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Exogenous Expectations on Endogenous Uncertainty:
Recursive Equilibrium and Survival∗

Rodrigo Jardim Raad†

Abril de 2011

Abstract

This paper analyses general equilibrium models with �nite heterogeneous agents
having exogenous expectations on endogenous uncertainty. It is shown that there
exists a recursive equilibrium with the state space consisting of the past aggregate
portfolio distribution and the current state of the nature and that it implements
the sequential equilibrium. We establish conditions under which the recursive equi-
librium is continuous. Moreover, we use the continuous recursive relation of the
aggregate variables to prove that if the economy has two types of agents, the one
who commits persistent mistakes on the expectation rules of the future endogenous
variables is driven out of the market by the others with correct anticipations of the
variables, that is, the rational expectations agents.
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1 Introduction

Several models in economics study recursive equilibrium (RE) (which is a relation be-

tween the equilibrium over consecutive periods) assuming that agents have rational ex-

pectations hypothesis as presented in Lucas Jr (1978), Mehra & Prescott (1980), Coleman

(1991), Stokey et al. (1989) and Ljungqvist & Sargent (2000) for example. For exchange

economies with homogeneous in�nitely lived agents, Lucas Jr (1978) has shown the ex-

istence of RE with a state space that only contains exogenous variables. The analysis

of the equilibrium in most models with heterogeneous agents and complete markets can

be reduced to the Lucas Tree Model because it can be showed that any such equilib-

rium is the equilibrium of an appropriately chosen representative agent, so it will display

the properties derived in Lucas' analysis. With incomplete markets and heterogeneous

agents, however, it is well known that equilibrium allocations are not typically e�cient,

ruling out the possibility of a representative agent. More recently, Mirman et al. (2008)

provide general results of existence and convergence for a large class of in�nite horizon

economies with capital and incomplete markets, using lattice programming and order the-

oretic �xed-point theory. For pure exchange economies with a �nite number of in�nitely

lived agents and incomplete markets, Du�e et al. (1994) have shown the existence of

RE with a compact state space that includes exogenous variables and the endogenous

variables consumption, asset prices and portfolio holdings. A recursive approach to the

model studied in Magill & Quinzii (1994) is given in Kubler & Schmedders (2002). In

this work, they give counter-examples to the existence of RE for reduced state spaces

and show that uniqueness of the sequential equilibrium is a su�cient condition for exis-

tence of RE. Takeoka (2006) also provides a recursive approach to economies based on

the model without rational expectations presented in Grandmont (1977) which de�nes

the temporary equilibrium concept where trading takes place sequentially over time and

where each agent makes decisions at every date in the light of his expectations about his

future environment. Agents anticipate the endogenous variables using exogenous rules

which are described by �expectation functions� of his information on the present and past

states of the economy. Following Grandmont's framework, Takeoka (2006) examines the

existence of stationary processes of temporary equilibrium in an OLG model, where there

are �nitely many commodities and consumers in each period and the state space is taken

as the set of all payo�-relevant variables.

In models such that markets reopen sequentially and the (sequential) equilibrium is

de�ned for each period of time, the existence of a transition function de�ned in a reduced

set of variables and determining the equilibrium over consecutive periods provides a tool

to compute it and to study the dynamics of the state variable evolution. This is the case

of economies in which the sequential equilibrium is implemented by some RE and conse-

quently inherits the main properties satis�ed by it. The existence of recursive equilibrium

with a reduced state space can also be viewed as a defense of the �common and correct
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expectations� which is a concept given in Radner (1972) that requires traders to associate

the same future prices to the same future exogenous events, but does not require them

to agree on the (subjective) probabilities associated with those events. If the sequential

equilibrium is implemented by a recursive equilibrium with a reduced state space, then

prices can be anticipated correctly using the recursive structure and hence agents only

need to anticipate a relative simple price transition function instead of all future con-

tingent equilibrium prices itself as assumed in most classical general equilibrium models.

The existence of recursive equilibrium can also be used to justify the correct anticipation

of the endogenous variables of the economy using a market selection argument. Indeed,

in an economy with a continuous recursive equilibrium and two types of agents, we prove

that the one who commits persistent mistakes on the rules of anticipation of the future

endogenous variables is driven out of the market by the others with correct expectation

functions of the variables, that is, the rational expectations agents.

One contribution of this paper is to show existence of RE in a model such as Grand-

mont (1977) where it is assumed that agents have exogenous expectations on endogenous

variables, but contrary to Grandmont (1977), we do not assume that agents are myopic.

Following Svensson (1981), we de�ne endogenous uncertainty as the inaccuracy in an-

ticipation of some future aggregate endogenous variables and, consequently, depending

on agents choices.1 The state space is composed of past mean portfolio distribution and

the current state of the nature and does not include all pay-o� relevant variables as in

Takeoka (2006). In the case of rational expectations and heterogeneous agents, Kubler

& Schmedders (2002) have shown examples in which RE prices must depend on portfolio

distribution and conclude that the minimal state space necessarily contains the aggregate

portfolio distribution of the economy. Since we prove that the state space contains only

the past aggregate portfolio distribution and the current state of the nature, it is also

clear here that the RE has a minimal state space by the same reasons given in Kubler

& Schmedders (2002). The intuition for this fact is that in economies with risk aversion

heterogeneity for example, the reallocation of the asset shares from one agent to another

with greater risk aversion would typically require a new set of equilibrium prices.

Finally, under some conditions on the primitives of the model, we prove that we

can �nd a RE in an economy having at least one agent with correct price expectation

function. If the recursive equilibrium is continuous then agents with this knowledge

dominate the market when trading with the one who commits persistent mistakes on the

rules of anticipation of future endogenous variables.

The paper is structured as follows. In Section 2 we set out the model. In Section 3

we de�ne the equilibrium concept and exhibit some results. In section 4 we show survival

results. In Section 5 we de�ne an economy with one agent displaying the Price Perfect

Foresight ability and show similar results as those given in Section 3. Conclusions are

1For example, uncertainty about the next period prices.
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given in Section 6.

2 The model

2.1 De�nitions

Suppose that there exist �nite agent types in the economy denoted by the set2 I =

{1, ..., I} and such that each type i ∈ I has a continuum of agents trading in a competitive

environment. Time is indexed by t in the set N = {1, 2, ...} for current periods and r for
future periods. In this model there exists exogenous uncertainty, in the sense of being

independent of agents' actions. Each agent knows the whole set of possible states of the

nature and trade contingent claims. Let S be a topological space containing all states

of the nature and Σ its Borelians. Denote by (St,Σt) a copy of (S,Σ) for all t ∈ N.
Exogenous uncertainty is described by the streams st = (s1, ..., st) ∈ S1 × · · · × St = St

for all t ∈ N.
There are one good and a �nite set3 H of long lived assets in net supply equal to one

and with dividends measurable bounded functions d̂ : S → RH
++. Denote by Θi ⊂ RH

+ for

all i ∈ I the convex set where asset choices are de�ned and Ci ⊂ R+ be the convex set

where agent i's consumption is chosen. Observe that we are not allowing for short-sales.

De�ne the symbol without upper index as the Cartesian product. For example write

C =
∏

i∈I C
i.

Denote by Q = {(qc, qa) ∈ R+ × RH
+ : qc +

∑
h∈H q

a
h = 1} the set where the prices

are de�ned and write Q◦ = Q ∩ RH+1
++ . The symbol q = (qc, qa) ∈ Q stands for the

consumption and asset prices respectively.

Write Θ = {θ̄ ∈ Θ :
∑

i∈I θ̄
i
h = 1 for all h ∈ H}. An element θ̄ ∈ Θ stands for the

mean aggregate asset choice of the agents.

Let Y = Θ × S be the space of state variables endowed with the product topology.

Write Y the Borelians of Y and (Yt,Yt) a copy of (Y,Y ) for all t ∈ N. The set Yt

contains the variables on which the beliefs will be de�ned. Write the set of all functions

q̂ : Y → Q by Q̂ and the set of all functions q̂ : Y → Q◦ by Q̂◦.

Every Cartesian product of topological spaces is endowed with the product topology.

In particular, Q̂ is endowed with the pointwise convergence topology, which is equivalent

to the product topology.

The instantaneous utility is a bounded real valued function ui : R+ → R continuously

di�erentiable on R++, strictly concave, strictly increasing for all i ∈ I, satisfying ui(0) = 0

and limci→0 ∂u
i(ci) =∞ where the symbol ∂ui(ci) stands for the derivative of ui evaluated

at the point ci.

2We index the cardinality with the same symbol for convenience.
3We write H = {1, ...,H}.
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2.2 Agents' characteristics

In this model we consider endogenous uncertainty, which consists basically in the uncer-

tainty about the correct relation between prices and exogenous events4 and consequently

can not be separated from individuals decisions. If there is a market only in the present

and none in the future, the endogenous uncertainty about prices does not matter and

each agent only needs to observe the present equilibrium price to choose his actions. If

some agent believes that a market will open in the future, his current choices depend on

the price in the future. Since the price depends on what other agents decide to choose,

and since this agent is uncertain about other agents' characteristics and hence what they

will trade in the future, it is reasonable to conceive of him being uncertain about the

price in the future.

We suppose that agents anticipate (possibly without accuracy) next period prices

using a continuous price expectation function as in Grandmont (1977), depending on the

current prices and contingent on the next period exogenous shock and aggregate mean

asset share allocation that will be chosen in the current period. The price expectation

can be viewed as a continuous function q̌i : Q → C(Y,Q◦) from Q to the space of

all continuous functions5 from Y to Q◦ with the following rule: given a price qτ , then

q̌i(qτ ) yields the agent i's next period anticipated price contingent to all next period

realization of yτ = (θ̄τ , sτ+1) ∈ Θ× S = Y for τ ∈ N. It is convenient to denote the price
expectation function q̌i by the function q̃i : Y ×Q→ Q◦ de�ned by q̃i(y, q) = q̌i(q)(y) for

all (y, q) ∈ Y ×Q.
At current period t, given the observed variables θ̄t−1, st and qt, the beliefs about

r-forward realization of state variables are given by the probability µir(yt, qt) where µir :

Y ×Q→ Prob(Y r) is a continuous6 kernel for r ∈ N. We suppose that these beliefs are

(λi, q̃i)-predictive in the context of Blackwell & Dubins (1962) with continuous probability

transition rules λi : Y × Q → Prob(Y ). Rigorously, we assume that the measure µir
satis�es7

µir(y, q)(A1, ..., Ar) =

∫
A1

· · ·
∫
Ar

λi(yr−1, q
i
r−1(yr−1), dyr) · · ·λi(y, q, dy1)

for each rectangle A1 × ... × Ar where {qir(yr)}r≥0 is the sequence of prices with qi0 = q

and recursively qir(y
r) = q̃i(yr, q

i
r−1(yr−1)) for r ∈ N. Notice that we assume, to simplify

notation, that agents use only one period backward to estimate future variables of the

economy.

4The model of Radner (1972) does not take into account this uncertainty because it is assumed that
agents have common (and correct) expectations.

5The set C(Y,Q◦) is endowed with the sup metric.
6As a function from Y ×Q to Prob(Y r) with Prob(Y r) endowed with the weak∗ topology.
7See Stokey et al. (1989) Chapters 8 and 9 for details about the construction of a probability measure

based on the composition of probability transition rules and results about expectations over this measure.
We use the Caratheodory Extension Theorem to de�ne the measure over the entire product space.
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Remark 2.1. We could suppose in this paper that agents choose non degenerated proba-

bility distributions on prices without altering the conclusions and results. In this case the

probability transition rules provide the probabilities for the next period state variable

y and prices, that is, λ̃i : Y × Q → Prob(Y × Q). Observe that in General Equilib-

rium models where agents perfectly anticipate future contingent prices, the beliefs on

such prices can be viewed as degenerated probabilities. Rigorously, here we have that

λ̃i(y, q) = λi(y, q)⊗ dirac(q̃i(y, q)).

Since agents do not perfectly anticipate the future state variables which contain en-

dogenous variables, they must make plans at each period t contingent to all possible

future trajectories of these variables. Moreover, the optimal plans may be di�erent over

time, that is, we may not have intertemporal consistency in this model.

De�nition 2.1. A plan (cir,θ
i
r)r≥0 is de�ned as the current period choice (ci0,θ

i
0) ∈

Ci × Θi and the streams (cir,θ
i
r)r∈N of measurable maps cir : Y r → Ci and θir : Y r → Θi

representing future plans.

It is convenient to write the agents' price forecasts as in the de�nition below.

De�nition 2.2. The agent i's future price forecasting stream qir : Y r×Q→ Q◦ is de�ned

by8 qi0(q) = q and recursively

qir(y
r, q) = q̃i(yr, q

i
r−1(yr−1, q)) for r ∈ N.

Notice that in the current period agents observe q and use the r − 1 periods forward

anticipated price qir−1(yr−1, q) to anticipate the r periods forward price qir(y
r, q) for each

r ∈ N.

De�nition 2.3. Let Bi : Θi × S ×Q→ Ci ×Θi be de�ned as

Bi(θi , s, q) = {(ci, θi) ∈ Ci ×Θi : qcci + qaθi ≤ (qa + qcd̂(s))θi }.

A plan (ci,θi) is feasible from (θi , s, q) if (ci0,θ
i
0) ∈ Bi(θi , s, q) and

(cir(y
r),θir(y

r)) ∈ Bi(θir−1(yr−1), sr, q
i
r(y

r, q)) for all yr ∈ Y r

where yr = (θ̄r−1, sr) and qir : Y r ×Q→ Q is given by De�nition 2.2.

Denote by F i(θi , s, q) the set of all feasible plans from (θi , s, q).

Observe that one may have θir(y
r) 6= θ̄ir, that is, agents can plan asset purchases

di�erent from the realization of the mean aggregate asset share with respect to their own

type9 at period r.

8The function qi0 is de�ned on Q.
9Recall that in this model there is a continuum of identical agents for each type.
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Remark 2.2. The results given in Section 3 keep unaltered if we suppose that agents have

contingent endowments of the good ei : S → R+, that is, the budget set is de�ned for

each (θi , s, q) as

Bi(θi , s, q) = {(ci, θi) ∈ Ci ×Θi : qcci + qaθi ≤ (qa + qcd̂(s))θi + qcei(s)}.

Now we can de�ne the expected utility.

De�nition 2.4. Let Ci be the set of all sequence of measurable functions {cir}r≥0 with

ci0 ∈ Ci constant and cir : Y r → Ci for r ∈ N. We de�ne agent i's expected utility

U i : Ci × Y × Q → R of a contingent consumption ci ∈ Ci given the state y and the

price q by the integral:

U i(ci, y, q) = ui(ci0) +
∑
r∈N

∫
Y r

βrui(cir(y
r))µir(y, q, dy

r).

De�nition 2.5. De�ne the value function vi : Θi × Y ×Q→ R by:

vi(θi , y, q) = sup{U i(ci, y, q) : (ci,θi) ∈ F i(θi , s, q)} (1)

and the optimal correspondence F̂ i ⊂ F i by:

F̂ i(θi , y, q) = argmax{U i(ci, y, q) : (ci,θi) ∈ F i(θi , s, q)}.

Although the demand de�ned below is independent of time, it yields the current choice

at period t given some past and current observed variables. This approach allows us to

write the problem recursively and hence to describe it in a more tractable manner as we

will show in the next section.

De�nition 2.6 (Agents'demand). We de�ne agent i's demand for good and asset by:

δi(θi , y, q) = {(ci0,θi0) ∈ Ci ×Θi : (ci,θi) ∈ F̂ i(θi , y, q)}.

3 Sequential and recursive equilibrium

In this section we present the sequential and recursive equilibrium concepts. Moreover,

we prove existence and characterize the connection between the sequential and recursive

equilibrium.

De�nition 3.1. A sequential equilibrium with initial asset holdings θ0 ∈ Θ is a measur-

able family of contingent prices {qt : St → Q◦}t∈N, contingent consumption allocations

{ct : St → C}t∈N and contingent portfolio allocations {θt : St → Θ}t∈N satisfying for all

st ∈ St:

http://hdl.handle.net/10438/5 7
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1. optimality: for every i

(cit(s
t),θit(s

t)) ∈ δi(θit−1(st−1), (θt−1(st−1), st), qt(s
t));

2. asset markets clear:
∑

i∈I θ
i
t(s

t) = 1 ∈ RH ;

3. good markets clear:
∑

i∈I c
i
t(s

t) = 1 · d̂(st).

We introduce now the concept of recursive equilibrium and show in the appendix that

it implements the sequential equilibrium of the economy. A well known result states that

there exists a bounded continuous value function vi : Θi × Y × Q◦ → R satisfying the

Bellman Equation:

vi(θi , y, q) = sup

{
ui(ci) + β

∫
Y

vi(θi, y′, q̃i(y′, q))λi(y, q, dy′)

}
(2)

over all (ci, θi) ∈ Bi(θi , s, q) where y = (θ̄, s). Indeed, consider the operator10 T i : V→ V,
de�ned by

T i(vi)(θi , y, q) = sup

{
ui(ci) + β

∫
Y

vi(θi, y′, q̃i(y′, q))λi(y, q, dy′)

}
(3)

over all (ci, θi) ∈ Bi(θi , s, q). Clearly,11 T satis�es the Blackwell's su�cient conditions

for a contraction and hence has a �xed point. See Stokey et al. (1989) for further details.

We stand out the argmax of agent i's Bellman Equation (2) in the following de�nition.

De�nition 3.2. De�ne the agent i's consumption and portfolio policy correspondence

x̃i : Θi × Y ×Q◦ → Ci ×Θi with x̃i = c̃i × θ̃i as

x̃i(θi , y, q) = argmax

{
ui(ci) + β

∫
Y

vi(θi, y′, q̃i(y′, q))λi(y, q, dy′)

}
over all (ci, θi) ∈ Bi(θi , s, q).

Remark 3.1. Observe that the value function vi( · , y, q) is concave for all (y, q) ∈ Y ×Q
since the subset of all value functions vi ∈ V such that vi( · , y, q) is concave for all

(y, q) ∈ Y × Q is a nonempty and closed subset of V. Indeed, Lemma 7.2 assures

the stability of this subspace under T and hence the �xed point must belong to it.

Therefore, the projection of the policy correspondence into the consumption coordinate

c̃i : Θi × Y ×Q◦ → Ci is actually a function. Moreover, if Ci = R+, Lemma 7.2 assures

10De�ne V the (Banach) space of all bounded continuous functions vi : Θi × Y ×Q◦ → R+ endowed
with the sup norm.

11This operator is well de�ned using the Berge Maximum Theorem, Lemmas 7.1 and 7.3 in the appendix
because λi is continuous as well as Bi for W i = {(θid̂(s), θi) : θi ∈ Θi and s ∈ S}. Observe that
W i × Q◦ ⊂ Ai where Ai is de�ned in Appendix (item 6) and that in Lemma 7.1 Z = Θi × Q and
f(y, θi, q) = vi(θi, y, q̃i(y, q)).
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that vi( · , y, q) is is strictly increasing for each (y, q) ∈ Y × Q. Note also that we can

allow ui unbounded if we assume that Ci is compact.

De�nition 3.3. We say that the economy has a recursive equilibrium if there exist func-

tions ĉi : Y → Ci, θ̂i : Y → Θi for all i ∈ I and q̂ : Y → Q◦ satisfying for each

y = (θ̄, s) ∈ Y

1. optimality: (ĉi(y), θ̂i(y)) ∈ x̃i(θ̄i, y, q̂(y)) for all i ∈ I;

2. asset market clearing:
∑

i∈I θ̂
i(y) = 1 ∈ RH ;

3. consumption market clearing:
∑

i∈I ĉ
i(y) = 1 · d̂(s).

De�nition 3.4. We say that the functions ĉ : Y → C, θ̂ : Y → Θ and q̂ : Y → Q

implement the process {ct,θt, qt}t∈N starting from θ0 ∈ Θ if for each (st)t∈N

q1(s1) = q̂(θ0, s1), θi1(s1) = θ̂i(θ0, s1), ci(s1) = ĉi(θ0, s1)

and recursively for t ≥ 2

cit(s
t) = ĉi(θt−1(st−1), st) θit(s

t) = θ̂i(θt−1(st−1), st) (4)

for all i ∈ I and

qt(s
t) = q̂(θt−1(st−1), st). (5)

The next result assures that a recursive equilibrium can actually be used to construct

a sequential equilibrium.

Theorem 3.5. If (ĉ, θ̂, q̂) is a recursive equilibrium then its implemented process {ct,θt, qt}t∈N
starting from θ0 ∈ Θ is a sequential equilibrium of the economy with initial asset holdings

θ0 ∈ Θ.

Proof: See Theorem 7.8 in the appendix.

2

The theorem below assures the existence of a recursive equilibrium and the next

proposition yields a su�cient condition under which it is continuous.

Theorem 3.6. Suppose that Ci = R+ and Θi = RH
+ . Then there exists a recursive

equilibrium for the economy E = {u, d̂, λi, q̃i}i∈I .

Proof: See Theorem 7.7 in the appendix.

2

A similar result for the following proposition can be found in Kubler & Schmedders

(2002).

http://hdl.handle.net/10438/5 9
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Proposition 3.7. Suppose that there exists a unique recursive equilibrium (ĉ, θ̂, q̂) for the

economy E = {u, d̂, λi, q̃i}i∈I . Then it is continuous.

Proof: See Proposition 7.6 in the appendix.

2

4 Survival

In this section we prove a survival result based on some conditions on the beliefs and

price expectations.

4.1 Euler equations

For simpli�cation, at present section and in sections 4.2 and 4.3, we restrict our attention

to an economy with only one state of nature, that is, with only endogenous uncertainty

and consequently deterministic dividends. Moreover, suppose that the economy has only

one asset and Ci × Θi = RH+1
+ . In this case we write Y = Θ and y = θ̄. One reason

for this restriction is the application of a �xed point existence theorem for continuous

functions de�ned on [0, 1] ⊂ R+ in the proof of Theorem 4.5. Indeed, we need that

the policy correspondence must actually be a continuous function. In the section 4.4 we

address the model with S a convex or �nite space.

In the economy with one asset and one state of nature, the budget correspondence

Bi : Θi ×Q◦ → Ci ×Θi becomes

Bi(θi , q) = {(ci, θi) ∈ Ci ×Θi : qcci + qaθi ≤ (qa + qcd̂)θi }.

Notation 4.1. Write, for q ∈ Q◦ the price p = qa/qc of the asset in units of the good.

Denote by ∂kf(x1, x2, ..., xn) the derivative of a function f : Rn → R with respect to the

k-th coordinate evaluated at (x1, x2, ..., xn) when n > 1 and ∂f(x) when n = 1. De�ne

the price expectation function in units of the good p̃i : Θ× R+ → R+ by

p̃i(θ̄, p) =
q̃i,a(θ̄, q)

q̃i,c(θ̄, q)
where q =

(
1

1 + p
,

p

1 + p

)
.

For each (θ̄, q) ∈ Θ×Q the function vi( · , θ̄, q) satis�es all assumptions of Benveniste

and Scheinkman Theorem12 which assures its di�erentiability at positive asset endow-

ments whenever the argmax of the Bellman Equation is interior.13 Since we do not

have labor income in this model and the utility function satis�es the Inada conditions,

Lemma 7.9 in appendix shows that portfolio optimal choices must be positive (and hence

interior) if asset endowment is positive.

12See Benveniste & Scheinkman (1979).
13This argmax is always nonempty since Bi(θi, s, q) is compact for all (θi , s, q) ∈ Θi × S ×Q◦.
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Let θ̃i : Θi ×Θ×Q◦ → Θi and c̃i : Θi ×Θ×Q◦ → Ci be the policy functions14 as in

De�nition 3.2 and observe that for q ∈ Q◦ and θi ∈ Θi:

c̃i(θi , θ̄, q) = −pθ̃i(θi , θ̄, q) + (p+ d̂)θi (6)

where we recall that p = qa/qc ∈ R++. Fix (θi , θ̄, q) ∈ Θi×Θ×Q◦ with θi > 0. Applying

the Benveniste Scheinkman Theorem we conclude that

∂1v
i(θi , θ̄, q) = ∂ui(c̃i(θi , θ̄, q))(p+ d̂) (7)

for all θi ∈ Θi with θi > 0, θ̄ ∈ Θ and q ∈ Q◦. Replacing ci by −pθi + (p + d̂)θi in the

right hand side of (2), di�erentiating with respect to θi and evaluating at θ̃i(θi , θ̄, q) we

have the following F.O.C.:

−p∂ui(c̃i(θi , θ̄, q)) + β

∫
Θ

∂1v
i[θ̃i(θi , θ̄, q), θ̄′, q̃i(θ̄′, q)]λi(θ̄, q, dθ̄′) = 0.

Using equation (7) then agent i's Euler Equation is given by

p∂ui(c̃i(θi , θ̄, q)) = β

∫
Θ

∂ui[c̃i+(θi , θ̄, θ̄′, q)](p̃i(θ̄′, p) + d̂)λi(θ̄, q, dθ̄′) (8)

for all (θi , θ̄, q) ∈ Θi ×Θ×Q◦ with θi > 0 where

c̃i+(θi , θ̄, θ̄′, q) = c̃i(θ̃i(θi , θ̄, q), θ̄′, q̃i(θ̄′, q)).

The example below exhibits an environment with a continuous unique recursive equi-

librium.

Example 4.1. Suppose that the price expectation functions q̃i : Θ×Q→ Q are given by

q̃i(θ̄, q) = (1/(1 + p̃i(θ̄, q)), p̃i(θ̄, q)/(1 + p̃i(θ̄, q)))

where15 p̃i(θ̄, q) = pγi − d̂ with16 γi < β−1/α for a given 0 < α < 1. The instantaneous

utility function is u(c) = cα/α. We claim that the policy function θ̃i : Θi ×Θ×Q→ Θi

14In this case the correspondences are actually functions because for each (θi , q) ∈ Θi×Q◦ if (ci, θi) ∈
Bi(θi , q) and (ci, θ̃i) ∈ Bi(θi , q) with binding inequalities then θi = θ̃i. The local non satiation implies
that the budget inequalities must bind in the optimum.

15Note that even considering the beliefs on future prices independent of the variable θ̄, the recursive
equilibrium price q̂ may depend on this variable.

16Under these beliefs, the ratio of expected next period payo� ps+1 + d and the current period asset
price ps in units of the good is given by γi. More precisely, we de�ne p̃i(θ̄, q) = max{pγi− d̂, 0} but since
in the equilibrium p̃i(θ̄, q̂(θ̄)) > 0 then this not relevant for the example.
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is given by θ̃i(θi , θ̄, q) = νi(p+ d̂)θi /p where νi = (βγi)1/(1−α)/γi < 1. Indeed,

c̃i(θi−, θ̄, q) = −pθ̃i(θi , θ̄, q) + (p+ d̂)θi

= (1− νi)(p+ d̂)θi

and
c̃i(θ̃i(θi , θ̄, q), θ̄′, p̃i(θ̄, q)) = (1− νi)(p̃i(θ̄, q) + d̂)θ̃i(θi , θ̄, q)

= (1− νi)pγiνi(p+ d̂)θi /p

= (1− νi)(βγi)1/(1−α)(p+ d̂)θi .

Therefore,

c̃i(θ̃i(θi , θ̄, q), θ̄′, p̃i(θ̄, q)) = (βγi)1/(1−α)c̃i(θi−, θ̄
′, q)

and hence Euler equation (8) holds since c̃i, θ̃i and p̃i do not depend on θ̄, ∂u(x) = xα−1

and γi = (p̃i(θ̄, q) + d̂)/p.

To �nd the equilibrium price q̂, notice that if p̂(θ̄) = d̂νθ̄/(1 − νθ̄) where νθ̄ =∑
i∈I ν

iθ̄i, then

(1 + d̂/p̂(θ̄))
∑
i∈I

νiθ̄i = 1 for all θ̄ ∈ Θ

and hence q̂ is the continuous recursive equilibrium price and it is unique.

Notice that we can suppose γi depending on (θ̄, q). In this case if there exists a

function νi : Θ→ (0, 1) such that

β

∫
Θ

(1− νi(θ̄′))α−1γi(θ̄′, q)αλ(θ̄, q, dθ̄′) =

(
1− νi(θ̄)
νi(θ̄)

)α−1

then the asset demand will be given by θ̃i(θi , θ̄, q) = νi(θ̄)(p+ d̂)θi /p.

4.2 Perfect foresight

We provide hereafter the de�nition of an equilibrium where agents eventually anticipate

correctly future prices and aggregate portfolio transitions. To simplify we can omit the

variable st on the sequential equilibrium without ambiguity because S = {1}.

De�nition 4.1. We say that an agent k is eventually Perfect Foresight with respect to

the equilibrium {(ct,θt, qt)}t∈N if there exists T ∈ N such that the updating rule λk and

the price expectation q̂k satisfy

1. λk(θt−1, qt) = dirac(θt)

2. q̂k(θt, qt) = qt+1

for all t ≥ T .

Remark 4.1. Observe that nothing is imposed on q̂k and λk outside the equilibrium

path {θt, qt}t∈N. Raad (2011) has shown existence of sequential equilibrium with at
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least one agent satisfying the properties of De�nition 4.1. However, it is not clear that

this sequential equilibrium can be implemented by some recursive equilibrium even if all

expectations are independent of time.

Notice that for a sequential equilibrium implemented by a recursive equilibrium, a

su�cient condition under which one agent satis�es the properties of De�nition 4.1 is the

eventually correct anticipation of the price and portfolio transitions q̂ and θ̂ respectively

in the sense that there exists T ∈ N such that λk(θ̄, qt) = dirac(θ̂(θ̄)) and q̂k(θ̄, qt) = q̂(θ̄)

for all θ̄ ∈ Θ and t ≥ T . Indeed, observing θt−1 and the price qt, agent k expects next

period asset distribution λk(θt−1, qt) = dirac(θ̂(θt−1)) = dirac(θt) and next period price

q̂k(θt, qt) = q̂(θt) = qt+1 because transitions and prices follow the recursive relations (4)

and (5) respectively. Let T as in De�nition 4.1 and the previous and current period

information data of the economy (θT−1, qT ). Using De�nition 2.2 and that q̂k satis�es

item 2. of De�nition 4.1, the expected price at period T + 1 becomes qk1(θT , qT ) =

q̂k(θT , qT ) = qT+1 and recursively

qkr ((θT , ...,θT+r−1), qT ) = q̂k[θT+r−1, q
k
r−1((θT , ...,θT+r−2), qT )]

= qT+r for r ∈ N.
(9)

Moreover, since λk satis�es 1. of De�nition 4.1 and qkr satis�es (9), we have that

µkr(θT−1, qT ) = dirac((θT , ...,θT+r−1)) for r ∈ N. This characterizes completely the even-

tual intertemporal consistency of the eventually Perfect Foresight agents.

Since we did not show conditions on the premises of this economy assuring the exis-

tence of a continuous recursive equilibrium and one agent with rational expectations, we

exhibit the example below that guarantees the existence of at least one economy with

these properties.

Example 4.2. Let α ∈ (0, 1) and consider17 R : Int Θ→ R+ de�ned byR(θ̄) = β−1(θ̄k)α−1 >

1. Write the asset price in units of the good by the function p̂ : Θ → R+ de�ned

as p̂(θ̄) = d̂/(R(θ̄) − 1). The normalized price q̂ : Θ → Q is given by q̂(θ̄) = ((1 −
p̂(θ̄))−1, p̂(θ̄)(1 − p̂(θ̄))−1). The recursive transition function θ̂ : Θ → Θ is given by

θ̂(θ̄) := (θ̂j(θ̄), θ̂k(θ̄)) = (1 − (θ̄k)α, (θ̄k)α). Clearly,18 for u(c) = ln(c) these functions

satisfy agent k's Euler equation (8) evaluated at θk = θ̄k with p̃k and λk de�ned by

p̃k(θ̄, p) = p̂(θ̄) and λk(θ̄, q, dθ̄′) = dirac(θ̂(θ̄)) for all θ̄ ∈ Θ. Indeed, equation (6) implies

that

17This function plays the role of the gross asset return in units of the good, that is, R(θ̄) = 1 + d̂/p̂(θ̄).
The fact that R is de�ned on Int Θ does not matter for our analysis since the initial asset endowments
are strictly positive and the demand function are interior by construction.

18The condition limc→0+ ln(c) = −∞ implies that the argmax of the Bellman Equation must be interior
for positive prices.
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c̃k(θ̄k, θ̄, q̂(θ̄)) = ĉk(θ̄)

= p̂(θ̄)(R(θ̄)θ̄k − θ̂k(θ̄))
= p̂(θ̄)β−1(1− β)(θ̄k)α

and

c̃k(θ̃k(θ̄k, θ̄, q̂(θ̄)), θ̂(θ̄), q̃k(θ̂(θ̄), q̂(θ̄))) = c̃k(θ̂k(θ̄), θ̂(θ̄), q̂(θ̂(θ̄)))

= ĉk(θ̂(θ̄))

= p̂(θ̂(θ̄))(R(θ̂(θ̄))θ̂k(θ̄)− θ̂k(θ̂(θ̄)))
= p̂(θ̂(θ̄))β−1(1− β)(θ̂k(θ̄))α.

Thus β−1(θ̂k(θ̄))α−1 = R(θ̂(θ̄)) implies that (θ̂k(θ̄))α = βR(θ̂(θ̄))(θ̄k)α and hence, using

that R(θ̂(θ̄)) = (p̂(θ̂(θ̄)) + d̂)/p̂(θ̂(θ̄)) we get

p̂(θ̄)p̂(θ̂(θ̄))β−1(1− β)(θ̂k(θ̄))α = β(p̂(θ̂(θ̄)) + d̂)p̂(θ̄)β−1(1− β)(θ̄k)α.

Therefore, since ∂u(c) = 1/c we conclude that

p̂(θ̄)c̃k(θ̃k(θ̄k, θ̄, q̂(θ̄)), θ̂(θ̄), q̃k(θ̂(θ̄), q̂(θ̄))) = β(p̂(θ̂(θ̄)) + d̂)c̃k(θ̄k, θ̄, q̂(θ̄))

which is the Euler equation (8) rearranging the terms.

To exhibit the characteristics of the agent j demand, let c̃k : Θk × Θ × Q → Ck and

θ̃k : Θk ×Θ×Q→ Θk be the policy functions of agent k. De�ne c̃j : Θj ×Θ×Q→ Cj

and θ̃j : Θj × Θ × Q → Θj by c̃j(θj , θ̄, q) = d̂ − c̃k(1 − θj , θ̄, q) and θ̃j(θj , θ̄, q) =

1− θ̃k(1− θj , θ̄, q) = 1− (1− θj−)α < 1. Therefore,

c̃j(θ̄j, θ̄, q) = −pθ̃j(θ̄j, θ̄, q) + (p+ d̂)θ̄j = −p(1− (1− θ̄j)α) + (p+ d̂)θ̄j.

Keeping all other agent j characteristics identical to agent k, it is easy to see that one

can �nd a price expectation function q̃j : Θ×Q→ Q such that

c̃j(θ̃j(θ̄j, θ̄, q), θ̂(θ̄), q̃j(θ̂(θ̄), q)) = βc̃j(θ̄j, θ̄, q)(p̃j(θ̂(θ̄), p) + d̂)/p (10)

for q = q̂(θ̄) where we recall that p = qa/qc. Indeed, the left hand side of (10) is equal to

−p̃j(θ̂(θ̄), q)(1− (1− θ̃j(θ̄j, θ̄, q))α) + (pj(θ̂(θ̄), q) + d̂)θ̃j(θ̄j, θ̄, q).

Since equation (10) is linear in p̃j and θ̂ is invertible, we can solve it for p̃j. Observe that

for θ0 > 0 if we de�ne recursively θt = θ̂(θt−1) for all t ∈ N then limt→∞ θt = (0, 1).

Moreover, de�ning recursively qt = q̂(θt−1) for all t ∈ N then limt→∞ qt = βd̂/(1− β).

The following proposition shows that if some agent k satis�es Assumption 4.1 with

respect to a (convergent) sequential equilibrium, then the limit price must be equal to
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βd̂/(1 − β) = βd̂ + β2d̂ + · · · , that is, the present value (in units of the good) over all

subsequent periods of a constant �ow d̂ with discounted rate β.

Proposition 4.2. Let {(ct,θt, qt)}t∈N be a convergent sequential equilibrium such that

there exists some agent k satisfying Assumption 4.1. If (ct,θt, qt) converges to (c∗,θ∗, q∗)

as t→∞ with ck∗ > 0 and q∗ > 0 then qa∗/q
c
∗ = βd̂/(1− β).

Proof: Let T > 0 be given as in Assumption 4.1. Then writing pt = qat /q
c
t and

p∗ = qa∗/q
c
∗, the Euler Equation (8) for the agent k evaluated on the equilibrium path for

each t ≥ T becomes

pt∂u
k(c̃k(θkt−1,θt−1, qt)) = β∂uk(c̃k(θkt ,θt, qt+1))(pt+1 + d̂) (11)

since θ̃k(θkt−1,θt−1, qt) = θkt and c̃k(θkt−1,θt−1, qt) = ckt for all t ∈ N by Lemma 7.10 in

appendix. Passing to the limit Equation (11) as t→∞ then

p∗∂u
k(c̃k(θk∗ ,θ∗, q∗)) = β∂uk(c̃k(θk∗ ,θ∗, q∗))(p∗ + d̂)

and consequently, p∗ = βd̂/(1− β) since ck∗ > 0 and

ck∗ = lim
t→∞

ckt = lim
t→∞

c̃k(θkt−1,θt−1, qt) = c̃k(θk∗ ,θ∗, q∗).

2

4.3 Inaccurate expectations

In this section we analyse survival for equilibria with trade. In the case of no-trade

equilibrium, trivially, all agents with positive initial asset endowment survive. Roughly

speaking, we show that if the economy has a continuous recursive equilibrium and two

types then agents satisfying Assumption 4.1 below, which states that they have incentive

to trade in the optimum for every possible realization of the state variable, are dominated

in the market, that is, have zero consumption level in the long run. In particular, if some

agent k is eventually Perfect Foresight and the other agent j has price expectations

bounded away from the limit price p∗ = βd̂/(1− β) given in Proposition 4.2, then agent

j is driven out of the market.

Notation 4.2. Write I = K ∪ J where J is the set of agents satisfying Assumption 4.1

below and K is the set of agents with eventually correct expectations as in De�nition 4.1.

Assumption 4.1. The asset policy function θ̃j satis�es θ̃j(θ̄j, θ̄, q) 6= θ̄j for all (θ̄, q) ∈
Θ×Q with θ̄j > 0.
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Lemma 4.3. Assumption 4.1 holds if and only if the price expectation p̃j and the beliefs

λj satisfy for each θ̄ ∈ Θ with θ̄j > 0 and p = qa/qc ∈ R+

p∂uj(d̂θ̄j) 6= β

∫
Θ

∂uj[c̃j(θ̄j, θ̄′, q̂j(θ̄′, q))](p̃j(θ̄′, p) + d̂)λj(θ̄, dθ̄′)

where c̃j : Θj ×Θ×Q→ Cj is the argmax of agent j's Bellman Equation (2).

Proof: This is a direct consequence of the Euler Equation (8) evaluated on θ̄ such that

θ̃j(θ̄j, θ̄, q) = θ̄j.

2

Lemma 4.4 below gives some conditions on the beliefs such that the demand of agent

j satis�es Assumption 4.1. Under these beliefs, aggregate portfolio distribution is an i.i.d

process and the current asset price (in units of the good) is not the rate β discounted

value of the next period expected pay o�. We know from the recursive relations given

in De�nition 3.4 that current aggregate portfolio distribution is correlated with the past

aggregate portfolio distribution in the sequential equilibrium implemented by a recursive

equilibrium. Therefore there is a kind of inaccuracy on these beliefs because they are not

specifying correctly the relation that describes the transition of the variables.

Lemma 4.4. Suppose there exists a probability νj ∈ Prob(Θ) such that λj(θ̄) = νj for

all θ̄ ∈ Θ and the price expectation function p̃j satis�es

β

(
d̂+

∫
Θ

p̃j(θ̄′, p)νj(dθ̄′)

)
6= p for all p ∈ R+. (12)

Then Assumption 4.1 holds.

Proof: The Bellman operator of agent j becomes for θ̄j > 0

T j(vj)(θj , θ̄, q) = sup

{
uj(cj) + β

∫
Θ

vj(θj, θ̄′, q̃j(θ̄′, q))νj(dθ̄′)

}
over all (cj, θj) ∈ Bj(θj , q). Observe that if we consider the closed19 set V′ ⊂ V of all

value functions constant on θ̄ then V′ is invariant under T j. Therefore the value function
vj is constant20 on the variable θ̄. Suppose now that Assumption 4.1 does not hold. Then

there exists (θ̄, q̄) ∈ Θ × Q such that θ̃j(θ̄j, θ̄, q̄) = θ̄j and c̃j(θ̄j, θ̄, q̄) = d̂θ̄j. Since the

policy function θ̃j is constant on θ̄ we have θ̃j(θ̄j, θ̄′, q̄) = θ̄j for all θ̄′ ∈ Θ and hence

c̃j(θ̃j(θ̄j, θ̄, q̄), θ̄′, q̃j(θ̄′, q̄)) = −p̃j(θ̄′, p̄)θ̃j(θ̄j, θ̄′, q̄) + (p̃j(θ̄′, p̄) + d̂)θ̄j = d̂θ̄j

19For the sup norm topology.
20Because it is a �xed point of T j .
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where we recall that p̄ = q̄a/q̄c. Therefore the Euler Equation (8) becomes21

p̄ = β

∫
Θ

(p̃j(θ̄′, p̄) + d̂)νj(dθ̄′)

which contradicts (12) for p = p̄.

2

Notice that an example of expectation function p̃j under which equation (12) holds

is p̃j(θ̄, p) = p/β, that is, agent j believes that asset price measured in units of the good

increases at a gross rate 1/β over any two consecutive periods. Another example for

which the equation (12) holds is the one such that p̃j satis�es p̃j(θ̄, p) > p/β − d̂ for all

(θ̄, p) ∈ Θ × R+. Notice that if p̄ = βd̂/(1 − β) then p̃j(θ̄, p̄) > p̄/β − d̂ = βd̂/(1 − β) =

βd̂ + β2d̂ + · · · , that is, asset price expected on the next period when the current price

is βd/(1− β) is greater than the present value (in units of the good) over all subsequent

periods of a constant �ow d̂ with discounted rate β. In economies in which some agent

is eventually Perfect Foresight and survives, Proposition 4.2 assures that asset price in

a convergent sequential equilibrium (in units of the good) is βd̂/(1− β) in the long run.

Therefore, agent j price expectation function is bounded away from the correct limit price

in the long run.22

In the proof of next theorem, we use the continuous recursive relations given in the

previous section and a �xed point result for continuous functions de�ned on the compact

interval [0, 1] ⊂ R+.

Theorem 4.5. Suppose that I = {j, k} with agent j satisfying Assumption 4.1. Let

(ĉ, θ̂, q̂) be a continuous recursive equilibrium and {ct,θt, qt}t∈N be the sequential equilib-

rium implemented by it and starting from θ0 > 0. If q̂ is continuous then the sequential

equilibrium converges and agent j is dominated23 in the market.

Proof: Let (ĉ, θ̂, q̂) be the recursive equilibrium and {ct,θt, qt}t∈N the sequential equi-

librium implemented by it and starting from θ0 > 0. Let c̃i : Θi × Θ × Q◦ → Ci and

θ̃i : Θi × Θ × Q◦ → Θi be the argmax of the Bellman Equation (2). We recall that24

θ̂(θ̄) = (θ̃j(θ̄j, θ̄, q̂(θ̄)), θ̃k(θ̄k, θ̄, q̂(θ̄))) for all θ̄ ∈ Θ.

Assumption 4.1 assures that θ̃j(θ̄j, θ̄, q̂(θ̄)) 6= θ̄j for all θ̄ ∈ Θ with θ̄j > 0. Moreover,

the continuity of θ̃j and q̂ implies that either θ̃j(θ̄j, θ̄, q̂(θ̄)) > θ̄j for all θ̄ ∈ Θ with θ̄j > 0

or θ̃j(θ̄j, θ̄, q̂(θ̄)) < θ̄j for all θ̄ ∈ Θ with θ̄j > 0. Using that the sequential equilibrium is

implemented by the recursive equilibrium, θj0 > 0 and

θjt = θ̂j(θt−1) = θ̃j(θjt−1,θt−1, q̂(θt−1)) for all t ∈ N, (13)

21Observe that ∂ui(ci) 6= 0 for all ci ∈ Ci.
22Notice that the beliefs of agent j do not take into account the possibility of no trade equilibrium.
23That is, limt→∞ θ

j
t = 0

24Recall that the policy correspondence must actually be a function since there is only one asset.
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we conclude that the sequence {θjt}t∈N is monotone and hence converges to θj∗ > 0.

Moreover the sequence θt = (θjt ,θ
k
t ) = (θjt , 1 − θ

j
t ) converges to θ∗ := (θj∗, 1 − θj∗)

implying that qt = q̂(θt−1) converges to q∗ := q̂(θ∗) as t → ∞. Passing to the limit

equation (13) we get θj∗ = θ̃j(θj∗,θ∗, q̂(θ∗)) which contradicts Assumption 4.1 for q = q∗

and θ̄ = θ∗ if θ
j
∗ > 0. Therefore θj∗ = 0 and hence agent j is dominated in the �nancial

market.

2

Remark 4.2. Notice that if all agents satisfy the condition of Assumption 4.1 then there

does not exist a recursive equilibrium with a continuous price.

4.4 The case S convex or �nite

Theorem 4.5 holds, under some conditions which will be speci�ed, if we suppose S ⊂ Rn

convex or �nite and that the exogenous uncertainty is governed by a stochastic process

{ŝt : Ω → S}t∈N de�ned on a probability space (Ω,Σ,P). Assumption 4.1 in this case

becomes

Assumption 4.2. The asset policy function θ̃j satis�es θ̃j(θ̄j, y, q) 6= θ̄j for all (y, q) ∈
Y ×Q with θ̄j > 0 where y = (θ̄, s).

Thus we have the following theorem

Theorem 4.6. Suppose that I = J∪{k} with each agent j ∈ J satisfying Assumption 4.2.

Let (ĉ, θ̂, q̂) be a continuous recursive equilibrium and {ct,θt, qt}t∈N be the sequential equi-

librium implemented by it and starting from θ0 > 0. If S is convex and ŝt converges in

distribution, or S is �nite and ŝt converges almost everywhere, then each agent j ∈ J is

dominated25 in the market.

Proof: Let (ĉ, θ̂, q̂) be the recursive equilibrium and {ct,θt, qt}t∈N the sequential equi-

librium implemented by it and starting from θ0 > 0. Let c̃i : Θi × Y × Q◦ → Ci and

θ̃i : Θi × Y ×Q◦ → Θi be the argmax of the Bellman Equation (2).

Suppose that S is convex and {ŝt}t∈N converges in distribution to ŝ∗. Assumption 4.1

assures that θ̃j(θ̄j, y, q̂(y)) 6= θ̄j for all y ∈ Y with θ̄j > 0. Using the same argu-

ments given in Theorem 4.5, we conclude that the stochastic process {θ̂t : Ω → S}t∈N
de�ned recursively by θ̂it(ω) = θ̃i(θ̂it−1(ω), ŷt(ω), q̂(ŷt(ω))) for all i ∈ I and the stochas-

tic process {q̂t = q̂(ŷt)}t∈N where ŷt(ω) = (θ̂t−1(ω), ŝt(ω)), converge in distribution to

θ̂∗ and q̂∗ respectively as t → ∞. Suppose that θ̂∗(ω
′) > 0 for some ω′ ∈ Ω. Since

θ̂jt (ω) = θ̂j(ŷt(ω)) = θ̃j(θ̂jt−1(ω), ŷt(ω), q̂(ŷt(ω))) for each ω ∈ Ω, passing to the limit

in distribution we get θ̂j∗(ω
′) = θ̃j(θ̂j∗(ω

′), ŷ∗(ω
′), q̂(ŷ∗(ω

′))) where ŷ∗ : Ω → Y is de-

�ned by ŷ∗(ω) = (θ̂∗(ω), ŝ∗(ω)). This contradicts Assumption 4.1 for q = q̂∗(ω
′) and

y = (θ̂∗(ω
′), ŝ∗(ω

′)). Therefore, θ̂j∗(ω) = 0 for each ω ∈ Ω.

25That is θjt (θt−1(ŝt−1(ω)), ŝt(ω)) converges to zero for almost all ω ∈ Ω.
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Suppose that S is �nite. Since {ŝt}t∈N converges almost everywhere, taking ε > 0

su�ciently small, one can �nd a set A ∈ Σ with P(A) = 1 satisfying the following

property: for each �xed ω ∈ A, there exists tω such that ŝt(ω) = s′ ∈ S for t ≥ tω.

Moreover, since θ̃j(θ̄j, (θ̄, s′), q̂(θ̄, s′)) 6= θ̄j for all θ̄ ∈ Θ with θ̄j > 0 we can apply again

the contradiction arguments above to conclude the theorem.

2

5 Price perfect foresight

Many existence theorems and counter examples can be found in the literature when agents

have Rational Expectations. Lucas Jr (1978) proves existence of recursive equilibrium

with homogeneous agents. Kubler & Schmedders (2002) give examples of non existence

of recursive equilibrium in models with heterogeneous agents, short lived assets and re-

striction of non Ponzi Schemes. Coleman (1991) shows existence of recursive equilibrium

for models with homogeneous agents, production and income tax. Krebs (2004) shows

non existence of recursive equilibrium in compact state spaces and incomplete markets

such that borrowing credit constrains never bind and Braido (2008) proves existence of an

ergodic Markov equilibrium26 for a class of economies with incomplete markets, default

and without the usual utility penalties as in Dubey et al. (2005). In the previous sections

we showed existence of recursive equilibrium in economies where agents have exogenous

expectations on endogenous and exogenous variables. The objective of this section is to

address the existence of recursive equilibrium when agents display some ability to an-

ticipate some (but not all) endogenous variables in the economy. In this approach, for

the sequential equilibrium implemented by a recursive equilibrium, agents may not have

common and correct expectations27 which requires traders to associate the same future

prices to the same future exogenous events, but does not require them to agree on the

(subjective) probabilities associated with those events. More precisely, here agents may

correctly anticipate the relation between prices and the state variables but not necessarily

anticipate with accuracy the transition of the mean aggregate portfolio of the economy.

Clearly, in an equilibrium implemented by the recursive relation (5) agents who do not

anticipate the transition of the mean aggregate portfolio of the economy may not have

common and correct expectations. The existence of a recursive equilibrium with the state

space Θ × S and heterogeneous agents having common and correct expectations in the

sequential equilibrium implemented by it is an open question. Consequently, the exis-

tence of a recursive equilibrium with the same state space and agents having or not the

ability to anticipate all endogenous uncertainty of the economy is also an open question.

Nevertheless, we show under some conditions on the primitives of the model that it is

26The ergodic Markov equilibrium is recursive and the state space contains all aggregate variables of
the economy. See Du�e et al. (1994) for further details.

27This concept is de�ned in Radner (1972).
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possible to �nd a recursive equilibrium with the state space Θ×S and such that at least

one type anticipates correctly the price expectation function. We say that agents have

Price Perfect Foresight or PPF when they anticipate correctly the relation between price

and state variables. We say that agents have Exogenous Expectations or EE when they

use an expectation function to anticipate (maybe incorrectly) prices. Moreover, we index

these agents in the sets K and J respectively and write I = K ∪ J .
In this section we de�ne the PPF agents' characteristics and the sequential equilibrium

analogously to de�nitions given in Sections 2 and 3 respectively. The concept of recursive

equilibrium is modi�ed to incorporate the PPF agents. Under some conditions on the

primitives of the economy, we prove its existence and that it implements the sequential

equilibrium. In the existence proof we show that the expectation function of agents with

PPF, which was exogenous in the economy de�ned on the previous sections, is determined

endogenously and coincides with the recursive equilibrium price.

The di�erence of de�nitions given in Section 2 and de�nitions of this section for the

PPF agents is that we suppose here the state space endowed with the σ-algebra Y of all

subsets of Y and denote it by Y again to simplify the notation. The PPF agents' plans

are given as in De�nition 2.1 because they may not anticipate correctly the portfolio

aggregate transition θ̂ of the economy and hence choose plans contingent to all streams

yr ∈ Y r for r ∈ N as the EE agents. The (exogenous) beliefs µkr : Y → Prob(Y r)

are generated by the probability transition rules λk : Y → Prob(Y ) and do not depend

on the current observed price in this case. The feasible plans, expected utility28 and

demand correspondence of the agents with PPF are given as in Section 2. For agents

with Exogenous Expectations, all de�nitions given in Section 2 are the same.

The next de�nition speci�es an equilibrium of this sequential economy and clari�es

how agents with PPF anticipate correctly the contingent prices.

De�nition 5.1. A PPF sequential equilibrium with initial asset holdings θ0 ∈ Θ is

a measurable family of contingent prices {qt : St → Q◦}t∈N, contingent consumption

allocations {ct : St → C}t∈N and contingent portfolio allocations {θt : St → Θ}t∈N
satisfying for all st ∈ St:

1. optimality: for every i ∈ I,

(cit(s
t),θit(s

t)) ∈ δi(θit−1(st−1), (θt−1(st−1), st), qt(s
t));

2. agent k's price consistency: q̂k((θt(s
t), st+1), qt(s

t)) = qt+1(st+1);

3. asset markets clear:
∑

i∈I θ
i(st) = 1 ∈ RH ;

4. good markets clear:
∑

i∈I c
i(st) = 1 · d̂(st).

28Notice that the utility function in De�nition 2.4 does not depend on current prices because µkr : Y →
Y r.
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Remark 5.1. Condition 2 means that agents with Price Perfect Foresight have an expec-

tation function which yields exactly the next period price given the current equilibrium

price and the next period equilibrium state variable. Observe that we only impose this

consistency on prices expectations over the equilibrium path {θt, qt}t∈N.

The de�nition of the recursive equilibrium follows by a way analogous to the one

given in Section 3, that is, we show existence of the value function satisfying the Bellman

Equation and after we de�ne the recursive equilibrium. In the recursive approach we

consider price expectation consistency imposed at all state variables for agents with PPF.

Notation 5.1. Write

1. Z = {(θ̄, s) ∈ Θ× S :
∑

k∈K θ̄
k
h 6= 1 for all h ∈ H} ⊂ Y ;

2. Q̂′ = {q̂ : Y → Q : q̂(y) ∈ Q◦ for all y ∈ Z} ⊃ Q̂◦ endowed with the topology of

pointwise convergence.

3. V the Banach space of all bounded functions vk : Θk×Y × Q̂′ → R with vk( · , y, · )
continuous for each �xed y ∈ Z and endowed with the sup norm.

Since the space Q̂ endowed with the product topology is compact but not metrizable,

we need the assumption below to assure the continuity of the integration over stochastic

kernels λk given by Lemma 7.11. This assumption assures that agent k's beliefs of next

period state variables yield zero probability to the set of mean aggregate portfolios for

which each agent j has zero portfolio endowment.29

Assumption 5.1. For each �xed y ∈ Y there exists a countable set W ⊂ Z such that

λk(y)(W ) = 1.

Remark 5.2. Is not clear that the results of this section hold if there are only non identical

PPF agents satisfying Assumption 5.1 because in the proof of existence we use that there

always exists one agent j with positive wealth to assure positivity of equilibrium prices.

We claim that there exists a function vkpf : Θk×Y×Q̂′ → R with v̂kpf ( · , y, · ) continuous
for each y ∈ Z and satisfying the Bellman Equation

vkpf (θ
k , y, q̂) = sup

{
uk(ck) + β

∫
Y

vkpf (θ
k, y′, q̂)λk(y, dy′)

}
(14)

over all (ck, θk) ∈ Bk(θk , s, q̂(y)). Indeed let T k : V→ V be the operator de�ned by

T k(vkpf )(θ
k , y, q̂) = sup

{
uk(ck) + β

∫
Y

vkpf (θ
k, y′, q̂)λk(y, dy′)

}
(15)

over all (ck, θk) ∈ Bk(θk , s, q̂(y)). To see that T k is well de�ned, notice that for each

�xed y = (θ̄, s) ∈ Z, the correspondence (θk , q̂) → Bk(θk , s, q̂(y)) de�ned on Θk × Q̂′

29If we consider that some agent j has positive good endowment at each period then he may choose a
current positive portfolio even if the current asset endowment is null in some period.
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is continuous as a composition of continuous correspondences by Lemma 7.3 because30

((θk d̂(s), θk ), q̂(y)) ∈ Ak for all q̂ ∈ Q̂′ where Ak is de�ned in the appendix. Moreover

the objective function is continuous on ck, θk and q̂ for each �xed y ∈ Y by Lemma 7.11.

Applying the Berge Maximum Theorem, we conclude that if vkpf ∈ V, that is, vkpf ( · , y, · )
is continuous for each y ∈ Z, then T (vkpf )( · , y, · ) is continuous for each y ∈ Z. Clearly,
T k satis�es the Blackwell's su�cient conditions for a contraction and hence has a �xed

point. Notice that vkpf ( · , y, q̂) is strictly increasing for each (y, q̂) ∈ Z × Q̂′ if Ck = R+.

De�nition 5.2. De�ne the agent k's consumption and portfolio policy correspondence31

x̃kpf : Θk × Y × Q̂′ → Ck ×Θk with x̃kpf = c̃k × θ̃k as

x̃kpf (θ
k , y, q̂) = argmax

{
uk(ck) + β

∫
Y

vkpf (θ
k, y′, q̂)λk(y, dy′)

}
over all (ck, θk) ∈ Bk(θk , s, q̂(y)).

De�nition 5.3. We say that the economy has a PPF recursive equilibrium if there exist

functions ĉi : Y → Ci, θ̂i : Y → Θi for all i ∈ I and q̂ : Y → Q satisfying for each

y = (θ̄, s) ∈ Y

1. EE's optimality: (ĉj(y), θ̂j(y)) ∈ x̃j(θ̄j, y, q̂(y));

2. PPF's optimality: (ĉk(y), θ̂k(y)) ∈ x̃kpf (θ̄j, y, q̂);

3. asset market clearing:
∑

i∈I θ̂
i(y) = 1 ∈ RH ;

4. consumption market clearing:
∑

i∈I ĉ
i(y) = 1 · d̂(s).

Under Assumption 5.1 the following results are similar to the ones given in previous

sections.

Theorem 5.4. Under Assumption 5.1, there exists a PPF recursive equilibrium.

Proof: See Theorem 7.12 in Appendix.

2

Theorem 5.5. If (ĉ, θ̂, q̂) is a PPF recursive equilibrium then its implemented process

{ct,θt, qt}t∈N starting from θ0 ∈ Θ is a PPF sequential equilibrium of the economy with

initial asset holdings θ0 ∈ Θ.

Proof: The proof is analogous32 to Theorem 3.5 replacing the price expectation func-

tion q̂k by the price recursive equilibrium q̂.

2

30Take W k = {(θkd̂(s), θk) : θk ∈ Θk} in this lemma.
31This correspondence may be empty.
32In the arguments of Theorem 3.5 we use the choice axiom to select the measurable plans in the

optimum since any function de�ned on Y r is measurable.
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6 Conclusion

Existence of recursive equilibrium is a propriety of economies where trade takes place

sequentially over time and where each agent makes decisions at every date in the light of

his (possibly incorrect) expectations about his future environment. Moreover there exists

a recursive equilibrium even if some type anticipate correctly the function which speci�es

the recursive relation between the sequential price of equilibrium and state variables.

The uniqueness of the recursive equilibrium assures the continuity. The continuity of

the recursive equilibrium allows us to conclude that if one agent has price expectation

functions bounded away from the discounted cash �ow of future dividends and the other

agent is eventually Perfect Foresight, then the �rst agent has zero asset endowment33 in

the long run.

7 Appendix

7.1 Results related to Section 3

For the sake of completeness we enunciate the lemma below. A similar result can be

found in Grandmont (1972).

Lemma 7.1. Let (Y,Y ) be a compact metric space with Y its Borelians and Z a metric

space. Consider a bounded continuous34 f : Y × Z → R+ and the continuous kernel35

ν : Z → Prob(Y ). Then the function g : Z → R+ de�ned by g(z) =
∫
Y
f(y′, z)ν(z, dy′) is

continuous.

Proof: Fix z ∈ Z and let zn → z as n→∞. Using that ν and f( · , z) are continuous,
we can take n′ such that n ≥ n′ implies∣∣∣∣∫

Y

f(y, z)ν(zn, dy)−
∫
Y

f(y, z)ν(z, dy)

∣∣∣∣ < ε/2.

Write Z ′ = {z1, z2, ...} ∪ {z}. The continuity of f and the compactness of Y × Z ′ allow
us to conclude that f is uniformly continuous on Y ×Z ′, and hence, we �nd36 an n′′ ∈ N
such that

|f(y, zn)− f(y, z)| < ε/2 for all y ∈ Y and n ≥ n′′

33And hence have zero consumption if there is no income at each period.
34On the product topology of Y ×Z induced by the metric dY×Z((y, z), (y′, z′)) = dY (y, y′)+dZ(z, z′).

Notice that Y × Z ′ is compact on this topology for each compact subset Z ′ ⊂ Z.
35The space Prob(Y ) is endowed with the weak topology.
36Notice that dZ(z′, z′′) < ε implies dY×Z((y, z′), (y, z′′)) < ε.
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Choose n0 = max{n′, n′′}. Then n ≥ n0 implies

|g(zn)− g(z)| ≤
∣∣∣∣∫
Y

f(y, zn)− f(y, z)ν(zn, dy)

∣∣∣∣
+

∣∣∣∣∫
Y

f(y, z)ν(zn, dy)−
∫
Y

f(y, z)ν(z, dy)

∣∣∣∣
≤

∫
Y

|f(y, zn)− f(y, z)|ν(zn, dy)

+

∣∣∣∣∫
Y

f(y, z)ν(zn, dy)−
∫
Y

f(y, z)ν(z, dy)

∣∣∣∣
< ε/2 + ε/2 = ε

2

Lemma 7.2. Let v be the �xed point of the operator T given by (3). Then for every �xed

(y, q) ∈ Y ×Q◦, v( · , y, q) is concave. Moreover, if Ci = R+ then vi is strictly increasing

in the �rst coordinate.

Proof: A similar proof is found in Stokey et al. (1989). First notice that if a contraction

is invariant under a nonempty closed subspace F then the �xed point belongs to F . It is

easy to see that the set of concave and increasing functions on some �xed coordinate is

closed and nonempty. To prove that it is invariant by T , let v be a concave function, α > 0,

(ci, θi) ∈ x̃i(θi , y, q), (či, θ̌i) ∈ x̃i(θ̌i , y, q), ciα = αci + (1− α)či and θiα = αθi + (1− α)θ̌i

where x̃i is given by De�nition 3.2. Then (ciα, θ
i
α) ∈ Bi(θiα , q) where θiα = αθi +(1−α)θ̌i

and

[T (v)](θiα , q) = sup

{
ui(ci) + β

∫
Y

v(θi, q)λ(y, q, dy)

}
≥ ui(ciα) + β

∫
Y

v(θiα, q)λ(y, q, dy)

≥ α[T (v)](θi, q) + (1− α)[T (v)](θ̌i, q).

The �rst inequality holds because the sup is taken over Bi(θiα , q) and the second holds

because ui and v are concave by hypothesis. To show that v( · , y, q) is strictly increasing,

we use that the function θi 7→ (qa + qcd̂(s))θi is strictly increasing in θih for each h ∈ H
since q ∈ Q◦ and Ci = R+. Indeed, an increasing in θih allows agent i to increase current

consumption keeping it feasible.

2

Notation 7.1. Write for L ∈ N:

1. Q = {q ∈ RL
+ :
∑

l ql = 1} and Q◦ = Q ∩ RL
++;

2. X i ⊂ RL
+ nonempty convex for all i ∈ I;
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3. W i ⊂ RL
+ convex bounded with W i ∩ RL

++ 6= ∅ for all i ∈ I;

4. S a compact metric space endowed with the σ-algebra of the Borelians;

5. Y ⊂ RL
+ × S nonempty compact with Y its σ-algebra;

6. Ai = {(wi, q) ∈ W i ×Q : q ∈ Q◦ or qwi > 0};

7. Q̂ the set of all functions37 q̂ : Y → Q and X̂ i the set of all functions x̂i : Y → X i

both endowed with the τ weak topology of pointwise convergence.38

Lemma 7.3. Suppose that X i ⊂ RL
+ is a convex set with 0 ∈ IntX i. Let Bi : RL

+×Q→
X i be the budget correspondence de�ned by

Bi(wi, q) = {xi ∈ X i : qxi ≤ qwi}.

Then Bi is continuous on Ai when X i is compact and on RL
+ ×Q◦ when X i = RL

+.

Proof: Suppose that X i is compact and convex. The upper hemicontinuity follows

from the fact that Bi has closed graph and compact range space. To show the lower

hemicontinuity, let (win, qn) ∈ Ai converging to (w̄i, q̄) ∈ Ai as n→∞ and x̄i ∈ Bi(w̄i, q̄).

Suppose �rst that q̄w̄i > 0. Then there exists an open set39 O of Ai containing (w̄i, q̄)

such that qwi > 0 for all (wi, q) ∈ O. Let IntBi : O → X i be the correspondence

de�ned by IntBi(wi, q) = {xi ∈ X i : qxi < qwi}. Since 0 ∈ X i, IntBi is nonempty

on the set O and X i is convex, then40 Bi(wi, q) = cl[IntBi(wi, q)] for all (wi, q) ∈ O.

Clearly, IntBi has open graph. Therefore, using that an open graph correspondence is

lower hemicontinuous and that the closure of a lower hemicontinuous correspondence is

lower hemicontinuous, we conclude that Bi is lower hemicontinuous on O and hence there

exists an N ⊂ N and a sequence41 xin ∈ Bi(win, qn) for each n ∈ N such that xin → x̄i as

n→∞.

If q̄w̄i = 0 then (w̄i, q̄) ∈ Ai implies that q̄ ∈ Q◦ and x̄i = 0. Since q̄1 > 0 and

0L ∈ IntX i, there exists N ⊂ N such that q1n > 0 and (qnw
i
n/q1n, 0

L−1) ∈ X i for

n ∈ N. Choose the sequence xi1n = qnw
i
n/q1n and xiln = 0 for l > 1 and n ∈ N . Then

xi1n = qnw
i
n/q1n → q̄w̄i/q̄1 = 0 and hence xin → x̄i = 0 as n → ∞. Moreover, by

construction, xin ∈ Bi(win, qn) for each n ∈ N .

In the case of X i = RL
+ and Zi = RL

+ the lower hemicontinuity is clear by the

arguments above. For the upper hemicontinuity, consider (zin, qn)→ (zi, q) ∈ Zi×Q◦ and
{xin}n∈N with xin ∈ Bi(zin, qn) for each n ∈ N. Since q ∈ Q◦, the set {qn}n∈N is eventually

37Notice that Q̂ is compact by the Tychono� Product Theorem.
38Recall that this topology is equivalent to the product topology.
39Recall that we are using the relative topology.
40To see the inclusion Bi(wi, q) ⊂ cl[IntBi(wi, q)], given xi ∈ Bi(wi, q) notice that if we choose

x̃i ∈ IntBi(wi, q) then xin := (1−1/n)xi+ x̃i/n ∈ IntBi(wi, q) and xin → xi. Thus xi ∈ cl[IntBi(wi, q)].
41The set N is chosen such that (win, qn) ∈ O for each n ∈ N .
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bounded away from zero. Moreover, since zin → zi then the set {zin}n∈N is bounded. Thus

{xin}n∈N is bounded and hence has a subsequence convergent to xi ∈ Bi(zi, q).

2

Theorem 7.4. Suppose that W i ⊂ RL
++. Let V i : RL

+ × Y × Q → R and ŵi : Y → W i

be bounded functions with V i( · , y, · ) continuous for each y ∈ Y. Suppose that V i( · , y, q)
is concave and strictly increasing for all (y, q) ∈ Y × Q. Then there exist functions

x̂i : Y → RL
+ for all i ∈ I and q̂ : Y → Q such that for all y ∈ Y

x̂i(y) ∈ argmax
{
V i(xi, y, q̂(y)) : xi ∈ RL

+ and q̂(y)xi ≤ q̂(y)ŵi(y)
}

and
∑

i∈I x̂
i(y) =

∑
i∈I ŵ

i(y).

Proof: The notation without upper index stands for the Cartesian product. Let πi :

RLI
+ → RL

+ the projection on the ith-coordinate and write X i a compact convex set

containing the set42

πi

({
x ∈ RLI

+ :
∑
i∈I

xi ≤
∑
i∈I

sup{ŵi(y) : y ∈ Y }

})
(16)

in its interior relative to RL
+. Moreover, let X̂ i be the compact convex set of all functions

x̂i : Y → X i for all i ∈ I endowed with the τ topology of pointwise convergence.

De�ne the correspondence Bi : Ai → X i for all i ∈ I by

Bi(wi, q) = {xi ∈ X i : qxi ≤ qwi}.

De�ne B̂i : Y × Q̂ → X i by B̂i(y, q̂) = Bi(ŵi(y), q̂(y)) for all (y, q̂) ∈ Y × Q̂. Clearly,

B̂i is well de�ned since W i ⊂ R++ implies (ŵi(y), q̂(y)) ∈ Ai for all (y, q̂) ∈ Y × Q̂.

To see that B̂i(y, · ) is continuous for each �xed y ∈ Y we use that the composition of

continuous correspondences is continuous.43 Indeed, �xing y ∈ Y , we have that B̂i(y, q̂) =

Bi(ŵi(y), πy(q̂)) for all q̂ ∈ Q̂ where πy : Q̂ → Q is the τ continuous projection de�ned

by πy(q̂) = q̂(y) for all q̂ ∈ Q̂. Analogously, for each �xed y ∈ Y the map (xi, q̂) 7→
V i(xi, y, q̂(y)) is continuous because Q̂ is endowed with the τ topology. Therefore, using

the Berge Maximum Theorem, the correspondence ζ i : Y × Q̂→ X i de�ned by

ζ i(y, q̂) = argmax
{
V i(xi, y, q̂(y)) : xi ∈ B̂i(y, q̂)

}
(17)

is upper hemicontinuous on q̂ for each y ∈ Y �xed and hence has closed graph because

X i is a compact Hausdor� space and44 ζ i(y, · ) is closed valued.

42For a set Zi ⊂ RL+, write supZi = (supZil )l≤L ∈ RL+ where Zil ⊂ R+ is the projection of Zi into the
l-th coordinate. Observe also that 0 ∈ X.

43See Aliprantis & Border (1999) sec 17.4.
44To conclude that the correspondence ζi(y, · ) is closed valued and has closed graph, we use the Berge
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Let δi : Q̂→ X̂ i be the demand correspondence given by

δi(q̂) =
{
x̂i ∈ X̂ i : x̂i(y) ∈ ζ i(y, q̂) for all y ∈ Y

}
. (18)

First we show that δi has closed graph. To see this, take the nets q̂α ∈ Q̂ and x̂iα ∈ X̂ i

for α ∈ D converging to q̂ ∈ Q̂ and x̂i ∈ X̂ i respectively, with x̂iα ∈ δi(q̂α) for α ∈ D. Fix

y ∈ Y . Since ζ i(y, · ) has closed graph and x̂iα(y) ∈ ζ i(y, q̂α) then x̂i(y) ∈ ζ i(y, q̂). This is
the same to state that x̂i ∈ δi(q̂) because y was chosen arbitrary. Notice that δi is convex

valued because V i is concave on xi.

Let ẑ : X ×W → RL be the excess of demand function de�ned by

ẑ(x,w) =
∑
i∈I

xi −
∑
i∈I

wi (19)

and the upper hemicontinuous45 correspondence ∆′ : X ×W → Q de�ned by

∆′(x,w) = argmax {qẑ(x,w) : q ∈ Q} .

We de�ne the correspondence ∆ : X̂ → Q̂ by

∆(x̂) = {q̂ ∈ Q̂ : q̂(y) ∈ ∆′(x̂(y), ŵ(y)) for all y ∈ Y.}

We claim that the correspondence ∆ has closed graph. Indeed, consider the net {(q̂α, x̂α)}α∈D
converging to (q̂, x̂) and such that q̂α ∈ ∆(x̂α) for α ∈ D. Using the de�nition of ∆ we

conclude that q̂α(y) ∈ ∆′(x̂α(y), ŵ(y)) for all y ∈ Y. The upper hemicontinuity46 of ∆′

allows us to conclude that q̂(y) ∈ ∆′(x̂(y), ŵ(y)) for all y ∈ Y , that is, q̂ ∈ ∆(x̂). Trivially,

∆ is convex valued.

Let T : X̂ × Q̂→ X̂ × Q̂ be the convex valued correspondence de�ned by:

T (x̂, q̂) =
∏
i∈I

δi(q̂)×∆(x̂).

Since X̂×Q̂ is a nonempty compact convex space endowed with a locally convex Hausdor�

topology and T has closed graph, we can apply the Kakutani-Fan-Gliksberg Fixed Point

Theorem47 to conclude that T has a �xed point, say, (x̂, q̂).

To show the market clearing conditions notice that

x̂i(y) ∈ Bi(ŵi(y), q̂(y)) for all y ∈ Y

Maximum Theorem and the Closed Graph Theorem. For further details, see Aliprantis & Border (1999)
Theorems 17.11 and 17.31.

45Using the Berge Maximum Theorem and that every constant correspondence is continuous.
46And the closed graph property of ∆′.
47See Aliprantis & Border (1999) Theorem 17.55.
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and if we add over i ∈ I the budget restrictions we have

q̂(y)ẑ(x̂(y), ŵ(y)) ≤ 0 for all y ∈ Y. (20)

Suppose that ẑl(x̂(y′), ŵ(y′)) > 0 for some y′ ∈ Y . Then q̂ ∈ ∆(x̂) implies that q̂(y′) ∈
argmax {qẑ(x̂(y′), ŵ(y′)) : q ∈ Q} and choosing q′ ∈ Q such that q′l = 1 and q′k = 0 if

k 6= l we have

0 < ẑl(x̂(y′), ŵ(y′)) = q′ẑ(x̂(y′), ŵ(y′)) ≤ q̂(y′)ẑ(x̂(y′), ŵ(y′))

which is a contradiction to (20) for y = y′ because q′ ∈ Q. We have thus proved that

ẑ(x̂(y′), ŵ(y′)) ≤ 0.

We claim that q̂l(y) ∈ RL
++. Assume by way of contradiction that q̂l(y) = 0 for some

l ≤ L. Since ẑ(x̂(y), ŵ(y)) ≤ 0 we have that x̂il(y) is in the interior of X i
l relative to R+

and hence cannot be optimal given that the price q̂l(y) is zero.48 Therefore, we must have

q̂(y) > 0 for all y ∈ Y. Moreover, the local non satiation property49 and the fact that all

allocations are interior allows us to conclude that all budget restrictions are binding and

hence

q̂(y)ẑ(x̂(y), ŵ(y)) = 0 for all y ∈ Y. (21)

Since ẑ ≤ 0, and the prices are positive, the relation (21) implies the market clearing

conditions.

Finally we have to prove that the equilibrium (x̂, q̂) is optimal for {V i}i∈I in the set

RLI
+ . De�ne the budget correspondence B̃i : W i × Q → RL

+ with the same inequalities

of Bi : W i × Q → X i. Suppose that, for some y ∈ Y , x̂i(y) is not optimal on the

set B̃i(ŵi(y), q̂(y)). Then there exists xi ∈ B̃i(ŵi(y), q̂(y)) such that V i(xi, y, q̂(y)) >

V i(x̂i(y), y, q̂(y)). Since the market clearing conditions imply that x̂i(y) ∈ IntX i, there

exists a number α > 0 such that

xiα := αxi + (1− α)x̂i(y) ∈ Bi(ŵi(y), q̂(y)).

Therefore

V i(xiα, y, q̂(y)) ≥ αV i(xi, y, q̂(y)) + (1− α)V i(x̂i(y), y, q̂(y)) > V i(x̂i(y), y, q̂(y))

which is a contradiction. Thus the equilibrium found above is optimal on the set RLI
+ .

2

Theorem 7.5. Let {V i, ŵi}i∈I satisfying all assumptions of Theorem 7.4 except that

W i ⊂ R++. Suppose that for each y ∈ Y and l ∈ L there exists j ∈ I such that ŵjl (y) > 0.

48Recall that V i( · , y, q̂(y)) is strictly increasing.
49That is, the fact that V i is strictly increasing on the �rst coordinate for all i ∈ I.
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Then there exist functions x̂i : Y → RL
+ for all i ∈ I and q̂ : Y → Q such that for all

y ∈ Y
x̂i(y) ∈ argmax

{
V i(xi, y, q̂(y)) : xi ∈ RL

+ and q̂(y)xi ≤ q̂(y)ŵi(y)
}

and
∑

i∈I x̂
i(y) =

∑
i∈I ŵ

i(y).

Proof: Let w̄i ∈ W i ∩ RL
++ and apply Theorem 7.4 using the bounded endowment

functions ŵin : Y → W i ∩ RL
++ de�ned by ŵin(y) = (1 − 1/n)ŵi(y) + w̄i/n ∈ W i ∩ RL

++.

Write X i a compact set containing the set given in (16) with ŵi replaced by ŵin for n ∈ N.
Therefore by Theorem 7.4, there exists a recursive equilibrium (x̂′n, q̂

′
n) ∈ X̂ × Q̂ for all

n ∈ N. Since X̂× Q̂× [0, 1] is compact we can choose a subnet (x̂α, q̂α, εα)α∈D of the (net)

sequence (x̂n, q̂n, 1/n)n∈N converging50 to (x̂, q̂, 0) ∈ X̂ × Q̂ × [0, 1]. Clearly, x̂ satis�es

the market clearing conditions because
∑

i∈I x̂
i
α(y) =

∑
i∈I((1 − εα)ŵi(y) + εαw̄

i) for all

α ∈ D and all y ∈ Y. Let {V i}i∈I be the value functions and {Bi}i∈I be the budget

correspondences de�ned in Theorem 7.4 for {Xi}i∈I . De�ne ζ̃ i : Y ×Q× [0, 1]→ X i by

ζ̃ i(y, q, ε) = argmax
{
V i(xi, y, q) : xi ∈ Bi((1− ε)ŵi(y) + εw̄i, q)

}
.

By Lemma 7.3, the correspondence Bi is continuous on the set Ai. Therefore, for each

�xed y ∈ Y we can apply the Berge Maximum Theorem for the set Di
y = {(q, ε) ∈

Q×[0, 1] : ((1−ε)ŵi(y)+εw̄i, q) ∈ Ai} to conclude that ζ̃ i(y, · , · ) is upper hemicontinuous

on Di
y for all i ∈ I. Fix y ∈ Y . Since q̂(y) ∈ Q then there exists l ≤ L such that q̂l(y) > 0.

Moreover, by hypothesis, there exists j ∈ I such that ŵjl (y) > 0. The conditions ŵjl (y) > 0

and q̂l(y) > 0 assure that (q̂(y), 0) ∈ Dj
y. Therefore, using that x̂jα(y) ∈ ζ̃j(y, q̂α(y), εα)

for all α ∈ D then x̂j(y) ∈ ζ̃j(y, q̂(y), 0) which implies that x̂j(y) is optimal. Therefore

we conclude, by local non satiation, that q̂(y) is positive since x̂(y) satis�es the market

clearing conditions and hence x̂j(y) belongs to the interior of Xj. Moreover, q̂(y) ∈ Q◦

implies (q̂(y), 0) ∈ Di
y for all i ∈ I and hence x̂i(y) ∈ ζ̃ i(y, q̂(y), 0) because x̂iα(y) ∈

ζ̃ i(y, q̂α(y), εα) for all α ∈ D, that is, x̂i(y) is optimal for each i ∈ I. Since y was chosen

arbitrary, this is the same to state that x̂(y) and q̂(y) constitutes a recursive equilibrium

for the con�guration ε = 0, that is, in the economy with the initial endowment functions

{ŵi}i∈I .51

2

Proposition 7.6. Suppose that {V i, ŵi} are continuous with W i ⊂ R+, the recursive

equilibrium (x̂, q̂) is unique52 and for each y ∈ Y and l ≤ L there exists j ∈ I such that

ŵjl (y) > 0. Then (x̂, q̂) is continuous.

50Since (1/n)n∈N converges to zero then {εα}α∈D also converges to zero.
51Notice that the proof that x̂i is optimal considering Xi = RL+ is identical to the one found at the

end of Theorem 7.4.
52That is, for each y ∈ Y there exist only one (x, q) ∈ X × Q satisfying the optimality and market

clearing conditions.
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Proof: Take yn = (θ̄n, sn)n∈N such that yn → y = (θ̄, s) ∈ Y as n → ∞ and X i

the compact set containing the set given in (16) in its interior. By Lemma 7.3, the

correspondence Bi is continuous on the set Ai. De�ne for i ∈ I the set Di = {(y′, q′) ∈
Y ×Q : (ŵi(y′), q′) ∈ Ai} and the correspondence ζ̃ i : Di → X i by

ζ̃ i(y, q) = argmax
{
V i(xi, y, q) : xi ∈ Bi(ŵi(y), q)

}
and ζ̃ = (ζ̃ i)i∈I . Therefore, we can apply the Berge Maximum Theorem for the set

X i and Di to conclude that ζ̃ i is upper hemicontinuous.53 Take any subsequence54

(x̂(yn), q̂(yn))n∈N ∈ X×Q withN ⊂ N. This sequence has a subsequence55 (x̂(yn), q̂(yn))n∈N ′

converging to (x, q) ∈ X × Q because X × Q is compact. Since q ∈ Q then there exists

one coordinate ql such that ql > 0. Moreover, by hypothesis, there exists an agent j ∈ I
such that ŵjl (y) > 0 and hence (ŵj(y), q) ∈ Aj, that is, (y, q) ∈ Dj. Since ζ̃j is upper

hemicontinuous on (y, q), then x̂j(yn) ∈ ζ̃j(yn, q̂(yn)) for n ∈ N ′ implies that xj ∈ ζ̃j(y, q).
This implies that q is positive by local non satiation because xj is optimal and belongs

to the interior of Xj since the allocation x satis�es the market clearing conditions.56 The

positivity of the price q assures that (y, q) ∈ Di and hence xi ∈ ζ i(y, q) is optimal for

each i ∈ I. Therefore x and q constitutes an equilibrium for the con�guration y. By

the uniqueness, (x, q) = (x̂(y), q̂(y)) and since it is independent of the initial subsequence

(x̂(yn), q̂(yn))n∈N we have that x̂(yn)→ x̂(y) and q̂(yn)→ q̂(y) as n→∞.
2

Theorem 7.7. De�ne Y = {(θ̄, s) ∈ RLI
+ × S :

∑
i∈I θ̄

i = 1} and Y its borelians. Write

X i = Ci × Θi with Θi = RH
+ and Ci = R+. Suppose that V i : X i × Y ×Q→ R is given

by

V i(ci, θi, y, q) = ui(ci) +

∫
Y

vi(θi, y′, q̃i(y′, q))λ(y, q, dy′)

where λ : Y × Q → Prob(Y ) is continuous and the bounded continuous functions ui :

Ci → R+ and vi : Θi × Y × Q◦ → R+ are strictly increasing and concave on Ci and Θi

respectively. If ŵi(y) = (θ̄id̂(s), θ̄i) for y ∈ Y and q̃i : Y × Q → Q◦ is continuous then

Theorem 7.5 holds.

Proof: It follows directly57 from Lemma 7.1 that for each y ∈ Y the function V i( · , · , y, · )
is continuous. Moreover, since

∑
i∈I θ̄

i = 1 then for each y = (θ̄, s) ∈ Y and each co-

ordinate l ≤ L there exists some agent j with θ̄jl > 0 and hence positive endowment

53Notice that the composition of the function (y, q) 7→ (ŵi(y), q) de�ned on Di and the correspondence
Bi : Ai → Xi is well de�ned and hence is continuous as the composition of continuous correspondences.

54Observe that x̂(yn) ∈ ζ̃(yn, q̂(yn)) for all n ∈ N.
55With N ′ ⊂ N.
56The allocation x satis�es the market clearing conditions because q̂ is a recursive equilibrium and

hence x̂(yn) ∈ ζ̃(yn, q̂(yn)) satis�es the market clearing conditions for each n ∈ N ′. Recall that ŵ is
continuous.

57In Lemma 7.1, choose Z = Xi × Y × Q and f : Y × Z → R+ de�ned by f(y′, xi, y, q) =
vi(θi, y′, q̃i(y′, q)).
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of the respective good (l = 1 and θ̄j d̂(s) > 0) or asset (2 ≤ l ≤ H + 1 and θ̄jl > 0).

Therefore, {V i, ŵi}i∈I satis�es the hypothesis of Theorem 7.5 since the concavity of V i

on xi is trivial and ui is strictly increasing and vi( · , y, q) is strictly increasing for each

(y, q) ∈ Y ×Q◦.
2

Theorem 7.8. If (ĉ, θ̂, q̂) is a recursive equilibrium as in De�nition 3.3 then its im-

plemented process {ct,θt, qt}t∈N starting from θ0 ∈ Θ is a sequential equilibrium of the

economy with initial asset holdings θ0 ∈ Θ.

Proof: It is su�cient to prove that agent i choices {cit,θit}t∈N are optimal given the

prices {qt}t∈N. Fix an arbitrary (θ̄i, y, q) ∈ Θi × Y ×Q with y = (θ̄, s). Choose (ci,θi) ∈
F i(θ̄i, s, q) and write

U i
n(ci, y) = ui(ci0) +

n∑
r=1

∫
Y r

βrui(cir(y
r))µir(y, q, dy

r).

Therefore

vi(θ̄i, y, q)
def
= sup

{
ui(ci) + β

∫
Y

vi(θi, y1, q̃
i(y1, q))λ

i(y, q, dy1)

}
≥ ui(ci0) + β

∫
Y

vi(θi0, y1, q̃
i(y1, q))λ

i(y, q, dy1).

(22)

where the sup in the �rst equation is over all (ci, θi) ∈ Bi(θ̄i, s, q).

Write ṽi(θi0, y1, q) = vi(θi0, y1, q̃
i(y1, q)). Using the Bellman Equation again, we have

that

ṽi(θi0, y1, q) = sup

{
ui(ci) + β

∫
Y

vi[θi, y2, q
i
2(y2, q)]λi(y1, q̃

i(y1, q), dy2)

}
≥ ui(ci1(y1)) + β

∫
Y

vi[θi1(y1), y2, q
i
2(y2, q)]λi(y1, q̃

i(y1, q), dy2)

where the sup in the �rst equation is over all (ci, θi) ∈ Bi(θi0, s1, q̃
i(y1, q)) and q

i
2(y2, q) =

q̃i(y2, q̃
i(y1, q)) according to De�nition 2.2. The second inequality comes from the fact

that (ci,θi) is feasible and hence we have (ci1(y1),θi1(y1)) ∈ Bi(θi0, s1, q̃
i(y1, q)). Replacing
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the previous inequality of vi(θi0, y1, q̃
i(y1, q)) in (22) then58

vi(θ̄i, y, q) ≥ ui(ci0) + β

∫
Y

ui(ci1(y1))λi(y, q, dy1)

+ β2

∫
Y 2

vi[θi1(y1), y2, q
i
2(y2, q)]λi(y1, q̃

i(y1, q), dy2)λi(y, q, dy1)

= ui(ci0) + β

∫
Y

ui(ci1(y1))µi1(y, q, dy1)

+ β2

∫
Y 2

vi[θi1(y1), y2, q
i
2(y2, q)]µi2(y, q, dy2)

= U i
1(ci, y, q) + β2

∫
Y 2

vi[θi1(y1), y2, q
i
2(y2, q)]µi2(y, q, dy2).

It follows from induction on n that

vi(θ̄i, y, q) ≥ U i
n−1(ci, y, q) + βn

∫
Y n

vi[θin−1(yn−1), yn, q
i
n(yn, q))]µin(y, q, dyn).

Taking the limit and using that v is bounded we have vi(θ̄i, y, q) ≥ U i(ci, y) for all

(ci,θi) ∈ F i(θi, s, q) since (ci,θi) was chosen arbitrary.

Let θ̃i : Θi × Y × Q → Θi and c̃i : Θi × Y × Q → Ci be the argmax of the agent

i's Bellman Equation (2) according to De�nition 3.2. Choose {ĉt, θ̂t, q̂t}t∈N according to

equations (4) and (5). For each �xed realized period t ∈ N, we follow the arguments

above taking y = (θ̂t−1(st−1), st) and59 q = q̂t(s
t) = q̂(θ̂t−1(st−1), st). Consider the plan

(c̃i0, θ̃
i
0) = (ĉit(s

t), θ̂it(s
t)) and recursively the measurable selectors60

θ̃ir(y
r) ∈ θ̃i[θ̃ir−1(yr−1), yr, q

i
r(y

r, q̂t(s
t))]

c̃ir(y
r) ∈ c̃i[θ̃ir−1(yr−1), yr, q

i
r(y

r, q̂t(s
t))]

(23)

for all r ∈ N where qir is given by De�nition 2.2. Using De�nitions 3.3 and 3.4 we have

that
θ̂it(s

t) = θ̂i(θ̂t−1(st−1), st) ∈ θ̃i(θ̂it−1(st−1), (θ̂t−1(st−1), st), q̂t(s
t))

ĉit(s
t) = ĉi(θ̂t−1(st−1), st) ∈ c̃i(θ̂it−1(st−1), (θ̂t−1(st−1), st), q̂t(s

t)).
(24)

Using that the policy correspondences c̃i and θ̃i satisfy the relation (24) then (c̃i0, θ̃
i
0) ∈

58Recall that

µir(y, q)(A1, ..., Ar) =

∫
A1

· · ·
∫
Ar

λi(yr−1, q
i
r−1(yr−1, q), dyr) · · ·λi(y, q, dy1)

for each rectangle A1× ...×Ar. See Stokey and Lucas Chapter 9 for more details about the composition
of the stochastic kernels λi.

59See De�nition 3.4.
60The Measurable Maximum Theorem assures that the policy correspondences have measurable se-

lectors because vi is continuous and Bi is lower hemicontinuous on Ai and hence weakly measurable.
Notice that we are using that Yt are the Borelians of Yt for all t ∈ N. See Aliprantis & Border (1999)
for further details about the Measurable Maximum Theorem.
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Bi(θ̂it−1(st−1), st, q̂t(s
t)). Moreover, by equation (23) we have that (c̃ir(y

r), θ̃ir(y
r)) ∈

Bi(θ̃ir−1(yr−1), sr, q
i
r(y

r, q)) for all yr ∈ Y r, that is, (c̃i, θ̃i) ∈ F i[θ̂it−1(st−1), st, q̂t(s
t)].

Using the arguments above we get

vi[θ̂it−1(st−1), (θ̂t−1(st−1), st), q̂t(s
t)] ≥ U i[ci, (θ̂t−1(st−1), st, q̂t(s

t))]

for all (ci,θi) ∈ F i[θ̂it−1(st−1), st, q̂t(s
t)]. The construction of the plan (c̃i, θ̃i) implies

that all inequalities of the above arguments must bind. Thus

vi[θit−1(st−1), (θ̂t−1(st−1), st), q̂t(s
t)] = U i[c̃i, (θt−1(st−1), st)]

and hence (c̃i, θ̃i) ∈ F̂ i[θ̂it−1(st−1), (θ̂t−1(st−1), st), q̂t(s
t)], that is,

(ĉit(s
t), θ̂it(s

t)) ∈ δi(θ̂it−1(st−1), (θ̂t−1(st−1), st), q̂t(s
t)).

Therefore {ĉt, θ̂t, q̂t}t∈N is an equilibrium for the economy E because the recursive

equilibrium satis�es all market clearing conditions.

2

7.2 Results related to Section 4

Lemma 7.9. Let θ̃i : Θi×Θ×Q◦ → Θi be the asset policy function as in De�nition 3.2.

Then θ̃i(θi , θ̄, q) > 0 for all (θi , θ̄, q) ∈ Θi ×Θ×Q◦ with θi > 0.

Proof: Fix θi > 0, q ∈ Q◦ and write p = qa/qc > 0. Since ui ≥ 0 and ui(0) = 0

the subset {vi ∈ V : vi(0, · , · ) = 0 and vi ≥ 0} of V is closed and nonempty and hence

the value function vi of the Bellman equation satis�es vi(0, · , · ) = 0 and vi ≥ 0. Write

M = max{∂ui(ci) : ci ∈ [d̂θi , (p+ d̂)θi ]} and take c̃i > 0 such that61 ∂ui(ci) > (βd̂)−1pM

for ci ≤ c̃i. Choose θ̃i with θ̃i < θi and d̂θ̃i ≤ c̃i. Since (d̂θ̃i , 0) ∈ Bi(θ̃i , q̇) for each

q̇ ∈ Q◦ then evaluating the sup over all (ci, θi) ∈ Bi(θ̃i , q̇):

vi(θ̃i , θ̄, q̇) = sup

{
ui(ci) + β

∫
Y

vi(θi, θ̄′, q̃i(θ̄′, q̇))λi(θ̄, q̇, d̂θ̄′)

}
≥ ui(d̂θ̃i ) + β

∫
Y

vi(0, θ̄′, q̃i(θ̄′, q̇))λi(θ̄, q̇, d̂θ̄′)

= ui(d̂θ̃i )

= ∂ui(ci)d̂θ̃i for some ci > 0 with ci < d̂θ̃i

> β−1Mpθ̃i for all (θ̄, q̇) ∈ Θ×Q◦ since ci < d̂θ̃i ≤ c̃i.

61This is possible since ui is continuously di�erentiable and satis�es limci→0 ∂u
i(ci) =∞.
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If θ̃i(θi , θ̄, q) = 0 for some θ̄ ∈ Θ, then c̃i(θi , θ̄, q) = (p + d̂)θi and vi(θi , θ̄, q) = ui((p +

d̂)θi ). Thus θ̃i < θi implies that62 (−pθ̃i + (p+ d̂)θi , θ̃i ) ∈ Bi(θi , q) and hence

ui((p+ d̂)θi ) ≥ ui(−pθ̃i + (p+ d̂)θi ) + β

∫
Y

vi(θ̃i , θ̄′, q̃i(θ̄′, q))λi(θ̄, q, d̂θ̄′).

Using that ui is continuously di�erentiable in an open interval containing [d̂θi , (p+ d̂)θi ]

then the mean value theorem assures that |ui(ci) − ui(c̄i)| ≤ M |ci − c̄i| for all ci, c̄i ∈
[d̂θi , (p+ d̂)θi ]. Therefore

Mpθ̃i ≥ ui((p+ d̂)θi )− ui(−pθ̃i + (p+ d̂)θi )

≥ β

∫
Y

vi(θ̃i , θ̄′, q̃i(θ̄′, q))λi(θ̄, q, d̂θ̄′)

> Mpθ̃i

which is a contradiction.

2

Lemma 7.10. If (ci,θi) ∈ F̂ i(θi , y, q) then (ci0,θ
i
0) ∈ x̃i(θi , y, q).

Proof: Suppose that (ci0,θ
i
0) 6∈ x̃i(θi , y, q). Using the same arguments of Theorem 7.8

and that (ci0,θ
i
0) ∈ Bi(θi , s, q) we get:

vi(θi , y, q) = sup

{
ui(ci) + β

∫
Y

vi(θi, y1, q̃
i(y1, q))λ

i(y, q, dy1)

}
> ui(ci0) + β

∫
Y

vi(θi0, y1, q̃
i(y1, q))λ

i(y, q, dy1)

≥ U i
n−1(ci, y, q)

+ βn
∫
Y n

vi[θin−1(yn−1), yn, q
i
n(yn, q))]µin(y, q, dyn)

where the sup in the �rst equation is over all (ci, θi) ∈ Bi(θi , s, q). Taking the limit as

n→∞ then

vi(θi , y, q) > ui(ci0) + β

∫
Y

vi(θi0, y1, q̃
i(y1, q))λ

i(y, q, dy1)

≥ U i(ci, y, q).

Choose (c̃i0, θ̃
i
0) = (ci0,θ

i
0) and for all r ∈ N an optimal measurable selection (c̃ir( · ), θ̃ir( · ))

as in Theorem 7.8 equation (23) inductively. Then U i(c̃i, y, q) = vi(θi , y, q) > U i(ci, y, q)

which is a contradiction since (c̃i, θ̃i) is feasible and (ci,θi) ∈ F̂ i(θi , y, q).

62Notice that −pθ̃i + (p+ d̂)θi = p(θi − θ̃i ) + d̂θi > 0.
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2

7.3 Results related to Section 5

Lemma 7.11. Let (Y,Y ) be a measurable space with63 Y = P(Y ) and W a topological

space. Consider a bounded64 f : Y ×W → R+ and ν ∈ Prob(Y ) such that f(y, · ) is

continuous for each y belonging to a countable set A ⊂ Y with ν(A) = 1. Then the

function w 7→
∫
Y
f(y, w)ν(dy) is continuous.

Proof: Let A = {yn}n∈N ⊂ A be a countable set with ν(A) = 1 and M such that

f ≤ M . Consider a net {wα}α∈D ⊂ W converging to w ∈ W . Given ε > 0 there exists

N ∈ N and AN = {yn}n≤N ⊂ A such that ν(AcN) < ε/(4M). The continuity of f(yn, · )
allows us to �nd for each n ∈ N an αn ∈ D such that

|f(yn, wα)− f(yn, w)| < ε/2 for all α ≥ αn.

Choose α′ = max{α1, ..., αN}. Then |f(y, wα)−f(y, w)| < ε/2 for all α ≥ α′ and y ∈ AN .
Therefore, α ≥ α′ implies∣∣∣∣∫

Y

f(y, wα)ν(dy)−
∫
Y

f(y, w)ν(dy)

∣∣∣∣ ≤ ∫
Y

|f(y, wα)− f(y, w)|ν(dy)

=

∫
AN

|f(y, wα)− f(y, w)|ν(dy)

+

∫
Ac

N

|f(y, wα)− f(y, w)|ν(dy)

≤ ε/2 + 2Mε/(4M) = ε.

2

Theorem 7.12. Under Assumption 5.1, there exists a PPF recursive equilibrium.

Proof: Take any (q̂′, q′) ∈ Q̂′ × Q◦ where Q◦ are given as in notation 7.1, Q̂′ is given

as in notation 5.1 and write X i the compact set containing the set given in (16) in its

interior as in Theorem 7.4 with X i = Ci × Θi. Consider V j : Xj × Y × Q → R de�ned

by

V j(cj, θj, y, q) = uj(cj) + β

∫
Y

vj(θj, y′, q̃j(y′, q))λ(y, q, dy′)

and V k : Xk × Y × Q̂′ → R de�ned by

V k(ck, θk, y, q̂) = uk(ck) + β

∫
Y

vkpf (θ
k, y′, q̂)λk(y, dy′)

63The set P(Y ) is the set of all subsets of Y .
64Every function de�ned on Y is measurable on Y .
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where vj is given by (2) and vkpf is given by (14). De�ne Y = {(θ̄, s) ∈ RLI×S :
∑

i∈I θ̄
i =

1} and ŵi : Y → RH+1 by ŵi(y) = (θ̄id̂(s), θ̄i).

Let q̂∗ : Q̂×[0, 1]→ Q̂ be the function de�ned for each (q̂, ε) ∈ Q̂×[0, 1] by q̂∗(q̂, ε)(y) =

(1 − ε)q̂(y) + εq̂′(y) and w̃i : Y × [0, 1] → W i ∩ R++ by w̃i(y, ε) = (1 − ε)ŵi(y) + εw̄ for

some w̄ ∈ W i ∩ RL
++. Write the sets Dj = {(y, q, ε) ∈ Y ×Q× [0, 1] : (w̃j(y, ε), q) ∈ Aj}

and

Dk = {(y, q̂, ε) ∈ Y × Q̂× [0, 1] : q̂∗(q̂, ε) ∈ Q̂′ and (w̃k(y, ε), q̂(y)) ∈ Ak}.

We can apply the arguments of Theorems 7.4 and 7.5 for {w̃i}i∈I , replacing the corre-

spondence given in (17) by the correspondences ζ̃j : Dj → Xj and ζ̃k : Dk → Xk de�ned

respectively as65

ζ̃j(y, q, ε) = argmax
{
V j(xj, y, q) : xj ∈ Bj(w̃j(y, ε), q)

}
and

ζ̃k(y, q̂, ε) = argmax
{
V k(xk, y, q̂∗(q̂, ε)) : xk ∈ Bk(w̃k(y, ε), q̂(y))

}
.

Choosing εn = 1/n we �nd the functions (x̂n, q̂n) in the compact set X̂ × Q̂ satisfy-

ing the market clearing conditions for {w̃i}i∈I with xkn(y) ∈ ζ̃k(y, q̂n, 1/n) and xjn(y) ∈
ζ̃j(y, q̂n(y), 1/n) for all y ∈ Y and n ∈ N. Therefore we can choose a subnet (x̂α, q̂α, εα)α∈Λ

of the (net) sequence (x̂n, q̂n, 1/n)n∈N converging66 to (x̂, q̂, 0) ∈ X̂× Q̂× [0, 1]. Clearly, x̂

satis�es the market clearing conditions for {ŵi}i∈I because
∑

i∈I x̂
i
α(y) =

∑
i∈I w̃

i(y, εα)

for all α ∈ Λ and all y ∈ Z. Therefore x̂(y) belongs to the interior of X for each y ∈ Y .
Write Z ′ = {y ∈ Y : (y, q̂(y), 0) ∈ Dj for some j ∈ J} and notice that67 Z ⊂ Z ′. Take

y ∈ Z ′ and j ∈ J such that (y, q̂(y), 0) ∈ Dj. From the construction of the equilibrium

sequence, x̂jα(y) ∈ ζ̃j(y, q̂α(y), εα) for all α ∈ Λ. Since ζ̃j(y, · , · ) is upper hemicontinuous

then x̂j(y) ∈ ζ̃j(y, q̂(y), 0) and hence x̂j(y) is optimal. Since x̂j(y) is interior and the

utility is strictly increasing, then q̂(y) ∈ Q◦ and hence q̂ ∈ Q̂′ because Z ⊂ Z ′ and

y was chosen arbitrarily. Suppose that y 6∈ Z ′. Since there exists l ≤ L such that

q̂l(y) > 0 and using that
∑

i∈I θ̄
i
l = 1 then

∑
k∈K θ̄

k
l = 1 (otherwise y ∈ Z ′) and hence

(wk(y), q̂(y)) ∈ Ak for some k ∈ K. Thus (y, q̂, 0) ∈ Dk and x̂kα(y) ∈ ζ̃k(y, q̂α, εα) for all

α ∈ Λ implies that x̂k(y) ∈ ζ̃k(y, q̂, 0), that is, x̂k(y) is optimal and hence q̂(y) ∈ Q◦ by
local non satiation. Therefore q̂ ∈ Q̂◦ since y was chosen arbitrarily and consequently

(y, q̂(y), 0) ∈ Dj for all j ∈ J and each �xed y ∈ Y . Since x̂jα(y) ∈ ζ̃j(y, q̂α(y), εα) for

all α ∈ Λ then x̂j(y) ∈ ζ̃j(y, q̂(y), 0) and hence x̂j(y) is optimal for j ∈ J and all y ∈ Y .
65Observe that ζ̃j(y, ·) and ζ̃k(y, ·, ·) are upper hemicontinuous for each y ∈ Y such that they are

de�ned by the Berge Maximum Theorem. Moreover Y × Q̂× (0, 1] ⊂ Dk and Y ×Q× (0, 1] ⊂ Dj .
66Since (1/n)n∈N converges to zero then {εα}α∈Λ converges to zero too.
67To see that Z ⊂ Z ′, notice that y = (θ̄, s) ∈ Z and q̂(y) ∈ Q imply that there exists l ≤ L = H + 1

such that q̂l(y) > 0 and
∑
k∈K θ̄

k
l 6= 1. Since

∑
i∈I θ̄

i
l = 1 then there exists j ∈ J such that θ̄jl > 0 and

hence (y, q̂(y), 0) ∈ Dj .
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Moreover, (y, q̂(y), 0) ∈ Dk implies x̂k(y) ∈ ζ̃k(y, q̂, 0) for all k ∈ K. This is the same

to state that x̂(y) and q̂(y) constitutes a recursive equilibrium for the con�guration y

and ε = 0, that is, in the economy with the initial wealth functions {ŵi}i∈I . We use

arguments analogous to Theorem 7.4 to prove the optimality of the recursive equilibrium

if X i = RH+1
+ .

2
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