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A note on convergence of Peck-Shell and
Green-Lin mechanisms in the Diamond-Dybvig

model

Je¤erson Bertolai, Ricardo Cavalcanti�and Paulo Monteiro
FGV/EPGE

July 26, 2011

Abstract
We study the e¤ects of population size in the Peck-Shell analysis of

bank runs. We �nd that a contract featuring equal-treatment for al-
most all depositors of the same type approximates the optimum. Because
the approximation also satis�es Green-Lin incentive constraints, when the
planner discloses positions in the queue, welfare in these alternative spec-
i�cations are sandwiched. Disclosure, however, is not needed since our
approximating contract is not subject to runs.
keywords: bank fragility, role of population size, role of aggregate uncer-
tainty

JEL codes: E4, E5.

1 Introduction

In the seminal model by Diamond and Dybvig (1983), an atomless population
faces private liquidity needs. They remark that aggregate uncertainty poses a
major problem for �nancial stability since the timing of expenditures becomes
unpredictable. In this case, typical suspensions of payments should be avoided
because they cannot remove bank panics and, at the same time, support the
optimal provision of liquidity.
These conclusions led to the Diamond-Dybvig follow-up analysis of deposit

insurance, received with reservations for ignoring constraints implied by the
sequential nature of information �ows. Reinstating the theory in a sequential-
service environment became a goal for which �nite traders and independent
liquidity shocks are convenient assumptions. But then Green and Lin (2003)
proved that bank runs cannot become equilibria using a speci�cation with slack-
ing incentive constraints.1 The leading alternative in the �eld is now Peck and

�Corresponding author; ricardo.cavalcanti@fgv.br
1See Andolfato et al. (2007) for an extension which assumes disclosure of all announcements

made by early traders.
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Shell (2003). They bring back the possibility of bank panics in examples with
active constraints, and under the assumption that depositors are not informed
about their relative position in the sequence of bank service.2

After the Peck-Shell model, it is natural to expect a renewed interest in
arrangements giving rise to strong implementation (unique outcomes), possi-
bly resembling the Green-Lin setting. Nosal and Wallace (2009) have already
noticed that incentive constraints are relaxed when the planner withholds in-
formation from depositors. As a result, �Green-Lin disclosure� (of positions)
can only eliminate �Peck-Shell runs�at an average-utility loss. In this note, we
o¤er another perspective on this issue by showing that the optimal contracts of
Peck-Shell and Green-Lin speci�cations essentially converge to the same mech-
anism as the population size increases. We also �nd a high speed of convergence
in a numerical example. These results directly imply that the welfare cost of
disclosure is zero. But there are other conclusions that remind us of intuitive
ideas in Diamond and Dybvig (1983).
We �nd also that �nancial stability does not require disclosure of infor-

mation. This important feature is revealed by approximations which we call
step mechanisms. They are constructed for economies with �nite population
as follows. The �rst step is to target contracts that are desirable when the
number of impatient depositors is about average. The planner proceeds making
transfers sequentially, until indicators of the state of the world� the depositors�
withdrawals� trigger an one-shot correction forcing feasibility. In this second
step, the new regime has impatient depositors receiving a lower level of con-
sumption. We �nd three facts: (i) step mechanisms are also implementable
with disclosure; (ii) they approach the Peck-Shell optimum as the population
increases; (iii) they feature no bank runs since patient depositors are fully in-
sured.
In summary, although Peck and Shell (2003) do reintroduce runs as equilib-

rium phenomena, their model does not generate su¢ cient aggregate uncertainty
in order to make the problem quantitatively relevant. Hence, the Diamond-
Dybvig emphasis on aggregate uncertainty is still an important issue. Progress
requires avoiding approximations like ours in order to restore a trade-o¤between
welfare and multiplicity in banking arrangements.3

2 The environment

A typical economy in our analysis is hit by a shock ! with support 
 � f0; 1gN
according to the probability P (!) = pN�j!j(1 � p)j!j, where j!j =

PN
i=1 !i.

There are N ex ante identical depositors that live for two dates and derive utility
from pairs (c1; c2) of consumption provided by a bank� the benevolent social
planner, who controls the aggregate endowment Y� according to positions and

2See Ennis and Keister (2009) for examples of runs in a Green-Lin setting with correlated
shocks.

3 It also seems necessary to rule out a larger message space, such as the one used by
Cavalcanti and Monteiro (2011) to achieve strong implementation even with correlated shocks.
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announcements about preferences that are private information. Each individual
draws a unique position i in f1; :::; Ng with probability 1

N and, as a result, the
realization !i, without knowing the other coordinates of !. As a benchmark, we
assume that the individual is not informed of his position i. We shall keep the
parameter p and the per capita endowment e = Y

N constant when we consider
changes in the population size N . Person i is called impatient if !i = 0 and
called patient otherwise. The utility in the former case is Au(c1) and in the
latter is u(c1+c2), where A � 1 and u is continuous, strictly increasing, concave,
twice di¤erentiable and satis�es the Inada condition u0(0) = +1. Thus only
patient individuals can substitute consumption across dates. The resources
not consumed in date 1 are reinvested at gross rate-of-return R > 1. These
assumptions include the preferences in Green and Lin (2003) and Peck and
Shell (2003) as particular cases.
Feasible transfers must be incentive-compatible and satisfy a sequential-

service constraint. The sequential-service constraint prevents date-1 consump-
tion transferred to a person in position i to depend on information provided by
someone at position n for n > i.
A compact description of candidates for optimal allocations follows from

additional notation. Let us denote by !i the vector (!1; !2; :::; !i), and by
(!�i; z) the pro�le that results from substituting the i-th coordinate of ! by
z. Given that R > 1 we can restrict attention to transfers that assigns xi

�
!i
�

units of date-1 consumption to someone at position i if that person is impatient
(!i = 0), and yi (!) units of date-2 consumption if that person is patient (!i =
1), where 1 � i � N . The sequential-service requirement has thus shaped the
domains of xi and yi. We notice next that (xi; yi)Ni=1 is feasible if

NX
i=1

�
(1� !i)xi (!i) + !iR�1yi (!)

�
� Y , (1)

and incentive-compatible if

E

"
1

N

NX
i=1

u (yi (!�i; 1))

#
� E

"
1

N

NX
i=1

u
�
xi
�
!i�1; 0

��#
, (2)

that is, when patient individuals that are not informed of their positions agree
with revelation.
We also say that (xi; yi)Ni=1 is robust to disclosure if, in addition,

E [u (yi (!�i; 1))] � E
�
u
�
xi
�
!i�1; 0

���
, 1 � i � N , (3)

that is, when a patient individual agrees with revelation after being informed of
his position.
The planner�s problem is that of maximizing the representative-agent utility,

before types and positions are assigned,

E

"
1

N

NX
i=1

((1� !i)Au (xi (!i)) + !iu (yi (!)))
#
, (4)

subject to (1) and (2).
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3 A �continuum�with active constraints

In order to build some intuition on optimality, let us consider the following
continuum maximization problem. The goal is to choose (c1; c2) 2 R2+ to solve

max pAu (c1) + (1� p)u (c2)
s.t. pc1 + (1� p)R�1c2 � e and c2 � c1.

Lemma 1 If A � R the solution to this problem is

c1 (p) = c2 (p) =
Re

p (R� 1) + 1 2 (e;Re) :

Proof. Since u is strictly increasing at the optimum we have pc1+(1� p)R�1c2 =
e. Thus c1 = c1 (c2) = e

p �
(1�p)
p

c2
R . If f (c2) = pu (c1 (c2)) + (1� p)u (c2) and

c1 � c2 � Re
1�p then

f 0 (�) = � (1� p)
Rp

pAu0 (c1 (�)) + (1� p)u0 (�) = (1� p)
�
u0 (�)� A

R
u0 (c1(�))

�
:

Since f 0
�
Re
1�p

�
= (1� p)

�
u0
�
Re
1�p

�
� A

Ru
0 (0)

�
< 0 necessarily c2 < Re

1�p at the

optimum. However if f 0 (c2) = 0 then Ru0 (c2) = Au0 (c1) � Ru0 (c1) implies
that c1 � c2 or that the optimum cannot be interior. Therefore c2 = c1.

Remark 2 The proof of the lemma also demonstrates that any solution satis�es
c2 (p) > c1 (p) if A < R.

Given the previous remark, we restrict attention to the case A � R (also
assumed by Peck and Shell, 2003), in order to derive a simple comparison be-
tween the solution of the planner�s problem for �nite economies and that for
the continuum problem. It is a straightforward extension to consider the case
A < R.

Assumption A � R.

Proposition 3 Suppose Y = Ne. Let � (N) be the optimal welfare (4) in
a �nite economy and � (e) the maximum of the �continuum� problem. Then
� (N) � � (e).

Proof. We shall start with a candidate solution (xi; yi)Ni=1 for the planner�s
problem, use it to de�ne a feasible candidate for the continuum problem, and
then rank the corresponding objectives. De�ne the numbers

�yi = E [yi (!�i; 1)] ;

y =
1

N

NX
i=1

�yi;

�xi = E
�
xi
�
!i�1; 0

��
; 1 � i � N:
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And de�ne implicitly

u (~xi) = E
�
u
�
xi
�
!i�1; 0

���
;

u
�
~~x
�
=
1

N

NX
i=1

u (~xi) :

From (2) and Jensen�s inequality we get

u
�
y
�
� 1

N

NX
i=1

u (�yi) � E
"
1

N

NX
i=1

u (yi (!�i; 1))

#
�

E

"
1

N

NX
i=1

u
�
xi
�
!i�1; 0

��#
� 1

N

NX
i=1

u (~xi) = u
�
~~x
�

and therefore
y � ~~x: (5)

If we take expectations in the feasibility constraint (1) we obtain

NX
i=1

�
p~xi + (1� p)

�yi
R

�
� Ne: (6)

From this we also obtain

p~~x+ (1� p) y
R
� e

since ~~x � 1
N

PN
i=1 ~xi. We are now ready to evaluate the objective (4):

E

"
1

N

NX
i=1

�
(1� !i)Au

�
xi
�
!i
��
+ !iu (yi (!))

�#
=

1

N

NX
i=1

�
pAE

�
u
�
xi
�
!i�1; 0

���
+ (1� p)E [u (yi (!�i; 1))]

�
� 1

N

NX
i=1

(pAu (~xi) + (1� p)u (�yi)) � pAu
�
~~x
�
+ (1� p)u

�
y
�

= pAu
�
~~x
�
+ (1� p)u

�
y
�
� � (e) ;

which completes the proof.

4 A �lower bound�without runs

Any mechanism (xi; yi)
N
i=1 for a �nite economy de�nes a game of announce-

ments, and a bank run is a Bayesian-Nash equilibrium of this game featuring
misrepresentation of types. In this section we construct mechanisms that ap-
proximate the optimum and that are immune to runs. Because only the patient
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individuals consider misrepresentation, in order to be immune to runs it su¢ ces
to have transfers to the patient that are invariant to !. For 0 � q � 1 we de�ne

x (q) = y (q) =
Re

q (R� 1) + 1 ,

and construct the step transfer-function according to

yi (!) = y (q) ; if !i = 1;

xi (!) =

(
x (q) , if !i = 0 and

Pi
j=1 (1� !j) � Nq;

R�1x (q) , if !i = 0 and
Pi

j=1 (1� !j) > Nq:

Thus an impatient agent receives x (q) if less than Nq impatient agents are po-
sitioned before him. And he receives R�1x (q) if there are at least Nq impatient
agents before him.
We �rst notice that the constructed transfer function is feasible. We shall

use a^ b to represent minfa; bg and a+ to mean maxfa; 0g in what follows. For
each ! 2 
 let I! = N � j!j be the number of impatient agents. Now,

I! ^ (Nq)x (q) + (I! �Nq)+
x (q)

R
+ (N � I!)

y(q)

R

is equal, for I! � Nq, to

I!x (q) + (N � I!)
x (q)

R
� Nqx (q) + (N �Nq) x (q)

R
= Ne

and otherwise to

Nqx (q) + (N �Nq) x (q)
R

= Ne.

Hence, by construction, the step function is a feasible and incentive-compatible
(since yi � xi) transfer scheme which we call the step mechanism.
The following simple lemma is useful for measuring convergence.

Lemma 4 There is a constant K such that if q > p is su¢ ciently near p,

ju (x (p))� u (x (q))j � K jq � pj : (7)

Proof. Since

jx (q)� x (p)j = Re (R� 1) jq � pj
(q (R� 1) + 1) (p (R� 1) + 1) ,

a Lipschitz constant M for u in a neighborhood of x (p) yields

ju (x (q))� u (x (p))j �M jx (q)� x (p)j �M Re (R� 1)
(p (R� 1) + 1)2

jq � pj

and the desired constant K.
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We now assess the optimality of a step mechanism. Its average utility, W ,
can be written as 1

N times

E

�
I! ^ (Nq)Au (x (q)) + (I! �Nq)+Au

�
x (q)

R

�
+ (N � I!)u (x (q))

�
.

We notice that E [(N � I!)] = N (1� p) and

E [I! ^ (Nq)] = E
h
I! � (I! �Nq)+

i
= Np� E

h
(I! �Nq)+

i
,

since E[I(�)] = Np. Given these observations, W can be easily compared with
the maximum of the continuum problem according to the expression

W = �Au(x(q))� 1

N
E
h
(I! �Nq)+

i
A

�
u(x(q))� u

�
x (q)

R

��
,

where �A � pA+ (1� p). We shall see that 1
NE

h
(I! �Nq)+

i
can be bounded

using inequalities, in the spirit of Tchebyche¤�s, regarding sums of bounded,
independent random variables. A tight result is provided by Hoe¤ding (1963).4

BecauseZ
(I! �Nq)+dP �

Z
I!>Nq

(N �Nq)dP = N(1� q)P (I! > Nq),

it follows that

1

N
E
h
(I! �Nq)+

i
� (1� q) Pr (I! > Nq)

and hence that

1

N
E
h
(I! �Nq)+

i
� (1� q) Pr

�
I!
N
� p � q � p

�
� (1� q) e�2(q�p)

2N .

Now, having bounded this component, it follows that

�(e)�W � �Ak1 + (1� q) e�2(q�p)
2NAk2

where
k1 = u(x(p))� u(x(q))

and

k2 = u(x(q))� u
�
x (q)

R

�
.

The next step is to use the Lipschitz constant (independent of N), derived in
the lemma, to put

k1 � K jq � pj
4 If �X = (X1+ :::+Xn)=n and � = E[ �X], where 0 � Xi � 1 for i = 1; ::; n are independent

random variables, then Theorem 1 of Hoe¤ding (1963, p.15) establishes that Prf �X�� � tg �
e�2nt

2
.
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and
�(e)�W � �AK� + (1� q) e�2�

2NAk2, (8)

where � = jq � pj. Now, if " > 0 is given, we claim that a choice of a suitable �
leads to an error-term in (8) less than ". In order to have each of the two terms
in the right-hand side of (8) less than "

2 , notice that setting � =
"

2 �AK
takes care

of the �rst, and then a choice of N su¢ cient large (see remark below) takes care
of the second, implying j� (e)�W j < ".

Remark 5 Since p < q and A < �A, the right-hand side of (8) is bounded by
AK�+(1� p)e�2�2NAk2. The cuto¤ value of N that makes this bound equal to
" for � = "

2 �AK
can be found analytically. An approach that produces a tighter

N is to choose �N minimizing the bound in �, which gives

K

4N(1� p)k2
= �e�2�

2
NN ,

and then choose N such that the objective is made equal to ".

We have thus proved the following.

Theorem 6 By choosing the population size, the step-mechanism welfare can
be made arbitrarily close to the optimal one.

Another obvious result is recorded in the following.

Remark 7 Since patient consumption is invariant to positions, the step mech-
anism is robust to disclosure.

Because we have shown that the optimal welfare is bounded above by the
continuum maximum, it follows thatW sandwiches the welfare of optimal mech-
anisms with and without disclosure as the population increases.

5 Numerical examples

In this section we further explore the example of direct mechanisms in the Ap-
pendix B of Peck and Shell (2003). It follows by assuming homothetic prefer-
ences represented by u(c) = (1� )�1c1� .5 In order to �nd results for large N
we use an algorithm (see Bertolai and Cavalcanti, 2011, available upon request),
inspired by penalty functions, that iterates on candidate Lagrangian multipliers.
Since the Peck-Shell model has a single (truth-telling) constraint, the problem is
well behaved for large range of values of N . When the planner is forced to dis-
close positions, as in Green and Lin (2003), there is one truth-telling constraint
for each position and we can compare Lagrangian multipliers in both settings
for N � 15.
Figure 1 summarizes the main results.

5The parameters in the example are A = 10, R = 1:05,  = 2, p = 0:5, and e = 3.
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Figure 1: Convergence under the parameterization in Peck and Shell (2003)

The graph on the left of Figure 1 displays welfare, for each N , in terms of its
di¤erence to average utility under autarky. The lowest curve is that for step
mechanisms. It is computed using Q(j) �

�
N
j

�
pj(1 � p)N�j to represent the

probability of I! = j, which allow us to write average utility for the homothetic
u as

W = u(x(p))[ �A+A(1�R��1)
X
j

Q(j)(
j

N
� p)+].

The top line in the graph is the maximum for the continuum. In the scale
established by these two bounds, the curves corresponding to the benchmark
(PS) and the disclosure (GL) cases are almost identical.
The graph on the right of Figure 1 gives an explanation for this result. It

plots the Lagrangian multiplier for the benchmark as a dot for each N . It
also plots the set of multipliers for the disclosure case, linked by straight lines
in a piecewise fashion, also for each N . The multipliers are also normalized
by the value of the multiplier of the continuous problem.6 It is evident that
the set of GL multipliers converge rapidly to their PS counterparts, and that
around N = 15 there is no signi�cant di¤erence to the multiplier in the limit
(represented by unity).
We also compute how much per capita endowment should be reduced in the

continuum economy in order to deliver the same welfare as in the benchmark
economy. The endowment reduction that does the job for N = 2 is :102%.
That for N = 15 is :0061%, and for N = 100 is :0008%. This documents the
fact that the Peck-Shell speci�cation with independent shocks does not produce
signi�cant aggregate uncertainty for values of N beyond 15.
By studying the best-response correspondence for each position in the game

de�ned by disclosure (GL), we do not �nd banks runs for N � 15. Because the
payo¤s with and without disclosure change continuously and converge rapidly
to the continuous case, we do not expect existence of runs for larger values of N
under disclosure. Hence, provided that disclosure can be adopted freely, there
is virtually no welfare cost of strong implementation. In terms of per capita
endowment, the reduction that takes welfare from benchmark to disclosure for
N = 2 is :022%, but for N = 15 is a tiny :00003%.
For completeness, we report the reduction in the benchmark endowment that

is necessary for delivering the welfare of step mechanisms for some population
levels in Table 1. In a region of population sizes, doubling the population halves
the error, so that convergence is roughly linear in this metric.

6After straightforward algebra, the multiplier for the continuum problem can be expressed
as (1�p)p(A�R)

1+p(R�1) u0(x(p)). Dividing this by u0(x(p)) yields the multiplier when the truth-telling
constraint is written in utility levels.
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Table 1: Benchmark-endowment reduction for step mechanisms

Population (N) 2 15 100 200 300 400

e reduction 1:022% 0:468% 0:279% 0:127% 0:104% 0:090%

6 Final Remarks

This note identi�es two simple concepts for the Peck-Shell model with indepen-
dent shocks. The �rst is a bound on welfare. Given convexity in preferences,
we show that equal treatment is both desirable and feasible when the popula-
tion is large. The shape of incentive constraints, with only patient individuals
consuming in both dates, facilitates the argument, but it should hold more gen-
erally. The second construct is a simple mechanism that fully insures patient
depositors, allocating ex-post distortions to impatient ones at the end of the
queue. It is robust to disclosure and its welfare converges to the bound as the
population increases. These ideas put together produce a sandwich result for
both Peck-Shell and Green-Lin mechanisms.
Using the same functional forms and parameters of Peck-Shell examples, we

�nd that the approximation error, expressed in terms of per capita endowment,
is about :1% for a population near 300 individuals. Hence, the problem of
eliminating runs is easily addressed by our simple mechanism at such population
sizes.
For smaller populations, one can rely on a faster convergence between Peck-

Shell and Green-Lin mechanisms. When the population size is 15 and the other
parameters are maintained, allocations in both speci�cations are similar because
the Lagrangian multipliers are essentially the same. No runs are however found
for the setup with disclosure. The conclusion is that strong implementation
does not have a bite when the population has size 15 either.
Future research thus seems necessary to �nd speci�cations in which aggregate

uncertainty plays a more signi�cant role in limiting the provision of insurance.
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