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Abstract 
Four firms dominate the international uranium enrichment market. Two reasons for this 
industrial concentration are (1) enrichment capacity can be used to make nuclear weapons, and 
hence its spread has been controlled through many mechanisms, including technology 
classification, and (2) increasing returns to scale, also known as, positive economies of scale. 
Historically, strong increasing returns to scale in gaseous diffusion technology development and 
commercialization prevented non-nuclear weapons states from considering uranium enrichment. 
Later, gas centrifuge technology allowed new entrants to build commercially competitive 
enrichment plants at much smaller sizes than diffusion technology and at a fraction of the 
electricity cost. At the same time, the nations that privatized or host privately-owned enrichment 
facilities have strongly discouraged others from developing enrichment capacity. Therefore, 
these firms have been benefiting from the exercise of national power to prevent entry into this 
market. Had there been no control on enrichment capacity, the uncompetitive diffusion capacity 
could have been retired and the market price could have been lower. Further, non-proliferation is 
not these firms’ primary mission. In situations like this (with increasing returns to scale and 
difficult to evaluate externalities), firms are usually regulated or nationalized, because free 
markets do not necessarily lead to the socially optimal level of concentration and diversity in 
supply, i.e., a long-run equilibrium where the industry is necessarily concentrated such that there 
is no proliferating entry, but is sufficiently diverse so that no one national group can dictate 
prices, contract terms, or non-proliferation policy. 
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1. The International Uranium Enrichment Market 

In the debate of how to assure nuclear fuel (such that nations considering the building of 

nuclear power plants do not also consider building uranium enrichment plants), there is little 

discussion of whether free (unregulated) markets can provide assurances that enrichment 

capacity will be available to all customers at reasonable prices. There are at least four markets in 

the front-end of the nuclear fuel cycle that must be reviewed to determine assurance of supply: 

(1) uranium mining and milling, (2) uranium conversion, (3) uranium enrichment, and (4) 

nuclear fuel fabrication. Rothwell (2009) finds that the nuclear fuel fabrication of low-enriched 

uranium into light-water reactor fuel rods is a competitive industry with barriers to entry to 

discourage investment in fuel fabrication by nations with small nuclear industries. Future papers 

will examine competition in uranium mining and milling (updating Rothwell 1980) and uranium 

conversion. This paper examines whether market forces in the uranium enrichment market can 

lead both to economic efficiency and to socially optimal levels of assured alternative sources of 

supply, given the risk of enrichment technology spread.  

Four firms dominate the international uranium enrichment market: United States 

Enrichment Corporation (USEC, which was privatized in the mid-1990s), TENEX/Rosatom 

(Russia), Eurodif/Areva (France), and Urenco (with plants in Germany, the Netherlands, and the 

United Kingdom). The United States (through the Atomic Energy Commission) monopolized the 

Western enrichment market with gaseous diffusion and Russia monopolized the Eastern market. 

The U.S. commercial dominance of gaseous diffusion ended with the entry of Eurodif, a 

consortium of countries with France as the diffusion technology provider and only producer. 

However since the 1980s, firms using gas centrifuge technology, including those in Russia and 

the British-Dutch-German Urenco, have captured an increasing share of the market. USEC’s 

share of enrichment capacity declined from 39% in 1995 to 14% in 2008, as earlier diffusion 

facilities (at Oak Ridge, TN, and Portsmith, OH) were retired.  
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Table I shows changes in capacity shares over the last decade. (Not all of this capacity 

directly serves the fuel market, as discussed in Section 2; for example, Russia is using excess 

capacity to slightly enrich uranium to mix with down-blended, weapons-grade, highly-enriched 

uranium.) The Herfindahl-Hirschman Index (HHI) measures the degree of concentration in an 

industry.[1] HHI ranges from 100 with an industry of 100 equal-sized firms, to 5,000 in an 

industry with a duopoly, to 10,000 for a monopoly. The U.S. Department of Justice has 

considered industries with HHIs above 1,800 to the “highly concentrated,” and would have 

discouraged a merger in these industries if the HHI were to increase by more than 100 points.  

Although highly concentrated, from 1995 to 2008, the HHI changed little in this industry 

as USEC facilities were retired and Russian capacity increased. In the last column of Table I, the 

HHI is calculated under the assumption that Areva and Urenco (“Euro”) do not compete 

(because they are now using the same centrifuge manufacturer, ETC), the HHI would increase by 

 600 points, i.e., the industry would become even more concentrated as measured by this metric. 

Table I. International Uranium Enrichment Capacity Shares, 1995-2008  
C o u n try O w n er S h a re S h a re S h a re S h a re " E u ro "

1 9 9 5 2 0 0 1 2 0 0 5 2 0 0 8 2 0 0 8
            H H I 2 ,9 0 0 2 ,8 0 0 2 ,9 0 0 3 ,0 0 0 3 ,6 0 0
U S U S E C 3 9 % 2 3 % 1 6 % 1 4 % 1 4 %
R u ssia T en ex 2 9 % 4 1 % 4 5 % 4 7 % 4 7 %
F ran ce A rev a 2 2 % 2 2 % 2 2 % 2 0 % 3 5 %
E u ro p ean U ren co 7 % 1 1 % 1 4 % 1 5 %  
Jap an JN F L 2 % 2 % 2 % 2 % 2 %
C h in a C N N C 1 % 2 % 2 % 1 % 1 %  

During the next decade, older diffusion capacity will be replaced by newer centrifuge 

capacity in France and the United States.[2] In France, Eurodif (a member of the Areva group) 

has partnered with Urenco to produce centrifuges through the Enrichment Technology Company 

(ETC). In the United States, the Department of Energy (U.S. DOE) has partnered with USEC to 

develop a new generation centrifuge to replace USEC’s diffusion capacity. Testing of the first 

cascade began in September 2007. Also, Urenco is building centrifuge capacity in New Mexico, 

and Areva is building centrifuge capacity in Idaho Falls, Idaho. 
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Further, the Brazilian INB (Indústrias Nucleares do Brasil) is building a small enrichment 

facility at its Resende integrated-nuclear-fuel-cycle site to assure the fuel supply of its two 

nuclear power plants (Cabrera-Palmer and Rothwell 2008). Argentina, which has two small, de-

activated enrichment facilities, is now considering re-activating them. South Africa is interested 

in refurbishing and expanding its uranium enrichment facility at Pelindaba. An Australian firm, 

Silex, has licensed its technology to GLE (a partnership of General Electric/Hitachi and 

Canadian Cameco) http://www.gepower.com/about/press/en/2008_press/062008.htm to build a 

prototype laser enrichment facility in North Carolina. With diffusion facility retirements and new 

centrifuge facilities coming online, market capacity, price level, and price volatility will be 

uncertain during the coming decade. Can we be assured that a international free market in 

uranium enrichment will lead to socially-optimal levels of enrichment capacity over the 

foreseeable future?  

Neo-classical economic theory shows that society is better off when market prices equal 

the cost of production, including a reasonable (risk-adjusted) return on capital. When prices do 

not reflect the costs of production or consumption, economists conclude that the market has 

“failed,” i.e., it has failed to achieve the socially-optimal level of output or investment. 

Markets fail for at least four reasons: (1) in industries where there are strong increasing 

returns to scale (also known as positive scale economies), the largest firms can increase market 

share to monopoly or near monopoly levels, then raise prices, for example, in software, 

particularly in operating systems; (2) where unpriced inputs or outputs, known as externalities, 

influence another producer or consumer’s profits or well-being, for example, greenhouse gas 

production, which is not priced; (3) where consumers cannot be excluded from consumption, for 

example, from national and local security; and (4) where there is systematic asymmetric 

information between the buyer and seller, for example in markets where buyers cannot know the 

riskiness of the seller’s financial instruments. See Pindyck and Rubinfeld (2009, p. 315+). 

http://www.gepower.com/about/press/en/2008_press/062008.htm
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While there might be more than one source of market failure in the international uranium 

enrichment market (for example, the unpriced proliferation externality associated with 

enrichment technology), I will focus on the issue of increasing returns to scale. With increasing 

returns to scale, (1) small producers (such as new entrants) have little economic incentive to 

enter to compete with established and growing larger producers, and (2) larger producers can 

eventually drive smaller rivals from the market. This leads to market power where prices can be 

higher than costs, or where other concessions can be extracted, e.g., the assumption of price risk 

by the customer, or market power can be leveraged into other markets, such as nuclear reactors. 

However in the enrichment industry, increasing returns provides a barrier to entry, thus 

increasing the proliferation resistance of the industry, and reducing the social cost of the 

proliferation externality. But increasing returns in enrichment reduces both market price 

discipline and proliferation. Given increasing returns, the economic issue is whether free markets 

in uranium enrichment can assure optimal long run levels of investment and non-proliferation. 

Most observers of the enrichment industry assume there are increasing returns to scale.[3] 

The Appendix tests this assumption and proposes a top-down, microeconomic-engineering 

model of the industry. Section 2 uses this model to show that if enrichment prices were 

determined by competitive markets, prices should fall with the retirement of the diffusion 

capacity. If prices remain high, or if a monopoly develops, or if enrichment technology continues 

to proliferate from privately-owned enrichers, free markets are not leading to socially optimal 

outcomes. Hence, Section 3 argues that some form of international market intervention (beyond 

the patchwork of national subsidies) could be necessary to insure an optimal diversity of non-

proliferating capacity investment and prices near production cost.[4] Given the small size of 

economic profits in this industry and the consequences of proliferation, there is little to be lost in 

terms of economic efficiency if enrichment price regulation eases the creation of non-

proliferation agreements with nations considering entry into uranium enrichment. 
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2. The Emerging Duopoly in the International Uranium Enrichment Market 

To increase the percentage of fissile uranium, U235, from approximately 0.7%, natural 

uranium oxide (“yellowcake”) is enriched to a higher percentage, e.g., 4%. Enrichment is done 

commercially using two methods: gaseous diffusion and gas centrifuge. During the last 20 years, 

the real spot price of uranium enrichment, measured in Separative Work Units (SWU) has 

doubled from $80 to $160 in 2008 dollars. (SWU are measured in kilograms, kgU, or Metric 

Tons of Uranium, MTU.) See Figure 1.[5]  As discussed in the Appendix, the cost of gaseous 

diffusion enrichment is driven by the price of electricity. As the price of electricity has risen, the 

cost of diffusion enrichment has risen above the cost of centrifuge enrichment, making gaseous 

diffusion plants the marginal producers, i.e., those that supply the last segment of demand. As the 

marginal producers, diffusion enrichers’ costs (in association with market demand) appear to 

determine the spot market price. 

Figure 1. Spot Prices for SWU and Uranium, 1989-2009 
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To represent this market, the Appendix estimates average SWU cost in 2008 dollars for 

uranium enrichment.[6] The Appendix presents a microeconomic-engineering model of the 

currently planned centrifuge enrichment plants, and statistically estimates scale parameters. 
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Using long-run levelized cost as a proxy for long-run marginal cost, levelized costs are used to 

construct SWU supply curves for 2008 (Figure 2) and 2020 (Figure 3).[7] 

In Figure 2 it is assumed that Russian production is limited such that the Novouralsk 

facility (with 12.45M SWU per year) is not competing in the international market (due to 

agreements associated with blending down weapons-grade, highly-enriched uranium and 

domestic commitments); see Mikhailov (1995). In Figure 2, about one quarter of the 

international enrichment market (Russian) is low cost (less than $60), one quarter (Urenco) is 

moderate cost (between $60-$100), and one half  of the market (gaseous diffusion) is high cost 

(more than $100). With requirements around 40M (million) SWU (approximately 120,000 SWU 

per GW per year for 333 GW worldwide), the market price is determined where demand is 

satisfied by the highest cost producers (those with gaseous diffusion technology) at 

approximately $160/SWU. (Of course, cheaper producers could under cut Eurodif’s and USEC’s 

price with proprietary long-term contracts; so contract prices are not necessarily equal to spot 

market prices, and revenues and economic profits could be much lower than suggested here.) 

With the retirement of the world’s diffusion capacity and no international constraints on 

Russian participation in the market, the supply curve for enrichment services could shift by 2020 

to a situation more like that in Figure 3.[8] Assuming growth of 12.5 percent to 45M SWU, 

world requirements could be satisfied by all enrichers, and maximum total revenues would be 

approximately $4,500M (in 2008 dollars).[9]  

However, as today, USEC could be the marginal producer, so a competitive market 

should equilibrate to cover USEC’s new levelized production costs (e.g., $100/SWU in 2008 

dollars). This suggests a price drop of almost 40 percent, and a savings to consumers. However, 

the industrial concentration, as measured by the HHI, would jump to 3,500 if Areva and Urenco 

are competing, or to 4,200 if Areva and Urenco are not competing, i.e., the industry would be 

approaching the concentration of a duopoly (HHI = 5,000) with the Russians and Europeans 
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dominating the international uranium enrichment market. (This analysis does not include Urenco 

capacity increases from replacing the TC-12 centrifuge with the TC-21 centrifuge; Upson, 2001.) 

 
Figure 2. Supply of Uranium Enrichment Services, 2008 
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Figure 3. Supply of Uranium Enrichment Services, 2020 
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Therefore, as diffusion capacity is retired and prices fall to reflect a decline in costs 

(following competitive market forces), because of their more mature technology, Russia and the 

Europeans could earn economic profits, but Japan’s Rokkasho and USEC’s ACP might not earn 

anything above their reasonable capital and production costs. Anticipation of this situation could 

make financing for USEC difficult to acquire at a cost of capital that will allow them to be 

competitive, particularly if credit is tight and their credit rating continues to decline (the U.S. 

DOE is providing $2,000M in loan guarantees to USEC, see Kinney 2008). The financial crisis 

could slow ACP completion, thus postponing the retirement of USEC’s diffusion capacity, and 

supporting a higher market price. 

Russia is building additional enrichment capacity.  One method for increasing enrichment 

market share is the creation of the International Uranium Enrichment Center (IUEC) in Angarsk, 

Siberia (see Braun 2006). The Angarsk enrichment and conversion plants have been combined 

with Kazakhstan’s uranium mines. A Kazakhstan fuel pellet plant could be upgraded to provide 

nuclear fuel fabrication services. If the IUEC could provide nuclear fuel at a lower market price, 

it could increase its nuclear fuel market share, and thus Russia’s enrichment market share. 

3. Implications of Enrichment Duopoly Emergence to USEC and the United States 

  With the retirement of diffusion capacity during the next decade, the artificially high 

price of enrichment could fall. (It is “artificially” high due to entry barriers: were there open 

markets in enrichment, new cheaper capacity would have forced the retirement of diffusion 

technology much sooner). Entry of new participants into the enrichment market is constrained by 

non-proliferation considerations, as well as by commercial interests. The enrichment industry is 

now being more closely watched with the discovery of the Pakistani enrichment smuggling 

network, which stole centrifuge technology from Urenco; see Braun and Chyba (2004).  

 Without market intervention, prices could fall to competitive levels; this implies there 

could be no economic profits in this industry for anyone but the Russians and Europeans. For 
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this reason, the financial outlook of these uranium enrichers has been bleak, prompting a 

Standard and Poor’s analyst to write: 

 “Standard & Poor’s Ratings Services affirmed its ‘A-/A-2’ long- and short-term corporate credit 
ratings on Europe-based uranium enrichment company Urenco Ltd. . . The enrichment market is 
undergoing very drastic changes, as TENEX (Rosatom)—which controls roughly 50% of global 
enrichment capacity but only 24% market share among end-customers—is looking to increase its 
share of direct sales to end-customers. The extent to which this will affect Western enrichment 
suppliers—USEC Inc. (B-/Negative/--), Areva (not rated), and Urenco—over the medium term 
remains to be seen, but will be strongly influenced by ongoing political and trade negotiations . . 
. The other major industry change is an expected phase-out of the non-economical gaseous 
diffusion plants used by USEC and Areva. . .” (These ratings were re-affirmed on April 24, 
2008) 

“A-” implies that Standard & Poor’s believes that (1) “A” implies “economic situation can affect 

finance” and (2) the negative sign (“-”) implies that it is likely to be downgraded; A- > BB > BB- 

> B+ > B- are lower and lower credit ratings for “non-investment” grade bonds, so called, “junk 

bonds.” So, since 2002 USEC has been forced to pay junk bond rates on its debt, while trying to 

finance a new, First-of-a-Kind technology. This situation has been deteriorating; see Table II. 

Table II. USEC Credit Ratings Report Card, 2002-2008  
Standard & Poor's 2002 2003 2004 2005 2006 2007 2008 
Corporate credit rating BB BB BB- B+ B- B- B- 
Senior unsecured debt NA BB- B B CCC CCC CCC 
Outlook Negative Stable Negative Negative Negative Negative Negative 
Moody's 2002 2003 2004 2005 2006 2007 2008 
Corporate credit rating Ba1 Ba1 Ba2 B1 B1 B3 B3 
Senior unsecured debt NA Ba2 Ba3 B2 B3 Caa2 unrated 
Outlook Negative Negative Review Stable Review Negative Negative 

Sources: USEC Annual Reports (2002-2007) and Form 10-K, December 31, 2008 (Feb. 26, 2009) 

 Therefore, assuring adequate diversity of enrichment capacity over the long term could 

be problematic without some more comprehensive market intervention (than continued 

subsidization from governments to private firms). Of course, a Russian-European duopoly in 

enrichment might provide an adequate diversity of supply. The U.S. Government must determine 

how many suppliers should be in the enrichment market to maintain some market competition or 

whether any form of market regulation is necessary or possible. 
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 The U.S. Government has been subsidizing the USEC for over a decade (due to the 

Russian blend-down agreement), it is unlikely that USEC will survive without a continuous 

infusion of federal capital until ACP is finished. If it does survive, then it might not be 

competitive enough to grow larger than the Urenco and Areva plants in the United States, if only 

because these firms have more experience with centrifuge technology. If USEC cannot survive, 

then the U.S. Government will be forced to nationalize the remains of the American Centrifuge 

Plant to provide services to defense programs (e.g., naval reactors), as well as pay for the 

decommissioning of the gaseous diffusion facilities and any other outstanding USEC liabilities.  

 On the other hand, American electric utility demand can be supplied by Americans 

working at the Areva and Urenco plants in Idaho and New Mexico, and by the Russians through 

the extension of current contracts. Therefore, it is not in the American electric utilities’ interest to 

support USEC’s the high prices, but it might be in their interest to support the existence of USEC 

as a hedge against dependence on one or two suppliers. There might be no public support for 

USEC aside from those interest groups that have directly or indirectly benefited or will directly 

or indirectly benefit from the federal subsidies that have been given or will be given to USEC. 

 Unregulated enrichment markets will not necessarily lead to a socially optimal diversity 

of enrichment suppliers: a long-run equilibrium where the industry is necessarily concentrated 

such that there is no proliferating entry, but is sufficiently diverse so that no one national group 

can dictate prices, contract terms, or non-proliferation policy. United States decision makers 

should determine (1) whether a Russian-European duopoly is in the national interest of the 

United States given the dependence of the nuclear navy on domestically produced highly 

enriched uranium (uranium enriched above 20%), and (2) whether to forever subsidize USEC, or 

nationalize it before or after it is pushed by market forces and financial pressure to file for 

bankruptcy. 
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Appendix: A Microeconomic Engineering Model of Uranium Enrichment Facilities 

Paul J.C. Harding, the Managing Director of Urenco (Capenhurst) Ltd (UCL), described 

production at his plant in 2005 (to explain his plant’s dependency on non-interruptible power): 

  “• 40% of Urenco’s total current enrichment capacity is at UCL 
• UCL has 390 employees 
• Annual electricity consumption is 180,000 MWh (~ 20MWe continuous demand) 
• Once started, aim is never to stop gas centrifuge machines 

o Need no maintenance 
o Low failure rate 
o Oldest machines at site have run continuously since 1982! 
o If machines are stopped, risk is they will not start again” 

 This Appendix creates a top-down, microeconomic-engineering model to project 

levelized costs at facilities like Capenhurst. To account for the capital, labor, electricity, and 

other expenses, let the total annual cost of producing total annual SWU be 

TC =   pK K + pL L + pE E + pM M ,  where            (1) 

• K is the total capital investment cost (TCIC, defined in EMWG 2007) measured in 

millions, M, of 2008 dollars, and pK is the annual capital charge rate;  

• L is the number of employees, and pL is annual (burdened) salary of an employee;  

• E is the electricity input MWh, and pE is the price of electricity in dollars per MWh; and 

• M represents the cost of materials consumed, and pM is the price of materials.[10] 

 Assume that (1) M is a linear function of K, and (2) pM is expressed in percent per year of 

K (e.g., set pM to the physical depreciation rate). Let pKM = pK + pM. The Levelized Cost, or 

Long-Run Average Cost, AC, is 

AC    = Σ (pKM K + pL Lt +  pE Et ) (1 + r)-t / { Σ SWUt (1 + r)-t },                    (2) 

where the summation is over the commercial life of the facility, all construction costs are 

discounted to the commercial operation date, and r is the appropriate discount rate. (Following 

Harding, 2005, p. 9, there is an implicit assumption of a constant annual capacity factor of 100 

percent, because “If machines are stopped, risk is they will not start again.”) 
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 Returns to scale in cost is the ratio of the percentage change in total cost, TC, with respect 

to a percentage change in output, SWU:  

        RS = (ΔTC/TC) / (ΔSWU/SWU ) ≈ (d TC / d SWU ) / (TC / SWU ) ≈ d ln TC / d ln SWU   (3) 

For example, if output is increased by 10%, and total cost increases by less than 10%, then there 

are increasing returns to scale, and average costs are falling. If output is increased by 10%, and 

total cost increases by more than 10%, there are decreasing returns to scale, and average costs are 

rising. For many production processes, average costs fall with increases in capacity (because 

average fixed costs are falling). At some capacity range, average costs are constant, but beyond 

that range, average costs rise with decreasing returns to scale. This yields a “U”-shaped average 

cost curve.  

 However, in industries with increasing returns to scale (where there are large fixed, 

capital costs), the average cost curve continually declines throughout the relevant range of 

industry demand. This yields a “bath-tub-shaped” average cost curve, where average cost 

eventually increases at some very large size. This type of cost structure implies that large firms 

could have lower costs than smaller firms. If there is no arrangement to divide the market and 

profits, the smaller firms will be driven from the industry (or will never enter). At the limit, one 

large firm could dominate the industry.  

 The remainder of this Appendix proposes and tests whether there are increasing returns to 

scale in (1) capital, K (i.e., ∂ln K /∂ln Q) and (2) labor, L (i.e., ∂ln L /∂ln Q) for centrifuge 

capacity (there is not enough information to estimate returns to scale in energy and materials). 

With these input prices and estimates of the derivatives of the inputs with respect to changes in 

facility size, returns to scale in total cost are examined through constructing and analyzing the 

resulting average cost curves in Section A.4.  
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A.1. Estimating New Centrifuge Enrichment Facility Costs [11] 

A.1.1. Estimating New Centrifuge Facility Capital Costs 

Overnight cost, k, is transformed into total capital investment cost, K, with the addition of 

Interest During Construction and contingency, i.e., K = (1 + c) · k, where c is a percentage mark-

up for IDC and contingency. Overnight construction cost, ki, for new centrifuge facilities is 

estimated with information on five facilities in the United States, France, and Brazil: 

(1) The American Centrifuge Plant (ACP) is being built in Ohio by USEC, using a U.S. 

DOE-USEC developed centrifuge producing 320 SWU per year. USEC estimated the first stage 

will cost $3,500M in 2008 dollars for a capacity of 3.8M SWU. The facility could be completed 

by 2012 (USEC, 2007). 

(2) The Urenco New Enrichment Facility (NEF) facility in New Mexico with a 3M SWU 

per year capacity is based on Urenco technology (TC-12 machines) with a separative capacity of 

50 SWU per centrifuge per year. Construction started in August 2006, with the first set of stages 

to operate in 2010, and full capacity operation expected in 2013. The overnight cost has been 

estimated at $1,500M (in 2006 dollars, or $1,650 in 2008 dollars); see WNA (2008). 

(3) Areva is building a $2,000M, 3M-SWU-per-year facility in Idaho Falls, Idaho. Areva 

expects the ETC centrifuge-supplied facility (TC-12 machines with a capacity of 50 SWU per 

centrifuge per year) to start operating in 2014, and enter full production in 2019. 

(4) The new George Besse II enrichment facility, with a capacity of 7.5M SWU per year, 

near Tricastain, France, is also based on Urenco’s TC-12 centrifuges. This facility is being built 

by Eurodif, a member of the French Areva group. The estimated cost is € 3,000M (2003) (or 

$3,275M 2003 dollars, or $4,066M 2008 dollars); Autebert (2006) and WNA (2008). 

(5) Brazil is building an enrichment facility at Resende to supply 203,000 SWU by 2015 

for its Angra 1 and 2 nuclear power plants. They are using an indigenously developed centrifuge 
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design that is initially producing about 10 SWU per centrifuge per year. [12] The estimated 

construction cost is about 541M 2006 Brazilian Real, or about $278M 2008 dollars (Cabrera-

Palmer and Rothwell, 2008).  

The descriptive statistics for these plant data are Table I. The variables have been scaled 

so their means are similar. Here, the minimum value for overnight cost, k, is 0.278 billion 2008 

dollars and the maximum value is $4.066 billion. The minimum value for SWU is 0.203 million 

SWU per year, and the maximum is 7.5 million SWU per year. RATE (the rating of the 

centrifuge in SWU per year) is given in 100s of SWU per centrifuge, so the minimum value is 

0.1 (x 100) SWU per centrifuge for Brazil and the maximum is 3.0 (x 100) SWU per centrifuge 

for ACP. Overnight cost is highly correlated with capacity size, SWU, (92%) and correlated 

(54%) with output rating, RATE; capacity size and output rating are somewhat correlated (17%). 

With this information, linear and log-linear models of k are estimated and presented as 

functions of annual SWU capacity, SWUi and RATEi. The Ordinary Least Squares (OLS) 

parameter estimates are (where values in parentheses are standard errors; and * = 90% level of 

significance, ** = 95% level of significance, and *** = 99% level of significance): 

ki  =   0.44  +  0.53  SWUi       (R2 = 84.3%, F sig. = 97.2%)      (4.1) 
  (0.56)  (0.13)** 

ki  =   1.66  +  0.69  RATEi       (R2 = 28.7%, F sig. = 64.8%)      (4.2) 
  (0.88)  (0.63) 

ki  =   0.11  +  0.49  SWUi            + 5.05 RATEi (R2 = 99.3%, F sig. = 99.3%)      (4.3) 
  (0.15) (0.03)***           (0.76)** 

ln( ki ) =   -0.09  +  0.76 ln(SWUi)      (R2 = 96.3%, F sig. = 99.7%)      (4.4) 
   (0.13)    (0.09)*** 

ln( ki ) =   0.99  +  0.73 ln(RATEi)      (R2 = 66.7%, F sig. = 90.9%)      (4.5) 
  (0.37)*  (0.30)* 

ln( ki ) =   0.15  +  0.63 ln(SWUi) + 0.20 ln(RATEi) , (R2 = 98.7%, F sig. = 98.7%)      (4.6) 
  (0.15)  (0.09)**     (0.10) 
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 While RATEi explains some of the variance in ki, most of the variance is explained by 

SWUi (96% in the log-linear model). Further, the parameter associated with capacity is robust to 

the inclusion of RATEi, i.e., the estimated coefficient on SWUi in Equation 4.1 is not statistically 

different from the estimated coefficient on SWUi in Equation 4.3, nor is the estimated coefficient 

on ln(SWUi) in Equation 4.4 statistically different from the estimated coefficient on ln(SWUi) in 

Equation 4.6.[13]  From these results one can conclude there are increasing returns to scale in 

capital: with a scale factor of 0.76 and a standard error of 0.09, there is 95 percent confidence 

that the scale factor is not equal to 1.0, as it would be under constant returns to scale. 

The difference between overnight costs (k) and total capital investment costs (K) is the 

addition of Interest During Construction (IDC) and contingency. IDC discounts construction 

expenditures to the start of commercial operation. The IDC rate is a function of the expenditure 

rate, the cost of capital, and the construction length. Because centrifuge enrichment facilities can 

be built in modules, IDC is charged over the lead time of module construction, assuming a lead 

time of 3 years. At a cost of capital of 5 percent, IDC adds 7.48 percent to the cost of the project. 

Following EMWG (2007), the contingency rate is 10%. So K = (1+0.0748+0.10) k = 1.1748 k. 

The price of capital, pK, is the annual capital charge rate. Following Cabrera-Palmer and 

Rothwell (2008), the model uses a 5 percent real cost of capital with capital cost amortization 

over 30 years, i.e., pK = 6.5 percent. (The real cost of capital is equal to the nominal cost of 

capital minus the expected inflation rate; with expected inflation at 3 percent, the nominal cost of 

capital would be 8 percent, i.e., one appropriate for a regulated utility.) Also, the model assumes 

the annual physical depreciation cost is 1 percent of overnight costs, i.e., pM M = 0.01 k = 

0.01/1.1748 K = 0.0085 K). So, pKM = 6.5% + 0.85% = 7.4%. 
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A.1.2. Estimating New Centrifuge Facility Labor Costs 

Second, regarding labor, L, the announced projected staff size of the ACP is 500 

employees (USEC 2004), the staff size of NEF has been announced to be 210, Areva announced 

that it would be hiring at least 250 full-time employees at Idaho, and the staff size of Resende is 

estimated to be 100 (Cabrera-Palmer and Rothwell 2008). Also, while not a new facility, there 

are 390 employees at Urenco’s Capenhurst facility (producing 3.4M SWU per year); this 

provides a benchmark and another observation. Because one of the observations is different from 

one in Table A.I, Table A.II provides the descriptive statistics and correlations for this data set. 

The variables have been scaled so their means are similar. Here, the minimum value for 

the number of employees, L, is 1.0 (x 100) employees, and the maximum is 5 (x 100) employees. 

The minimum value for SWU is the same as above, but the maximum is 3.8 million SWU per 

year. RATE is as above, because it is assumed that Capenhurst and George Besse II use the same 

technology.  

The number of employees is highly correlated (82%) with the both the number of SWU 

and with the RATE; SWU and RATE are positively correlated (57%). Together these correlations 

imply (1) centrifuges with higher annual output require more maintenance, as suggested by one 

astute referee,[x] and (2) much of the variance explained by RATE is also explained by SWU, so 

that they will not both be significant when they both appear in the same equation.  With this 

information, linear and log-linear models of L (staff size) are estimated and presented as 

functions of annual SWU capacity and the rating of the centrifuge in SWU per year: 

Li  =   0.46  +  0.91  SWUi       (R2 = 68.6%, F sig. = 91.7%)      (5.1) 
  (1.06)  (0.36)* 

Li  =   1.89  +  1.09  RATEi       (R2 = 66.5%, F sig. = 90.8%)      (5.2) 
  (0.62)  (0.45)* 

Li  =   0.68  +  0.59  SWUi            + 0.68 RATEi (R2 = 86.3%, F sig. = 86.3%)      (5.3) 
  (0.86)  (0.35)                       (0.42)  
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ln( Li ) =    0.65  +    0.43 ln(SWUi)      (R2 = 76.0%, F sig. = 94.6%)      (5.4) 
   (0.18)** (0.14)**  

ln( Li ) =   1.23  +     0.49 ln(RATEi)      (R2 = 82.2%, F sig. = 99.6%)      (5.5) 
  (0.16)*** (0.13)** 

ln( Li ) =   0.99  +  0.20 ln(SWUi) + 0.30 ln(RATEi)  (R2 = 87.9%, F sig. = 87.9%)      (5.6) 
  (0.29)*  (0.21)       (0.21) 

 Here, unlike in the previous estimates, RATEi explains as much of the variance in Li, as is 

explained by SWUi. The parameter associated with capacity is robust to the inclusion of RATEi, 

i.e., the estimated coefficient on SWUi in Equation 5.1 is not statistically different from the 

estimated coefficient on SWUi in Equation 5.3, nor is the estimated coefficient on ln(SWUi) in 

Equation 5.4 statistically different from the estimated coefficient on ln(SWUi) in Equation 5.6.  

The linear forms are not as well estimated as the log-linear forms. Also, when both explanatory 

variables are present, none of the coefficients are significant. While Equation 5.5 has a higher R2 

than Equation 5.4 (which is important when making forecasts, as is done in the next section), the 

centrifuge rating is not known for the centrifuges in all centrifuge enrichment plants (e.g., those 

in Russia). Therefore, I will use Equation 5.4 for hypothesis testing and forecasting. With the 

scale factor equal to 0.43, and a standard error of 0.14, there is 98 percent confidence in rejecting 

constant returns, adjusting for degrees of freedom. Therefore, one can also conclude there are 

increasing returns to scale in labor. 

 Next, following Cabrera-Palmer and Rothwell (2008), the model uses a “fully burdened” 

average annual salary of $60,000 in Brazil, based on a base salary of approximately $35,000 per 

year and a 70 percent burden rate (from EMWG 2007). The model uses a burdened average 

annual salary in France and the United States of $120,000, based on information in Enrichment 

Technology Company (2007). The model assumes the labor rates have not increased since 2006. 
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A.1.3. Estimating New Centrifuge Facility Energy Costs 

Third, the electricity consumption for ETC and ACP centrifuges are from WNA (2008): 

50 kWh/SWU to run the centrifuges, and 62.3 kWh/SWU to run the plant. The electricity 

consumption for Resende centrifuges is from Cabrera-Palmer and Rothwell (2008), i.e., 100 

kWh/SWU. Further, following Cabrera-Palmer and Rothwell (2008), and updating the price to 

2008 dollars, let the delivered price of electricity be $106.72/MWh (or $0.107/kWh), which 

includes transmission and distribution fees. Because generation is one-half of total costs, the 

generation cost is approximately $53.36/MWh or $0.053/kWh. 

A.1.4. Estimates of New Centrifuge Facility Costs 

 Table A.III presents the estimated levelized cost per SWU for the new centrifuge 

facilities assuming a real 5 percent cost of capital. The capital intensity of centrifuge enrichment 

technology yields an annual capital charge that is 2/3rds of the total annual cost. Labor is about 

1/6th of total costs, and electricity and materials make up the remaining 1/6th.  Table A.III shows 

• The Urenco technology facilities (NEF in New Mexico and George Besse II in France) 

will likely have lower costs than the USEC’s ACP.  

• The levelized cost of Brazil’s small facility will likely be twice as high as the cost at the 

ACP, and almost three times as much as cost at the Urenco facilities.  

A.2. Projecting Replacement Costs of Operating Centrifuge Facilities 

This section approximates the cost structure of the existing commercial centrifuge 

facilities owned by Urenco, JNFL, and Rosatom. See Tables A.IV and A.V. Urenco has three 

production facilities at Capenhurst, United Kingdom, with 3.4M SWU; Almelo, Netherlands, 

with 2.9M SWU; and Gronau, Germany, with 1.8M SWU. The overnight replacement costs (in 

2008 dollars) are estimated using Equation (4.4). Because these facilities have already been built 

and some of the capital has been depreciated, there is no contingency or IDC, i.e., total capital 



Market Power in Uranium Enrichment                         20 

  

investment cost (K) is equal to the estimated overnight replacement cost (k). (This assumption 

reduces the levelized capital costs at older facilities by about 10 percent.) Here, Urenco and 

JNFL use a real cost of capital of 5 percent. The Urenco facilities yield levelized costs in the 

same range as the new facilities in the United States. Costs at Rokkasho, Japan, are higher due to 

its small size (also Japanese levelized costs could be higher due to lower capacity factors at 

Rokkasho: as its capacity factor declines, its average costs could become the world’s highest.) 

The same analysis is applied to estimate the costs at Rosatom’s centrifuge facilities in 

Novouralsk (UEKhK, Sverdlovsk Oblast) with 12.45M SWU, Zelenogorsk (EKhZ, Krasnoyarsk 

Kray) with 7.39M SWU, Seversk (SKhK, Tomsk Oblast) with 3.65M SWU, and Angarsk 

(Irkutsk Oblast) with 2.5M SWU. (See International Panel on Fissile Materials 2007.) Again, the 

replacement values of the facilities can be modeled with Equation (4.4) and labor requirements 

with Equation (5.4). In determining appropriate parameter values, consider Bukharin (2004, p. 

199):  

“large separative capacities and low production cost – possibly on the order of $20 per SWU 

(compared to approximately $70 per SWU in the United States) – which is made possible by 

the use of highly-efficient centrifuge technology, and access to low-cost electricity, materials 

and labor, make the Russian enrichment enterprise highly competitive.”  

Therefore, assume that (1) the real cost of capital is 2.5%, leading to a capital recovery 

factor of 4.8% (versus 6.5% for the other centrifuge facilities), (2) the burdened cost of labor is 

$60,000 equal to that in Brazil, and (3) the cost of electricity of $53/MWh (implicitly assuming 

that the cost of transmission and distribution is zero). See Table A.V. The estimated levelized 

cost in 2008 dollars is between $28 for the largest facility and $45 for the smallest facility, lower 

than at all other international facilities. It is possible that costs are even lower, as suggested in 

Bukharin (2004).  
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A.3. Projecting Costs of the Diffusion Facilities 

Finally, the model is used to approximate the cost structure of the existing commercial 

diffusion plants owned by USEC and Eurodif. See Table A.VI. Of course, this is a different 

technology (however, nearly 85% of the cost of diffusion enrichment is determined by the cost of 

electricity, so all other costs, approximated with the model of centrifuge technology, are of 

second order importance). Using the same technique for projecting investment costs as above, 

the current investment costs (replacement value) for each diffusion plant is about $4,000 M. The 

model assumes a 2.5% cost of capital to determine the annual capital charge. Assume that 

Eurodif’s newer diffusion plant (completed in 1982) operates at 2,200 kWh/SWU, whereas the 

older USEC plant (Paducah, completed in 1954) operates at 2,500 kWh/SWU. Because of the 

size of these facilities, assume dedicated electricity generators at $53/MWh (i.e., again, 

implicitly, the transmission and distribution costs are zero). This high use of electricity makes the 

gaseous diffusion plants the highest cost producers in the enrichment industry (with almost half 

the world’s capacity). These plants are scheduled to retire by 2015. 

A.4. Estimating the Long-Run Average Costs of Centrifuge Facilities 

A reciprocal functional form is used to estimate the relationship between average cost      

( AC ) and size ( SWU ) in these simulated data: 

 AC = γ  +  δ (1 / SWU ).                (5) 

Average cost is calculated for hypothetical plants of many sizes at costs of capital of 5% and 

10%. The relationship between average costs and the reciprocal of size is estimated using OLS. 

Figure A.1 represents these relationships, where the OLS results are shown on the figure. (Here, 

increasing returns to scale are nearly exhausted at the “Minimum Efficient Scale” (MES) 

between 2.5 and 2.9 million SWU, which is where costs are not more that 10 percent of the 

asymptote, equal to the constant, γ.) As an example, for a plant with a capacity of 1 million SWU 
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per year with r = 10%, the levelized average cost would be approximately $107.63 + $26.88 = 

$135/SWU in 2008 dollars. (Here, “levelized average cost” is calculated assuming all costs and 

all outputs are equal across time; when this is true, “levelized cost” in cost engineering is equal 

to “average cost” in microeconomics.)  

 Here, it is unknown where the average cost curve, as portrayed in Figure A.1., might 

begin to increase. Given that Russia could have increased capacity in any of their facilities, and 

yet capacity at Novouralsk (UEKhK) has been increased to at least 12.45 M SWU per year, it is 

reasonable to conclude that costs are not yet increasing at UEKhK. So it is unlikely that average 

costs at a generic centrifuge facility begin to increase before 12 M SWU per year, which is four 

times the size of any first-stage plants being built in the United States, and is off the graph in 

Figure A.1. 

    
 

Figure A.1. Estimated Cost Curves, Centrifuge Technology 
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Table A.I. Descriptive Statistics of Capital Variables 
  Descriptive Statistics Correlation 

Variables Mean Std Dev Min Max K SWU RATE 
K ($B) 2.299 1.513 0.278 4.066 1 91.8% 53.6% 
SWU (M) 3.501 2.620 0.203 7.500 91.8% 1 16.8% 
RATE (100s) 0.920 1.176 0.100 3.000 53.6% 16.8% 1 

 

 

Table A.II. Descriptive Statistics of Labor Variables 
  Descriptive Statistics Correlation 

Variables Mean Std Dev Min Max L SWU RATE 
L (100s) 2.900 1.567 1.000 5.000 1 82.8% 81.6%
SWU (M) 2.681 1.424 0.203 3.800 82.8% 1 56.6%
RATE (100s) 0.920 1.176 0.100 3.000 81.6% 56.6% 1
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Table A.III.  Levelized SWU Costs, Future Centrifuge Capacity 

(5% cost of capital, 6.51% Capital Recovery Factor, +7.48% IDC, 10% Contingency) 

 

Firm   USEC Urenco Areva Eurodif Brazil 
Plant (2008$) ACP NEF Idaho Besse II Resende
Plant Capacity t SWU/yr 3,800 3,000 3,000 7,500 203
Overnight Cost  $M $3,500 $1,650 $2,000 $4,066 $278
Total Capital Invest Cost   $M $4,152 $1,957 $2,372 $4,823 $330
Capital/SWU   $/SWU $71.07 $42.44 $51.44 $41.83 $105.68
Staff Size   people 500 210 250 481 100
Annual Fully Burden Salary $k/yr $120 $120 $120 $120 $60
Labor/SWU $/SWU $15.79 $8.40 $10.00 $7.70 $29.56
Electricity Consumption kWh/SWU 62 62 62 62 100
Electricity Price $/MWh $107 $107 $107 $107 $107
Electricity/SWU  $/SWU $6.65 $6.65 $6.65 $6.65 $10.67
Materials/SWU   $/SWU $9.21 $5.50 $6.67 $5.42 $13.69
Annual Total Costs $M  $390 $189 $224 $462 $32
Levelized SWU Cost   $/SWU $103 $63 $75 $62 $160

 
 

Table A.IV.  Levelized SWU Costs, Operating Centrifuge Capacity (Europe and Japan) 
(5% cost of capital, 6.51% Capital Recovery Factor, +0% IDC, 0% Contingency) 

Firm   Urenco Urenco Urenco JNFL 
Plant (2008$) Capenhurst Almelo  Gronau Rokkasho
Plant Capacity t SWU/yr 3,400 2,900 1,800 1,500
Overnight Cost   $M $2,342 $2,076 $1,445 $1,095
Total Capital Invest Cost   $M $2,342 $2,076 $1,445 $1,095
Capital/SWU $/SWU $44.82 $46.56 $52.21 $56.98
Staff Size   people 340 317 257 219
Annual Fully Burden Salary $k/yr $120 $120 $120 $120
Labor/SWU $/SWU $11.99 $13.10 $17.12 $20.99
Electricity Consumption kWh/SWU 62 62 62 62
Electricity Price $/MWh $107 $107 $107 $107
Electricity/SWU   $/SWU $6.65 $6.65 $6.65 $6.65
Materials/SWU  $/SWU $6.89 $7.16 $8.03 $8.76
Annual Total Costs $M  $239 $213 $151 $117
Levelized SWU Cost   $/SWU $70 $73 $84 $93
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Table A.V.  Levelized SWU Costs, Existing Centrifuge Capacity (Russia) 
(2.5% cost of capital, 4.78% Capital Recovery Factor, +0% IDC, 0% Contingency) 

 
Firm   Tenex Tenex Tenex Tenex 
Plant (2008$) UEKhK EKhZ SKhK Angarsk 
Plant Capacity t SWU/yr 12,450 7,390 3,650 2,500
Overnight Cost   $M $6,282 $4,226 $2,472 $1,854
Total Capital Invest Cost   $M $6,282 $4,226 $2,472 $1,854
Capital/SWU   $/SWU $24.11 $27.32 $32.36 $35.44
Staff Size   people 601 478 350 297
Annual Fully Burden Salary $k/yr $60 $60 $60 $60
Labor/SWU $/SWU $2.90 $3.88 $5.76 $7.12
Electricity Consumption kWh/SWU 62 62 62 62
Electricity Price $/MWh $53 $53 $53 $53
Electricity/SWU   $/SWU $3.32 $3.32 $3.32 $3.32
Materials/SWU   $/SWU $5.05 $5.72 $6.77 $7.42
Annual Total Costs $M  $440 $297 $176 $133
Levelized SWU Cost   $/SWU $35 $40 $48 $53

 
 

Table A.VI.  Levelized SWU Costs, Existing Diffusion Capacity (U.S. and France) 
(2.5% cost of capital, 4.78% Capital Recovery Factor, +0% IDC, 0% Contingency) 

 
Firm   USEC Areva 
Plant (2008$) Paducah Eurodif 
Plant Capacity t SWU/yr 8,000 11,300 
Overnight Cost   $M $4,488 $5,836 
Total Capital Invest Cost   $M $4,488 $5,836 
Capital/SWU   $/SWU $18.98 $25.82 
Staff Size   people 495 576 
Annual Fully Burden Salary $k/yr $120 $120 
Labor/SWU $/SWU $6.88 $8.61 
Electricity Consumption kWh/SWU 2,500 2,200 
Electricity Price $/MWh $53 $53 
Electricity/SWU   $/SWU $133.38 $117.37 
Materials/SWU   $/SWU $3.97 $5.40 
Annual Total Costs $M  $1,826 $1,674 
Levelized SWU Cost   $/SWU $163 $157 
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ENDNOTES 
[1] HHI is the sum of the squares of the percentage shares across the industry. For example, an 

industry with 10 firms, all with an equal share, would have an HHI equal to 10 x (10)2 = 1,000. 

According to the U.S. Department of Justice and Federal Trade Commission (1997) Section 1.51 

states, “Markets in which the HHI is between 1000 and 1800 points are considered to be 

moderately concentrated, and those in which the HHI is in excess of 1800 points are considered 

to be concentrated. Transactions that increase the HHI by more than 100 points in concentrated 

markets presumptively raise antitrust concerns under the Horizontal Merger Guidelines issued by 

the U.S. Department of Justice and the Federal Trade Commission.” 

[2] On the early history of privately-held centrifuge enrichment capacity, see Rothwell (1974). 

[3] Although this paper focuses on estimating returns to scale at the level of average SWU costs, 

many of these increasing returns could arise in the manufacture of centrifuges, i.e., the 

equipment component of overnight costs, k. However, without a detailed description of structure 

and equipment costs for a cross-section of facilities, it is not possible to separate the various 

sources of increasing returns to scale in capital.  

[4] In 129 S.Ct. 878 (January 29, 2009) the U.S. Supreme Court reversed a lower federal court 

decision that enrichment was not a “good,” as defined in U.S. anti-dumping law. The lower court 

must now determine whether Eurodif “dumped” uranium enrichment, and if so, whether USEC 

was injured and to what extent. Still, this paper occasionally refers to enrichment as a “service.” 

[5] Because of the trade-off between uranium and uranium enrichment, the nuclear power plant 

operator can purchase either less uranium and more SWU, lowering the percentage of U235 in the 

tails, or more uranium and less SWU, with an increase in the percentage of U235 in the tails. See 

Bunn, et al. (2003, p.94) on the calculation of the optimal tails assay. Note, however, that the 

approximation in their equation (A.16) fixes the feed assay at 0.711%. Therefore, it cannot be 

used to determine the optimal re-enrichment of tails or reprocessed uranium.  
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[6] These estimates are used to illustrate the international SWU market and are based on 

statistical results, thus there could be an error of ±10 to 20 percent based on the standard errors 

of the estimation. Construction costs are deflated following the U.S. GDP implicit price deflator. 

Electricity prices are deflated following the U.S. Producer Price Index for Electricity Generation, 

Distribution, and Transmission, see http://data.bls.gov.) 

[7] 2020 was chosen because the Russia-United States blend down agreement will be terminated, 

the gaseous diffusion capacity will be retired, and the enrichment capacity under current 

planning and construction should be completed, including the Areva plant in Idaho. 

[8] This assumes that Russia continues to use a lower than optimal tails assay to fulfil fuel 

contracts by using less Russian uranium, thus increasing “domestic” SWU consumption and 

reducing SWU on the world market. So, in Figure 3, only one-half of Novouralsk’s capacity is 

competing in the world market. See Rothwell (2008). 

[9] It is difficult to know contract prices, which could be much lower than spot market prices, 

and thus industry profits could be much lower than the maximum revenue of $4,500M. However, 

the industry could still be following the contractual practice of the U.S. Atomic Energy 

Commission (U.S. AEC, 1972, p. 46): “Applicable charges for enriching services and related 

services will be those in effect at the time of delivery of enriched uranium to the customer.” See 

discussion in Rothwell (1980, p. 255). 

[10] Although EMWG (2007) recommends financing plant decommissioning through a sinking 

fund, because decommissioning accounting for multiple-owner facilities is so complex, the 

decommissioning contribution is ignored in this analysis. 

[11] While parameter values are estimated using econometric models, the analysis could also be 

presented in parametric form; however, it is easier to understand the qualitative conclusions 

when presented with numeric estimates, even though these might not be the “true” values given 

the proprietary nature of the cost and technological data. 

http://data.bls.gov/
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[12] Before analyzing this information, note that the model is based on three centrifuge 

technologies at different maturities: The Urenco TC-12 centrifuge has been in commercial 

operation for more than a decade and can be reproduced at Nth-of-a-Kind cost. The smaller 

Brazilian centrifuge is in its First-of-a-Kind commercial deployment. The ACP larger centrifuge 

is being scaled up from prototype to commercial size. Consider the estimated SWU per 

centrifuge in Guizzo (2006, p. 6): “The less technically advanced machines, such as those 

reportedly used by Iran, each have a capacity of 3 SWU per year. State-of-the-art machines, such 

as those used by Urenco, are estimated to have a capacity of 50 to 100 SWU. The new American 

centrifuges are designed to operate at 300 SWU, assuming they will work. Brazil's centrifuges 

have a capacity of around 10 SWU or a little more, sources familiar with the project told me. 

These sources, who spoke on condition of anonymity because of the classified nature of the 

project, say that the machines are nearly 2 meters tall and are supercritical. They add that 

Brazilian navy researchers are now attempting to increase the length of the rotor without having 

to redesign its driving and bearing systems. That modification, they say, could improve the 

machines' performance.” Therefore, these are conditional estimates that should be revised when 

more information is publicly available. 

[13] Several functional forms were estimated, including semi-log, reciprocal, and log-reciprocal. 

See Johnston and Dinardo (1997, p. 44). Also, the number of centrifuges (equal to plant SWU 

per year divided by SWU per machine per year) was also used as an explanatory variable, but 

was not significant in any of the OLS estimates. The linear, log-linear, and log-reciprocal models 

had the highest explanatory power, and no model yielded decreasing returns to scale. This was 

also true for Equations 5, discussed below. 

[14] See Upson (2001, p. 1): “The superiority of the no-maintenance philosophy over larger 

diameter, longer centrifuges requiring maintenance, was never in doubt.” 
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