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Abstract

Dynamic discrete choice panel data models have received a great deal of attention. In those

models, the dynamics is usually handled by including the lagged outcome as an explanatory

variable. In this paper we consider an alternative model in which the dynamics is handled by

using the duration in the current state as a covariate. We propose estimators that allow for

group specific effect in parametric and semiparametric versions of the model. The proposed

method is illustrated by an empirical analysis of job durations allowing for firm level effects.
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1 Introduction

Dynamic discrete choice panel data models have received a great deal of attention in statistics

and econometrics. In those models, the dynamics is usually handled by including the lagged

outcome as an explanatory variable. See for example Cox (1958), Heckman (1981a, 1981b, 1981c),

Chamberlain (1985) or Honoré and Kyriazidou (2000). In the spirit of classical duration models

where the dynamics is captured through dependence of the hazard on time (see Kalbfleisch and

Prentice (1980) and Lancaster (1990)), this paper considers an alternative dynamic discrete choice

model in which the dynamics is handled by using the duration in the current state as a covariate.

Such a model can be interpreted as a discrete time duration model. The main contribution of the

paper is to propose estimators that allow for group specific effect in parametric and semiparametric

versions of such a model. Duration models with group–specific effects have a long history, see for

example Clayton and Cuzick (1985), Holt and Prentice (1974), Sastry (1997), Ridder and Tunali

(1999) and Hougaard (2000). Most of these papers consider a parametric approach in which one

assumes a distribution for the group–specific effects. A notable exception is the “fixed effects”

approach in Ridder and Tunali (1999) who consider a conditioning approach similar to one that

leads to Cox’s partial likelihood estimator (Cox (1972), Cox (1975)). Their approach works when

durations are continuous, but breaks down if one has interval observations from the same model.

The starting point for this paper is to explicitly model the exit probabilities in a discrete time

duration model. This is different from deriving the exit probabilities from an underlying continuous

time model. The advantage of this is that we are able to incorporate group–specific effects in the

spirit of Ridder and Tunali (1999) in a discrete time duration model.

Heckman (1981a, 1981b, 1981c), Honoré and Kyriazidou (2000) and others studied a dynamic

panel data model of the type

yit = 1
{
x′

itβ + γyi,t−1 + αi + εit ≥ 0
}

(1)

where the explanatory variables, xit, are strictly exogenous under various assumptions of the dis-

tribution of εit. This model is empirically relevant in many situations. Specifically, the term αi can

be thought of as capturing unobserved heterogeneity; some individuals are consistently more likely

to experience the event than others. The term, γyi,t−1, captures state dependence; the probability

that an individual experiences the event this period depends on whether the event happened last

period. See e.g., Heckman (1981c). While both unobserved heterogeneity and state dependence
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are important, (1) ignores a third source of persistence, namely duration dependence. In duration

models, duration dependence refers to the phenomenon that the time since the last occurrence

of the event might affect the probability that the event occurs now. Clearly the time since the

last occurrence of the event is not strictly exogenous, and the approach in Honoré and Kyriazidou

(2000) will not work if it is included in xit.

In Section 2 below, we define the model and propose estimators under alternative assumptions.

We also make a link to the estimation of single index models and continuous time duration models.

Section 3 considers multiple-spell versions of the model. Here one has to distinguish between two

cases. Sometimes it is reasonable to assume that the spells are drawn from the same distribution.

One example of this would be time between purchases of identical products. In other situations,

consecutive spells are clearly drawn from different distributions. For example, one worker can

alternate between employment and unemployment spells. Section 4 applies the approach developed

in section 2 to analyze job durations using a unique Danish data set. This application confirms

that it is important to control for group-specific effects. Section 5 concludes.

2 The Model and Estimator

The maintained assumption in this paper is that we observe a sample of individuals that is grouped

in such a way that the individual–specific effect is the same within the group1. We will use i to

denote a group and j to index individuals within a group. We will assume that the number of

groups is large relative to the number of time–periods and the number of individuals within each

group. The relevant asymptotic is therefore one that assumes that the number of groups increases.

In this section we focus on single spell models. Since some spells will be in progress at the start

of the sampling process, the time at which a spell ends will not necessarily equal the duration of

the spell. It is therefore necessary to define a number of variables related to the duration of the

spell. For each individual, we use Sji1 to denote the duration of the spell at the beginning of the

sample period, and we use Tji to denote the sampling period in which the spell ends. This means

that the duration of the spell for individual j in group i will be Υji = Sji1 + Tji.

We formulate the model as a modification of the dynamic discrete choice model in (1) in which

1This is sometimes referred to as parallel data (see e.g. Hougaard (2000)) although it is not necessary that

observations in the same group enter the state at the same point in time.
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the lagged dependent variable has been replaced by the number of periods since the individual

entered the state of interest. yt = 1 will be used to describe the event that an individual leaves the

state at calendar time t. Hence the model is

yjit = 1
{
x′

jitβ + δSjit
+ αi + εjit ≥ 0

}
, t = 1, ..., t, j = 1, ..., J i = 1, ..., n (2)

where Sjit denotes the duration of the spell at time t (i.e., Sjit = Sji1+t). t is the end of the sampling

period. We will use yi and yji to denote
{
yjit : t = 1, ..., t, j = 1, ..., J

}
and

{
yjit : t = 1, ..., t

}
,

respectively. Similar notation will be used for the explanatory variables x. It is also not necessary

that one observes data for an individual after the event has occurred. This is for example relevant

if Tji is the time at which some failure (such as death) occurs. We will therefore assume that we

observe
{

x′
jit : t = 1, ..., Tji, j = 1, ..., J, i = 1, ..., n

}
, and we need only assume that (2) applies for

t = 1, ..., Tji.

It is clear that a scale normalization is needed for estimation of (β, δ), and that a location

normalization is needed on the duration dependence parameter δ’s.

The model in (2) is relevant when one worries about an unobserved heterogeneity component

which is the same for all individuals in a group. This situation will for example emerge if one has

a sample of workers where some of them work in the same firm and where one wants to control

for firm–specific effects. A second example is the case where one observes individual members of

a household and wants to control for household specific effects. In the spirit of “fixed effects”

panel data models, we will not restrict the distribution of the group–specific effect, α, and we

do not assume that it is independent of the strictly exogenous variables xit. Whether a random

effects approach is more desirable is application specific. If it is, then parametric versions of the

model can be estimated using textbook classical or Bayesian methods. One situation in which a

random effects approach is typically undesirable, is when the first observation in the sample does

not correspond to the first period that the individual is in the state. This is due to the usual left

censoring/initial conditions problem that occurs when some spells are in progress at the start of

the sampling process.

In what follows, we will assume that the number of observations in a group, J , is the same

across groups. This can be easily relaxed provided that J is exogenous (formally, the assumptions

below have to hold conditional on J).

We assume that we have a random sample of groups indexed by i.
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Assumption 1. All random variables corresponding to different i are independent of each

other and identically distributed.

We consider three versions of the model. The three differ in the assumptions that are made on

the distribution of εjit. To state the assumptions formally and in some generality, we define zi to

be all the predetermined characteristics of the group at the beginning of the sample. These will

include αi, {xki1}J
k=1, {Ski1}J

k=1 as well as characteristics of the group that do not enter the model

directly.

Assumption 2a. For each i and t, the εjit’s are all logistically distributed conditional on
{

αi, {εjis}s<t
, {xjis}s≤t

, {εkis}s≤t+τ,k 6=j , {xkis}s≤t+τ,k 6=j , {Ski1}J
k=1

}
for some known τ ≥ 0.

This assumption corresponds to the logit assumption used in Rasch (1960), Cox (1958), Ander-

sen (1970), Chamberlain (1985), Honoré and Kyriazidou (2000), Thomas (2002) and others. For

a given individual, Assumptions 2a does not limit the feedback from the ε’s to future values of x.

The setup therefore allows x to be predetermined. As a result, there is no need to treat δSjit
in (2)

differently from the other explanatory variables. However, the notation in (2) makes it easier to

compare the approach here to literature, and the duration dependence may be of special interest.

However, when τ > 0, it is assumed that a “feedback” from one individual’s ε to the other

group member’s x’s and ε’s is nonexistent for τ periods. τ is therefore application specific.

The next assumption generalizes Assumption 2a by allowing εjit to have an unknown, but

common, distribution. This is in the spirit of the way in which Manski (1987) generalized Rasch’s

logit model with individual specific effects.

Assumption 2b. For some known τ (τ ≥ 0), and conditionally on zi , {εjit}J
j=1 are independent

of each other and of
{
{εjis}s<t

, {xjis}s≤t
, {εkis}s≤t+τ,k 6=j , {xkis}s≤t+τ,k 6=j

}
for t = 1, .., T , and the

conditional distributions of {εjit}J,T
j=1,t=1 are identical.

Note that under Assumption 2b, the distributions of εjit is allowed to vary across i.

Assumption 2a and 2b fit naturally with the assumptions that are made in the discrete choice

literature. Moreover, Assumption 2b can be interpreted as the result of having interval observations

from a standard continuous time proportional hazard model with piecewise constant explanatory

variables. See section 2.6.

In assumption 2c below we allow the distribution of εjit to depend on Sjit.

Assumption 2c. For some known τ (τ ≥ 0), and conditionally on zi, {εjit}J
j=1 are indepen-
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dent of each other and of
{
{εjis}s<t

, {xjis}s≤t
, {εkis}s≤t+τ ,k 6=j , {xkis}s≤t+τ ,k 6=j

}
. Moreover, the

distributions of εjit and ε`is are identical if s and t correspond to the same duration time.

It is clear that Assumption 2c is weaker than Assumption 2b. This will, in itself, make it

interesting to consider Assumption 2c. However, the main motivation for Assumption 2c is that

it allows us to make a connection between the models considered here and the monotone index

model (and hence implicitly with mixed proportional hazard or accelerated failure time models).

See section 2.3.

For now assume that J = 2. The following lemma is crucial for the results in this paper.

Lemma 1 Let t1 and t2 be arbitrary with |t1 − t2| ≤ τ . Consider the two events A = {T1i = t1,

T2i > t2} and B = {T1i > t1, T2i = t2}. Under Assumption 2a

P (A|A ∪ B, x1it1 , x2it2 , zi) =
exp

(
(x1it1 − x2it2)

′ β + (δt1+S1i1
− δt2+S2i1

)
)

1 + exp
(
(x1it1 − x2it2)

′ β + (δt1+S1i1
− δt2+S2i1

)
) ,

under Assumption 2b

P (A|A ∪ B, x1it1 , x2it2 , zi)





> 1
2 if (x1it1 − x2it2)

′ β + (δt1+S1i1
− δt2+S2i1

) > 0,

= 1
2 if (x1it1 − x2it2)

′ β + (δt1+S1i1
− δt2+S2i1

) = 0,

< 1
2 it (x1it1 − x2it2)

′ β + (δt1+S1i1
− δt2+S2i1

) < 0,

and under Assumption 2c and if t1 + S1i1 = t2 + S2i1

P (A|A ∪ B, x1it, x2it, zi)





> 1
2 if (x1it1 − x2it2)

′ β > 0,

= 1
2 if (x1it1 − x2it2)

′ β = 0,

< 1
2 it (x1it1 − x2it2)

′ β < 0.

Lemma 1 suggests estimators of β and δ. Under Assumption 2a, one can estimate β and {δt}
by maximizing

n∑

i=1

t∑

t1=1

t∑

t2=1

1 {|t1 − t2| ≤ τ} (1 {T1i = t1, T2i > t2} + 1 {T1i > t1, T2i = t2})

· log
(

exp
(
(x1it1 − x2it2)

′ β + (δt1+S1i1
− δt2+S2i1

)
)1{T1i=t1,T2i>t2}

1 + exp
(
(x1it1 − x2it2)

′ β + (δt1+S1i1
− δt2+S2i1

)
)

)
(3)

This estimator is a standard extremum estimator and consistency and asymptotic normality (as

n increases to infinity) are easily established (using for example the arguments in Amemiya).

Specifically,
√

n
(
θ̂ − θ0

)
−̃→N

(
0, A−1BA−1

)
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where θ̂ =
(
β̂
′
, δ̂

′
)′

, θ0 =
(
β′

0, δ
′
0

)′
,

A = E




t∑

t1=1

t∑

t2=1

∂2qi (θ)

∂θ∂θ′

∣∣∣∣
θ0




and

B = E




t∑

t1=1

t∑

t2=1

∂qi (θ)

∂θ

∣∣∣∣
θ0

∂qi (θ)

∂θ

∣∣∣∣
′

θ0




where

qi (θ) =
t∑

t1=1

t∑

t2=1

1 {|t1 − t2| ≤ τ} (1 {T1i = t1, T2i > t2} + 1 {T1i > t1, T2i = t2})

· log
(

exp
(
(x1it1 − x2it2)

′ β + (δt1+S1i1
− δt2+S2i1

)
)1{T1i=t1,T2i>t2}

1 + exp
(
(x1it1 − x2it2)

′ β + (δt1+S1i1
− δt2+S2i1

)
)

)

Similarly, under Assumption 2b, one can estimate β and {δt} (up to scale) by a maximum score

estimator in the spirit of Manski (1975, 1987). Specifically this estimator would maximize

n∑

i=1

t∑

t1=1

t∑

t2=1

1 {|t1 − t2| ≤ τ} · 1 {T1i = t1, T2i > t2} (4)

· 1
{
(x1it1 − x2it2)

′ β + (δt1+S1i1
− δt2+S2i1

) > 0
}

+ 1 {|t1 − t2| ≤ τ} · 1 {T1i > t1, T2i = t2}

· 1
{
(x1it1 − x2it2)

′ β + (δt1+S1i1
− δt2+S2i1

) < 0
}

subject to a scale normalization. Following the arguments in Manski (1975, 1987), this estima-

tor is consistent under random sampling subject to support conditions on the distribution of the

explanatory variables. Similar to Horowitz (1992), a smoothed maximum score estimator defined

by maximization of a smoothed version of (4) will be asymptotically normal (although its rate of

convergence will be slower than the usual
√

n)

Finally, under Assumption 2c, one can estimate β (up to scale) by maximizing

n∑

i=1

t∑

t1=1

t∑

t2=1

1 {t1 + S1i1 = t2 + S2i1} · 1 {|t1 − t2| ≤ τ} ·

(
1 {T1i = t1, T2i > t2} · 1

{
(x1it1 − x2it2)

′ β > 0
}

+1 {T1i > t1, T2i = t2} · 1
{
(x1it1 − x2it2)

′ β < 0
})

(5)
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subject to a scale normalization. In this case, the δ’s are not identified. This is because Assumption

2c places no restriction on the location of ε.

In the discussion leading up to Lemma 1 and equations (3)–(5), we implicitly assume that the

calendar time for the first observation is the same for all individuals. If this is not the case, then

the feedback in Assumptions 2a–2c should refer to the calendar time rather than the duration time.

As a result, the statement |t1 − t2| ≤ τ should be replaced by a statement that the calendar times

are within τ , and indicator functions 1 {|t1 − t2| ≤ τ} in equations (3)–(5) should be replaced by

indicator functions for the difference in the calendar times being less than or equal to τ .

2.1 Group–Specific δ or x

Note that the δ–terms drop out in the case where t1 + S1i1 = t2 + S2i1 in Lemma 1. This allows

us to construct an estimator for the case where δt is also indexed by i by only including terms for

which t1 + S1i1 = t2 + S2i1 in (3), (4) and (5). This is similar in spirit to the continuous time panel

duration model considered by Ridder and Tunali (1999) (see below). It is also somewhat similar

to the approach in Chamberlain (1985), and Honoré and D’Adddio (2003). Those papers consider

models with second order state dependence where the first order is allowed to be individual–specific.

It is also worth noting that if τ in Assumptions 2a–2c is positive, then the approach taken here

allows us to estimate a model in which all the explanatory variables are group–specific, x1it = x2it

for all t. Conversely, if τ = 0 then all group–specific terms will cancel in (3), (4) and (5). This

implies that we can allow for group–specific, temporary shocks.

2.2 Censoring

Covariate–dependent censoring is not a problem provided that it is independent of the ε’s. Specif-

ically, assume that we observe {yjit, xjit} only up to (and including) some random period Cji. In

other words, Cji is the censoring time for Tji (measured in “sample” time) and with the convention

that it is observed whether the event Tji = Cji occurs.

The argument above then applies if Assumptions 2a, 2b and 2c are modified to

Assumption 2a′. For each i and t, the εjit’s are all logistically distributed conditional on
{

αi, {εjis}s<t
, {xjis}s≤t

, {εkis}s≤t+τ,k 6=j , {xkis}s≤t+τ,k 6=j , {Ski1}J
k=1 , {Cki}J

k=1

}
for some known τ .

Assumption 2b′. For some known τ (τ ≥ 0), and conditionally on zi , {εjit}J
j=1 are inde-

pendent of each other and of
{
{εjis}s<t

, {xjis}s≤t
, {εkis}s≤t+τ,k 6=j , {xkis}s≤t+τ,k 6=j , {Cki}J

k=1

}
for
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t = 1, . . . , T , and the conditional distributions of {εjit}J,T
j=1,t=1 are identical.

Assumption 2c′. For some known τ (τ ≥ 0), and conditionally on zi, {εjit}J
j=1 are independent

of each other and of
{
{εjis}s<t

, {xjis}s≤t
, {εkis}s≤t+τ,k 6=j , {xkis}s≤t+τ,k 6=j , {Cki}J

k=1

}
. Moreover,

the distributions of εjit and ε`is are identical if s and t correspond to the same duration time.

Hence under Assumption 2a′, one can estimate β and {δt} by maximizing

n∑

i=1

t∑

t1=1

t∑

t2=1

1 {|t1 − t2| ≤ τ , t1 ≤ C1i, t2 ≤ C2i}

(1 {T1i = t1, T2i > t2} + 1 {T1i > t1, T2i = t2})

log

(
exp ((x1it1 − x2it2) β + (δt1+S1i1

− δt2+S2i1
))1{T1i=t1,T2i>t2}

1 + exp ((x1it1 − x2it2) β + (δt1+S1i1
− δt2+S2i1

))

)

Similarly, under Assumption 2b′, one can estimate β and {δt} (up to scale) by maximizing

n∑

i=1

t∑

t1=1

t∑

t2=1

1 {|t1 − t2| ≤ τ , t1 ≤ C1i, t2 ≤ C2i}

· 1 {T1i = t1, T2i > t2} · 1 {(x1it1 − x2it2) β + (δt1+S1i1
− δt2+S2i1

) > 0}

+1 {|t1 − t2| ≤ τ , t1 ≤ C1i, t2 ≤ C2i}

· 1 {T1i > t1, T2i = t2} · 1 {(x1it1 − x2it2) β + (δt1+S1i1
− δt2+S2i1

) < 0}

subject to a scale normalization.

Finally, under Assumption 2c′, one can estimate β (up to scale) by maximizing

n∑

i=1

t∑

t1=1

t∑

t2=1

1 {|t1 − t2| ≤ τ , t1 + S1i1 = t2 + S2i1, t1 ≤ C1i, t2 ≤ C2i}

·
(
1 {T1i = t1, T2i > t2} · 1

{
(x1it1 − x2it2)

′ β > 0
}

+1 {T1i > t1, T2i = t2} · 1
{
(x1it1 − x2it2)

′ β < 0
})

2.3 Pairwise Comparison Estimation When There Is No Group–Specific Effect

It is well-understood that estimators of panel data models can be turned into estimators of cross

sectional models by considering all pairs of observations as units in a panel. See, for example,

Honoré and Powell (1994). It is therefore natural to consider a version of the model in (2) without

group specific effects,

yit = 1
{
x′

itβ + δSit
+ εit ≥ 0

}
, t = 1, ...t, i = 1, ...n (6)
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and then apply the approach discussed earlier to all pairs of observations i1 and i2. In a semipara-

metric case, this would lead to an estimator defined by minimizing

n∑

i1<i2

t∑

t1=1

t∑

t2=1

1 {Ti1 = t1, Ti2 > t2} · 1
{
(xi1t1 − xi2t2)

′ β + (δt1 − δt2) > 0
}

(7)

+ 1 {Ti1 > t1, Ti2 = t2} · 1
{
(xi1t1 − xi2t2)

′ β + (δt1 − δt2) < 0
}

.

In the case where t = 1, (6) is a standard discrete choice model, and in that case the objective

function in (7) becomes

n∑

i1<i2

1 {yi1 > yi2} · 1
{
(xi1 − xi2)

′ β > 0
}

+ 1 {yi1 < yi2} · 1
{
(xi1 − xi2)

′ β < 0
}

which is the objective function for Han (1987)’s maximum rank correlation estimator.

It is also possible to link (6) to a general monotone index model of the form

G (T ∗
i ) = x′

iβ + εi (8)

where G is continuous and strictly increasing and a discretized version of T ∗
i is observed. (8) implies

that2

P (T ∗
i > t|xi) = P (G (T ∗

i ) > G (t)|xi)

= P
(
x′

iβ + εi > G (t)
∣∣xi

)

= 1 − F
(
G (t) − x′

iβ
)

where F is the CDF for εi. This gives

P (T ∗
i > t + 1|xi, T

∗
i > t) =

1 − F (G (t + 1) − x′
iβ)

1 − F (G (t) − x′
iβ)

.

When 1−F (·) is log–concave (which is implied by the density of εi being log–concave; see Heckman

and Honoré (1990)), the right hand side is an increasing function of x′
iβ . This means that one can

write the event T ∗
i > t + 1|xi, T

∗
i > t in the form 1 {x′

iβ > ηit} for some random variable ηit which

is independent of xi and has CDF 1−F (G(t+1)−·)
1−F (G(t)−·) . This has the same structure as (6) with time–

invariant explanatory variables combined with a version of Assumption 2c without group specific

2Expressions of the form P (T ∗
i > t|xi) = 1 − F (at − x′

iβ) can also be obtained without the assumption that G

is continuous and strictly increasing. The discussion here can therefore be generalized to more general monotone

transformation models (at the cost of additional notation).
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effects. In other words, a monotone index model with discretized observations of the dependent

variable and log–concave errors, is a special case of the model considered here. The estimator that

results from exploiting this insight will share many of the rank estimators proposed in the literature

such as Han (1987), Cavanagh and Sherman (1998), Abrevaya (1999), Chen (2002) and Khan and

Tamer (2004). However, it does not appear that the estimator based on the approach taken here

will be a special case of any of them, or vice versa.

2.4 More Than Two Observations Per Unit

A similar approach can be used when there are more than two observations for each group.

To illustrate this, suppose that a group has three observations and define A = {T1i = t1, T2i > t2,

T3i > t3}, B = {T1i > t1, T2i = t2, T3i > t3} and C = {T1i > t1, T2i > t2, T3i = t3}. Under the logit

Assumption 2a, we then have

P (A|A ∪ B ∪ C, x1it1 , x2it2 , x3it3)

=
exp

(
x′

1it1
β + δt1+S1i1

)

exp
(
x′

1it1
β + δt1+S1i1

)
+ exp

(
x′

2it2
β + δt2+S2i1

)
+ exp

(
x′

3it3
β + δt3+S3i1

) .

For the semiparametric case in Assumption 2b, we get

P (A|A ∪ B ∪ C, x1it1 , x2it2 , x3it3)

> max {P (B|A ∪ B ∪ C, x1it1 , x2it2 , x3it3) , P (C|A ∪ B ∪ C, x1it1 , x2it2 , x3it3)}

if and only if

x′
1it1

β + δt1+S1i1
> max

{
x′

2it2
β + δt2+S2i1

, x′
3it3

β + δt3+S3i1

}
.

This has the same structure as the multinomial qualitative response model of Manski (1975), and

the insights there can be used to construct a maximum score estimator.

Under Assumption 2c, we can use the case where t1 + S1i1 = t2 + S2i1 = t3 + S3i1 (so they all

refer to the same duration) and we have

P (A|A ∪ B ∪ C, x1it1 , x2it2 , x3it3)

> max {P (B|A ∪ B ∪ C, x1it1 , x2it2 , x3it3) , P (C|A ∪ B ∪ C, x1it1 , x2it2 , x3it3)}

if and only if

x′
1it1

β > max
{
x′

2it2
β, x′

3it3
β
}

.
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We could also define A = {T1i = t1, T2i = t2, T3i > t3}, B = {T1i = t1, T2i > t2, T3i = t3} and

C = {T1i > t1, T2i = t2, T3i = t3}. Under the logit Assumption 2a, we then have

P (A|A ∪ B ∪ C, x1it1 , x2it2 , x3it3) =
c1

c1 + c2 + c3

where

c1 = exp
(
(x1it1 + x2it2)

′ β + (δt1+S1i1
+ δt2+S2i1

)
)

c2 = exp
(
(x1it1 + x3it3)

′ β + (δt1+S1i1
+ δt3+S3i1

)
)

c3 = exp
(
(x2it2 + x3it3)

′ β + (δt2+S2i1
+ δt3+S3i1

)
)
.

For the semiparametric case in Assumption 2b, we get

P (A|A ∪ B ∪ C, x1it1 , x2it2 , x3it3)

> max {P (B|A ∪ B ∪ C, x1it1 , x2it2 , x3it3) , P (C|A ∪ B ∪ C, x1it1 , x2it2 , x3it3)}

if and only if

(x1it1 + x2it2)
′ β + (δt1+S1i1

+ δt2+S2i1
)

> max
{
(x1it1 + x3it3)

′ β + (δt1+S1i1
+ δt3+S3i1

) , (x2it2 + x3it3)
′ β + (δt2+S2i1

+ δt3+S3i1
)
}

.

This can be used to construct a maximum score estimator in the spirit of Manski (1975).

Under Assumption 2c, we can use the case where t1 + S1i1 = t2 + S2i1 = t3 + S3i1 (so they all

refer to the same duration) and we have

P (A|A ∪ B ∪ C, x1it1 , x2it2 , x3it3)

> max {P (B|A ∪ B ∪ C, x1it1 , x2it2 , x3it3) , P (C|A ∪ B ∪ C, x1it1 , x2it2 , x3it3)}

if and only if

(x1it1 + x2it2)
′ β > max

{
(x1it1 + x3it3)

′ β, (x2it2 + x3it3)
′ β
}

.

We can derive similar expression for J > 3. Alternatively, one could consider all pairs of

observations within a group.

2.5 Conditional Likelihood

Most of the existing results for logit models with individual specific effects have been based on a

conditional likelihood approach. A sufficient statistic, Si, for αi in (2) is defined to be a function
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of the data such that the distribution of yi conditional on (Si, xi, αi), does not depend on αi.

If one has a sufficient statistic, which furthermore has the property that the distribution of yi

conditional on (Si, xi, αi) depends on the parameters of interest, then those can be estimated by

maximum likelihood using the conditional distribution of the data, given the sufficient statistic.

Andersen (1970) proved that the resulting estimator is consistent and asymptotically normal under

appropriate regularity conditions. Unfortunately, it does not appear that the method proposed

here can be motivated as a conditional likelihood estimator.

For simplicity assume that xi is strictly exogenous. Under Assumption 2.a, the distribution of

yi given (xi, αi) is then

(
T1i−1∏

s=1

1

1 + exp (x′
1isβ + δS1is

+ αi)

)
exp

(
x′

1iT1i
β + δS1iT1i

+ αi

)

1 + exp
(
x′

1iT1i
β + δS1iT1i

+ αi

)

(
T2i−1∏

s=1

1

1 + exp (x′
2isβ + δS2is

+ αi)

)
exp

(
x′

2iT2i
β + δS2iT2i

+ αi

)

1 + exp
(
x′

2iT2i
β + δS2iT2i

+ αi

)

=
exp (2αi) exp

(
x′

1iT1i
β + δS1iT1i

+ x′
2iT2i

β + δS2iT2i

)

T1i∏

s=1

(
1 + exp

(
x′

1isβ + δS1is
+ αi

)) T2i∏

s=1

(
1 + exp

(
x′

2isβ + δS2is
+ αi

))

It follows from that that the sufficient statistic is (T1i, T2i). Hence, a conditional likelihood approach

will not work.

2.6 Comparison to Continuous Case

The hazard for the proportional hazard model with time–varying covariates is

λ
(
t
∣∣∣{xis}s≤t

)
= λ (t) exp

(
x′

itβ
)

(see Kalbfleisch and Prentice (1980)). Cox’s estimator (Cox (1972), Cox (1975)) essentially condi-

tions on the failure times and, for each failure time, on the risk set (the set of observations that

have not yet experienced the event and are not yet censored). The contribution to the “likelihood”

function for an observation, i, that experiences the event at duration–time t is then the probability

that, of the observations at risk at duration–time t, the i’th is the one to experience the event (given

that one of them will). For the proportional hazard model, this probability has the same functional

form as a multinomial logit. This insight was used in Ridder and Tunali (1999) in the case where
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the observations are grouped in the way discussed here. The resulting estimator is based on an

objective function which has terms similar to the contributions in (3) from t1 + S1i1 = t2 + S2i1.

Prentice and Gloeckler (1978) and Meyer (1990) considered estimation in a proportional hazard

model with interval data and piecewise constant explanatory variables. In that case

P
(

yjit = 1| {xjis}s≤t
, αi

)
= P

(
T ∗

ji < t
∣∣T ∗

ji > t − 1, {xjis}s≤t
, αi

)

where T ∗
ji denoted the underlying continuous duration.

If T ∗
ji has hazard

λ
(
t
∣∣∣{xjis}s≤t

, αi

)
= λ (t) exp

(
x′

jitβ + αi

)

then

P
(

yjit = 1| {xjis}s≤t
, αi

)
= 1 − exp

(
−
∫ t

t−1
λ (s) exp

(
x′

jisβ + αi

)
ds

)

= 1 − exp

(
− exp

(
x′

jitβ + αi

) ∫ t

t−1
λ (s) ds

)

= 1 − exp
(
− exp

(
x′

jitβ + δt + αi

))

where

δt = log

(∫ t

t−1
λ (s) ds

)

In other words (after allowing for left censoring), one can write

yjit = 1
{
x′

jitβ + δSjit
+ αi + εjit ≥ 0

}

where εjit is Type–1 extreme value distributed (i.e., has CDF F (η) = exp (− exp (−η))). In other

words, the proportional hazard model with interval data fits our setup with Assumption 2b.

Finally, we note that it is possible to interpret the model that results from Assumption 2a, as

the outcome of a proportional hazard model with i.i.d. piecewise shocks to the hazard. Specifically,

assume that the hazard for T ∗
ji is

λ
(
t
∣∣∣{xjis}s≤t

, αi, {vjis}s≤t

)
= λ (t) exp

(
x′

jitβ + αi − vjit

)

where vjit is constant over each time interval, and is i.i.d. extreme value distributed. Then

P
(

yjit = 1| {xjis}s≤t
, αi, vjit

)
= 1 − exp

(
− exp

(
x′

jitβ + δt + αi − vjit

))

so one can write

yjit = 1
{
x′

jitβ + δSjit
+ αi + εjit − vjit ≥ 0

}
. (9)
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Since the difference in two extreme value distributed random variables is logistic, it follows that

(9) is the model that results from Assumption 2a.

3 Multiple Spell Versions of the Model

The previous section considered single spell models. This is reasonable in situations where the event

is one that can happen only once. On the other hand, there are many situations in which the event

can reoccur. For example, one might want to model the duration between purchases of a particular

good. In that case it would be reasonable to assume that the process starts over at the end of each

spell. There are also cases that fall in between these extremes. One example of that could be the

timing of births. In this case, the spell between the first and second child starts at the point when

the first child is born. This is similar to the case of an individual purchasing a good. On the other

hand, it may not be reasonable to specify the same model for, for example, the duration between

the birth of the first and second child as one would for the duration between the birth of the third

and fourth child. A two–state discrete time duration model is also an “intermediate case.”

In this section, we discuss how the ideas in the previous section generalize to multiple spell

models. The derivations are given in the appendix (see section 6.2).

3.1 Models with Two Spells

To fix ideas, we augment the setup in the previous section by assuming that a new spell of a

potentially different type starts when the first spell ends. To accommodate this in the notation, we

use superscript 1 for the first duration and superscript 2 for the second duration.

The model then is

y1
jit = 1

{
x′

jitβ
1 + δ1

S1

jit
+ α1

i + εjit ≥ 0
}

, t = 1, ...t, j = 1, ..., J i = 1, ...n

y2
jit = 1

{
x′

jitβ
2 + δ2

S2

jit
+ α2

i + εjit ≥ 0
}

, t = T 1
ji + 1, ...t, j = 1, ..., J i = 1, ...n

This notation allows the two spells to be fundamentally different (e.g., a spell of employment

followed by a spell of unemployment) and the case where they are of the same type is the special

case in which all parameters in the two equations are the same.

For notational simplicity, we consider only the case where J = 2.
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3.1.1 Comparing First Spells

One can use the first spells of individual i1 and i2 to construct conditional statements like the ones

in the previous section to estimate β1 and δ1.

3.1.2 Comparing First Spells to Second Spells (Assuming α1
i = α2

i = αi)

In this subsection we illustrate that it is possible to construct probability statements that are

informative about the parameters of interest by comparing the first spell for one individual to the

second spell for a different individual. This requires that the group–specific effect does not depend

on the spell number. Whether or not this is reasonable depends on the empirical application that

one has in mind3.

Let t11, t21 and t12 be arbitrary with t11 < t21 and
∣∣t21 − t12

∣∣ ≤ τ . Consider the two events A =
{
T 1

1i = t11, T
2
1i = t21, T

1
2i > t12

}
and B =

{
T 1

1i = t11, T
2
1i > t21, T

1
2i = t12

}
.

In the appendix we show that under Assumption 2a,

P
(

A|A ∪ B, x1it2
1

, x2it1
2

, zi

)
=

exp
(
x′

1it2
1

β2 − x′
2it1

2

β1 + δ2
t2
1
−t1

1

− δ1
t1
2
+S2i1

)

1 + exp
(
x′

1it2
1

β2 − x′
2it1

2

β1 + δ2
t2
1
−t1

1

− δ1
t1
2
+S2i1

) ; (10)

and under Assumption 2b

P (A|A ∪ B, x1it1 , x2it2 , zi)





> 1
2 if x′

1it2
1

β2 − x′
2it1

2

β1 + δ2
t2
1
−t1

1

− δ1
t1
2
+S2i1

> 0,

= 1
2 if x′

1it2
1

β2 − x′
2it1

2

β1 + δ2
t2
1
−t1

1

− δ1
t1
2
+S2i1

= 0,

< 1
2 it x′

1it2
1

β2 − x′
2it1

2

β1 + δ2
t2
1
−t1

1

− δ1
t1
2
+S2i1

< 0.

(11)

Finally, under Assumption 2c, and if t21 − t11 = t12 + S2i1

P (A|A ∪ B, x1it, x2it, zi)





> 1
2 if x′

1it2
1

β2 − x′
2it1

2

β1 > 0,

= 1
2 if x′

1it2
1

β2 − x′
2it1

2

β1 = 0,

< 1
2 it x′

1it2
1

β2 − x′
2it1

2

β1 < 0.

(12)

Since (10), (11) and (12) do not depend on t11, the same statements are true if we redefine A

and B as A =
{
T 2

1i = t21, T
1
2i > t12

}
and B =

{
T 2

1i > t21, T
1
2i = t12

}
. (See the appendix.)

The statements in (10), (11) and (12) do not involve the group–specific effects, and they can

therefore be used to construct estimators for β1, β2, δ1 and δ2 as in section 2.

3It is unlikely that one would assume that α1

i = α2

i without also assuming that β1 = β2 and δ1 = δ2. Naturally,

the discussion in this section applies to that case as well.

16



3.1.3 Comparing Second Spells

It is also possible to use two second spells to construct probability statements that are informative

about β2 and δ2. This does not require the group specific effect to be the same across spells. Let

t11, t
1
2, t

2
1 and t22 be arbitrary with t11 < t21, t

1
2 < t22 and

∣∣t21 − t22
∣∣ < τ . Define

A =
{
T 1

1i = t11, T
2
1i = t21, T

1
2i = t12, T

2
2i > t22

}

and

B =
{
T 1

1i = t11, T
2
1i > t21, T

1
2i = t12, T

2
2i = t22

}
.

Under the logit Assumption 2a, we then have

P
(

A|A ∪ B, x1it2
1

, x2it2
2

, zi

)
=

exp
((

x′
1it2

1

− x′
2it2

2

)
β2 + δ2

t2
1
−t1

1

− δ2
t2
2
−t1

2

)

1 + exp
((

x′
1it2

1

− x′
2it2

2

)
β2 + δ2

t2
1
−t1

1

− δ2
t2
2
−t1

2

) ; (13)

Under Assumption 2b,

P
(

A|A ∪ B, x1it2
1

, x2it2
2

, zi

)
=





> 1
2 if

(
x′

1it2
1

− x′
2it2

2

)
β2 + δ2

t2
1
−t1

1

− δ2
t2
2
−t1

2

> 0,

= 1
2 if

(
x′

1it2
1

− x′
2it2

2

)
β2 + δ2

t2
1
−t1

1

− δ2
t2
2
−t1

2

= 0,

< 1
2 it

(
x′

1it2
1

− x′
2it2

2

)
β2 + δ2

t2
1
−t1

1

− δ2
t2
2
−t1

2

< 0.

(14)

Finally, under Assumption 2c, and if t21 − t11 = t22 − t12

P
(

A|A ∪ B, x1it2
1

, x2it2
2

, zi

)





> 1
2 if

(
x′

1it2
1

− x′
2it2

2

)
β2 > 0,

= 1
2 if

(
x′

1it2
1

− x′
2it2

2

)
β2 = 0,

< 1
2 it

(
x′

1it2
1

− x′
2it2

2

)
β2 < 0.

(15)

Since (13), (14) and (15) do not depend on t11 and t12, the same statements are true if we redefine

A and B as A =
{
T 2

1i = t21, T
2
2i > t22

}
and B =

{
T 2

1i > t21, T
2
2i = t22

}
. As before, this can be used to

construct estimators for β2 and δ2 without making assumptions on the group–specific effects.

4 An Empirical Application

In this section, we will use the estimation technique developed above to investigate employee

turnover. There are three stylized facts about inter-firm mobility (See Farber (1999)). First,
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long term employment relationships are common; second, most new jobs end early; and third, the

probability of a job ending declines with tenure. The probability of a job separation, however, is

generally not equally distributed across individuals and firms. Therefore it is important to control

for both individual and firm characteristics. The data set used here is the Integrated Database for

Labour Market Research (IDA), which contains information on all employees of all establishments

in the private sector in Denmark from 1980 to 2000. Individuals and firms are matched once every

year and carry unique identifiers that allow us to follow both individuals and firm over time.

The total number of yearly full time private sector employer-employee matches in the data set

is 29,069,419. These are generated by 3,253,312 unique individuals who are working in 477,619

different workplaces. The analysis is conducted on a flow-sample for five percent of the individuals

which corresponds to 638,515 observations. The sampling scheme implies that tenure is known for

all the employees included in the sample. The average number of employees in a given workplace

in a given year is 1.63 with a standard deviation of 2.53. The largest group has 180 members.

The descriptive statistics for the sample used in the analysis is presented in Table 1. Columns

two and three present the numbers for women and men, respectively, and the last column shows

the numbers for the pooled sample. Women constitute 38.6 percent of the sample. The three age

categories used are below 30 years of age, 30 to 50 years and above 50 years of age. The largest

group is young workers (which is partly caused by the sampling scheme) who account for 46.6

percent of the individuals. The education level is divided into unskilled, skilled and high-skilled

workers. Skilled workers clearly dominate with a proportion close to 57 percent (58.3 percent for

men and 54.1 percent for women). This is a result of the well functioning apprenticeship program

and a developed educational market for semi-skilled professionals.

Average tenure is 2.41 years with a standard deviation of 3.20. This relatively low number is a

result of the flow-sampling scheme that is based on a continuous inflow of newly hired employees

and a right censoring in 2000. Hence, the maximum years of tenure observed in the sample is 18

years. For the group of employees entering the sample in 1980, 2.59 percent have employment spells

of at least 18 years.

The characteristics of the workplaces included in the sample are presented in the lower part

of Table 1. The average (employee-weighted) workplace size is 192. These workplaces have an

average payroll per worker in 1980-prices equal to 85,576 Danish Kroner (≈ $15,000). The standard

deviation of the payroll measure is 38,434. Finally the distribution of employees across sectors is
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presented. The largest sector is manufacturing which accounts for 29.1 percent of the employees.

Since we have discrete time data, the hazard function for employment duration can be charac-

terized by the conditional probability of job separation given a set of explanatory variables. Several

studies have shown how individual characteristics such as age, gender, education, marital status and

children affect the separation probability, see for example Blau and Kahn (1981), Light and Ureta

(1992), Lynch (1992) and Royalty (1998). Others have documented that larger firms and firms

with a higher payroll per worker experience lower turnover, see for example Anderson and Meyer

(1994). More recently Frederiksen (2004) studied the separation process using employer-employee

data, which allowed for effects of both individual and the firm characteristics on the job separation

process.

Table 2 uses a conventional logit model to estimate the probability of a job separation for

men. In column 1, only characteristics of the individual are included. As expected, family related

variables such as marriage or cohabitation and having kids reduce the probability of leaving a job

significantly. The results also show that the separation rate is declining in age. Finally, men with

higher education have lower rate of separations. Column 2 adds information about the workplace.

The results show that payroll per worker reduces the separation probability and that a higher

variation in pay (standard deviation of the payroll measure) conditional on the payroll-level leads

to more separations. Furthermore, workplace size has an inverted U-shaped effect on the probability

that an employee is leaving the workplace.

In general, controlling for workplace characteristics reduces the magnitude of the coefficients

of the individual characteristics but the sign and the significance are preserved. The exception is

education. Without controls for firm characteristics, education increases job stability but once the

controls are added, skilled workers have higher separation rates than both unskilled and highly

skilled employees. This suggests that highly skilled employees tend to work in high paying work-

places that in turn have relatively lower turnover on average. Introducing information about the

sector of employment (column 3) alters the workplace size coefficients but the rest are insensitive.

The results from the conventional logit models for women are presented in Table 3. The coeffi-

cients are generally larger in magnitude than for men, but the relative importance of the explanatory

variables is the same as for men. The exception is the coefficient of children, which is smaller for

women and statistically insignificant.

Adding firm characteristics has the same effect on the coefficients as for men. The main differ-
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ence is that for women, the changes in the coefficients for education are not large enough to reverse

their signs.

It is clear from the first three columns of Tables 2 and 3 that it is important to include firm

specific variables. This suggests that it is also interesting to allow for unobserved firm characteristics

in the way described earlier.

The results of the fixed-effects model (with τ = ∞) are presented in columns 4 and 5 of

Tables 2 and 3. The changes in the coefficients suggest that allowing for unobserved firm specific

characteristics is important. A Hausman type test firmly rejects the hypothesis that the coefficients

are the same with or without unobserved firm specific characteristics (see the first two rows of the

last column of Tables 6 and 7). The difference between the two versions of the test is that the first

implicitly assumes that the conventional logit is asymptotically efficient under the null. It seems

reasonable that inferences in the conventional logit model should allow for clustering at the firm

level, which would imply that the conventional logit is not asymptotically efficient. The second

Hausman type test statistic is calculated by constructing the joint asymptotic distribution of the

two estimators assuming independence across firms but allowing for correlations within firms.

A common criticism of the fixed-effect approach is that it makes it hard to estimate marginal

effects. This depends on the exact marginal effect of interest. Suppose, for example, that one wants

to find the effect of being married on an unmarried man with a separation probability of 10%. For

that individual,
(
x′

jitβ + δSjit
+ αi

)
equals −2.197. With the marriage coefficient of −0.110, this

implies a fall in the separation probability to 9%. It is tempting to calculate this marginal effect

for each model. However, it is not surprising that one would calculate different marginal effects

because different sets of additional explanatory variables are kept constant.

Now we turn to the effect of controlling for firm specific characteristics on the estimates of

duration dependence, i.e. the δ’s. As discussed in Section 2, a location normalization is needed

for parameter identification. We therefore set the δ associated with the shortest tenure (one year)

to zero. The estimates of the rest of δ’s (along with their pointwise 95% confidence intervals) are

plotted in Figure 1 (for men) and Figure 2 (for women) . For both conventional logit and fixed

effect models, all coefficients are negative and they are decreasing as a function of duration, which

indicates negative duration dependence. However, the estimates from the fixed effect models are

uniformly smaller in magnitude than those from the conventional logit model, which suggests a

lesser degree of duration dependence once firm specific effects are controlled for.
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It is evident from the figures that the duration dependence coefficients are jointly significantly

different from zero. This is confirmed by the Wald test presented in the last column of Tables 6

and 7.

The results based on τ = ∞ presented in the last column of Tables 2 and 3 assume that there

is no feedback from one worker’s dependent variable to the future explanatory variables of other

workers in the same firm. This might not be reasonable for time-varying firm level explanatory

variables. These are presumably chosen by the firm taking into account all the relevant information

including past turnovers of its other workers. Tables 4 and 5 present results for different values of

τ where one can think of τ as the time it takes for the firm to adjust its aggregate variable. Note

when τ = 0, we can not identify the effect of firm level explanatory variables because we implicitly

allow for the unobserved firm specific characteristics to be time varying. Not surprisingly, the point

estimates are sensitive to choices of τ . However, the coefficients on individual characteristics are

less sensitive than are the coefficients on the firm level explanatory variables. This is what one

would expect since individual specific variables are less likely to be subject to feedback. Tables 6

and 7 present the Wald and Hausman type tests discussed earlier for different values of τ .

5 Conclusions

This paper considers a discrete choice/duration model in which the dynamics is handled by using

the duration in the current state as a covariate. The main contribution is to propose estimators

that allow for group specific effect in parametric and semiparametric versions of the model. This is

relevant in many empirical settings where one observes individuals that are grouped geographically,

by household, by employer, etc. On the other hand, there are also many situations in which one

would want to use the models considered here in applications where the grouping results from

multiple spells for the same individual. The approaches discussed in this paper do not automatically

apply in that case. The reason is that when one observes consecutive spells for the same individual,

the timing of the second spell (and hence the covariates for the second spell) will in general depend

on the length of the first spell. This will violate the assumptions made in this paper. Investigating

methods for dealing with that case is an interesting topic for future research.
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6 Appendix

6.1 Derivation of Lemma 1

Let t1 and t2 be arbitrary with |t1 − t2| ≤ τ , and recall that zi denotes the set of predetermined

variables for group i at the beginning of the sample.

Consider the two events A = {T1i = t1, T2i > t2} and B = {T1i > t1, T2i = t2}. Notationally, it

will be convenient to distinguish between the case where t1 = t2 and the case where t1 6= t2. In the

latter case there is no loss of generality in assuming that t1 < t2.

P
(
A, {x1it}t1

t=2 , {x2it}t2
t=2 |zi

)

= P1 (y1i1 = 0, y2i1 = 0 |zi )

·p2 (x1i2, x2i2 |zi, y1i1 = 0, y2i1 = 0)

· . . .

· . . .

·Pt1

(
y1it1 = 1, y2it1 = 0

∣∣∣zi, {x1is, x2is}s≤t1
, {y1is = 0, y2is = 0}s<t1

)

·pt1+1

(
x2it1+1

∣∣∣zi, {x1is, x2is}s≤t1
, {y1is = 0}s<t1

, y1it1 = 1, {y2is = 0}s≤t1

)

·Pt1+1

(
y2it1+1 = 0

∣∣∣zi, {x1is}s≤t1
, {x2is}s≤t1+1 , {y1is = 0}s<t1

, y1it1 = 1, {y2is = 0}s≤t1

)

·pt1+2

(
x2it1+2

∣∣∣zi, {x1is}s≤t1
, {x2is}s≤t1+1 , {y1is = 0}s<t1

, y1it1 = 1, {y2is = 0}s≤t1+1

)

·Pt1+2

(
y2it1+2 = 0

∣∣∣zi, {x1is}s≤t1
, {x2is}s≤t1+2 , {y1is = 0}s<t1

, y1it1 = 1, {y2is = 0}s≤t1+1

)

· . . .

· . . .

·pt2

(
x2it2

∣∣∣zi, {x1is}s≤t1
, {x2is}s≤t2−1 , {y1is = 0}s<t1

, y1it1 = 1, {y2is = 0}s≤t2−1

)

·Pt2

(
y2it2 = 0

∣∣∣zi, {x1is}s≤t1
, {x2is}s≤t2

, {y1is = 0}s<t1
, y1it1 = 1, {y2is = 0}s≤t2−1

)
,

and

P
(
B, {x1it}t1

t=2 , {x2it}t2
t=2 |zi

)

= P1 (y1i1 = 0, y2i1 = 0 |zi )

·p2 (x1i2, x2i2 |zi, y1i1 = 0, y2i1 = 0)

· . . .

· . . .
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·Pt1

(
y1it1 = 0, y2it1 = 0

∣∣∣zi, {x1is, x2is}s≤t1
, {y1is = 0, y2is = 0}s<t1

)

·pt1+1

(
x2it1+1

∣∣∣zi, {x1is, x2is}s≤t1
, {y1is = 0}s≤t1

, {y2is = 0}s≤t1

)

·Pt1+1

(
y2it1+1 = 0

∣∣∣zi, {x1is}s≤t1
, {x2is}s≤t1+1 , {y1is = 0}s≤t1

, {y2is = 0}s≤t1

)

·pt1+2

(
x2it1+2

∣∣∣zi, {x1is}s≤t1
, {x2is}s≤t1+1 , {y1is = 0}s≤t1

, {y2is = 0}s≤t1+1

)

·Pt1+2

(
y2it1+2 = 0

∣∣∣zi, {x1is}s≤t1
, {x2is}s≤t1+2 , {y1is = 0}s≤t1

, {y2is = 0}s≤t1+1

)

· . . .

· . . .

·pt2

(
x2it2

∣∣∣zi, {x1is}s≤t1
, {x2is}s≤t2−1 , {y1is = 0}s≤t1

, {y2is = 0}s≤t2−1

)

·Pt2

(
y2it2 = 1

∣∣∣zi, {x1is}s≤t1
, {x2is}s≤t2

, {y1is = 0}s≤t1
, {y2is = 0}s≤t2−1

)
.

The case where t1 = t2 is dealt with in the same way except that one calculates P
(
A, {x1it}t1

t=2 ,

{x2it}t1
t=2 |zi

)
and P

(
B, {x1it}t1

t=2 , {x2it}t1
t=2 |zi

)

P
(
A, {x1it}t1

t=2 , {x2it}t2
t=2 |zi

)

= P1 (y1i1 = 0, y2i1 = 0 |zi )

·p2 (x1i2, x2i2 |zi, y1i1 = 0, y2i1 = 0)

· . . .

· . . .

·Pt1

(
y1it1 = 1, y2it1 = 0

∣∣∣zi, {x1is, x2is}s≤t1
, {y1is = 0, y2is = 0}s<t1

)

and similarly for P
(
B, {x1it}t1

t=2 , {x2it}t1
t=2 |zi

)
.

Either way one concludes that

P
(
A|A ∪ B, {x1it}t1

t=2 , {x2it}t2
t=2 , zi

)
= P

(
A, {x1it}t1

t=2 , {x2it}t2
t=2

∣∣A ∪ B, {x1it}t1
t=2 , {x2it}t2

t=2 , zi

)

=
a1

a1 + a2

where

a1 = Pt1

(
y1it1 = 1, y2it1 = 0

∣∣∣zi, {x1is, x2is}s≤t1
, {y1is = 0, y2is = 0}s<t1

)

·Pt2

(
y2it2 = 0

∣∣∣zi, {x1is}s≤t1
, {x2is}s≤t2

, {y1is = 0}s<t1
, y1it1 = 1, {y2is = 0}s≤t2−1

)

a2 = Pt1

(
y1it1 = 0, y2i1 = 0

∣∣∣zi, {x1is, x2is}s≤t1
, {y1is = 0, y2is = 0}s<t1

)

·Pt1

(
y2it2 = 1

∣∣∣zi, {x1is}s≤t1
, {x2is}s≤t2

, {y1is = 0}s≤t1
, {y2is = 0}s≤t2−1

)
.
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Under Assumptions 2a and 2b

a1 = F
(
x′

1it1
β + δt1+S1i1

+ αi

)
·
(
1 − F

(
x′

2it1
β + δt1+S2i1

+ αi

))
·
(
1 − F

(
x′

2it2
β + δt2+S2i1

+ αi

))

and

a2 =
(
1 − F

(
x′

1it1
β + δt1+S1i1

+ αi

))
·
(
1 − F

(
x′

2it1
β + δt1+S2i1

+ αi

))
· F
(
x′

2it2
β + δt2+S2i1

+ αi

)

so

P
(
A|A ∪ B, {x1it}t1

t=1 , {x2it}t2
t=1 , zi

)
=

c1

c2
,

where

c1 = F
(
x′

1it1
β + δt1+S1i1

+ αi

)
·
(
1 − F

(
x′

2it2
β + δt2+S2i1

+ αi

))

and

c2 = F
(
x′

1it1
β + δt1+S1i1

+ αi

)
·
(
1 − F

(
x′

2it2
β + δt2+S2i1

+ αi

))

+
(
1 − F

(
x′

1it1
β + δt1+S1i1

+ αi

))
· F
(
x′

2it2
β + δt2+S2i1

+ αi

)
.

This implies that

P (A|A ∪ B, x1it1 , x2it2 , zi) =
c1

c2
.

Under Assumption 2a, F is the logistic CDF and

P (A|A ∪ B, x1it1 , x2it2 , zi) =
exp

(
(x1it1 − x2it2)

′ β + (δt1+S1i1
− δt2+S2i1

)
)

1 + exp
(
(x1it1 − x2it2)

′ β + (δt1+S1i1
− δt2+S2i1

)
) .

Under Assumption 2b

P (A|x1it1 , x2it2 , zi)

P (B|x1it1 , x2it2 , zi)
=

F
(
x′

1it1
β + δt1+S1i1

+ αi

)

F
(
x′

2it2
β + δt2+S2i1

+ αi

) ·
1 − F

(
x′

2it2
β + δt2+S2i1

+ αi

)

1 − F
(
x′

1it1
β + δt1+S1i1

+ αi

)

and therefore

P (A|A ∪ B, x1it1 , x2it2 , zi)





> 1
2 if (x1it1 − x2it2)

′ β + (δt1+S1i1
− δt2+S2i1

) > 0

= 1
2 if (x1it1 − x2it2)

′ β + (δt1+S1i1
− δt2+S2i1

) = 0

< 1
2 it (x1it1 − x2it2)

′ β + (δt1+S1i1
− δt2+S2i1

) < 0

.

Finally, under Assumption 2c

a1 = Ft1+S1i1

(
x′

1it1
β + αi

)
·
(
1 − Ft1+S2i1

(
x′

2it1
β + αi

))
·
(
1 − Ft2+S2i1

(
x′

2it2
β + αi

))
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and

a2 =
(
1 − Ft1+S1i1

(
x′

1it1
β + αi

))
·
(
1 − Ft1+S2i1

(
x′

2it1
β + αi

))
· Ft2+S2i1

(
x′

2it2
β + αi

)

so if t1 + S1i1 = t2 + S2i1

P (A|A ∪ B, x1it, x2it, zi)





> 1
2 if (x1it1 − x2it2)

′ β > 0,

= 1
2 if (x1it1 − x2it2)

′ β = 0,

< 1
2 it (x1it1 − x2it2)

′ β < 0.

6.2 Derivation of Results with Multiple Spells

This section derives the main claims of section 3.

We will consider three types of events (with corresponding contribution to the objective func-

tion). For each of those types of events there are a number of special cases depending on the

ordering of t11, t21, t12 and t22 defined below. However, the basic structures of the calculations are the

same throughout.

6.2.1 Comparing First Spells

One can use the first spells of individuals i1 and i2 to construct conditional probability statements

like the ones in the previous section.

6.2.2 Comparing First Spells to Second Spells

Let t11, t21 and t12 be arbitrary with t11 < t21 and
∣∣t21 − t12

∣∣ ≤ τ , and let zi denote the set of predeter-

mined variables for group i at the beginning of the sample.

Consider the two events A =
{
T 1

1i = t11, T
2
1i = t21, T

1
2i > t12

}
and B =

{
T 1

1i = t11, T
2
1i > t21, T

1
2i = t12

}
.

We will consider three cases based on the ordering of t11, t12, and t21. The calculation below is for

the case where 1 < t11 < t12 < t21 (the other cases follow in exactly the same manner)

P
(
A, {x1it}t1

1
+t2

1

t=2 , {x2it}t1
2

t=2 |zi

)

= P1

(
y1
1i1 = 0, y1

2i1 = 0 |zi

)

·p2

(
x1i2, x2i2

∣∣zi, y
1
1i1 = 0, y1

2i1 = 0
)

· . . .

· . . .
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·Pt1
1

(
y1
1it1

1

= 1, y1
2it1

1

= 0
∣∣∣zi, {x1is, x2is}s≤t1

1

,
{
y1
1is = 0, y1

2is = 0
}

s<t1
1

)

·pt1
1
+1

(
x1it1

1
+1, x2it1

1
+1
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1

,
{
y1
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1

, y1
1it1

1
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y1
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1

)

·Pt1
1
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(
y2
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1
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1
+1 ,

{
y1
1is = 0

}
s<t1

1

,

y1
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1

)

·pt1
1
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1
+t2

1

t=2 , {x2it}t1
2
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)
is derived in exactly the same manner. We therefore have

P
(

A|A ∪ B, {x1it}t1
1
+t2

1

t=2 , {x2it}t1
2

t=2 , zi

)

= P
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1
+t2

1
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2

t=2
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1
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1
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2
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)
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=
a1

a1 + a2

where

a1 = Pt1
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2

= 0, y1
2it1
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{
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}t2
1
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1
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,
{
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}
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2

)

=
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2
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2
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t1
2
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1
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i
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·
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2

(
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2
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2
+S2i1
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i
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1

(
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1
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1
−t1

1
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i
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{
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,
{
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}
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)
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2
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1
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so

P
(
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=
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Unless α1
i = α2

i this will not lead to expressions that can be used to make inference about

β and the duration dependence parameters without additional assumptions on the group–specific

effects α1
i and α2

i . Of course, there are many cases in which it would be reasonable to assume that

the model (including the group specific effects) are constant from spell to spell. In that case (16)
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implies that under Assumption 2a,4

P
(

A|A ∪ B, x1it2
1

, x2it1
2

, zi

)
=

exp
(
x′

1it2
1

β2 − x′
2it1

2
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t2
1
−t1
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2
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)
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1it2
1

β2 − x′
2it1

2
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1
−t1

1

− δ1
t1
2
+S2i1

) ; (17)

and under Assumption 2b

P (A|A ∪ B, x1it1 , x2it2 , zi)





> 1
2 if x′

1it2
1

β2 − x′
2it1

2
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t2
1
−t1

1
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2
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= 1
2 if x′
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1
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2
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1
−t1

1
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2
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1it2
1

β2 − x′
2it1

2
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1
−t1

1

− δ1
t1
2
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(18)

Finally, under Assumption 2c, and if t21 − t11 = t12 + S2i1

P (A|A ∪ B, x1it, x2it, zi)



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1
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2it1

2
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. (19)

Since (17), (18) and (19) do not depend on t11 and t12, the same statements are true if we redefine

A and B as Ã =
{
T 2

1i = t21, T
1
2i > t12

}
and B̃ =

{
T 2

1i > t21, T
1
2i = t12

}
. To see why, note that

P (A|A ∪ B, x1it, x2it, zi) = P
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Ã
∣∣∣ Ã ∪ B̃, x1it, x2it, zi, T

1
1i = t11

)

= P
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Ã
∣∣∣ Ã ∪ B̃, x1it, x2it, zi

)

(since the left hand side does not depend on t11).

6.2.3 Comparing Two Second Spells

We next turn to the case where we compare the duration of the second spell for two individuals.

Let t11, t21, t12 and t22 be arbitrary with t11 < t21, t12 < t22 and
∣∣t21 − t22

∣∣ ≤ τ , and recall that zi denotes

the set of predetermined variables for group i at the beginning of the sample.

Consider the two events A =
{
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2
1i = t21, T

1
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2
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}
and B =
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T 1
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2
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}
. Mimicking the calculations above we find that under Assumption 2a,
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2
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2

) ; (20)

4In this case it would be reasonable to impose β1 = β2 and δ1

τ = δ2

τ . This would further change the notation, so

we do not impose this restriction.

31



and under Assumption 2b
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)
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Finally, under Assumption 2c, and if t21 − t11 = t22 − t12

P
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Since (20), (21) and (22) do not depend on t11, the same statements are true if we redefine A

and B as A =
{
T 2

1i = t21, T
2
2i > t22

}
and B =

{
T 2

1i > t21, T
2
2i = t22

}
.
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Table 1. Descriptive statistics. 1980-2000 
  Women Men All 

Gender  - - 0.386 
Age less than 30 years 0.491 0.450 0.466 
Age 30 to 50 years 0.377 0.400 0.391 
Age above 50 years 0.132 0.150 0.143 
Unskilled  0.427 0.375 0.395 
Skilled 0.541 0.583 0.567 
High skilled 0.032 0.042 0.038 
Children  0.345 0.345 0.345 
Married/cohabiting 0.458 0.467 0.464 
    
Manufacturing  0.234 0.327 0.291 
Primary sector 0.019 0.043 0.033 
Electricity, gas and water supply 0.003 0.009 0.007 
Construction  0.024 0.132 0.090 
Retail and trade  0.310 0.238 0.266 
Transportation  0.043 0.073 0.062 
Financial  0.202 0.127 0.156 
Service  0.166 0.052 0.096 
    
Years of tenure 2.314 

(3.133) 
2.471 

(3.241) 
2.411 

(3.201) 
Workplace size*  198 

(63) 
208 
(62) 

204 
(62) 

Workplace size*  
(lagged one year) 

186 
(61) 

195 
(61) 

192 
(61) 

Payroll per worker* 
(1980-prices) 

78,361 
(39,325) 

90,107 
(37,154) 

85,576 
(38,434) 

    
# observations 246,316 392,199 638,515 
Note: Based on a five percent sample. Standard deviations are in parentheses. *These numbers are employee-weighted.  
 



Table 2. Job separation models, Men 
  Convention

al logit 
model 

Conventional 
logit model 

Conventional 
logit model 

Fixed-effects 
model, τ=max 

Fixed-effects 
model, τ=max 

Constant 0.110 
(0.020) 

0.477 
(0.021) 

0.341 
(0.023) 

  

Age less than 30 
years 
 

- - - - - 

Age 30 to 50 years -0.361 
(0.010) 

-0.281 
(0.010) 

-0.286 
(0.010) 

-0.442 
(0.017) 

-0.438 
(0.017) 

Age more than 50 
years 

-0.355 
(0.014) 

-0.277 
(0.014) 

-0.278 
(0.014) 

-0.354 
(0.022) 

-0.348 
(0.022) 

Unskilled  
 

- - - - - 

Skilled  -0.018 
(0.008) 

0.041 
(0.008) 

0.040 
(0.008) 

0.022 
(0.013) 

0.025 
(0.013) 

High skilled 
 

-0.150 
(0.020) 

-0.001 
(0.020) 

-0.020 
(0.021) 

-0.081 
(0.035) 

-0.076 
(0.035) 

Children  -0.133 
(0.010) 

-0.120 
(0.010) 

-0.116 
(0.010) 

-0.115 
(0.016) 

-0.114 
(0.016) 

Married/cohabiting -0.135 
(0.011) 

-0.105 
(0.011) 

-0.099 
(0.011) 

-0.110 
(0.016) 

-0.110 
(0.016) 

      
Lagged workplace 
size*  

 0.078 
(0.015) 

0.138 
(0.016) 

 0.795 
(0.094) 

Lagged workplace 
size^2* 

 -0.029 
(0.003) 

-0.039 
(0.003) 

 -0.086 
(0.017) 

Payroll per 
worker** 

 -0.796 
(0.014) 

-0.806 
(0.015) 

 -0.362 
(0.059) 

Std. dev. of payroll 
per worker** 

 0.224 
(0.020) 

0.247 
(0.020) 

 0.149 
(0.065) 

      
Sector Dummies NO NO YES NO NO 
Year dummies YES YES YES YES YES 
Tenure dummies  YES YES YES YES YES 
      
Log likelihood/ 
objective function 

-227,456 -225,269 -224,742 -111,454 -111,159 

Note: Based on 392,199 observations. *Divided by 1,000. **Divided by 100,000.  



Table 3. Job separation models, Women 
  Conventi

onal 
logit 

model 

Conventional 
logit model 

Conventional 
logit model 

Fixed-effects 
model, τ=max 

Fixed-effects 
model, τ=max 

Constant 0.216 
(0.026) 

0.552 
(0.027) 

0.528 
(0.029) 

  

Age less than 30 
years 
 

- - - - - 

Age 30 to 50 years -0.575 
(0.012) 

-0.487 
(0.013) 

-0.484 
(0.013) 

-0.571 
(0.021) 

-0.568 
(0.021) 

Age more than 50 
years 

-0.494 
(0.017) 

-0.442 
(0.017) 

-0.438 
(0.017) 

-0.439 
(0.029) 

-0.434 
(0.029) 

Unskilled  
 

- - - - - 

Skilled  -0.179 
(0.009) 

-0.069 
(0.010) 

-0.081 
(0.010) 

-0.063 
(0.017) 

-0.060 
(0.017) 

High skilled 
 

-0.257 
(0.028) 

-0.103 
(0.028) 

-0.073 
(0.028) 

-0.065 
(0.050) 

-0.062 
(0.050) 

Children  -0.023 
(0.012) 

-0.001 
(0.012) 

0.002 
(0.012) 

-0.007 
(0.020) 

-0.006 
(0.020) 

Married/cohabiting -0.200 
(0.012) 

-0.193 
(0.012) 

-0.197 
(0.012) 

-0.153 
(0.021) 

-0.153 
(0.021) 

      
Lagged workplace 
size*  

 0.151 
(0.019) 

0.158 
(0.020) 

 0.429 
(0.112) 

Lagged workplace 
size^2* 

 -0.041 
(0.004) 

-0.041 
(0.004) 

 -0.031 
(0.018) 

Payroll per 
worker** 

 -0.893 
(0.019) 

-0.934 
(0.020) 

 -0.324 
(0.086) 

Std. dev. of payroll 
per worker** 

 0.214 
(0.027) 

0.209 
(0.027) 

 0.103 
(0.094) 

      
Sector Dummies NO NO YES NO NO 
Year dummies YES YES YES YES YES 
Tenure dummies  YES YES YES YES YES 
      
Log likelihood/ 
objective function 

-145,705 -143,785 -143,614 -60,776 -60,695 

Note: Based on 246,316 observations. *Divided by 1,000. **Divided by 100,000.  



Table 4. Job separation models, Men 
  Fixed effects 

model, τ=0 
Fixed effects 
model, τ=1 

Fixed effects 
model, τ=5 

Fixed effects 
model, τ=10 

Fixed effects 
model, τ=max 

Age less than 30 years 
 

 - - - - 

Age 30 to 50 years -0.494 
(0.027) 

-0.453 
(0.022) 

-0.451 
(0.018) 

-0.444 
(0.017) 

-0.438 
(0.017) 

Age more than 50 years -0.413 
(0.035) 

-0.374 
(0.029) 

-0.344 
(0.024) 

-0.340 
(0.023) 

-0.348 
(0.022) 

Unskilled  
 

- - - - - 

Skilled  0.072 
(0.021) 

0.054 
(0.018) 

0.026 
(0.014) 

0.019 
(0.013) 

0.025 
(0.013) 

High skilled 
 

-0.071 
(0.054) 

-0.082 
(0.045) 

-0.062 
(0.037) 

-0.078 
(0.035) 

-0.076 
(0.035) 

Children  -0.101 
(0.025) 

-0.099 
(0.020) 

-0.111 
(0.017) 

-0.114 
(0.016) 

-0.114 
(0.016) 

Married/cohabiting -0.130 
(0.026) 

-0.131 
(0.021) 

-0.110 
(0.017) 

-0.107 
(0.017) 

-0.110 
(0.016) 

      
Lagged workplace size*   0.573 

(0.207) 
0.850 

(0.121) 
0.824 

(0.098) 
0.795 

(0.094) 
Lagged workplace size^2*  -0.079 

(0.044) 
-0.083 
(0.021) 

-0.082 
(0.017) 

-0.086 
(0.017) 

Payroll per worker**  0.198 
(0.112) 

-0.258 
(0.069) 

-0.340 
(0.062) 

-0.362 
(0.059) 

Std. dev. of payroll per 
worker** 

 -0.293 
(0.130) 

0.099 
(0.081) 

0.142 
(0.069) 

0.149 
(0.065) 

      
Year dummies NO YES YES YES YES 
Tenure dummies  YES YES YES YES YES 
      
Objective function -7,998 -24,396 -71,194 -99,829 -111,158 
Note: Based on 392,199 observations. *Divided by 1,000. **Divided by 100,000.  
 
 



Table 5. Job separation models, Women 
  Fixed effects 

model, τ=0 
Fixed effects 
model, τ=1 

Fixed effects 
model, τ=5 

Fixed effects 
model, τ=10 

Fixed effects 
model, τ=max 

Age less than 30 years 
 

 - - - - 

Age 30 to 50 years -0.617 
(0.037) 

-0.583 
(0.030) 

-0.566 
(0.024) 

-0.566 
(0.022) 

-0.568 
(0.021) 

Age more than 50 years -0.440 
(0.050) 

-0.419 
(0.041) 

-0.413 
(0.032) 

-0.421 
(0.030) 

-0.434 
(0.029) 

Unskilled  
 

- - - - - 

Skilled  -0.053 
(0.029) 

-0.045 
(0.024) 

-0.056 
(0.019) 

-0.052 
(0.018) 

-0.060 
(0.017) 

High skilled -0.020 
 (0.088) 

-0.008 
(0.070) 

-0.045 
(0.056) 

-0.046 
(0.052) 

-0.062 
(0.050) 

Children  0.026 
(0.034) 

-0.011 
(0.027) 

-0.006 
(0.022) 

-0.006 
(0.021) 

-0.006 
(0.020) 

Married/cohabiting -0.200 
(0.034) 

-0.173 
(0.028) 

-0.166 
(0.022) 

-0.152 
(0.021) 

-0.153 
(0.021) 

      
Lagged workplace size*   0.196 

(0.221) 
0.464 

(0.127) 
0.466 

(0.113) 
0.429 

(0.112) 
Lagged workplace size^2*  0.006 

(0.053) 
-0.018 
(0.021) 

-0.031 
(0.018) 

-0.031 
(0.018) 

Payroll per worker**  -0.009 
(0.170) 

-0.214 
(0.103) 

-0.268 
(0.090) 

-0.324 
(0.086) 

Std. dev. of payroll per 
worker** 

 -0.106 
(0.179) 

-0.004 
(0.110) 

0.061 
(0.098) 

0.103 
(0.094) 

      
Year dummies NO YES YES YES YES 
Tenure dummies  YES YES YES YES YES 
      
Objective function -4,409 -13,351 -39,085 -54,688 
Note: Based on 246,316 observations. *Divided by 1,000. **Divided by 100,000.  

-60,695 

 
 
 



Table 6. Test Statistics, Men 
  Fixed effects 

model, τ=0 
Fixed effects 
model, τ=1 

Fixed effects 
model, τ=5 

Fixed effects 
model, τ=10 

Fixed effects 
model, τ=max 

Hausman I 
 

87 1680 2342 2453 2287 

Hausman II 
 

82 3467 1816 1999 1801 

Wald 
 

1350 1700 2132 2243 2260 

 
 
 
Table 7. Test Statistics, Women 

  Fixed effects 
model, τ=0 

Fixed effects 
model, τ=1 

Fixed effects 
model, τ=5 

Fixed effects 
model, τ=10 

Fixed effects 
model, τ=max 

Hausman I 
 

79 840 1044 1170 1102 

Hausman II 
 

75 1278 334 660 666 

Wald 
 

631 818 1174 1363 1365 

 



Figure 1: Coefficients on tenure dummies (men)
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Figure 2: Coefficients on tenure dummies (women)
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