ASA.

“Prediction” takes advantage of a mathematically equivalent representation of the Lagrangian path-
integral algorithm, i.e., a set of coupled Langevin rate-equations.A coarse deterministic estimate to
“predict” the evolution can be applied using the most probable path, but PATHINT has been used.
PATHINT, even when parallelized, typically can be too slow for “predicting” evolution of these systems.
However, PATHTREE is much faster.

3.9. Ideasby Statistical Mechanics (ISM)
These kinds of applications of SMNI have obvious counterparts in an AI approach to Ideas by Statistical
Mechanics (ISM). ISM is a generic program to model evolution and propagation of ideas/patterns
throughout populations subjected to endogenous and exogenous interactions (Ingber, 2006; Ingber, 2007;
Ingber, 2008). Theprogram is based on SMNI, and uses the ASA code (Ingber, 1993) for optimizations
of training sets, as well as for importance-sampling to apply the author’s copula financial risk-
management codes, TRD (Ingber, 2005; Ingber, 2010), for assessments of risk and uncertainty. This
product can be used for decision support for projects ranging from diplomatic, information, military, and
economic (DIME) factors of propagation/evolution of ideas, to commercial sales, trading indicators across
sectors of financial markets, advertising and political campaigns, etc.
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It seems appropriate to base an approach for propagation of ideas on the only system so far demonstrated
to develop and nurture ideas, i.e., the neocortical brain.Ultimately, ISM of course would not use
functional relationships developed solely in neocortex, but rather those more appropriate to a given
population. Following the SMNI structure, ISM develops subsets of macrocolumnar activity of
multivariate stochastic descriptions of defined populations, with macrocolumns defined by their local
parameters within specific regions and with parameterized endogenous inter-regional and exogenous
external connectivities. Parameters of subsets of macrocolumns are to be fit using ASA to patterns
representing ideas.Parameters of external and inter-regional interactions are to be determined that
promote or inhibit the spread of these ideas.

4. Top-Down Versus Bottom-Up
In regard to neocortical information processing at the level of STM, there are two major paradigms that
have not yet been reconciled, which is conveniently understood in terms of top-down versus bottom-up
processes.

4.1. BottomUp
There has been much work done, both experimentally and theoretically, detailing quite a few specific
mechanisms at the level of individual neurons and glial processes and their interactions, that can explain
information processing and codification of information that may be instrumental in STM (Amzica &
Massimini, 2002). In particular, a class of glial cells, astrocytes, present in numbers greater than neurons
in human neocortex, is of interest here (Oberheimet al, 2009). For example, astrocytes in neocortical
laminae 1 extend their mm processes across associative/computing laminae 1-3, afferent laminae 4,
touching and communicating with other glia cells and neurons (Reisin & Colombo, 2002; Colomboet al,
2005). Laminae2-6 have larger astrocytes, and in laminae 5-6 with mostly efferent neuronal processes
there are some astrocytes with varicose projections (Oberheimet al, 2009). However, it appears that a
primary means of communication among astrocytes (and other glial cells) is via Ca2+ waves, propagating
at speeds up to 40 µm/s (Bellinger, 2005) over hundreds of mm of neuronal structures.They influence
excitation and inhibition of neuromodulators, and recent research points to their direct effect on
polarization thresholds via Ca2+ waves. For example, the influence of neuron firing on astroglial calcium
ions may be caused by movement of sodium and potassium ions in and out the body and axon of neurons.

It should be noted that there are other mechanisms proposed, other than direct neuron-neuron interactions,
to describe various aspects of neocortical information processing, e.g., soliton formation (Georgiev,
2003), and ephaptic excitation of neurons (Anastassiouet al, 2011).

There are many approaches in this “bottom-up” context, including quantum computation in microtubles
(Haganet al, 2002), nonlinear systems approaches to neural processes (Rabinovich et al, 2006), magnetic
processes within astrocytes (Banaclocha, 2005; Banaclocha, 2007; Banaclocha & Banaclocha, 2010;
Banaclocha, Bo´okkon & Banaclocha, 2010), pulsating Ca2+ waves in astrocytes (Schipke et al, 2002;
Scemeset al, 2000; Goldberg et al, 2010), neuron-astrocyte networks (Pereira & Furlan, 2009; Pereira &
Furlan, 2010), including glutamate-specific Ca2+-induced signaling processes between neurons and
astrocytes (Postnov et al, 2009), influences of blood flow on neuronal processes (Moore & Cao, 2008),
and mathematical formulations of qualia based on neural information processing (Balduzzi & Tononi,
2009).

4.2. Top Down
There has been much theoretical work done at the level of columnar and regional neocortical activity,
detailing correlations of experimental brain activity with behavioral observations (Buxhoeveden &
Casanova, 2002; Rakic, 2008).For example, various imaging techniques, both intra-cranial and non-
invasive, hav edemonstrated that specific brain activity often is correlated with STM as well as specific
processing of information and attentional states (Nunez & Srinivasan, 2006).

There also has been much theoretical work trying to bridge brain activity across multiples scales, e.g.,
from neuronal to columnar to regional scales of activity, with detailed calculations defining STM (Ingber,
1981; Ingber, 1983; Ingber, 1984; Ingber & Nunez, 1995) and analyses of scalp EEG (Ingber, 1997;
Ingber, 2009b; Ingber & Nunez, 2010). Using SMNI, minicolumnar EEG has been demonstrated to scale
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up to EEG observed at regional scalp measurements. While minicolumnar EEG may not be the only
source of scalp EEG, it is sufficient to scale for detailed fits to observed scalp EEG data.

It is reasonable to state that, while most neuroscientists believe that ultimately Bottom Up processing will
explain all brain activity (Rabinovich et al, 2006), some other neurophysiologists and psychologists
believe that direct Top Down processes are important components of mammalian information processing,
which cannot be solely explained by Bottom Up processes.

4.2.1. SmokingGun
As yet, there does not seem to be any “smoking gun” for explicit Top to Down mechanisms that directly
drive Bottom Up STM processes.Of course, there are many Top Down type studies demonstrating that
neuromodulator (Silberstein, 1995) and neuronal firing states, e.g., as defined by EEG frequencies, can
modify the milieu or context of individual synaptic and neuronal activity, which is still consistent with
ultimate Bottom Up paradigms.However, there is a logical difference between Top Down milieu as
conditioned by some prior external or internal conditions, and some direct Top Down processes that direct
cause Bottom Up interactions specific to STM. Here, the operative word is “cause”.

4.3. Supportfor Top-Down Electromagnetic Mechanism
There is a body of evidence that suggests a specific Top to Down mechanism for neocortical STM
processing.

4.3.1. MagnetismInfluences in Living Systems
An example of a direct physical mechanism that affects neuronal processing not part of “standard”
sensory influences is the strong possibility of magnetic influences in birds at quantum levels of interaction
(Kominis, 2009; Rodgers & Hore, 2009; Solov’yov & Schulten, 2009).It should be noted that this is just
a proposed mechanism (Johnsen & Lohmann, 2008).

4.3.2. NeocorticalMagnetic Fields
There are many studies on electric (Alexanderet al, 2006) and magnetic fields in neocortex (Murakami &
Okada, 2006; McFadden, 2007; Irimiaet al, 2009; Georgiev, 2003).

At the level of a single neuron, electric field strengths can be as high as about 10V/m for a summation of
excitatory or inhibitory postsynaptic potentials as a neuron fires. Theelectric fieldD

D = ε E (32)

is rapidly attenuated as the dielectric constantε seen by ions is close to two orders of magnitude times
that in vacuum,ε0 due to polarization of water (Nunez, 1981).Magnetic field strengthsH in neocortex
are generally quite small, even when estimated for the largest human axons at about 10−7T, about 1/300 of
the Earth’s magnetic field, based on ferrofluid approximation to the microtuble environment with a
magnetic permeability µ,

B = µH (33)

about 10µ0 (Georgiev, 2003). Thus,the electromagnetic fields in neocortex differ substantially from those
in vacuum, i.e.,

ε0µ0c2 = 1 (34)

wherec is the speed of light.These estimates of magnetic field strengths appear to be reliable when
comparisons between theoretical and experimental measurements are made in crayfish axons (Roth &
Wikswo, 1985).

The above estimates of electric and magnetic field strengths do not consider collective interactions within
and among neighboring minicolumns, which give rise to field strengths much larger as typically measured
by noninvasive EEG and MEG recordings. While electrical activity may be attenuated in the neocortical
environment, this is not true for magnetic fields which may increase collective strengths over relatively
large neocortical distances. The strengths of magnetic fields in neocortex may be at a threshold to
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directly influence synaptic interactions with astrocytes, as proposed for long-term memory (LTM)
(Gordon et al, 2009) and short-term memory (STM) (Banaclocha, 2007; Pereira & Furlan, 2010)
Magnetic strengths associated by collective EEG activity at a columnar level giv es rise to even stronger
magnetic fields. Columnarexcitatory and inhibitory processes largely take place in different neocortical
laminae, providing possibilities for more specific mechanisms.

4.3.3. ColumnarEEG
Details of STM have been calculated in the SMNI papers.The Centering Mechanism (CM), associated in
these calculations with changes in background inhibitory synaptic activity, drive the columnar system into
multiple collective firing states.This CM leads to detailed calculations of STM capacity, duration and
stability that agrees with experimental observations.

Future work must consider magnetic fields produced at different laminae due to collective minicolumnar
fi rings as detailed by SMNI for STM processes. These magnetic fields may affect Ca2+ ion wav es that are
considered by some researchers as being vital processes for astrocyte-neural interactions that give rise to
higher-order cognitive states (Bellinger, 2005; Nakanoet al, 2007).

The interactions between the momentum of these Ca2+ ions and minicolumnar magnetic fields can be
approached classically, e.g., at a local minicolumnar scale, or quantum mechanically, e.g., considering
possible entanglement across macrocolumnar scales.

4.4. Bottom-UpComplementary to SMNI STM
It is essential to recognize that, while SMNI STM has done well in calculating properties of STM,
neuronal firing states are likely the just first fast stages of STM, and it must be appreciated that other
molecular mechanisms are likely essential to understanding just how STM and LTM are processed and
stored in some kind of coded neuronal-glial states.

A particularly plausible set of mechanisms has been proposed that reply on specific bio-magnetic
processes among neurons and astrocytes (Banaclocha,Bóokkon & Banaclocha, 2010; Banaclocha, 2011).
This proposal is that neurons synthesize and accumulate predominantly superparamagnetic magnetite,
while astrocytes generate and accumulate preferentially single-domain magnetite nano-particles which
have a permanent magnetic moment.This set of interacting mechanisms can plausibly code both STM
and LTM. Thesemechanisms propose collective minicolumnar neuronal activity as possibly generating
strong enough magnetic fields. Also,collective Ca2+ waves are invoked that may generate strong enough
magnetic processes to develop astrocyte magnetic bubbles. Thesebubbles are a key concept in this
proposal for processing information.

The section below on Vector Potential further details how SMNI STM can interface with electromagnetic
processes affecting neuron-astrocyte interactions.

5. Vector Potential
To demonstrate that top-down influences can be appreciable, here a direct comparison is described
between the momentump of Ca2+, ions which already have been established as being influential in STM
and LTM, and an SMNI vector potential (SMNI-VP). The SMNI-VP is constructed from magnetic fields
induced by neuronal electrical firings, at thresholds of collective minicolumnar activity with laminar
specification, can give rise to causal top-down mechanisms that effect molecular excitatory and inhibitory
processes in STM and LTM. A specific example might be causal influences on momentump of Ca2+ ions
by the SMNI-VPA, as calculated by the canonical momentumq

q = p − qA (35)

whereq = −2e for Ca2+, e is the electron coulomb charge andB = ∇ × A is the magnetic field B, which
may be applied either classically or quantum-mechanically. Note that gauge ofA is not specified here,
and this can lead to important effects especially at quantum scales (Tollaksenet al, 2010).

A can be calculated using the standard assumption that large-scale EEG is developed from oscillatory
electrical dipole activity p exp(−iω t), the first moment of the charge distribution densityρ giving rise to
the dipole. The electromagnetic vector potentialA (Jackson, 1962) is
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A =
eiω r /c

cr ∫ Jd3x (36)

for the electric current densityJ, which in the dipole approximation,

p = ∫ xρ(x)d3x (37)

gives rise to

A = −
iω peiω r /c

cr
(38)

This is a dipole model for collective minicolumnar oscillatory currents, corresponding to top-down
signaling, flowing in axons, not for individual neurons. The top-down signal is claimed to cause relevant
effects on the surrounding milieu, but is not appropriate outside these surfaces due to strong attenuation of
electrical activity. Howev er, the vector potentials produced by these dipoles due to axonal discharges do
survive far from the axons, and this can lead to important effects at the molecular scale, e.g., in the
environment of ions (Feynmanet al, 1964; Giuliani, 2010).

Note that this is not necessarily the only or most popular description of electromagnetic influences in
neocortex, which often describes dendritic presynaptic activity as inducing large scale EEG (Nunez,
1981), or axonal firings directly affecting astrocyte processes (McFadden, 2007). This work is only and
specifically concerned with electromagnetic fields in collective axonal firings, directly associated with
columnar STM phenomena in SMNI calculations, which create vector potentials influencing ion momenta
just outside minicolumnar structures.

After fitting the electrical dipole momentp to minicolumnar electrical field near minicolumns, this value
of A is then to be compared to the value ofp for Ca2+. Note that the magnetic fieldB derived fromA,

B = ∇ × A (39)

is still attenuated in the glial areas where Ca2+ waves exist, but A derived near the minicolumns will be
used there as well since it is not so attenuated.

The electrical dipole for collective minicolumnar EEG derived fromA is

E =
ic

ω
∇ × B =

ic

ω
∇ × ∇ × A (40)

which in a near-field approximation for minicolumns gives

E =
3n(n ⋅ p) − p

r 3

B =
iω n × p

cr2
(41)

wheren is the unit vector in the direction ofp. The far-field approximations are

E = B × n

B =
ω 2n × peiω r /c

(cr)2
(42)

The SMNI columnar probability distributions, derived from statistical aggregation of synaptic and
neuronal interactions among minicolumns and macrocolumns, have established credibility at columnar
scales by detailed calculations of properties of STM. Under CM conditions, they exhibit multiple
columnar collective firing states. It must be stressed that these minicolumns are the entities which the
above dipole moment is modeling. The Lagrangian of the SMNI distributions, although possessing
multivariate nonlinear means and covariance, have functional forms similar to arguments of firing
distributions of individual neurons, so that the description of the columnar dipole above is a model
faithful to the standard derivation of a vector potential from an oscillating electric dipole.
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The effective collective minicolumnar potential is estimated to be about 10 times as strong as a neuronal
postsynaptic voltage of 10−3V, or 10−2 V, where V measures volts, equivalent to m2-kg-/A-s3 (A measures
amperes). Ata laminar thickness,r , within axons, of about 10−3 m, theE field density dimension is on
the order of 10−2/r V/m. This gives a dipole value on the order of 10−2r 2 C-m (C measures coulomb,
measured by A-s) at the near field.

This yields an estimate for values of |A|, for ω = 6. 366cps, corresponding to EEG frequencies of 40 s−1

A-s/m2, on the order of 10−10r V-m at the near field of firing minicolumns.In SI units, as can be
described by the Coulomb force, the equivalent units of C = (kg-m3/s2)1/2, or eAwill be in units of linear
momentum. Taking r to be a laminae thickness gives an estimate of 10−13 V-m, which decreases as 1/r
aw ay from the near field, all measured within axons for the purposes of describing electrical activity.

The contribution ofA to the canonical momentum is measured byeA, wheree = 1. 602× 10−19 C. This
gives a momentum contribution fromA on the order of 10−32 kg-m/s.

The mass of a Ca2+ ion is 6.6 × 10−26 kg. Assumingspeeds of 40 µm/s, estimate the momentum of a
single ion is estimated to be about 5× 10−30 kg-m/s.

This comparison ofp and A demonstrates it is possible for minicolumnar electromagnetic fields to
influence important ions involved in cognitive and affective processes in neocortex. Our estimate of
minicolumnar electric dipole is quite conservative, and a factor of 10 would make these effects even more
dramatic. Sincethis effect acts on all Ca2+ ions, it may have an even greater effect on Ca2+ waves,
contributing to their mean wav e-front movement. Consideringslower ion momentap would make this
comparison toA ev en closer.

Such a smoking gun for top-down effects awaits forensic in vivo experimental verification, requiring
appreciating the necessity and due diligence of including true multiple-scale interactions across orders of
magnitude in the complex neocortical environment.

6. Conclusion
For sev eral decades the stated Holy Grail of chemical, biological and biophysical research into neocortical
information processing has been to reduce such neocortical phenomena into specific bottom-up molecular
and smaller-scale processes (Rabinovich et al, 2006). Over the past three decades, with regard to short-
term memory (STM) and long-term memory (LTM) phenomena, which themselves are likely components
of other phenomena like attention and consciousness, the SMNI approach has yielded specific details of
STM capacity, duration and stability not present in molecular approaches, but it is clear that most
molecular approaches consider it inevitable that their reductionist approaches at molecular and possibly
ev en quantum scales will yet prove to be causal explanations of such phenomena.The SMNI approach is
a bottom-up aggregation from synaptic scales to columnar and regional scales of neocortex, and has been
merged with larger non-invasive EEG scales with other colleagues -- all at scales much coarser than
molecular scales. As with many Crusades for some truths, other truths can be trampled.It is proposed
that an SMNI vector potential (SMNI-VP) constructed from magnetic fields induced by neuronal
electrical firings, at thresholds of collective minicolumnar activity with laminar specification, can give rise
to causal top-down mechanisms that effect molecular excitatory and inhibitory processes in STM and
LTM. Such a smoking gun for top-down effects awaits forensic in vivo experimental verification,
requiring appreciating the necessity and due diligence of including true multiple-scale interactions across
orders of magnitude in the complex neocortical environment.

This work simply shows that electromagnetic fields within neurons can have effects outside of them, e.g.,
on ions that mediate interactions between and among neurons and astrocytes (Pereira & Furlan, 2010;
Pereira & Furlan, 2009). Other work has shown the important computational effects of such interactions,
including consideration of magnetic influences per se (Banaclocha, 2007; Banaclocha,Bóokkon &
Banaclocha, 2010).

These minicolumnar processes of STM, as described by SMNI, as they affect and are affected by
relatively regional macroscopic processes, and as they affect and are affected by relatively microscopic
ionic processes, will be emphasized in other papers (Ingber, 2011).
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Banaclocha, M.A.M.,Bóokkon, I. & Banaclocha, H.M.(2010) Long-term memory in brain magnetite.
Medical Hypotheses. 74(2), 254-257.

Bellinger, S. (2005) Modeling calcium wav e oscillations in astrocytes. Neurocomputing. 65(66),
843-850.

Boyd, I.A. & Martin, A.R. (1956) The end-plate potential in mammalian muscle. Journal of Physiology
(London). 132,74-91.

Buxhoeveden, D.P. & Casanova, M.F. (2002) The minicolumn hypothesis in neuroscience.Brain.
125(5), 935-951. [URL http://tinyurl.com/bc2002brain]
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