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Abstract

Using the Pricing Equation in a panel-data framework, we construct a novel

consistent estimator of the stochastic discount factor (SDF) which relies on the fact

that its logarithm is the �common feature� in every asset return of the economy.

Our estimator is a simple function of asset returns and does not depend on any

parametric function representing preferences.

The techniques discussed in this paper were applied to two relevant issues in

macroeconomics and �nance: the �rst asks what type of parametric preference-

representation could be validated by asset-return data, and the second asks whether

or not our SDF estimator can price returns in an out-of-sample forecasting exercise.

In formal testing, we cannot reject standard preference speci�cations used in

the macro/�nance literature. Estimates of the relative risk-aversion coe¢ cient are

between 1 and 2, and statistically equal to unity.

We also show that our SDF proxy can price reasonably well the returns of stocks

with a higher capitalization level, whereas it shows some di¢ culty in pricing stocks

with a lower level of capitalization.

190 s. 1100, Rio de Janeiro, RJ 22253-900, Brazil.
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1 Introduction

In this paper, we derive a novel consistent estimator of the stochastic discount factor (or

pricing kernel) that takes seriously the consequences of the Pricing Equation established

by Harrison and Kreps (1979), Hansen and Richard (1987), and Hansen and Jagannathan

(1991), where asset prices today are a function of their expected future payo¤s discounted

by the stochastic discount factor (SDF). If the Pricing Equation is valid for all assets at

all times, it can serve as a basis to construct an estimator of the SDF in a panel-data

framework when the number of assets and time periods is su¢ ciently large. This is exactly

the approach taken here.

We start with a general Taylor Expansion of the Pricing Equation to derive the de-

terminants of the logarithm of returns once we impose the moment restriction implied by

the Pricing Equation. The identi�cation strategy employed to recover the logarithm of

the SDF relies on one of its basic properties �it is a �common feature,� in the sense of

Engle and Kozicki (1993), of every asset return of the economy. Under mild restrictions

on the behavior of asset returns, used frequently elsewhere, we show how to construct a

consistent estimator for the SDF which is a simple function of the arithmetic and geo-

metric averages of asset returns alone, and does not depend on any parametric function

used to characterize preferences.

A major bene�t of our approach is that we are able to study intertemporal asset pricing

without the need to characterize preferences or to use of consumption data; see a similar

approach by Hansen and Jagannathan (1991, 1997). This yields several advantages of

our SDF estimator over possible alternatives. First, since it does not depend on any

parametric assumptions about preferences, there is no risk of misspeci�cation in choosing

an inappropriate functional form for the estimation of the SDF. Moreover, our estimator

can be used to test directly di¤erent parametric-preference speci�cations commonly used

in �nance and macroeconomics. Second, since it does not depend on consumption data,

our estimator does not inherit the smoothness observed in previous consumption-based

estimates which generated important puzzles in �nance and in macroeconomics, such

as excess smoothness (excess sensitivity) in consumption, the equity-premium puzzle,
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etc.; see Hansen and Singleton (1982, 1983, 1984), Mehra and Prescott (1985), Campbell

(1987), Campbell and Deaton (1989), and Epstein and Zin (1991).

Our approach is related to research done in three di¤erent �elds. From econometrics,

it is related to the common-features literature after Engle and Kozicki (1993). Indeed, we

attempt to bridge the gap between a large literature on serial-correlation common features

applied to macroeconomics, e.g., Vahid and Engle (1993, 1997), Engle and Issler (1995),

Issler and Vahid (2001, 2006), Vahid and Issler (2002), Hecq, Palm and Urbain (2005),

Issler and Lima (2009), Athanasopoulos et al. (2011), and the �nancial econometrics

literature related to the SDF approach, perhaps best represented by Chapman (1998),

Aït-Sahalia and Lo (1998, 2000), Rosenberg and Engle (2002), Garcia, Luger, and Re-

nault (2003), Garcia, Renault, and Semenov (2006), Hansen and Scheinkman (2009), and

Hansen and Renault (2009). It is also related respectively to work on common factors

in macroeconomics and in �nance; see Geweke (1977), Stock and Watson (1989, 1993,

2002) Forni et al. (2000), and Bai and Ng (2004) as examples of the former, and a large

literature in �nance perhaps best exempli�ed by Fama and French (1992, 1993), Lettau

and Ludvigson (2001), Sentana (2004), and Sentana, Calzolari, and Fiorentini (2008) as

examples of the latter. From macroeconomics, it is related to the work using panel data

for testing optimal behavior in consumption, e.g., Runkle (1991), Blundell, Browning, and

Meghir (1994), Attanasio and Browning (1995), Attanasio and Weber (1995), and to the

work of Mulligan (2002) on cross-sectional aggregation and intertemporal substitution.

The set of assumptions needed to derive our results are common to many papers in

�nancial econometrics: the lack of arbitrage opportunities in pricing securities is assumed

in virtually all studies estimating the SDF, and the restrictions (discipline) we impose on

the stochastic behavior of asset returns are fairly standard. What we see as non-standard

in our approach is an attempt to bridge the gap between economic and econometric theory

in devising an econometric estimator of a random process which has a straightforward

economic interpretation: it is the common feature of asset returns. Once the estimation

problem is put in these terms, it is straightforward to apply panel-data techniques to

construct a consistent estimator for the SDF. By construction, it will not depend on any

4



parametric function used to characterize preferences, which we see as a major bene�t

following the arguments in the seminal work of Hansen and Jagannathan (1991, 1997).

In a �rst application, with quarterly data on U.S.$ real returns, ultimately using thou-

sands of assets available to the average U.S. investor, our estimator of the SDF is close

to unity most of the time and bound by the interval [0:85; 1:15], with an equivalent av-

erage annual discount factor of 0:9711, or an average annual real discount rate of 2:97%.

When we examined the appropriateness of di¤erent functional forms to represent prefer-

ences, we concluded that standard preference representations cannot be rejected by the

data. Moreover, estimates of the relative risk-aversion coe¢ cient are close to what can

be expected a priori �between 1 and 2, statistically signi�cant, and not di¤erent from

unity in statistical tests. In a second application, we tried to approximate the asymptotic

environment directly, working with monthly U.S. time-series return data with T = 336

observations, collected for a total of N = 16; 193 assets. Using the � distance measure of

Hansen and Jagannathan (1997), we show that our SDF proxy can price reasonably well

the returns of stocks with a high capitalization value, although it shows some di¢ culty in

pricing stocks of �rms with a low level of capitalization.

The next Section presents basic theoretical results, our estimation techniques, and a

discussion of our main result. Section 3 shows the results of empirical tests in macro-

economics and �nance using our estimator: estimating preference parameters using the

Consumption-based Capital Asset-Pricing Model (CCAPM) and out-of-sample evaluation

of the Asset-Pricing Equation. Section 4 concludes.

2 Economic Theory and SDF Estimator

2.1 A Simple Consistent Estimator

Harrison and Kreps (1979), Hansen and Richard (1987), and Hansen and Jagannathan

(1991) describe a general framework to asset pricing, associated to the stochastic discount
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factor (SDF), which relies on the Pricing Equation1:

Et fMt+1xi;t+1g = pi;t; i = 1; 2; : : : ; N; or (1)

Et fMt+1Ri;t+1g = 1; i = 1; 2; : : : ; N; (2)

where Et(�) denotes the conditional expectation given the information available at time

t, Mt is the stochastic discount factor, pi;t denotes the price of the i-th asset at time t,

xi;t+1 denotes the payo¤ of the i-th asset in t+ 1, Ri;t+1 =
xi;t+1
pi;t

denotes the gross return

of the i-th asset in t+ 1, and N is the number of assets in the economy.

The existence of a SDF Mt+1 that prices assets in (1) is obtained under very mild

conditions. In particular, there is no need to assume a complete set of security markets.

Uniqueness of Mt+1, however, requires the existence of complete markets. If markets

are incomplete, i.e., if they do not span the entire set of contingencies, there will be an

in�nite number of stochastic discount factors Mt+1 pricing all traded securities. Despite

that, there will still exist a unique discount factorM�
t+1, which is an element of the payo¤

space, pricing all traded securities. Moreover, any discount factorMt+1 can be decomposed

as the sum of M�
t+1 and an error term orthogonal to payo¤s, i.e., Mt+1 = M�

t+1 + �t+1,

where Et (�t+1xi;t+1) = 0. The important fact here is that the pricing implications of any

Mt+1 are the same as those of M�
t+1, also known as the mimicking portfolio.

We now state the four basic assumptions needed to construct our estimator:

Assumption 1: We assume the absence of arbitrage opportunities in asset pricing, c.f.,

Ross (1976). This must hold instantaneously for all t = 1; 2; :::; T , i.e., it must hold

at all times and for all lapses of time, however small.

Assumption 2: Let Rt = (R1;t; R2;t; ::: RN;t)
0 be an N � 1 vector stacking all asset

returns in the economy and consider the vector process fln (MtRt)g. In the time

(t) dimension, we assume that fln (MtRt)g1t=1 is covariance-stationary and ergodic

with �nite �rst and second moments uniformly across i.

1See also Rubinstein(1976) and Ross(1978).
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At a basic level, Assumption 1 is a necessary and su¢ cient condition for the Pric-

ing Equation (2) to hold; see Cochrane (2002). Under the assumptions in Hansen and

Renault (2009), Assumption 1 implies (2). In any case, (2) is present, either implicitly

or explicitly, in virtually all studies in �nance and macroeconomics dealing with asset

pricing and/or with intertemporal substitution; see, e.g., Hansen and Singleton (1982,

1983, 1984), Mehra and Prescott (1985), Epstein and Zin (1991), Fama and French (1992,

1993), Attanasio and Browning (1995), Lettau and Ludvigson (2001), Garcia, Renault,

and Semenov (2006), Hansen and Scheinkman (2009) and Hansen and Renault (2009). It

is essentially equivalent to the �law of one price��where securities with identical payo¤s

in all states of the world must have the same price. We impose its validity instantaneously

since we will derive a logarithmic representation for (2), which allows exact measure of

instantaneous returns for all assets.

The absence of arbitrage opportunities has also two other important implications. The

�rst is there exists at least one stochastic discount factorMt, for whichMt > 0; see Hansen

and Jagannathan (1997). This is due to the fact that, when we consider the existence

derivatives on traded assets, arbitrage opportunities will arise if Mt � 0. Positivity of

some Mt is required here because we will take logs of Mt in proving our asymptotic

results2. The second is that the absence of arbitrage requires that a weak law-of-large

numbers (WLLN) holds in the cross-sectional dimension for the level of gross returns Ri;t

(Ross (1976, p. 342)). This controls the degree of cross-sectional dependence in the data

and constitutes the basis of the arbitrage pricing theory (APT). Applying the Ergodic

Theorem in the cross-sectional dimension, implies that we should also expect a WLLN to

hold for its logarithmic counterpart (lnRi;t), forming the basis of our asymptotic results.

Assumption 2 controls the degree of time-series dependence in the data. Across time

(t), asset returns have clear signs of heterogeneity: di¤erent means and variances, and con-

ditional heteroskedasticity; as examples of the latter see Bollerslev, Engle and Wooldridge

(1988) and Engle and Marcucci (2006). Of course, weak-stationary processes can display

2Recall that all CCAPM studies implicitly assume Mt > 0, since Mt = � u0(ct)
u0(ct�1)

> 0, where ct is
consumption, � 2 (0; 1) and u0 (�) > 0.
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conditional heteroskedasticity as long as second moments are �nite; see Engle (1982).

Therefore, Assumption 2 allows for heterogeneity in mean returns and conditional het-

eroskedasticity in returns used in computing our estimator. Uniformity across (i) is re-

quired for technical reasons, since we want the mean across �rst and second moments of

returns to be de�ned.

To construct a consistent estimator for fMtg we consider a second-order Taylor Ex-

pansion of the exponential function around x; with increment h; as follows:

ex+h = ex + hex +
h2ex+�(h)�h

2
; (3)

with �(h) : R! (0; 1) : (4)

It is important to stress that (3) is an exact relationship and not an approximation. This

is due to the nature of the function �(h) : R ! (0; 1), which maps into the open unit

interval. Thus, the last term is evaluated between x and x+h, making (3) to hold exactly.

For the expansion of a generic function, �(�) would depend on x and h. However,

dividing (3) by ex:

eh = 1 + h+
h2e�(h)�h

2
; (5)

shows that (5) does not depend on x. Therefore, we get a closed-form solution for �(�) as

function of h alone:

�(h) =

8><>:
1
h
� ln

�
2�(eh�1�h)

h2

�
; h 6= 0

1=3; h = 0;

where �(�) maps from the real line into (0; 1). To connect (5) with the Pricing Equation

(2), we impose h = ln(MtRi;t) in (5) to obtain:

MtRi;t = 1 + ln(MtRi;t) +
[ln(MtRi;t)]

2 e�(ln(MtRi;t))�ln(MtRi;t)

2
; (6)

which shows that the behavior of MtRi;t will be governed solely by that of ln(MtRi;t).
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It is useful to de�ne the random variable collecting the higher order term of (6):

zi;t �
1

2
� [ln(MtRi;t)]

2 e�(ln(MtRi;t))�ln(MtRi;t):

Taking the conditional expectation of both sides of (6) gives:

Et�1 (MtRi;t) = 1 + Et�1 (ln(MtRi;t)) + Et�1 (zi;t) . (7)

As a direct consequence of the Pricing Equation, the left-hand side cancels with the �rst

term of the right-hand side of (7), yielding:

Et�1 (zi;t) = �Et�1 fln(MtRi;t)g : (8)

This �rst shows that Et�1 (zi;t) will be solely a function of Et�1 fln(MtRi;t)g if the

Pricing Equation holds, otherwise it will also be a function of Et�1(MtRi;t). Second,

zi;t � 0 for all (i; t). Therefore, Et�1 (zi;t) � 
2i;t � 0, and we denote it as 
2i;t to stress the

fact that it is non-negative.

Let 
2t �
�

21;t; 


2
2;t ; :::; 


2
N;t

�0
and "t � ("1;t; "2;t; :::; "N;t)0 stack respectively the condi-

tional means 
2i;t and the forecast errors "i;t. Then, from the de�nition of "t we have:

ln(MtRt) = Et�1fln(MtRt)g+ "t

= �
2t + "t: (9)

Denoting by rt = ln (Rt), which elements are denoted by ri;t = ln (Ri;t), and by mt =

ln (Mt), (9) yields the following system of equations:

ri;t = �mt � 
2i;t + "i;t; i = 1; 2; : : : ; N: (10)

The system (10) shows that the (log of the) SDF is a common feature, in the sense

of Engle and Kozicki (1993), of all (logged) asset returns. For any two economic series,

a common feature exists if it is present in both of them and can be removed by linear
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combination. Hansen and Singleton (1983) were the �rst authors to exploit this property

of (logged) asset returns, although the concept was only proposed 10 years later by Engle

and Kozicki.

Looking at (10), asset returns are decomposed into three terms, but we focus on the

�rst � the logarithm of the SDF, mt, which is common to all returns and has random

variation only across time. Notice that mt can be removed by linearly combining returns:

for any two assets i and j, ri;t � rj;t will not contain the feature mt, which makes (1;�1)

a �cofeature vector�for all asset pairs.

We label (10) as a quasi-structural system for logged returns, since its foundation is

the Asset-Pricing Equation (1). Equation (10) can be thought as a factor model for ri;t,

where the common factormt has only time-series variation. Indeed, this is the logarithmic

counterpart of the common-factor model assumed by Ross (1976) for the level of returns

Ri;t, where here the Pricing Equation (1) provides a solid structural foundation to it.

The sources of cross-sectional variation in every equation of the system (10) are "i;t

and 
2i;t. However, as we show next, the terms 

2
i;t are a linear function of lagged "i;t, tying

the cross-sectional variation in (10) ultimately to "i;t.

Start with Assumption 2. Because ln(MtRt) is weakly stationary, for every one of its

elements ln(MtRi;t), there exists a Wold representation, which is a linear function of the

innovation in ln(MtRi;t), de�ned as "i;t = ln(MtRi;t) � Et�1fln(MtRi;t)g and stacked in

"t � ("1;t; "2;t; :::; "N;t)
0. Therefore, the individual Wold representations can be written

as:

ln(MtRi;t) = �i +
1X
j=0

bi;j"i;t�j; i = 1; 2; : : : ; N; (11)

where, for all i, bi;0 = 1, j�ij < 1,
P1

j=0 b
2
i;j < 1, and "i;t is a multivariate white noise.

Using (8), in light of (11), leads to:


2i � E(zi;t) = �E fln(MtRi;t)g = ��i; (12)

which is well de�ned and time-invariant under Assumption 2. Taking conditional expec-

tations Et�1 (�) of (11), allows computing 
2i;t = Et�1 (zi;t) = �E fln(MtRi;t)g, leading to
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the following system, once we consider (10):

ri;t = �mt � 
2i + "i;t �
1X
j=1

bi;j"i;t�j; i = 1; 2; : : : ; N: (13)

This is just a di¤erent way of writing (10)3. Because mt is devoid of cross-sectional

variation, (13) shows that the ultimate source of cross-sectional variation for ri;t is "i;t

(and its lags). This paves the way to derive a consistent estimator for Mt based on the

existence of a WLLN for f"i;tgNi=1. This is consistent with lim
N!1

V AR
�
1
N

PN
i=1 "i;t

�
= 0,

but the critical issue is whether or not 1
N

PN
i=1 "i;t

p�! 0. If that were the case, it would

be straightforward to compute plim
N!1

1
N

PN
i=1 ri;t + mt and then construct a a consistent

estimator for Mt.

Convergence in probability for logged returns ri;t is not surprising, given the assump-

tion of convergence in probability for the levels of returns Ri;t behind the APT. After all,

ri;t = ln (Ri;t) is a measurable transformation of Ri;t. By applying the Ergodic Theorem

in the cross-sectional dimension, we should also expect that a WLLN holds for fri;tgNi=1
as well. Despite that, one may be skeptical of:

1

N

NX
i=1

"i;t
p�! 0: (14)

Equation (14) may seem restrictive because we can always decompose "i;t as:

"i;t = ln(MtRi;t)� Et�1fln(MtRi;t)g (15)

= [mt � Et�1 (mt)] + [ri;t � Et�1 (ri;t)] = qt + vi;t; (16)

3Here it becomes obvious that:


2i;t = 
2i +
1X
j=1

bi;j"i;t�j

= ��i +
1X
j=1

bi;j"i;t�j :
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where qt = [mt � Et�1 (mt)] is the innovation in mt and vi;t = [ri;t � Et�1 (ri;t)] is the

innovation in ri;t. Therefore, to get plim
N!1

1
N

PN
i=1 "i;t = 0, we need,

plim
N!1

1

N

NX
i=1

vi;t = �qt, (17)

which may seem like a knife-edge restriction on the cross-sectional distribution of vi;t.

Indeed, it is not. To show it, consider the argument of projecting vi;t into qt, collecting

terms, and decomposing "i;t as follows:

"i;t = �iqt + �i;t, where �i �
COV ("i;t; qt)
VAR (qt)

= 1 +
COV (vi;t; qt)
VAR (qt)

. (18)

Here, we collect all that is pervasive in qt and thus it is reasonable to assume that

plim
N!1

1
N

PN
i=1 �i;t = 0. In this context of the factor model (18), in order to get plim

N!1

1
N

PN
i=1 "i;t =

0, we must have:

plim
N!1

1

N

NX
i=1

�i;t = ��qt, where lim
N!1

1

N

NX
i=1

�i = �. Thus, (19)

lim
N!1

1

N

NX
i=1

�i = � = 0, or lim
N!1

1

N

NX
i=1

COV (vi;t; qt)
VAR (qt)

= �1: (20)

Equation (20) highlights that the issue is not one of a knife-edge restriction. In order

to obtain plim
N!1

1
N

PN
i=1 "i;t = 0, and use plim

N!1

1
N

PN
i=1 ri;t + mt to construct a consistent

estimator for Mt, the average factor loading must obey lim
N!1

1
N

PN
i=1 �i = 0. Notice that

vi;t is an innovation coming from data (ri;t), but qt is an innovation coming from the latent

variable mt, which makes this an issue of separate identi�cation of the factor (qt) and of

its respective factor loadings (�i).

Next, we state our most important result: a novel consistent estimator of the sto-

chastic process fMtg1t=1. Instead of using the Ergodic Theorem, we chose a more intuitive

asymptotic approach based on no-arbitrage, where the quasi-structural system (10) serves

as a basis to measure instantaneous returns of no-arbitrage portfolios. In our proof, we
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use directly the projection argument in (18) to show that no-arbitrage will indeed deliver

the seemingly knife-edge restriction lim
N!1

1
N

PN
i=1 �i = 0. In our discussion of the main

result below, we exploit further the econometric identi�cation issue raised above.

Theorem 1 Under Assumptions 1 and 2, as N; T ! 1, with N diverging at a rate at

least as fast as T , the realization of the SDF at time t, denoted by Mt, can be consistently

estimated using: cMt =
R
G

t

1
T

TP
j=1

�
R
G

j R
A

j

� ;

where R
G

t =
QN
i=1R

� 1
N

i;t and R
A

t =
1
N

NP
i=1

Ri;t are respectively the geometric average of the

reciprocal of all asset returns and the arithmetic average of all asset returns.

Proof. Consider a cross-sectional average of (13):

1

N

NX
i=1

ri;t +mt = �
1

N

NX
i=1


2i +
1

N

NX
i=1

"i;t �
1

N

NX
i=1

1X
j=1

bi;j"i;t�j; (21)

and examine convergence in probability of 1
N

PN
i=1 ri;t +mt using (21).

First, because every term ln(MtRi;t) has a �nite mean �i = � 
2i , uniformly across i,

the limit of their average must be �nite, i.e.,

lim
N!1

� 1

N

NX
i=1


2i � �
2 <1: (22)

Second, there is no correlation across time for the elements in "t � ("1;t "2;t ::: "N;t)
0,

due to the assumption of weak stationarity for the vector process fln (MtRt)g. Hence,

E ("i;t "h;t�j) = 0, for all i and h, and all j � 1. Therefore, the asymptotic variance of
1
N

PN
i=1 ri;t +mt in the cross-sectional dimension has the following form:

lim
N!1

V AR

 
1

N

NX
i=1

"i;t

!
+ lim
N!1

V AR

 
1

N

NX
i=1

bi;1"i;t�1

!
+ lim
N!1

V AR

 
1

N

NX
i=1

bi;2"i;t�2

!
+� � � .

(23)
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Below, we will exploit the form of (23) in proving consistency of our estimator.

Notice that we have assumed that the absence of arbitrage opportunities must hold

instantaneously, where the level of returns Ri;t and its instantaneous counterpart ri;t are

identical. It is then intuitive that if a WLLN applies to fRi;tgNi=1 it should apply to

fri;tgNi=1 as well.

Large-sample arbitrage portfolios are characterized by weights wi, all of order N�1 in

absolute value, stacked in a vector W = (w1; w2; :::; wN)
0, with the following properties:

(a) lim
N!1

W 0

0BBBBBB@
1

1
...

1

1CCCCCCA = 0; and (b) lim
N!1

VAR

26666664W
0

0BBBBBB@
r1;t

r2;t
...

rN;t

1CCCCCCA

37777775 = 0: (24)

Condition (a) implies that these portfolios cost nothing. Condition (b) implies that their

return is not random. In this context, no-arbitrage requires that all large-sample portfolios

W must also have a zero limit return, in probability:

plim
N!1

W 0

0BBBBBB@
r1;t

r2;t
...

rN;t

1CCCCCCA = 0: (25)

Notice that we need strict equality in (25). Condition plim
N!1

W 0

0BBBBBB@
r1;t

r2;t
...

rN;t

1CCCCCCA � 0 does not

work because if we �nd a portfolioW for which plim
N!1

W 0

0BBBBBB@
r1;t

r2;t
...

rN;t

1CCCCCCA < 0, we could violate no

14



arbitrage by using portfolio �W : it obeys (24) and would have plim
N!1

�W 0

0BBBBBB@
r1;t

r2;t
...

rN;t

1CCCCCCA > 0.

Start with the stacked quasi-structural form for logged returns:0BBBBBB@
r1;t

r2;t
...

rN;t

1CCCCCCA = �mt

0BBBBBB@
1

1
...

1

1CCCCCCA�
0BBBBBB@
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22
...


2N

1CCCCCCA+
0BBBBBB@
"1;t

"2;t
...

"N;t

1CCCCCCA+
0BBBBBB@

P1
j=1 b1;j"1;t�jP1
j=1 b2;j"2;t�j

...P1
j=1 bN;j"N;t�j

1CCCCCCA
From condition (a) in (24), every large-sample arbitrage portfolios removes the termmt

from the linear combination. From condition (b), in the limit, the variance of the arbitrage

portfolio must be zero, which poses a constraint on the cross-sectional dependence of

f"i;tgNi=1.

In what follows, we will prove that (23) is zero. Moreover, we will also prove that

plim
N!1

1
N

PN
i=1 "i;t = 0, plim

N!1

1
N

PN
i=1 bi;1"i;t�1 = 0, etc., using the factor model (18) for "i;t.

To do so, we construct no-arbitrage portfolios and investigate what type of restriction

they impose on the cross-sectional dependence of f"i;tgNi=1. We also show that portfolios

W , which obey (24) and for which plim
N!1

W 0

0BBBBBB@
r1;t

r2;t
...

rN;t

1CCCCCCA = 0, are inconsistent with:

"i;t = �iqt + �i;t, where
1

N

NX
i=1

�i;t
p�! 0: (26)

Thus, a necessary condition for no-arbitrage is that "i;t does not contain a factor qt as in

(26) above.

We start with the simplest form of limit arbitrage portfolios �buying 1=N units of

even assets and selling 1=N units of odd assets; see the example in Chamberlain and

15



Rothschild (1983). We have two equally weighted portfolios (bought and sold assets)

whose instantaneous returns are, respectively:

re;t = �mt �
1

N=2

N=2X
i=1


22i +
1

N=2

N=2X
i=1

"2i;t �
1

N=2

N=2X
i=1

1X
j=1

b2i;j"2i;t�j:

ro;t = �mt �
1

N=2

N=2X
i=1


22i�1 +
1

N=2

N=2X
i=1

"2i�1;t �
1

N=2

N=2X
i=1

1X
j=1

b2i�1;j"2i�1;t�j

The instantaneous return of the arbitrage portfolio is:

re;t � ro;t = � 1

N=2

N=2X
i=1

�

22i � 
22i�1

�
+

1

N=2

N=2X
i=1

("2i;t � "2i�1;t)

� 1

N=2

N=2X
i=1

1X
j=1

(b2i;j"2i;t�j � b2i�1;j"2i�1;t�j) ; (27)

which clearly eliminates the common-factor mt in the linear combination of instantaneous

returns. From (25), no arbitrage in large samples implies:

0 = plim
N!1

1

N=2

N=2X
i=1

("2i;t � "2i�1;t) ;

0 = plim
N!1

1

N=2

N=2X
i=1

(b2i;1"2i;t�1 � b2i�1;1"2i�1;t�1) ;

0 = plim
N!1

1

N=2

N=2X
i=1

(b2i;2"2i;t�2 � b2i�1;2"2i�1;t�2) ; � � � etc. (28)

Notice that (28) requires convergence in probability for all stochastic terms in (27), since

there is no cross-correlation of errors across lags of "i;t. Indeed, this is the only way their

sum could converge to zero, in probability.

We look now at the �rst term of (28) in isolation, accounting for the factor structure

16



in (26):

0 = plim
N!1

1

N=2

N=2X
i=1

("2i;t � "2i�1;t)

= plim
N!1

1

N=2

N=2X
i=1

��
�2iqt + �2i;t

�
�
�
�2i�1qt + �2i�1;t

��
=

24 lim
N!1

1

N=2

N=2X
i=1

(�2i � �2i�1)

35 qt + plim
N!1

1

N=2

N=2X
i=1

�
�2i;t � �2i�1;t

�

=

24 lim
N!1

1

N=2

N=2X
i=1

(�2i � �2i�1)

35 qt: (29)

The cross-sectional dimension o¤ers no natural order of assets, which is taken to be

arbitrary here. Since (29) must hold for every possible permutation of odd and even

assets, and for all possible realizations of qt, in order to (29) to hold, we must have:

0 = lim
N!1

1

N=2

N=2X
i=1

(�2i � �2i�1) ; (30)

i.e., limit weights of all permutations of odd and even assets must cancel out. Notice

that this condition does not preclude the existence of a factor model as in (26) above.

However, the factor model must have the following structure:

"i;t = �qt + �i;t;

i.e., we must have �i = � across all assets. In this context, in order to rule out a factor

structure we must have � = 0. This will indeed be the case, as we show below.

To exclude a factor structure for "i;t, we now look into the all the other (in�nite) terms

in (27). For lag one and for higher lags of "i;t, notice that we have potentially di¤erent

loadings for the odd and even error terms in (32) above, due to the existence of the double

17



array fbi;jg. This requires:

0 =

24 lim
N!1

1

N=2

N=2X
i=1

(�2ib2i;1 � �2i�1b2i�1;1)

35 qt�1;
0 =

24 lim
N!1

1

N=2

N=2X
i=1

(�2ib2i;2 � �2i�1b2i�1;2)

35 qt�2;
...

etc. (31)

Notice that, if "i;t contains a common factor qt, even if is eliminated for a given lag of "i;t,

and all permutations of assets, it will not be eliminated at other lags, because the limit

loadings will not necessarily match4. In this case,

plim
N!1

(re;t � ro;t)

will necessarily be a linear function of qt and (of some or all) of its lags. Hence, for some

realization of the random process fqtg1t=1, we could not prevent that

plim
N!1

(re;t � ro;t) > 0 or plim
N!1

(re;t � ro;t) < 0 holds.

However, this violates no arbitrage: there exists a portfolio W (or �W ), which obeys

(24) �cost nothing and have no uncertain return �and for which plim
N!1

W 0

0BBBBBB@
r1;t

r2;t
...

rN;t

1CCCCCCA > 0.

Considering all possible realizations fqtg1t=1, the only way to get plim
N!1

(re;t � ro;t) = 0

4Of course, we can always impose a structure to the double array fbi;jg such that the terms in brackets
in (31) all cancel out. However, the fbi;jg come from the Wold decomposition, so we must treat them as
given.
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is to rule out completely any common factor qt in "i;t. This leads to:

"i;t = �i;t, with
1

N

NX
i=1

�i;t
p�! 0;

implying:

plim
N!1

1

N

NX
i=1

"i;t = plim
N!1

1

N

NX
i=1

�i;t = 0;

plim
N!1

1

N

NX
i=1

bi;1"i;t�1 = plim
N!1

1

N

NX
i=1

bi;1�i;t�1 = 0;

...

etc. (32)

Up to now, we only discussed one possible large-sample arbitrage portfolio �buying

1=N units of even assets and selling 1=N units of odd assets. But this is su¢ cient to show

that (32) holds and we need not discuss any further other no-arbitrage portfolios5.

Indeed, (32) proves that:

1

N

NX
i=1

ri;t +mt
p�! lim

N!1
� 1

N

NX
i=1


2i � 
2: (33)

In excluding the factor structure for "i;t, we had to resort to the restrictions implied

by "i;t�1 and by higher lags of "i;t. However, even for the special case where the Wold

representation has an MA (0) structure, i.e.,

ri;t = �mt � 
2i + "i;t; i = 1; 2; : : : ; N; (34)

5Considering all possible arbitrage portfolios only reinforces the previous result of ruling out a common
factor model for "i;t, since we will necessarlily have to consider alternative weighting schemes to 1

N and
� 1
N for even and odd assets, respectively. If the number of assets is �large,�there is an in�nite number

of arbitrage portfolios.
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our result still holds6.

As before, our starting point is the fact that ri;t + mt is weakly stationary, which

allows writing it as a linear function of the innovation "i;t as in (11) or (34) above as a

consequence of Wold�s Decomposition. As is well known, this proposition relies on the

existence of stable second moments, i.e., Assumption 2. Because the relationship between

ri;t+mt and "i;t is solely linear, we �rst eliminate the dependence of "i;t onmt by projecting

"i;t onto mt. Using (34) and collecting terms leads to:

ri;t = ��imt � 
2i + �i;t; i = 1; 2; : : : ; N; (35)

where, by construction, �i � 1�
COV("i;t;mt)

VAR(mt)
and it becomes clear that plim

N!1

1
N

PN
i=1 �i;t = 0,

since �i;t is devoid of any pervasive factor. Notice that �i is non-random for all i. Recall

the Pricing Equation using the unconditional expectation operator:

E [MtRi;t] = 1; i = 1; 2; : : : ; N: (36)

Assume the usual regularity conditions and partially di¤erentiate (36) with respect to mt:

@

@mt

E [exp (ri;t +mt)] = E
�
@

@mt

exp (ri;t +mt)

�
=

E
�
exp (ri;t +mt)�

�
@ri;t
@mt

+ 1

��
= 0; i = 1; 2; : : : ; N:

Now, partially di¤erentiate (35) with respect to mt, recalling that �i;t does not depend

on mt. The result is the non-random coe¢ cient @ri;t
@mt

= ��i. It then follows that, for

i = 1; 2; : : : ; N :

E
�
exp (ri;t +mt)�

�
@ri;t
@mt

+ 1

��
= E [MtRi;t]�

�
@ri;t
@mt

+ 1

�
= 1�

�
@ri;t
@mt

+ 1

�
= 0:

6It is important to stress that (34) encompasses the canonical log-Normal, homoskedastic case, for�
Mt; R1;t; R2;t; � � � RN;t

�0
, which is so prevalent in macroeconomics, but it is not constrained

by these restrictive assumptions, including as well for the more general heteroskedastic case where log-
Normality is dispensed with.
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Thus:
@ri;t
@mt

= ��i = �1; i = 1; 2; : : : ; N;

leading to,

ri;t = �mt � 
2i + �i;t; i = 1; 2; : : : ; N: (37)

Compare now (34) with (37) to conclude that "i;t = �i;t, which is devoid of any

pervasive factor7, and for which 1
N

PN
i=1 "i;t

p�! 0 holds. As before, this proves that (33)

holds8.

From (33), using Slutsky�s Theorem, we can then propose a consistent estimator for

a tilted version of Mt (e

2 �Mt = fMt):

cfM t =
NY
i=1

R
� 1
N

i;t : (39)

We now show how to estimate e

2
consistently and therefore how to �nd a consistent

estimator for Mt. Multiply the Pricing Equation for every asset by e

2
to get:

e

2

= Et�1
�
e

2

2 MtRi;t

�
= Et�1

nfMtRi;t

o
:

Take now the unconditional expectation, use the law-of-iterated expectations, and average

across i = 1; 2; :::; N to get:

e

2

=
1

N

NX
i=1

E
nfMtRi;t

o
:

Because of Assumption 2, where fln (MtRt)g1t=1 is covariance-stationary and ergodic,fMtRi;t will keep these properties due to the Ergodic Theorem. Thus, it is straightforward

7From (37), it is straightforward to obtain a factor model for innovations as in (16). Take conditional
expectations of (37). Subtracting it from (37) yields:

vi;t = �qt + �i;t, (38)

which makes clear that "i;t = �i;t and that
1
N

PN
i=1 "i;t

p�! 0.
8Going back to the canonical log-Normal, homoskedastic case, if the conditional distribution of ri;t+mt

is N
�
� i; �

2
i

�
, i = 1; 2; : : : ; N , then 
2i =

�2i
2 . Still, "i;t = �i;t and

1
N

PN
i=1 "i;t

p�! 0.
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to obtain a consistent estimator for e

2
using (39):

ce
2 = 1

N

NX
i=1

 
1

T

TX
t=1

cfM tRi;t

!
=
1

T

TX
t=1

 
NY
i=1

R
� 1
N

i;t

1

N

NX
i=1

Ri;t

!
=
1

T

TX
t=1

R
G

t R
A

t ;

where, in this last step, N must diverge at a rate at least as fast as T , otherwise we would

not be able to exchange fMt by
cfM t.

We can �nally propose a consistent estimator for Mt:

cMt =
cfM tce
2 = R

G

t

1
T

PT
j=1R

G

j R
A

j

;

which is a simple function of asset returns.

2.2 Discussion

The Asset-Pricing Equation is a non-linear function of the SDF and of returns, which

may question the assumption of the existence of a linear factor model relating returns

to SDF factors. We show above how to derive an exact log-linear relationship between

returns and the SDF, which allows a natural one-factor model linking ri;t, i = 1; 2; � � � and

mt. Under the assumption that no-arbitrage holds instantaneously for all periods of time,

large-sample arbitrage portfolios may be constructed using this one-factor model. They

remove the common-factor component of returns, but must also remove any common

component of the pricing errors "i;t, since their returns must be non-random in the limit

and their limit returns must be zero. Hence, a WLLN applies to the simple average of

the cross-sectional errors of the exact log-linear models for returns. It is key to our proof

to assume that no-arbitrage holds instantaneously. Indeed, there is no reason why one

should dispense with this assumption.

Although our discussion in the previous section points out some skepticism regarding

whether or not one should expect 1
N

PN
i=1 "i;t

p�! 0 to hold, since a natural decomposition

of "i;t entails the factor qt, we show that, the weights of qt on this decomposition must all

be nil, otherwise we violate no-arbitrage. It is perhaps more instructive to discuss this
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issue using the quasi-structural system (10), where we try to separately identify mt and

its respective factor loadings. Applying a projection argument to (10), consider the factor

model relating fri;t and fmt, which are demeaned versions of ri;t and mt respectively:

fri;t = ��ifmt + �i;t, (40)

Average (40) across i, taking the probability limit to obtain:

plim
N!1

1

N

NX
i=1

fri;t = � lim
N!1

1

N

NX
i=1

�i

!fmt = �� �fmt; (41)

where the last equality de�nes notation. Equation (41) shows that we cannot separately

identify � and fmt. We have only one equation: the left-hand-side has observables, but

the right-hand-side has two unknowns (� and fmt). Therefore, we need an additional

equation (restriction) to uniquely identify fmt. As shown above, no-arbitrage o¤ers � = 1.

This happens either directly, by forming arbitrage portfolios and imposing no arbitrage,

or indirectly, by consequence of di¤erentiating the Pricing Equation with respect to mt,

recalling that no arbitrage implies the existence of the Pricing Equation. The unit elas-

ticity is a natural consequence of the Asset Pricing Equation, since the product MtRi;t

must be unity, on average. Hence, increases in Mt must be o¤set by decreases in Ri;t in

the same magnitude, on average.

As is well known, an alternative route to separately identify factors and factor loadings

is the application of large-sample principal-component and factor analyses; see, e.g., Stock

and Watson (2002). However, there is an indeterminacy problem implicit in these meth-

ods; see Lawley and Maxwell (1971) for a classic discussion. Denote by �r = E
�ertert0� the

variance-covariance matrix of logged returns, where ert stacks demeaned logged returns fri;t.
The �rst principal component of ert is a linear combination �0ert with maximal variance.
As discussed in Dhrymes (1974), since its variance is �0�r�, the problem has no unique

solution �we can make �0�r� as large as we want by multiplying � by a constant � > 1.

Indeed, we are facing a scale problem, which is solved by imposing unit norm for �: in
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a �xed N setting we have �0� = 1, and in a large-sample setting we have lim
N!1

�0� = 1.

Alternatively, the no-arbitrage solution to the indeterminacy problem is to set the mean

factor loading in (40) to unity: lim
N!1

1
N

NX
i=1

�i = � = 1. Intuitively, this is equivalent to

perform a reparameterization of the factor loadings from �i to �i=�.

2.3 Properties of the Mt Estimator

The �rst property of our estimator of Mt, labelled cMt, is that it is a function of asset-

return data alone. No assumptions whatsoever about preferences have been made so far.

Moreover, it is completely non-parametric.

Second, because cMt is a consistent estimator, it is interesting to discuss to what it

converges to. Of course, the SDF is a stochastic process: fMtg. Since convergence in

probability requires a limiting degenerate distribution, our estimator cMt converges to the

realization of M at time t. One important issue is that of identi�cation: to what type

of SDF cMt converges to? Here, we must distinguish between complete and incomplete

markets for securities. In the complete markets case, there is a unique positive SDF

pricing all assets, which is identical to the mimicking portfolio M�
t . Since our estimator

is always positive, cMt converges to this unique pricing kernel. Under incomplete markets,

no-arbitrage implies that there exists at least one SDF Mt such that Mt > 0. There may

be more than one. If there is only one positive SDF, then cMt converges to it. If there are

more than one, then cMt converges to a convex combination of those positive SDFs. In

any case, since all of them have identical pricing properties, the pricing properties of cMt

will approach those of all of these positive SDFs.

Third, from a di¤erent angle, it is straightforward to verify that our estimator was

constructed to obey:

plim
N;T!1

1

N

NX
i=1

1

T

TX
t=1

cMtRi;t = 1; (42)

which is a natural property arising from the moment restrictions entailed by the Asset-

Pricing Equation (2), when populational means of the time-series and of the cross-sectional

distributions are replaced by sample means. In �nite samples, it does not price correctly
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any speci�c asset, but it will price correctly all the assets used in computing it.

2.4 Comparisons with the Literature

As far as we are aware of, early studies in �nance and macroeconomics dealing with the

SDF did not try to obtain a direct estimate of it as we do: we treated fMtg as a stochastic

process and constructed an estimate cMt, such that cMt �Mt
p! 0. Conversely, most of

the previous literature estimated the SDF indirectly as a function of consumption data

from the National Income and Product Accounts (NIPA), using a parametric function to

represent preferences; see Hansen and Singleton (1982, 1983, 1984), Brown and Gibbons

(1985) and Epstein and Zin (1991). As noted by Rosenberg and Engle (2002), there

are several sources of measurement error for NIPA consumption data that can pose a

signi�cant problem for this type of estimate. Even if this were not the case, there is always

the risk that an incorrect choice of parametric function used to represent preferences will

contaminate the �nal SDF estimate.

Hansen and Jagannathan (1991, 1997) point out that early studies imposed potentially

stringent limits on the class of admissible asset-pricing models. They avoid dealing with a

direct estimate of the SDF, but note that the SDF has its behavior (and, in particular, its

variance) bounded by two restrictions. The �rst is Pricing Equation (2) and the second

is Mt > 0. They exploit the fact that it is always possible to project M onto the space of

payo¤s, which makes it straightforward to express M�, the mimicking portfolio, only as

a function of observable returns:

M�
t+1 = �

0
N

�
Et
�
Rt+1R

0
t+1

���1
Rt+1; (43)

where �N is a N � 1 vector of ones, and Rt+1 is a N � 1 vector stacking all asset returns.

Although they do not discuss it at any length in their paper, equation (43) shows that it

is possible to identify M�
t+1 in the Hansen and Jagannathan framework. As in our case,

(43) delivers an estimate of the SDF that is solely a function of asset returns and can

therefore be used to verify whether preference-parameter values are admissible or not.
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If one regards (43) as a means to identify M�, there are some limitations that must

be pointed out. First, it is obvious from (43) that a conditional econometric model

is needed to implement an estimate for M�
t+1, since one has to compute the condi-

tional moment Et
�
Rt+1R

0
t+1

�
. To go around this problem, one may resort to the use

of the unconditional expectation instead of conditional expectation, leading to M�
t+1 =

�0N
�
E
�
Rt+1R

0
t+1

���1
Rt+1. Second, as the number of assets increases (N !1), the use

of (43) will su¤er numerical problems in computing an estimate of
�
Et
�
Rt+1R

0
t+1

���1
. In

the limit, the matrix Et
�
Rt+1R

0
t+1

�
will be of in�nite order. Even for �nite but large N

there will be possible singularities in it, as the correlation between some assets may be very

close to unity. Moreover, the number of time periods used in computing Et
�
Rt+1R

0
t+1

�
or E

�
Rt+1R

0
t+1

�
must be at least as large as N , which is infeasible for most datasets of

asset returns.

Our approach is related to the return to aggregate capital. For algebraic convenience,

we use the log-utility assumption for preferences �where Mt+j = �
ct
ct+j

�as well as the

assumption of no production in the economy in illustrating their similarities. Under the

Asset-Pricing Equation, since asset prices are the expected present value of the dividend

�ows, and since with no production dividends are equal to consumption in every period,

the price of the portfolio representing aggregate capital �pt is:

�pt = Et

( 1X
i=1

�i
ct
ct+i

ct+i

)
=

�

1� � ct:

Hence, the return on aggregate capital Rt+1 is given by:

Rt+1 =
�pt+1 + ct+1

�pt
=
�ct+1 + (1� �)ct+1

�ct
=
ct+1
�ct

=
1

Mt+1

; (44)

which is the reciprocal of the SDF.

Our approach is also related to several articles that have in common the fact that

they reveal a trend in the SDF literature �proposing less restrictive estimates of the SDF

compared to the early functions of consumption growth; see, among others, Chapman

(1998), Aït-Sahalia and Lo (1998, 2000), Rosenberg and Engle (2002), Garcia, Luger,
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and Renault (2003), Sentana (2004), Garcia, Renault, and Semenov (2006), and Sentana,

Calzolari, and Fiorentini (2008). In some of these papers a parametric function is still used

to represent the SDF, although the latter does not depend on consumption at all or only

depends partially on consumption; see Rosenberg and Engle, who project the SDF onto

the payo¤s of a single traded asset; Aït-Sahalia and Lo (1998, 2000), who rely on equity-

index option prices to nonparametrically estimate the projection of the average stochastic

discount factor onto equity-return states; Sentana (2004), who uses factor analysis in

large asset markets where the conditional mean and covariance matrix of returns are

interdependently estimated using the kalman �lter; Garcia, Renault and Semenov (2006),

who introduce an exogenous reference level related to expected future consumption in

addition to the standard consumption term; and Sentana, Calzolari, and Fiorentini (2008),

who propose indirect estimators of common and idiosyncratic factors that depend on their

past unobserved values in a constrained Kalman-�lter setup. Sometimes non-parametric

or semi-parametric methods are used, but the SDF is still a function of current or lagged

values of consumption; see Chapman, among others, who approximates the pricing kernel

using orthonormal Legendre polynomials in state variables that are functions of aggregate

consumption.

Although our approach shares with these papers the construction of less stringent

SDF estimators, we do not need to characterize preferences or to use consumption data.

On the contrary, our approach is entirely based on prices of �nancial securities. Besides

the regularity conditions we assume on the stochastic process of returns, we only assume

the absence of arbitrage opportunities (the Asset-Pricing Equation). Compared with the

group of papers cited above, this setup is a step forward in relaxing the assumptions

needed to recover SDF estimates, while keeping a sensible balance with theory, since we

are still using a structural basis for SDF estimation.
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3 Empirical Applications in Macroeconomics and Fi-

nance

3.1 From Asset Prices to Preferences

An important question that can be addressed with our estimator ofMt is how to test and

validate speci�c preference representations. Here we focus on three di¤erent preference

speci�cations: the CRRA speci�cation, which has a long tradition in the �nance and

macroeconomic literatures, the external-habit speci�cation of Abel (1990), and the Kreps

and Porteus (1978) speci�cation used in Epstein and Zin (1991), which are respectively:

MCRRA
t+1 = �

�
ct+1
ct

��

(45)

MEH
t+1 = �

�
ct+1
ct

��
 �
ct
ct�1

��(
�1)
(46)

MKP
t+1 =

"
�

�
ct+1
ct

��
# 1�

� �

1

Bt

�1� 1�

�

; (47)

where ct denotes consumption, Bt is the return on the optimal portfolio, � is the discount

factor, 
 is the relative risk-aversion coe¢ cient, and � is the time-separation parameter in

the habit-formation speci�cation. Notice that MEH
t+1 is a weighted average of M

CRRA
t+1 and�

ct
ct�1

�
. In the Kreps-Porteus speci�cation the intertemporal elasticity of substitution in

consumption is given by 1=(1��) and � = 1�
 determines the agent�s behavior towards

risk. If we denote � = 1�

�
, it is clear that MKP

t+1 is a weighted average of M
CRRA
t+1 and�

1
Bt

�
, with weights � and 1� �, respectively.

For consistent estimates, we can always write:

mt+1 =[mt+1 + �t+1; (48)

where �t+1 is the approximation error between mt+1 and its estimate [mt+1.
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The properties of �t+1 will depend on the properties ofMt+1 and Ri;t+1, and, in general,

it will be serially dependent and heterogeneous. Using (48) and the expressions in (45),

(46) and (47), we arrive at:

[mt+1 = ln � � 
� ln ct+1 � �CRRAt+1 ; (49)

[mt+1 = ln � � 
� ln ct+1 + � (
 � 1)� ln ct � �EHt+1; (50)

[mt+1 = � ln � � �
� ln ct+1 � (1� �) lnBt+1 � �KPt+1; (51)

Perhaps the most appealing way of estimating (49), (50) and (51), simultaneously

testing for over-identifying restrictions, is to use the generalized method of moments

(GMM) proposed by Hansen (1982). Lagged values of returns, consumption and income

growth, and also of the logged consumption-to-income ratio can be used as instruments

in this case. Since (49) is nested into (50), we can also perform a redundancy test for

� ln ct in (49). The same applies regarding (49) and (51), since the latter collapses to the

former when lnBt+1 is redundant.

In our �rst empirical exercise, we apply our techniques to returns available to the

average U.S. investor, who has increasingly become more interested in global assets over

time. Real returns were computed using the consumer price index in the U.S. Our data

base covers U.S.$ real returns on G7-country stock indices and short-term government

bonds, where exchange-rate data were used to transform returns denominated in foreign

currency into U.S.$. In addition to G7 returns on stocks and bonds, we also use U.S.$

real returns on gold, U.S. real estate, bonds on AAA U.S. corporations, and on the SP

500. The U.S. government bond is chosen to be the 90-day T-Bill, considered by many to

be a �riskless asset.�All data were extracted from the DRI database, with the exception

of real returns on real-estate trusts, which are computed by the National Association of

Real-Estate Investment Trusts in the U.S.9 Our sample period starts in 1972:1 and ends

in 2000:4. Overall, we averaged the real U.S.$ returns on these 18 portfolios or assets10,

9Data on the return on real estate are measured using the return of all publicly traded REITs �
Real-Estate Investment Trusts.
10The complete list of the 18 portfolio- or asset-returns, all measured in U.S.$ real terms, is: returns

on the NYSE, Canadian Stock market, French Stock market, West Germany Stock market, Italian Stock
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which are, in turn, a function of thousands of assets. These are predominantly U.S. based,

but we also cover a wide spectrum of investment opportunities across the globe. This is

an important element of our choice of assets, since diversi�cation allows reducing the

degree of correlation of returns across assets, whereas too much correlation may generate

no convergence in probability for sample means.

In estimating equations (49) and (50), we must use additional series. Real per-capita

consumption growth was computed using private consumption of non-durable goods and

services in constant U.S.$. We also used real per-capita GNP as a measure of income �

an instrument in running some of these regressions. Consumption and income series were

seasonally adjusted.

Figure 1 below shows our estimator of the SDF �cMt �for the period 1972:1 to 2000:4.

It is close to unity most of the time and bounded by the interval [0:85; 1:15]. The sample

mean of cMt is 0:9927, implying an annual discount factor of 0:9711, or an annual discount

rate of 2:97%, a very reasonable estimate.

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1975 1980 1985 1990 1995 2000

Figure 1: Stochastic Discount Factor

Tables 1, 2, and 3 present GMM estimation of equations (49), (50) and (51), re-

market, Japanese Stock market, U.K. Stock market, 90-day T-Bill, Short-Term Canadian Government
Bond, Short-Term French Government Bond, Short-Term West Germany Government Bond, Short-Term
Italian Government Bond, Short-Term Japanese Government Bond, Short-Term U.K. Government Bond.
As well as on the return of all publicly traded REITs �Real-Estate Investment Trusts in the U.S., on
Bonds of AAA U.S. Corporations, Gold, and on the SP 500.
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spectively. We used as a basic instrument list two lags of all real returns employed in

computing cMt, two lags of ln
�

ct
ct�1

�
, two lags of ln

�
yt
yt�1

�
, and one lag of ln

�
ct
yt

�
. This

basic list was altered in order to verify the robustness of empirical results. We also include

OLS estimates to serve as benchmarks in all three tables.

Table 1
Power-Utility Function Estimatescmt = ln � � 
� ln ct � �CRRAt

Instrument Set � 
 OIR Test
(SE) (SE) (P-Value)

OLS Estimate 1.002 1.979 �
(0.006) (0.884)

ri;t�1; ri;t�2;8i = 1; 2; � � �N: 0.999 1.125 (0.9953)
(0.003) (0.517)

ri;t�1; ri;t�2;8i = 1; 2; � � �N; 1.001 1.370 (0.9964)
� ln ct�1;� ln ct�2: (0.003) (0.511)
ri;t�1; ri;t�2;8i = 1; 2; � � �N; 1.000 1.189 (0.9958)
� ln yt�1;� ln yt�2: (0.003) (0.523)
ri;t�1; ri;t�2;8i = 1; 2; � � �N;� ln ct�1; 0.999 1.204 (0.9985)
� ln ct�2;� ln yt�1;� ln yt�2; ln

ct�1
yt�1

: (0.003) (0.514)

Notes: (1) Except when noted, all estimates are obtained using the generalized method
of moments (GMM) of Hansen (1982), with robust Newey and West (1987) estimates for the
variance-covariance matrix of estimated parameters. (2) OIR Test denotes the over-identifying
restrictions test discussed in Hansen (1982). (3) A constant is included as instrument in GMM
estimation.

Table 1 reports results obtained using a power-utility speci�cation for preferences. The

�rst thing to notice is that there is no evidence of rejection in over-identifying restrictions

tests in any GMM regression we have run. Moreover, all of them showed sensible estimates

for the discount factor and the risk-aversion coe¢ cient: b� 2 [0:999; 1:001], where in all
cases the discount factor is not statistically di¤erent from unity and b
 2 [1:125; 1:370],
where in all cases the relative risk-aversion coe¢ cient is likewise not statistically di¤erent

from unity. Our preferred regression is the last one in Table 1, where all instruments

are used in estimation. There, b� = 0:999 and b
 = 1:204. These numbers are close to

what could be expected a priori when power utility is considered; see the discussion in

Mehra and Prescott (1985). They are in line with several panel-data estimates of the

relative risk-aversion coe¢ cient, such as Runkle (1991), Attanasio and Weber (1985) and
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Blundell, Browning and Meghir (1994).

Our estimates b� and b
 in Table 1 are somewhat di¤erent from early estimates of

Hansen and Singleton (1982, 1984). As is well known, the equity-premium puzzle emerged

as a result of rejecting the over-identifying restrictions implied by the complete system

involving real returns on equity and on the T-Bill: Hansen and Singleton�s estimates of 


are between 0:09 and 0:16, with a median of 0:14, all statistically insigni�cant in testing.

All of our estimates are statistically signi�cant, and their median estimate is 1:20 �almost

ten times higher.

Table 2
External-Habit Utility-Function Estimatescmt = ln � � 
� ln ct + � (
 � 1)� ln ct�1 � �EHt

Instrument Set � 
 � OIR Test
(SE) (SE) (SE) (P-Value)

OLS Estimate 1.002 1.975 -0.008 �
(0.006) (0.972) (0.997)

ri;t�1; ri;t�2;8i = 1; 2; � � �N: 1.005 1.263 -2.847 (0.9911)
(0.003) (0.618) (8.333)

ri;t�1; ri;t�2;8i = 1; 2; � � �N; 0.9954 1.308 1.997 (0.9954)
� ln ct�1;� ln ct�2: (0.003) (0.562) (3.272)
ri;t�1; ri;t�2;8i = 1; 2; � � �N; 0.987 1.592 3.588 (0.9951)
� ln yt�1;� ln yt�2: (0.003) (0.688) (3.742)
ri;t�1; ri;t�2;8i = 1; 2; � � �N;� ln ct�1; 0.987 1.161 8.834 (0.9980)
� ln ct�2;� ln yt�1;� ln yt�2; ln

ct�1
yt�1

. (0.002) (0.621) (32.769)
Notes: Same as Table 1.

Table 2 reports results obtained when (external) habit formation is considered in

preferences. Results are very similar to those obtained with power utility. A slight

di¤erence is the fact that, with one exception, all estimates of the discount factor are

smaller than unity. We cannot reject time-separation for all regressions we have run �

� is statistically zero in testing everywhere. In this case, the external-habit speci�cation

collapses to that of power-utility, which should be preferred as a more parsimonious model.
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Table 3
Kreps�Porteus Utility-Function Estimatescmt = � ln � � �
� ln ct � (1� �) lnBt � �KPt

Instrument Set � 
 � OIR Test
(SE) (SE) (SE) (P-Value)

OLS Estimate 1.007 3.141 0.831 �
(0.006) (0.886) (0.022)

ri;t�1; ri;t�2;8i = 1; 2; � � �N: 1.001 1.343 0.933 (0.9963)
(0.004) (0.723) (0.014)

ri;t�1; ri;t�2;8i = 1; 2; � � �N; 1.003 1.360 0.922 (0.9980)
� ln ct�1;� ln ct�2: (0.004) (0.768) (0.012)
ri;t�1; ri;t�2;8i = 1; 2; � � �N; 1.000 0.926 0.927 (0.9969)
� ln yt�1;� ln yt�2: (0.004) (0.756) (0.013)
ri;t�1; ri;t�2;8i = 1; 2; � � �N;� ln ct�1; 0.997 0.362 0.901 (0.9996)
� ln ct�2;� ln yt�1;� ln yt�2; ln

ct�1
yt�1

: (0.004) (0.761) (0.012)
Notes: Same as Table 1.

Results using the Kreps-Porteus speci�cation are reported in Table 3. To implement its

estimation a �rst step is to �nd a proxy to the optimal portfolio. We followed Epstein and

Zin (1991) in choosing the NYSE for that role, although we are aware of the limitations

they raise for this choice. With that caveat, we �nd that the optimal portfolio term has a

coe¢ cient that is close to zero in value (� close to unity), although (1� �) is not statically

zero in any regressions we have run. If it were, then the Kreps-Porteus would collapse

to the power-utility speci�cation. The estimates of the relative risk-aversion coe¢ cient

are not very similar across regressions, ranging from 0:362 to 1:360. Moreover, they

are not statistically di¤erent from zero at the 5% signi�cance level, which di¤ers from

previous estimates in Tables 1 and 2. There is no evidence of rejection in over-identifying

restrictions tests in any GMM regression we have run, which is in sharp contrast to the

early results of Epstein and Zin using this same speci�cation.

Since the Kreps-Porteus encompasses the power utility speci�cation, the former should

be preferred to the latter in principle because (1� �) is not statistically zero. A reason

against it is the limitation in choosing a proxy for the optimal portfolio. Therefore, the

picture that emerges from the analysis of Tables 1, 2 and 3 is that both the power-utility

and the Kreps-Porteus speci�cations �t the CCAPM reasonably well when our estimator

of the SDF is employed in estimation. Since � is statistically zero, we �nd little evidence
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in favor of external habit formation using our data.

3.2 Out-of-Sample Asset-Pricing Forecasting Exercise

Next, we present the results of an asset-pricing out-of-sample forecasting exercise in the

panel-data dimension. In constructing our estimator of the SDF, we try to approxi-

mate the asymptotic environment with monthly U.S. time-series return data from 1980:1

through 2007:12 (T = 336 observations), collected for N = 16; 193 assets, grouped in

the following four categories: mutual funds (7; 932), stocks (6; 009), real estate (383),

and government bonds (1; 869). After computing cMt, we price individual return data not

used in constructing it, measuring the distance between forecast prices and 1 using the �

pricing-error measure proposed in Hansen and Jagannathan (1997).

All return data used in this exercise come from CRSP. Mutual-Fund return data

comes from the CRSP Mutual Fund Database, which reports open-ended mutual-fund

returns using survivor-bias-free data. Bias can arise, for example, when a older fund

splits into other share classes, each new share class being permitted to inherit the entire

return/performance history of the older fund. Stock return data comes from the CRSP

U.S. Stock and CRSP U.S. Indices, which collects returns from NYSE, AMEX, NASDAQ,

and, more recently, NYSE Arca. Real-Estate return data comes from the CRSP/Ziman

Real Estate Data Series. It collects return data on real-estate investment trusts (REITs)

that have traded on the NYSE, AMEX and NASDAQ exchanges. Finally, government-

bond return data comes from CRSP Monthly Treasury U.S. Database, which collects

monthly returns of U.S. Treasury bonds with di¤erent maturities.

The �rst step to perform our exercise is computing cMt. Since we do not have a random

sample of returns, we decided to work with each of the four categories above, weighting

them by their respective importance in the median U.S. household portfolio. For each of

the four asset categories (mutual funds, stocks, real estate, and government bonds) we

computed the geometric average of the reciprocal of all asset returns and the arithmetic

average of all asset returns. Based on the �Wealth and Asset Ownership�tables of 2004,

provided by the U.S. Census Bureau, we decided to weight the returns in each of the
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four categories as follows: Mutual Funds (10%), Stocks (10%), Real Estate (60%), and

Government Bonds (20%)11. They are a close approximation of the median (and also the

mean) value of assets owned by U.S. households in these four categories. Local changes

in these weights (from 5 up to 20 percentage points for individual categories) produce no

virtual change on the results of our exercise. Our �nal estimate cMt results from weighting

geometric and arithmetic averages of returns in each of these four categories.

Once we obtain cMt, we forecast a group of returns not included in computing it for

all the 336 observations in the time-series dimension, comparing our results with unity.

Under the law of one price this exercise is similar in spirit to the one in Hansen and

Jagannathan (1997). Our forecasting exercise is performed using nominal returns either

in constructing the SDF or in out-of-sample evaluation of returns. Obviously, the product

MtRi;t is invariant to price in�ation as long as the same price index is used in de�ating

Mt and Ri;t.

Our estimate of Mt has a nominal mean of 0:9922 in a monthly basis, which amounts

to 0:9106 in a yearly basis. In comparison, average yearly CPI in�ation for the same

period is 3:85%. The plot of cMt follows below in Figure 2.

11These tables can be downloaded from http://www.census.gov/hhes/www/wealth/2004_tables.html.
These weights we propose using come from Table 1, which has the �Median Value of Assets for Households,
by Type of Asset Owned and Selected Characteristics.�
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Figure 2: Stochastic Discount Factor

We want our forecasting exercise to be out of sample. In choosing the group of assets

which will have their returns priced, we require that they have not been included in com-

puting cMt. To cover a wide spectrum of assets to be priced, we chose to work with stocks,

divided in 10 categories of capitalization, according to the CRSP Stock File Capitaliza-

tion Decile Indices. Their returns are calculated for each of the Stock File Indices market

groups. All securities, excluding ADRs on a given exchange or combination of exchanges,

are ranked according to capitalization and then divided into ten equal parts, each rebal-

ancing every year using the security market capitalization at the end of the previous year

to rank securities. The largest securities are placed in portfolio 10 and the smallest in

portfolio 1. Value-Weighted Index Returns including all dividends are calculated on each

of the ten portfolios. Because of the value-weighted character of these portfolios, and the

fact that they are rebalanced every year, their returns cannot be written as a �xed-weight

linear combination of the returns used in computing cMt �therefore do not lie in the space
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of returns used in computing cMt. This makes our forecasting exercise out-of-sample in

the panel-data dimension.

We evaluate our estimator cMt in terms of its ability to price the returns of these ten

portfolios divided into capitalization categories. We use the distance measure � proposed

in Hansen and Jagannathan, which represents the smallest adjustment required in our

estimator to bring it to an admissible SDF. Results are presented in Table 4.

Table 4
Out-of-Sample Asset-Pricing Forecast Evaluation

SDF Proxy: cMt

Returns of Capitalization Capitalization Capitalization
Portfolios 1-10 Portfolios 1-5 Portfolios 6-10

Distance Measure b� b� b�
(Robust SE) (Robust SE) (Robust SE)
0.1493 0.0912 0.0677
(0.0483) (0.0442) (0.0589)

Notes: The capitalization portfolios tested in the �rst three columns come form the CRSP
Stock File Capitalization Decile Indices. These are divided into 10 capitalization groups, by
decile of capitalization. The largest securities are placed in portfolio 10 and the smallest in
portfolio 1. Estimates of the Hansen and Jagannathan distance � and its respective robust
standard error are computed using the MATLAB code made available by Mike Cli¤12. Robust
SE are computed using the procedure proposed by Newey and West (1987).

When pricing all 10 capitalization portfolios, the performance of our estimator comes

short of expected. The distance � is signi�cant at the usual levels of signi�cance. In

trying to understand the reasons for rejecting admissibility, we divided the 10 portfolios

into two groups: �smaller caps,�with deciles of capitalization from 1 to 5, and �larger

caps,�with deciles of capitalization from 6 to 10. In pricing the smaller caps portfolios,

� is still signi�cant at the usual levels, although only marginally so. However, when the

larger caps are priced, our estimator of the SDF is admissible and � is far from signi�cant;

see also the cross-plot of the required adjustment vs. the SDF value depicted in Figure 3.

Finally, the evidence in Table 4 leads to the conclusion that our initial rejection was

due to misspricing smaller-cap stocks. We do not see this result as a serious drawback for

our estimator. As is well known, there is a much greater volatility in terms of entry and

12The code can now be downloaded from:
http://sites.google.com/site/mcli¤web/programs
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exit of smaller �rms into the marketplace, whose historical positive returns are always

recorded, but some negative results are not recorded due to bankruptcy. Hence, one may

expect some bias in using smaller-cap �rms historical returns in asset-pricing tests, which

may be the case here when using capitalization deciles 1 to 5.
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Figure 3: Admissibility Adjustment vs. SDF Value

4 Conclusions

In this paper, we propose a novel consistent estimator for the stochastic discount factor

(SDF), or pricing kernel, that exploits both the time-series and the cross-sectional dimen-

sions of asset prices. We treat the SDF as a random process that can be estimated con-

sistently as the number of time periods and assets in the economy grow without bounds.

To construct our estimator, we basically rely on standard regularity conditions on the

stochastic processes of asset returns and on the absence of arbitrage opportunities in
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asset pricing. Our SDF estimator depends exclusively on appropriate averages of asset

returns, which makes its computation a simple and direct exercise. Because it does not

depend on any assumptions on preferences, or on consumption data, we are able to use

our SDF estimator to test directly di¤erent preference speci�cations which are commonly

used in �nance and in macroeconomics. We also use it in an out-of-sample asset-pricing

forecasting exercise.

A key feature of our approach is that it combines a general Taylor Expansion of the

Pricing Equation with standard panel-data asymptotic theory to derive a novel consistent

estimator for the SDF. In this context, we show that the econometric identi�cation of the

SDF only requires using the �common-feature property�of the logarithm of the SDF. We

have followed two literature trends here: �rst, in �nancial econometrics, recent work avoids

imposing stringent functional-form restrictions on preferences prior to estimation of the

SDF; see Chapman (1998), Aït-Sahalia and Lo (1998, 2000), Rosenberg and Engle (2002),

Garcia, Luger, and Renault (2003), Sentana (2004), Garcia, Renault, and Semenov (2006),

and Sentana, Calzolari, and Fiorentini (2008); second, in macroeconomics, early rejections

of the optimal behavior for consumption using time-series data found by Hall(1978),

Flavin(1981, 1993), Hansen and Singleton(1982, 1983, 1984), Mehra and Prescott(1985),

Campbell (1987), Campbell and Deaton(1989), and Epstein and Zin(1991) were overruled

by subsequent results using panel data by Runkle (1991), Blundell, Browning, and Meghir

(1994), Attanasio and Browning (1995), and Attanasio and Weber (1995), among others.

The techniques discussed in this paper were applied to two relevant issues in macro-

economics and �nance: the �rst asks what type of parametric preference-representation

could be valid using our SDF estimator, and the second asks whether or not our SDF

estimator can price returns in an out-of-sample forecasting exercise. In the �rst appli-

cation, we used quarterly data of U.S.$ real returns from 1972:1 to 2000:4 representing

investment opportunities available to the average U.S. investor. They cover thousands of

assets worldwide, but are predominantly U.S.-based. Our SDF estimator �cMt �is close to

unity most of the time and bounded by the interval [0:85; 1:15], with an equivalent average

annual discount factor of 0:9711, or an annual discount rate of 2:97%. When we examined
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the appropriateness of di¤erent functional forms to represent preferences, we concluded

that standard preference representations used in �nance and in macroeconomics cannot

be rejected by the data. Moreover, estimates of the relative risk-aversion coe¢ cient are

close to what can be expected a priori �between 1 and 2, statistically signi�cant and not

di¤erent from unity in statistical tests. In the second application, we tried to approxi-

mate the asymptotic environment by working with monthly U.S. time-series return data

from 1980:1 through 2007:12 (T = 336 observations), which were collected for a total of

N = 16; 193 assets. We showed that our SDF proxy can price reasonably well the returns

of stocks with a higher capitalization level, whereas it shows some di¢ culty in pricing

stocks with a lower level of capitalization. Because there is more volatility in terms of en-

try and exit of smaller �rms into the marketplace, which may generate a bias in historical

returns for �lower cap�returns, rejection in this case may not be too problematic.
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