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Abstract

Yes. We analyze the economic benefit of Treasury Inflation Protected Securities (TIPS)

issuance by estimating the inflation risk premium that penalizes nominal Treasuries vis-

à-vis TIPS and the cost derived from TIPS liquidity disadvantage. To account for the

latter, we introduce a novel model-independent range for the liquidity premium in TIPS

exploiting additional information from inflation swaps. We also adjust our model estimates

for finite-sample bias. The resulting measure provides a lower bound to the benefit of

TIPS, which is positive on average. Thus, our analysis suggests that the Treasury could

save billions of dollars by significantly expanding its TIPS program.

JEL Classification: E43, G12, H63.

Keywords: Term structure modeling, bias correction, market liquidity, government debt man-

agement, inflation swaps.

This paper has circulated in previous versions under the title ”A Model-Independent Maximum Range for
the Liquidity Correction of TIPS Yields.” We thank Michael Bauer, Ib Hansen, John Krainer, Simon Kwan,
Jose Lopez, Glenn Rudebusch, Xiaopeng Zhang, and seminar participants at the Federal Reserve Bank of
San Francisco, the Board of Governors, the Danish National Bank, the 21st Derivatives Securities and Risk
Management Conference, and the IBEFA-WEAI Summer Meeting in San Diego 2011 for helpful comments on
earlier drafts of the paper. A special thank goes to Óscar Jorda for many helpful comments and suggestions.
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1 Introduction

In light of the large deficits in recent years and the budgetary outlook for the years ahead,

the question of how the U.S. government should finance its debt has become a pressing issue.

Such a challenging fiscal environment highlights the importance of minimizing the cost of debt

in order to reduce future tax burdens and the related economic inefficiencies. Historically,

the U.S. government financed its deficits by issuing regular Treasury securities that pay fixed

coupons and a fixed nominal amount at maturity. However, in 1997 the Treasury began issuing

an alternative set of securities known as Treasury Inflation Protected Securities (TIPS) that

deliver a real payoff because their principal and coupon payments are adjusted for inflation.1

Since its inception, the market for TIPS has grown steadily and, as of the end of 2010, it

represented 7.0 percent of the total market for tradeable U.S. Treasury securities.2

The policy question we address in this paper is straightforward: does the U.S. Treasury

benefit from issuing TIPS instead of regular nominal Treasury securities and, if so, to what

extent? The most direct benefit of issuing TIPS is that the government can avoid paying

the premium on inflation uncertainty that investors demand in return for the risk of inflation

exceeding its expected path. This inflation risk premium tends to push nominal Treasury

yields up relative to TIPS yields, but estimating its level can be complicated due to the

fact that the market for TIPS is smaller and less liquid than the market for Treasuries. As

a result, bond investors require a liquidity premium to compensate them for the greater

frictions to trade they might encounter from trading a less liquid asset during times of market

uncertainty. In order to assess the economic benefit of issuing TIPS, we need to quantify

this tradeoff between the advantage of the inflation risk premium and the disadvantage of the

liquidity premium.

We determine the inflation risk premium using the dynamic term structure model of

nominal and real Treasury yields developed in Christensen, Lopez, and Rudebusch (2012,

henceforth referred to as the CLR model). This model allows us to decompose the difference

between the two yield curves—also known as breakeven inflation (BEI)—into two components:

bond investors’ expected inflation and the associated inflation risk premium. The model we

use is a slightly restricted version of the canonical affine term structure models classified

by Dai and Singleton (2000) and is a well established approach within the empirical term

structure literature to extracting risk premiums from yield curve data.3

1The Treasury uses the change in the headline Consumer Price Index (CPI) from the time when a series
was issued to account for inflation compensation.

2According to the Bureau of the Public Debt, the total outstanding notional of TIPS was $616 billion as of
the end of December 2010, which should be compared to $8,863 billion in total marketable Treasury securities.
The data is available at: www.TreasuryDirect.gov

3We provide the basic model details in the paper, but those interested in a more thorough description
should refer to CLR and the related paper by Christensen, Lopez, and Rudebusch (2010).
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In order to account for the TIPS liquidity premium, we use a novel approach that ex-

ploits additional information in the market for inflation swaps. Instead of attempting to

estimate the liquidity premium directly, we apply a series of no-arbitrage assumptions about

the pricing of TIPS and inflation swaps relative to nominal Treasury bonds. The result is a

model-independent range that allows for any assumption about the size of the TIPS liquid-

ity premium that does not violate the joint pricing information in regular Treasuries, TIPS,

and inflation swaps. The fundamental observation underlying our range is that, in a world

without frictions to trade, BEI should equal the inflation swap rate. However, in reality, the

observed BEI and inflation swap rates are not the same. We attribute the difference between

the two to non-negative liquidity premiums in both the TIPS and inflation swap markets

that reflect the distance these markets are from the ideal frictionless outcome.4 In support

of our approach, we find that our measure of the sum of TIPS and inflation swap liquidity

premiums is highly correlated not only with existing estimates of TIPS liquidity premiums,

but also with measures of liquidity premiums in other fixed-income markets.

This model-independent range allows us to correct TIPS yields for any admissible assump-

tion about the level of TIPS liquidity premiums prior to model estimation. We use the CLR

model to obtain estimates of the inflation risk premium at both extremes of the range. At the

lower extreme TIPS yields contain no liquidity premiums and at the upper they contain the

maximum. This produces a range of inflation risk premium estimates that maps one-to-one

to any admissible assumption about the level of TIPS liquidity premiums. We also account

for the finite-sample bias that occurs in the estimates of the model factor dynamics that drive

the BEI decomposition.5

We combine our inflation risk and liquidity premium analysis to construct a measure that

provides a quantitative lower bound to the economic benefit of TIPS issuance. In order to

construct our measure, we first take the minimum of the estimated range of inflation risk

premiums for each observation date and at each maturity. We then deduct the corresponding

maximally admissible TIPS liquidity premium.6 We refer to the resulting measure as the

minimum liquidity-adjusted inflation risk premium. The average of our measure is positive

over our sample with means of 5.5 and 10.5 basis points at the five- and ten-year maturity,

4Note that, due to collateral posting, the credit risk in inflation swap contracts is negligible and can be
neglected for pricing purposes. Also, we assume the default risk of the U.S. government to be negligible, which
is warranted for our sample that ends in 2010 well before the downgrade of U.S. Treasury debt in August 2011.
However, even for this later period, any significant credit risk premium is not likely to bias an analysis like
ours as it would affect regular Treasury and TIPS yields in the same way, leaving BEI effectively unchanged.

5Bauer, Rudebusch, and Wu (2012) provide a complete discussion of the finite-sample bias in empirical
affine Gaussian term structure models. Our bias correction represents an adaptation of their approach to
non-Gaussian models.

6We also adjust the result for the fact that the U.S. Treasury issues regular Treasury securities at low,
so-called on-the-run Treasury yields, which differ from the seasoned, or so-called off-the-run, Treasury yields
we use in model estimation.

2



respectively.7 This suggests that the inflation risk premium has more than outweighed the

liquidity disadvantage of TIPS on net and that the U.S. Treasury has benefitted from its

TIPS program during our sample period.

To put the cost difference into perspective, we calculate the savings to the Treasury of

dedicating a larger portion of its debt portfolio to TIPS instead of nominal Treasuries using

our ten-year minimum liquidity-adjusted inflation risk premium. We find that over the next

ten years at current debt levels the Treasury would save over $24.6 billion if the proportion

of TIPS in its portfolio were increased from the current seven percent to one third. More

realistically, if the debt continues to grow at the rate it has for the past ten years, restructuring

the Treasury’s portfolio to contain one third in TIPS would save $50.7 billion over ten years.

Given the conservative nature of our measure and the fact that increasing the volume of

TIPS would likely reduce their liquidity disadvantage and further increase the net premium

investors are willing to forgo for inflation protection, the actual savings could prove to be

substantively higher.

The rest of the paper proceeds as follows. Section 2 briefly describes the minimum

liquidity-adjusted inflation risk premium and presents our results of assessing the benefit

of TIPS issuance to the U.S. government. Section 3 describes the theory construction of the

admissible range for the liquidity premium in TIPS yields, while Section 4 introduces the

CLR model and our estimation of the inflation risk premium penalty of regular Treasuries.

Section 5 concludes the paper. Appendices contain additional technical details.

2 The Benefit of TIPS Issuance to the U.S. Treasury

In this section, we summarize the result of our analysis of the benefit of TIPS issuance to

the U.S. Treasury, while subsequent sections describe the various components that went into

generating the result.

To assess the benefit to the U.S. Treasury of issuing TIPS, we calculate the most con-

servative estimate possible of a liquidity-adjusted inflation risk premium based on our bias-

corrected model estimation results. To construct this measure for a given maturity, we first

take the minimum for each observation date of the range of inflation risk premium estimates

produced by the CLR model while allowing for any admissible TIPS yield liquidity correction.

Second, we deduct the top of our range of admissible TIPS liquidity premiums. A positive dif-

ference at this point implies that even the smallest inflation risk premium estimate produced

by the CLR model is larger than the largest feasible TIPS liquidity penalty, independent of

any assumption about the specific level of the TIPS liquidity premium. We also make a final

adjustment for the liquidity differential between the seasoned Treasury yields we use in the

7Most TIPS issuance takes place at the five- and ten-year maturities.
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Figure 1: Minimum Liquidity-Adjusted Inflation Risk Premiums.

Illustration of the five- and ten-year minimum liquidity-adjusted inflation risk premiums based on the

CLR model.

model estimation and the lower yields of newly issued Treasuries. In order to correct for

this effect, we deduct the spread between off-the-run and on-the-run Treasury yields of the

same maturity from the difference above to produce our final measure that we refer to as the

minimum liquidity-adjusted inflation risk premium shown in Figure 1.

While this liquidity-adjusted measure of the smallest possible inflation risk premium is

the most conservative estimate of the cost advantage of TIPS we can generate using the CLR

model, it is still positive for 49.2 and 58.9 percent of the sample at the five- and ten-year

maturities, respectively. The respective mean values are 5.5 and 10.5 basis points, while the

respective maxima are 93.3 and 93.1 basis points.8 Taken with the fact that, as we will argue

later, the TIPS liquidity premium is likely in the lower half of the admissible range, far below

the value assumed in the calculation of our measure, the actual benefit of TIPS is most likely

higher than the estimate we provide. We believe this is a strong indication that the U.S.

Treasury has benefitted from issuing TIPS for extended periods during this six-year sample.

As an alternative way of illustrating the benefits of TIPS, we attempt to put the cost

savings of TIPS into dollar terms. This requires assumptions about both the amount of

Treasury debt and its composition. Here, we limit the exercise to two simple calculations to

8For robustness, we repeated the analysis using the Gaussian model of nominal and real yields introduced
in Christensen et al. (2010) and obtained similar results. These are available upon request.
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exemplify the potential savings. The first scenario we consider is that the total amount of

tradeable Treasury securities remains constant over the next ten years at their level as of the

end of 2010 ($8,863 billion) and that the proportion of TIPS is increased from the current

seven percent to one third.9 Using the average of our ten-year minimum liquidity-adjusted

inflation risk premium as the cost saving rate, we find that the Treasury would save $24.6

billion over the next ten years. Another scenario is the somewhat more realistic assumption

that the Treasury debt will continue to grow at the rate it has for the past ten years. If we

assume the Treasury restructures its portfolio to contain one third in TIPS, it would lead to a

cost reduction of the order of $50.7 billion dollars over ten years.10 It is also important to note

that these are likely not to be exaggerated numbers. We first point to the conservative nature

of our measure that imposes the maximally admissible liquidity penalty on TIPS. Second, the

development of the TIPS market and its liquidity since its inception in 1997 suggests that

increasing the TIPS issuance volume as implied by the envisioned policy change above would

likely reduce their liquidity costs. As a result, TIPS would become even more attractive to

investors and the cost reductions would be even larger.

However, we emphasize that this is a narrow cost-benefit analysis of the tradeoff on any

given day between issuing a nominal or a real bond based on bond investors’ outlook for infla-

tion and their associated premium for being exposed to that risk. Other considerations such

as the overall composition of the Treasury’s liabilities or differences between the Treasury’s

inflation outlook and that of market participants might lead to a different conclusion,11 but

such aspects are outside the scope of this paper.

The remainder of the paper is devoted to detailing the components that went into achieving

the result above. In Section 3, we describe our model-independent measure of the liquidity

disadvantage of TIPS, while Section 4 describes our usage of the CLR model to generate

estimates of the inflation risk premium penalty of nominal Treasuries.

3 Measuring the Liquidity Premium in TIPS Yields

The existence of TIPS liquidity premiums is well documented. Fleming and Krishnan (2012)

report that the market characteristics of TIPS trading indicate smaller trading volume, longer

turn around time, and wider bid-ask spreads than is normally observed in the nominal Trea-

sury bond market (see also Campbell, Shiller, and Viceira 2009, Dudley, Roush, Steinberg

Ezer 2009, Gürkaynak, Sack, and Wright 2010, Sack and Elsasser 2004). However, the degree

9We choose this ratio because it is close to the ratio of real to total government debt that the U.K currently
issues

10This assumes the amount of marketable Treasuries continues to grow for ten years at the average rate
of 13.1 percent, the yearly rate it has averaged from 2001 through 2011. Additionally, the cost comparison
assumes a constant ratio of TIPS of one third versus seven percent.

11We thank Ib Hansen for pointing out this distinction.
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to which they bias TIPS yields remains a topic of debate because attempts to estimate the

TIPS liquidity premium directly have resulted in varying results. D’Amico, Kim, and Wei

(2010, henceforth DKW) estimate the liquidity premium using a latent-factor affine term

structure model of nominal and real Treasury yields. They find that the premium was 100

to 200 basis points during the early years of TIPS issuance, but that it has since declined

to average about 50 basis points at the ten-year maturity.12 Pflueger and Viceira (2011,

henceforth PV) estimate the TIPS liquidity premium by regressing BEI on several measures

of liquidity in bond markets. Their estimate follows a similar overall pattern to the DKW

estimates, but averages 70 basis points. Both estimates show sharp spikes in the liquidity

premium during the financial crisis that exceed 250 basis points.

This liquidity disadvantage of TIPS is the major point of criticism for those who believe

that the TIPS program is ultimately costly for the Treasury. In a recent paper, Fleckenstein,

Longstaff, and Lustig (2010, henceforth FLL) go so far as to claim that the poor liquidity in

the TIPS market has resulted in severe instances of arbitrage that could have otherwise been

avoided if the Treasury had issued nominal debt instead. However, compared to this earlier

research, our assessment is arguably preferable in that we do not have to rely on model-based

estimates of the TIPS liquidity premiums, which have until now been inconsistent across

studies. Our approach is novel in that we use the additional information in inflation swap

rates to create a bounded range for the TIPS liquidity premium. Further analysis may provide

insight into the level of the premium, but for the purpose of our cost-benefit analysis, the

range we provide is ideal since it is model-independent. The following sections introduce

the theory, data, and characteristics of the range we use to account for the TIPS liquidity

disadvantage in our assessment.

3.1 The Maximum Range for the Liquidity Correction of TIPS Yields

To begin, we first detail our theoretical thinking and the information set that underlie it.

We observe a set of nominal and real Treasury zero-coupon bond yields, which we denote

ŷNt (τ) and ŷRt (τ), respectively, where τ is the number of years to maturity. Also, we observe

a corresponding set of zero-coupon rates on inflation swap contracts denoted ÎSt(τ). Due

to microstructure frictions, such as bid-ask spreads and discrete-time trading in discrete

denominations, these rates differ from the unobserved values that would prevail in a frictionless

world without any obstacles to continuous trading, which we denote yNt (τ), yRt (τ), and ISt(τ),

respectively. Assuming investors are forward looking and utility-maximizing, there should be

no arbitrages in such a world and the resulting asset prices should only reflect the underlying

12This figure excludes the abnormal periods of market illiquidity that occurred early in the series and during
the financial crisis. The average is calculated with data beginning in January 2004 after the decline had
flattened out and excludes the crisis period from August 2007 to May 2009.
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economic fundamentals.

Implicit in the usage of the word “premium” (or penalty) is the notion that a clean, unob-

served price would prevail if only some, not necessarily well-identified, market microstructure

frictions did not bias the prices actually observed. We define the absolute liquidity premium

as the price difference between the observed and the unobservable “frictionless” market out-

come of a given asset. As is common in the literature, we only seek to identify the relative

liquidity premium between two comparable assets since it is extremely difficult to identify the

unobservable frictionless price of an asset directly. In this sense the liquidity premiums we

derive represent the total cost of all frictions to trade (wider bid-ask spreads, lower trading

volume, etc.) of the less liquid asset beyond those of the more liquid asset against which it is

being compared.

3.1.1 Three Fundamental Assumptions

In order to derive the bound for the admissible range of liquidity premiums in TIPS yields,

we introduce three fundamental assumptions:

(i). The nominal Treasury yields we observe are very close to the unobservable nominal

yields that would prevail in a frictionless world. Thus, we assume ŷNt (τ) = yNt (τ) for

all t and all relevant τ . Even if not exactly true (say, for example, during the financial

crisis of 2008 and 2009), this is not critical to the analysis as the story is ultimately

about the relative liquidity between securities that pay nominal and real yields.

(ii). TIPS are no more liquid than nominal Treasury bonds. As a consequence, the TIPS

yields we observe contain a time-varying liquidity premium denoted δRt (τ), which gen-

erates a wedge between the observed TIPS yields and its frictionless counterpart given

by ŷRt (τ) = yRt (τ) + δRt (τ) with δRt (τ) ≥ 0 for all t and all relevant τ .

(iii). Inflation swaps are no more liquid than nominal Treasury bonds. As a consequence,

observed inflation swap rates can also be different from their frictionless counterpart

with the difference given by ÎSt(τ) = ISt(τ) + δISt (τ) and δISt (τ) ≥ 0 for all t and all

relevant τ .

Provided the above assumptions are valid, there exists an upper bound to the unobservable

liquidity premium in TIPS yields tied to the difference between observed inflation swap and

BEI rates, which we define as

∆t(τ) ≡ ÎSt(τ)− B̂EIt(τ) = ÎSt(τ)− [ŷNt (τ)− ŷRt (τ)]. (1)

In a world without any frictions to trade, arbitrageurs would chisel away any difference be-

tween the inflation swap rate and breakeven inflation. Thus, the frictionless inflation swap
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rate must equal the frictionless breakeven inflation rate such that ISt(τ) = yNt (τ)− yRt (τ) for

all t and all τ .13 By implication, the difference ∆t(τ) is a measure of how far the observed

market rates are from the frictionless outcome. Using our three assumptions the difference

can be re-written as

∆t(τ) = ISt(τ) + δISt (τ)− [yNt (τ)− (yRt (τ) + δRt (τ))] (2)

= δRt (τ) + δISt (τ) ≥ 0. (3)

This shows that, under our assumptions, the difference between the observed inflation

swap and breakeven inflation rates is non-negative and equal to the sum of the liquidity

premium in TIPS and the liquidity premium in inflation swaps. Since we assume the liquidity

premiums to be non-negative, the difference provides a bound on the TIPS liquidity premium:

min δRt (τ) = 0 and max δRt (τ) = ∆t(τ).

At the lower bound, observed TIPS prices contain no liquidity premium because the deviation

from the frictionless market outcome is entirely attributable to liquidity premiums in the

observed inflation swap rate. In terms of the notation introduced above, δRt (τ) = 0 and

δISt (τ) = ∆t(τ), implying that the observed TIPS yields are equal to the frictionless real

yields, yRt (τ) = ŷRt (τ). This extreme represents the assumption implicit in papers like Adrian

and Wu (2010) and CLR where TIPS yields are taken at face value without any correction

for liquidity.

Conversely, at the upper bound, TIPS are priced with the maximum liquidity premium

while inflation swap rates carry none. In this case, δRt (τ) = ∆t(τ) and δISt (τ) = 0, meaning

the observed inflation swap rates reflect the frictionless breakeven rates, ÎSt(τ) = ISt(τ),

while ŷRt (τ) = yRt (τ) + ∆t(τ) or, equivalently, yRt = ŷNt (τ) − ÎSt(τ). Thus, the corrected

frictionless TIPS yields are the observed nominal yields less the observed inflation swap rates.

This assumption is implicit in the analysis performed by FLL as all opportunities for arbitrage

documented in that paper are assigned to the market for TIPS rather than the market for

inflation swaps. Finally, it should be noted that the continuum in between the two extremes

gives all admissible combinations of δRt (τ) and δISt (τ).

3.1.2 The Liquidity Premium in Inflation Swap Rates

We believe our first two assumptions are uncontroversial because the market for nominal U.S.

Treasury bonds is one of the most liquid fixed-income markets. In comparison, TIPS are

13In a frictionless world, to buy one nominal zero-coupon bond at t that yields yNt (τ ) produces the same cash
flow as buying one real zero-coupon bond that yields yRt (τ ) and going short, at zero cost, a τ -year inflation
swap contract with a fixed rate of ISt(τ ).
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Receipts ÎSt(τ)τ+ŷRt (τ)τ+
CPI(t+τ)
CPI(t) -1 +[LIBOR+βN

t (τ)]τ

Payments ŷNt (τ)τ + CPI(t+τ)
CPI(t) -1 +[LIBOR+βR

t (τ)]τ

Net receipts [ÎSt(τ)− (ŷNt (τ)− ŷRt (τ)) + βN
t (τ)− βR

t (τ)]τ

Table 1: Cash Flow of Investment Strategy that Hedges a Short Position in a

Zero-Coupon Inflation Swap Contract.

Illustration of the cash flows involved in the investment strategy that hedges a short position in an

inflation swap. It involves: 1) The inflation swap position itself. 2) A long asset swap position in the

τ -year zero-coupon TIPS. 3) A short asset swap position in the τ -year zero-coupon Treasury bond.

widely considered to be less liquid. However, the assumption that the observed inflation swap

rates are above their ideal frictionless rate is less obvious and merits elaboration.

The mechanics of hedging activity in the inflation swap market, as described in Campbell

et al. (2009), suggest that the observed inflation swap rate should be marked up from the

unobserved frictionless rate due to the financing and transaction costs of replicating cash

flows in related asset swap markets. In practice, there are two strategies for generating the

CPI-linked floating cash flows in the inflation swap contract. The first is to buy the TIPS with

the desired maturity. This requires funding and implies receiving cash flows on all coupon

dates of that security, which investors may not find to be desirable. The alternative is to

enter into a zero-coupon inflation swap of the desired maturity. There are no funding costs

in a zero-coupon inflation swap as its value is zero at inception. As a consequence, investors

should be willing to pay an extra premium to avoid such funding costs, which explains why

the inflation swap rate can be above BEI in equilibrium. However, the size of the inflation

swap rate markup is primarily determined from the supply side. The counter party to the

inflation swap (typically a hedge fund or investment bank) generates CPI-linked cash flows

by going long in TIPS and short in nominal Treasury bonds through the asset swap market.

Thus, the markup represents the compensation the counter party requires for assuming the

liquidity risk of multiple transactions on the backside of the contract.

This hedging activity creates a connection between our range for the TIPS liquidity pre-

miums and asset swap rates. In an asset swap, the party long the contract pays LIBOR plus

a spread while receiving the cash flow of a specific bond without exchange of the principal.

In the inflation swap, the party short the contract typically generates CPI-linked cash flows

by making the following set of transactions at time t to hedge the assumed risk:

• A short position in the τ -year zero-coupon inflation swap struck at ÎSt(τ), that is, the

investor will receive ÎSt(τ)τ at maturity in return for delivering the net change in the

price level CPI(t+τ)
CPI(t) − 1.

9



• A long asset swap position for the τ -year zero-coupon TIPS, that is, agree to paying

[LIBOR+βR
t (τ)]τ in order to receive the fixed accrued coupon ŷRt (τ)τ and the accrued

inflation compensation CPI(t+τ)
CPI(t) − 1.14

• A short asset swap position in the τ -year zero-coupon Treasury bond, that is, agree to

paying the nominal Treasury yield ŷNt (τ)τ in order to receive [LIBOR+βN
t (τ)]τ .

Here, βN
t (τ) and βR

t (τ) denote the asset swap spreads for the nominal Treasuries and TIPS,

respectively. As all transactions involve swaps on zero-coupon assets, there is no outlay upon

inception because they all have zero net value and payments are only exchanged at maturity

τ years later. Table 1 summarizes the outlays and receipts from this set of transactions at

maturity. The net receipt to the party short the inflation swap is

[ÎSt(τ)− (ŷNt (τ)− ŷRt (τ)) + βN
t (τ)− βR

t (τ)]τ ≥ 0. (4)

Note that this strategy is really a hedge as the value on the left-hand side of Equation 4 is

deterministic and set at the inception of the contract. For the leveraged investor to be willing

to participate in the inflation swap market this value must be non-negative as indicated. Since

we defined the maximum TIPS liquidity premium by ∆t(τ) = ÎSt(τ)− (ŷNt (τ)− ŷRt (τ)), the

inequality in Equation (4) can also be written as

∆t(τ) + βN
t (τ)− βR

t (τ) ≥ 0. (5)

Campbell et al. (2009) note that, normally, the asset swap spreads, βN
t (τ) and βR

t (τ), are

negative and more so for the nominal Treasuries, that is,

βN
t (τ) < βR

t (τ) ≤ 0.15 (6)

Under competitive circumstances (zero cost of entry to the inflation swap market etc.), we

expect Equation (5) to hold with equality. Using the inequality in Equation (6), we can then

re-write Equation (5) as

∆t(τ) = βR
t (τ)− βN

t (τ) > 0. (7)

Thus, our maximum range for the TIPS liquidity premium equals the difference between

the TIPS and nominal Treasury asset swap spreads and is strictly positive. Of course, this

14Here, we are neglecting the value of the deflation protection in the TIPS in that the actual payment on
the TIPS asset swap is max[CPI(t+τ)

CPI(t)
− 1, 0]. We thank Xiaopeng Zhang for pointing this out. Thus, the

calculations are accurate provided the value of the deflation protection for the particular TIPS in the asset
swap is negligible. If not, they can be corrected by calculating its value in a way similar to the one described
in CLR.

15During the financial crisis of 2008 and 2009, βR
t (τ ) turned positive, but the relative relationship between

βN
t (τ ) and βR

t (τ ) remained as indicated by the first inequality.
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idealized calculation is based on zero-coupon bonds, but the difference between asset swap

spreads on TIPS and regular Treasuries should still provide a good approximation to our

maximum range.

We re-emphasize that, without additional information, any combination of non-negative

δRt (τ) and δISt (τ) that satisfies the condition ∆t(τ) = δRt (τ)+ δISt (τ) is admissible and cannot

be legitimately excluded ex ante. Also, we underscore that our construction is valid for any

sample of nominal Treasury and real TIPS yields as long as our three key assumptions are

satisfied by the data. This observation implies that the size and shape of the range depend

on the underlying pool of bonds, the method used in the yield curve construction etc., but

that the range still represents the admissible band for the TIPS liquidity premium for the

specific sample under consideration.

3.1.3 Construction and Characteristics of the Range

We use daily estimates of zero-coupon nominal and real Treasury bond yields as constructed

by Gürkaynak, Sack, and Wright (2007, 2010, henceforth GSW) for our observed bond yields.

For our inflation swap rates, we use daily quotes from Bloomberg. The rates we use are

for zero-coupon inflation swap contracts, meaning they have no exchange of payment upon

issuance and a single cash flow exchanged at maturity. The quoted rates represent the payment

of the fixed leg at an annual rate, which we convert into continuously compounded rates using

the formula ÎS
c

t(τ) = ln(1 + ÎSt(τ)) to make them comparable to the other interest rates.

Bloomberg begins reporting quotes on inflation swap rates in early 2004, but the data is not

consistently populated until the end of the year. As a result, we begin the sample period on

January 4, 2005 and eliminate the few days during the sample period where quotes are not

available for all maturities, which leaves us with a sample of 1,482 observations.

To construct the admissible range for the TIPS liquidity premium, we calculate zero-

coupon BEI rates at the five-, six-, seven-, eight-, nine- and ten-year maturities and deduct

them from the inflation swap rates of the corresponding maturities to obtain ∆t(τ). We begin

the sample period on January 4, 2005 in order to align the TIPS sample with the inflation

swap data resulting in 1,482 observations.16 Figure 2 illustrates the upper bound to the TIPS

liquidity premium at the five-, seven-, and ten-year maturities, while Table 2 reports the

summary statistics for all six series. Consistent with our theoretical assumptions, the values

of ∆t(τ) are strictly positive for all six maturities. Furthermore, the term structure of the

maximum TIPS liquidity premiums tends to be downward sloping with maturity.

We note that the size and variation of the maximum range do not simply reflect bid-ask

spreads of the underlying bonds and inflation swap contracts. Figure 3 shows the bid-ask

16For the purpose of consistency and to avoid filtering, we eliminate the nominal and real yields on days
where the inflation swap rates are not available.
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Figure 2: The Maximum TIPS Liquidity Premiums.

Illustration of the difference between zero-coupon inflation swap rates and comparable zero-coupon

BEI rates that constitute the upper bound of the admissible range for TIPS liquidity premiums.

Maturity Mean Std. dev. Min. Max.
in months in bps in bps in bps in bps

Skewness Kurtosis

60 44.16 29.11 7.88 209.73 2.62 11.54
72 41.58 24.67 13.49 171.87 2.49 9.93
84 38.56 21.69 10.82 153.81 2.50 9.62
96 35.38 19.17 9.87 138.24 2.56 9.93
108 32.29 18.02 8.55 129.03 2.60 10.58
120 29.90 17.43 1.44 123.97 2.54 10.44

Table 2: Summary Statistics for the Maximum TIPS Liquidity Premiums.

Summary statistics for the sample of differences between zero-coupon inflation swap rates and com-

parable zero-coupon breakeven inflation rates covering the period from January 4, 2005 to December

31, 2010, a total of 1,482 daily observations.

spread as reported by Bloomberg for the most recently issued, or so-called on-the-run, five-

and ten-year TIPS. The average over our sample period is 1.4 basis point for the five-year

TIPS and 0.7 basis point for the ten-year TIPS, which should be compared to averages of

9.1 and 7.7 basis points for the five- and ten-year inflation swap, respectively. This is of

the order of transaction costs in the inflation swap market reported by FLL based on their

conversations with traders. For comparison, Fleming and Mizrach (2009) report the inside

bid-ask spreads for regular Treasuries average one basis point of par at the ten-year maturity.
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Figure 3: Bid-Ask Spreads in the TIPS and Inflation Swap Markets.

Illustration of the bid-ask spread as reported by Bloomberg for the most recently issued, or so-called on-

the-run, five- and ten-year TIPS. Shown are also the bid-ask spreads from the inflation swap market

for the five- and ten-year zero-coupon inflation swap contracts. All series are smoothed four-week

moving averages and measured in basis points.

This implies even smaller trading costs in terms of yield to maturity, the return comparable

to the inflation swap rate. Thus, bid-ask spreads only account for a small fraction of the sum

of liquidity premiums in TIPS and inflation swaps that represents our maximum range for

the TIPS liquidity premium.

3.2 Comparison to Other Liquidity Premium Estimates

Our measure of combined liquidity premiums in TIPS yields and inflation swap rates is

highly correlated with several other commonly used measures of bond liquidity. Notably, the

ten-year off-the-run over on-the-run nominal Treasury bond yield difference and the credit

spread of AAA-Rated U.S. industrial bonds have simple correlation coefficients of 0.67 and

0.73, respectively.17 The former represents the premium investors place on seasoned nominal

treasuries over the highly liquid newly issued series of the same maturity. The latter represents

17The spread between the ten-year off-the-run Treasury par-coupon bond yield from the GSW (2007)
database and the ten-year Treasury par-coupon bond yield from the H.15 series at the Board of Governors is
compared with the maximum ten-year TIPS liquidity premium. The spread between the one-year AAA-rated
U.S. industrial corporate bond yield and the comparable Treasury yield is compared with the five-year TIPS
liquidity premium.
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(a) Five-year maturity.
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(b) Ten-year maturity.

Figure 4: Comparison to the TIPS Liquidity Premiums from the DKW Model.

Comparison of the model-independent maximum for the admissible liquidity premium in TIPS yields

to the estimated TIPS liquidity premiums from the DKW model.

the liquidity advantage of government bonds over corporate bonds that contain negligible

credit risk. These comparisons are meant to illustrate that more general variation in bond

market liquidity is apparent in our maximum range.

We also compare our measure to the TIPS liquidity premiums estimated in DKW and

PV. DKW estimate the liquidity premium in TIPS yields by constructing a joint model of

nominal and real Treasury yields and CPI inflation and including a TIPS-specific factor in

order to capture the liquidity disadvantage of TIPS yields explicitly. Figure 4 illustrates the

five- and ten-year DKW TIPS liquidity premium series and compares them to our maximum

range for the admissible five- and ten-year TIPS liquidity premiums. The DKW estimate

and the maximum range are highly correlated, with correlation coefficients of 0.86 and 0.77

at the five- and ten-year maturities, respectively. While this suggests that both measures are

capturing similar variation in the market yields, the magnitude of the DKW estimate is not

consistent with the maximum of the admissible range.

At the five-year maturity, the DKW TIPS liquidity premium is above our maximum for

about half of the sample period, and at the ten-year maturity their estimate is systematically

outside the range. This might result from the fact that DKW attributes all variation in the

TIPS-specific factor they identify to liquidity effects, leading to excessively large estimates of

the TIPS liquidity premium. The impact this overstatement of the liquidity premium has on

the decomposition of BEI rates is not entirely clear for the inflation risk premium. However,

results from our CLR model exercise to be discussed later suggest that the DKW estimation
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Figure 5: Comparison to the TIPS Liquidity Premium from PV.

Comparison of the model-independent maximum for the admissible liquidity premium in the ten-year

TIPS yield to the estimated ten-year TIPS liquidity premium from PV.

of expected inflation may be too high because the DKW model overcorrects TIPS yields for

liquidity differentials. Finally, it is worth noting that DKW are not likely to disagree with

the fundamental assumptions that produce our model-independent maximum range because

their approach relies on the same intuition, namely that TIPS are less liquid than nominal

Treasuries, and they use the same GSW nominal and real Treasury yields.

PV take a different approach to estimating TIPS liquidity premiums in that they regress

BEI on several measures of bond liquidity (including the off- over the on-the-run yield spread

discussed previously) to generate estimates of the liquidity premium differential between TIPS

and nominal yields. Figure 5 compares our maximum range for the ten-year TIPS liquidity

premium to their estimated ten-year TIPS liquidity premium for the overlapping sample

period.18 The level of their liquidity premium is well above the maximum range, but they

share a very high correlation. This suggests that, while regression-based estimates of liquidity

premiums using economic fundamentals can be off in terms of the level of the premium, they

may capture the time variation reasonably well.19 As was the case for DKW, we emphasize

that the analysis in PV is based on BEI rates from the same GSW databases used in the

18We are very thankful to Luis Viceira for sharing their data.
19Technically, this requires the additional assumption that the actual, unobserved TIPS liquidity premium

located inside the range be highly correlated with the maximum of the range used in the comparison here.
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construction of our upper bound for the TIPS liquidity premium. Hence, their estimated

liquidity premium is comparable to our range.

To summarize, the information in nominal Treasury and real TIPS yields can be used in

junction with inflation swap rates to derive a model-independent range for the admissible size

of TIPS liquidity premiums. The constructed range relies on two assumptions, namely that

TIPS and inflation swap contracts are each less liquid than nominal Treasuries, which we think

are widely accepted and well documented in the literature. Furthermore, the range is highly

correlated with existing estimates of TIPS liquidity premiums. Thus, with an upper bound

for the liquidity disadvantage of TIPS in place, we can turn our attention to the benefit of

TIPS, i.e., the saved inflation risk premiums. We address this subject in the following section.

4 Measuring the Inflation Risk Premium in Nominal Yields

While we use a model-independent measure of the liquidity effects in TIPS yields because

researchers have yet to arrive to a consensus on their size, the practice of empirically extracting

inflation risk premiums from breakeven inflation using term structure models is much more

established within the bond pricing literature. To that end, we employ the model introduced

in CLR, but use it in a novel fashion to exploit the information in the model-independent

maximum range for the TIPS liquidity premium described in the previous section.

To begin the analysis, we first provide a brief theoretical discussion of how an arbitrage-

free term structure model of nominal and real yields can decompose the difference between

the two into inflation expectations and inflation risk premiums, where the latter is the excess

yield a nominal bond has to pay for not providing inflation protection. We then describe the

model introduced in CLR before proceeding to the empirical results.

4.1 Decomposing Breakeven Inflation

To begin, let the nominal and real stochastic discount factors be denoted by MN
t and MR

t ,

respectively. The requirement of no arbitrage enforces a consistency of pricing for any security

over time. Specifically, the price of a nominal bond that pays one dollar at time t+ τ and the

price of a real bond that pays one unit of the consumption basket at time t+ τ must satisfy

PN
t (τ) = EP

t

[
MN

t+τ

MN
t

]
and PR

t (τ) = EP
t

[
MR

t+τ

MR
t

]
. (8)

Given their payment structure, the no-arbitrage condition also requires a consistency between

the prices of nominal and real bonds such that the price of the consumption basket, denoted
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as the overall price level Πt, is the ratio of the nominal and real stochastic discount factors:

Πt =
MR

t

MN
t

. (9)

We assume that the nominal and real stochastic discount factors have the standard dy-

namics dMN
t /MN

t = −rNt dt−Γ′
tdW

P
t and dMR

t /MR
t = −rRt dt−Γ′

tdW
P
t , where rNt and rRt are

the instantaneous, risk-free nominal and real rates of return, respectively, and Γt is a vector

of premiums on the risks represented by WP
t . Then, by Ito’s lemma, dΠt = (rNt − rRt )Πtdt.

Thus, with the absence of arbitrage, the instantaneous growth rate of the price level is equal

to the difference between the instantaneous nominal and real risk-free rates. Now, it easily

follows that we can express the price level at time t+τ as

Πt+τ = Πte
∫ t+τ

t
(rNs −rRs )ds. (10)

The relationship between the yields and inflation expectations can be obtained by decom-

posing the price of the nominal bond as follows:

PN
t (τ) = EP

t

[
MN

t+τ

MN
t

]
= EP

t

[
MR

t+τ/Πt+τ

MR
t /Πt

]
= EP

t

[
MR

t+τ

MR
t

Πt

Πt+τ

]

= EP
t

[
MR

t+τ

MR
t

]
× EP

t

[
Πt

Πt+τ

]
+ covPt

[
MR

t+τ

MR
t

,
Πt

Πt+τ

]

= PR
t (τ)× EP

t

[
Πt

Πt+τ

]
×

(
1 +

covPt

[
MR

t+τ

MR
t

, Πt

Πt+τ

]

EP
t

[
MR

t+τ

MR
t

]
× EP

t

[
Πt

Πt+τ

]
)
.

Converting this price into a yield-to-maturity using

yNt (τ) = −
1

τ
lnPN

t (τ) and yRt (τ) = −
1

τ
lnPR

t (τ),

the connection between nominal and real zero-coupon yields and expected inflation can be

readily expressed as

yNt (τ) = yRt (τ) + πe
t (τ) + φt(τ), (11)

where the market-implied rate of inflation expected at time t for the period from t to t+ τ

is20

πe
t (τ) = −

1

τ
lnEP

t

[
Πt

Πt+τ

]
= −

1

τ
lnEP

t

[
e−

∫ t+τ

t
(rNs −rRs )ds

]
. (12)

20Appendix A explains how the expected inflation is calculated within the CLR model.
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The corresponding inflation risk premium is

φt(τ) = −
1

τ
ln

(
1 +

covPt

[
MR

t+τ

MR
t

, Πt

Πt+τ

]

EP
t

[
MR

t+τ

MR
t

]
× EP

t

[
Πt

Πt+τ

]
)
. (13)

This last equation highlights that the inflation risk premium can be positive or negative. It

is positive if and only if

covPt

[
MR

t+τ

MR
t

,
Πt

Πt+τ

]
< 0. (14)

That is, the riskiness of nominal bonds relative to real bonds depends on the covariance

between the real stochastic discount factor and inflation and is ultimately determined by

investor preferences, but for our analysis we will not need to specify those.

4.2 The CLR Model of Nominal and Real Yields

As is clear from the theoretical section above, the market-implied expected inflation and the

associated risk premium is measured by modeling the instantaneous nominal and real rates,

rNt and rRt . The model we use for that purpose was first introduced in CLR and is centered

around the arbitrage-free Nelson-Siegel (AFNS) model framework derived in Christensen,

Diebold, and Rudebusch (2011), but modified to allow for stochastic yield volatility. The four

factors that determine the rates are explained by the state vector Xt = (LN
t , St, Ct, L

R
t ). L

N
t

and LR
t represent level effects in the nominal and real yield curves, respectively, while St and

Ct represent slope and curvature effects common to both yield curves. The instantaneous

nominal and real risk-free rates are defined by:

rNt = LN
t + St, (15)

rRt = LR
t + αRSt. (16)

The differential scaling of real rates to the common slope (and indirectly the common

curvature) factor is captured by the parameter αR. To preserve the Nelson-Siegel factor

loading structure in the nominal and real yield functions, the dynamics of the state variables

under the pricing, or risk-neutral, probability measure (traditionally referred to as the Q-
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measure) are, in general, given by the stochastic differential equations:21




dLN
t

dSt

dCt

dLR
t




=




κQ
LN 0 0 0

0 λ −λ 0

0 0 λ 0

0 0 0 κQ
LR










θQ
LN

0

0

θQ
LR




−




LN
t

St

Ct

LR
t






dt

+




σ11 0 0 0

0 σ22 0 0

0 0 σ33 0

0 0 0 σ44







√
LN
t 0 0 0

0
√
1 0 0

0 0
√
1 0

0 0 0
√

LR
t







dWLN ,Q
t

dW S,Q
t

dWC,Q
t

dWLR,Q
t




.

This structure implies that nominal yields are22,23

yNt (τ) = gN
(
κQ
LN

)
LN
t +

(
1− e−λτ

λτ

)
St +

(
1− e−λτ

λτ
− e−λτ

)
Ct −

AN
(
τ ;κQ

LN

)

τ
, (17)

while real yields are given by

yRt (τ) = gR
(
κQ
LR

)
LR
t + αR

(
1− e−λτ

λτ

)
St + αR

(
1− e−λτ

λτ
− e−λτ

)
Ct −

AR
(
τ ;κQ

LR

)

τ
. (18)

To link the risk-neutral and real-world dynamics of the state variables, we use the extended

affine risk premium specification introduced by Cheridito, Filipović, and Kimmel (2007). The

maximally flexible affine specification of the P -dynamics is thus




dLN
t

dSt

dCt

dLR
t




=




κP11 0 0 κP14

κP21 κP22 κP23 κP24

κP31 κP32 κP33 κP34

κP41 0 0 κP44










θP1

θP2

θP3

θP4




−




LN
t

St

Ct

LR
t






dt

+




σ11 0 0 0

0 σ22 0 0

0 0 σ33 0

0 0 0 σ44







√
LN
t 0 0 0

0
√
1 0 0

0 0
√
1 0

0 0 0
√

LR
t







dWLN ,P
t

dW S,P
t

dWC,P
t

dWLR,P
t




.

To keep the model arbitrage-free, the two level factors must be prevented from hitting the

lower zero-boundary. This positivity requirement is ensured by imposing the Feller condition

21We follow CLR and limit our focus to specifications with a diagonal Σ volatility matrix.
22Analytical formulas for gN

(

κ
Q

LN

)

, gR
(

κ
Q

LR

)

, AN
(

τ ;κQ

LN

)

, and AR
(

τ ;κQ

LR

)

are provided in CLR.
23In our implementation, we follow CLR and fix κQ

LN
= κ

Q

LR
= 10−7 to get a close approximation to the

uniform level factor loading in the original Gaussian AFNS model.
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on their factor dynamics under both probability measures, i.e.,

κP11θ
P
1 +κP14θ

P
4 >

1

2
σ2
11, 10−7·θQ

LN >
1

2
σ2
11, κP41θ

P
1 +κP44θ

P
4 >

1

2
σ2
44, and 10−7·θQ

LR >
1

2
σ2
44.

Furthermore, to have well-defined processes for LN
t and LR

t , the sign of the effect that these

two factors have on each other must be positive, which requires the restrictions that

κP14 ≤ 0 and κP41 ≤ 0.

These conditions ensure that the two square-root processes will be non-negatively correlated.

Finally, the model is estimated with the standard Kalman filter, see CLR for details.

4.3 Model Specification and Parameter Sensitivity

Our model application exercise follows CLR and uses nominal yields with three-month, six-

month, one-, two-, three-, five-, seven-, and ten-year maturities and the six real yields with

five- to ten-year maturities. For the nominal yields, we use a sample period from January 3,

1995 to December 31, 2010 with a total of 3,972 observations. For the real yields, the sample

begins on January 4, 2005 so that it aligns the TIPS sample with the inflation swap data,

resulting in 1,482 observations.

We use the admissible range for the TIPS liquidity premium derived in Section 3 to correct

for the liquidity effects in TIPS yields prior to model estimation. This allows us to study the

sensitivity of the CLR model output to the assumed level of the TIPS liquidity premium. The

bound provided by the admissible range of TIPS liquidity premiums converts into a range of

admissible estimates for the output produced by the model. Thus, this exercise is telling of

the relationship between TIPS liquidity premiums and the BEI decomposition as captured

through the lens of the model. Since the specification of the P -dynamics is an important

element in determining a model’s decomposition of BEI rates into inflation expectations and

associated risk premiums, we conduct a careful evaluation of various model specifications.

We start the model selection from the unrestricted specification of the mean-reversion

matrix KP , and pare down this matrix using a general-to-specific strategy that restricts the

least significant parameter (as measured by the ratio of the parameter value to its standard

error) to zero and then re-estimate the model. This strategy of eliminating the least significant

coefficients continues to the most parsimonious specification, which has a diagonal KP matrix.

In order to select our preferred specification, we use the Bayes information criterion, which

is commonly used for model selection and is defined as BIC = −2 logL+ k log T , where T is

the number of data observations (see e.g., Harvey 1989).24

24We have 3,972 nominal yield and 1,482 real yield daily observations. We interpret T as referring to the
longest data series and fix it at 3,972.
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The first case we consider assumes that there are no liquidity premiums priced into TIPS

yields. In this case we use the GSW yields without any corrections, which is implicitly assumed

in papers like Adrian and Wu (2010) and CLR. We then evaluate the model specification

assuming that there are no liquidity risk premiums in the inflation swap rates. That is, the

model estimations are performed on TIPS yields that have been maximally corrected for

liquidity differentials as described in Section 3. The preferred specification according to the

BIC has a mean-reversion matrix KP under both assumptions given by

KP
BIC =




κP11 0 0 0

0 κP22 κP23 0

0 0 κP33 0

0 0 0 κP44




. (19)

This matrix is identical to the specification preferred in CLR.25

Most parameter estimates and corresponding standard deviations for the P -dynamics are

practically indistinguishable and not significantly different across the two assumptions about

the size of TIPS liquidity premiums, except for a markedly higher estimated value of κP44 when

TIPS are assumed subject to the maximum liquidity premium. This suggests a very limited

impact on the estimated P -dynamics of correcting for TIPS liquidity premiums. The most

notable difference relates to the estimated Q-dynamics where the estimated value of αR is

raised from 0.3860 to 0.5890 in response to a lower estimated path for LR
t as TIPS yields are

lower when maximally corrected for liquidity premiums. As a consequence, the variation of the

common slope and curvature factors plays a bigger role for real TIPS yields in this case, which

ultimately affects the model’s decomposition of BEI into expected inflation and inflation risk

premiums as we will see later. Finally, Table 3 reports the summary statistics of the fitted

errors across maturities based on the two estimations and provides further documentation of

the accuracy of the model under either assumption.26

4.4 Finite-sample Bias Correction

The main limitation of the model results discussed so far is one that generally plagues the

estimation of any dynamic term structure model. Because interest rates are highly persistent,

empirical autoregressive models, including dynamic term structure models like ours, suffer

from potentially substantial finite-sample estimation bias. Specifically, model estimates will

generally be biased toward a dynamic system that displays much less persistence than the

25The full details of the specification evaluations and the estimated preferred specification under both the
zero and maximum TIPS liquidity premium assumptions are provided in Appendix B.

26As expected, the fit of the nominal yields is practically identical and the dispersion in the fit of the real
yields is of modest magnitude.
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Maturity No TIPS Maximum TIPS
in months liquidity premium liquidity premium

Nom. yields Mean RMSE σ̂ε(τi) Mean RMSE σ̂ε(τi)

3 0.81 19.58 19.57 0.59 19.59 19.58
6 -0.12 8.25 8.25 -0.24 8.26 8.25
12 0.00 0.00 0.00 0.00 0.00 0.00
24 0.44 1.54 1.54 0.48 1.55 1.55
36 0.00 0.00 0.00 0.00 0.00 0.00
60 -0.27 1.28 1.34 -0.30 1.31 1.38
84 0.21 0.69 1.05 0.25 0.81 1.15
120 -1.26 4.51 4.65 -1.20 4.52 4.66

TIPS yields Mean RMSE σ̂ε(τi) Mean RMSE σ̂ε(τi)

60 -0.88 17.93 17.98 -0.17 14.81 14.95
72 -0.05 10.70 10.77 -0.14 8.61 8.85
84 0.30 4.90 5.04 0.08 3.82 4.36
96 0.09 0.60 1.31 0.16 2.59 3.27
108 -0.67 4.26 4.40 -0.18 5.77 5.98
120 -1.96 8.01 8.09 -1.54 9.63 9.67

Max logL 253,073.70 252,343.70

Table 3: Summary Statistics of the Fitted Errors.

The mean fitted errors, the root mean squared fitted errors (RMSE), and the estimated fitted error

standard deviations from the preferred specification of the CLR model of nominal and real yields

are shown with the minimum and the maximum liquidity correction of TIPS yields prior to model

estimation. All numbers are measured in basis points. The nominal yields cover the period from

January 3, 1995, to December 31, 2010, while the real TIPS yields cover the period from January 4,

2005, to December 31, 2010.

true process (so estimates of the real-world mean-reversion matrix, KP , are upward biased).

In our context of decomposing BEI into expected inflation and the associated inflation risk

premium, such bias tends to imply that the expected inflation is too stable and the inflation

risk premium too volatile. For our sample period, which is dominated by the financial crisis

of 2008-2009 and the ensuing low inflation outcomes from sharp declines in energy prices, the

upward bias manifests itself as excessively high estimates of the expected inflation component

of BEI and corresponding excessively low estimates of the inflation risk premium. This could

lead to serious bias in the assessment of the benefit of issuing TIPS versus regular Treasury

securities. For these reasons a correction for the finite-sample bias is critical to our analysis.

In a recent paper, Bauer, Rudebusch, and Wu (2012) provide a complete discussion of the

finite-sample bias in empirical affine Gaussian term structure models. However, as our model

is non-Gaussian, we cannot follow their exact procedure as it relies on the ability to rapidly

estimate the model, which is feasible for affine Gaussian term structure models due to the work

of Joslin, Singleton, and Zhu (2011) and Hamilton and Wu (2012), but not for non-Gaussian
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(b) Inflation risk premiums.

Figure 6: Range of Ten-Year Inflation Expectations and Risk Premiums due to

TIPS Yield Liquidity Corrections.

Illustration of the range of viable ten-year inflation expectations and associated inflation risk premiums

due to TIPS yield liquidity corrections based on the CLR model with and without correction for the

parameter estimation finite-sample bias. In each chart, the black lines represent the case with no

TIPS liquidity premiums, while the grey lines represent the reverse case where TIPS yields contain

the maximum liquidity premium.

models like ours as the underlying statistical limit results do not apply. Instead, we make

an adaptation of the approach of Bauer et al. (2012) to non-Gaussian models that preserves

their median-based bias correction, but relies on a parameter-by-parameter adjustment.27

4.5 Estimates of Inflation Expectations and Risk Premiums

In this section we analyze the impact the assumed level of the liquidity premium in TIPS

yields has on the CLR model decomposition of BEI rates into expected inflation and the

associated risk premium. We also illustrate the effect on the decomposition from the bias

correction.

Figure 6(a) shows the wedge of the expected inflation obtained from the two extreme cases

in the assumed level of the TIPS liquidity premium, both with and without bias correction.28

We note the significant negative effect on the estimates of the expected inflation component

27The full details of the bias correction are provided in Appendix C along with the complete table of the
bias-corrected parameters under both assumptions about the size of TIPS liquidity premiums.

28In order to correct each estimate, we first use the bias-corrected parameter set along with the observed
yield data as input into the Kalman filter to obtain the corresponding filtered factor paths. In a second step,
the expected inflation is calculated as described in Appendix A and deducted from the fitted BEI (difference
between fitted nominal and real yields) from the Kalman filter to produce the bias-corrected estimates of the
inflation risk premium.
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from the bias correction. Since the inflation risk premium is determined as a residual by de-

ducting the expected inflation from BEI, there is a similar effect of the bias correction on the

estimated inflation risk premiums, but with the opposite sign as shown in Figure 6(b). This

underscores the importance of addressing the finite-sample bias in the parameter estimation

when it comes to assessing the benefit of TIPS issuance over issuing regular Treasury securi-

ties. Second, we note the large difference in the estimates of the expected inflation when we

move from the case with no liquidity correction of TIPS yields before estimation to the case

with a maximum correction for TIPS liquidity premiums. The latter case produces estimates

that are systematically higher as BEI is larger under that assumption.

For the range of estimated ten-year inflation risk premiums shown in Figure 6(b), we note

that the differences are typically much smaller and with no systematic sign, indicating that

the assumed level of the TIPS liquidity premium has a much smaller effect on estimates of the

inflation risk premium. Also worth noting are the occasional simultaneously negative values

in both series, suggesting that inflation risk premiums can be negative even when TIPS yields

are maximally corrected for liquidity premiums.29 Theoretically, a number of circumstances

could lead to this result. One possibility is that the CPI figure used in the indexation of TIPS

tends to overstate the true inflation because substitution effects are not adequately accounted

for. Another explanation is that the marginal investor who determines the tradeoff between

nominal and real yields might have a personal price index different from headline CPI. If so,

TIPS only provide a partial hedge for inflation risk and, as a result, the investor demands a

premium for being exposed to an imperfect hedge. In both cases, TIPS yields can be higher

than they otherwise might be absent such risk effects. Assuming inflation expectations do

not change, which is reasonable as such risk effects should not alter investors’ outlook for

inflation, this would result in negative estimates for the inflation risk premiums.

To recapitulate the construction of the minimum liquidity-adjusted inflation risk premium

shown in Figure 1, we first take the minimum of the estimated range of inflation risk premi-

ums (shown in Figure 6(b) for the ten-year maturity) for each observation date and at each

maturity. We then deduct the corresponding maximally admissible TIPS liquidity premium

introduced in Section 3. Lastly, we adjust the result for the fact that the U.S. Treasury

issues regular Treasury securities at low, so-called on-the-run Treasury yields, which differ

from the seasoned, or so-called off-the-run, Treasury yields we use in model estimation. The

final series represent the most conservative assessment of the economic benefit of TIPS over

nominal Treasuries that our approach allows us to generate. Despite its conservative nature,

the measure is still positive on average over our sample. This suggests that the U.S. Treasury

could reduce its debt servicing costs by increasing its TIPS program. Our own calculation

29Chernov and Mueller (2011) also report occasional negative inflation risk premium estimates in the most
recent part of their sample that covers the 1971-2008 period.
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assuming a constant debt level and an increase in the ratio of TIPS to one third showed that

savings of the order of $24 billion over the next ten years could be obtained by such a shift

in debt management policy.

5 Conclusion

In this paper, we provide a measure we refer to as the minimum liquidity-adjusted inflation

risk premium in order to quantitatively assess the economic benefit to the U.S. Treasury of

issuing TIPS. It is constructed by taking the smallest inflation risk premiums produced by

the CLR model and subtracting the maximum admissible TIPS liquidity premium in addition

to the on-the-run premium for nominal Treasury bonds. The measure itself is conservative

in nature, yet it still indicates that the U.S. Treasury has benefitted from issuing TIPS since

the beginning of our sample period in 2005. Provided other considerations are secondary, our

cost-benefit analysis suggests that the U.S. Treasury could save billions of tax payer dollars

over the next ten years by expanding its issuance of TIPS relative to nominal Treasuries.

To assess the costs of issuing TIPS, which is their liquidity disadvantage relative to regular

Treasury securities, we introduce a model-independent maximum range for the admissible

liquidity premium in TIPS using the joint pricing information in the markets for nominal

Treasury securities, TIPS, and inflation swaps. The theoretical assumptions we make in

constructing the range are simple, realistic, and consistent with findings from studies on the

microstructure of these three markets. Furthermore, the range is highly correlated with other

widely accepted proxies of bond liquidity.

As a consensus on the precise level of the TIPS liquidity premium has yet to develop,

the range also provides a means by which current and future models may be assessed. To

exemplify, we compare the range to the TIPS liquidity premiums estimated in DKW and PV

and find the levels of their estimates to be largely outside the admissible range. The strategies

employed by DKW and PV seem to be problematic. By attributing variation in TIPS yields

largely to liquidity, they overestimate its role in the pricing of TIPS yields. Thus for the

purpose of our cost-benefit assessment, our maximum range is ideal since it does not depend

on model-generated results.

To assess the benefits of TIPS, which is the inflation risk premium that nominal Trea-

suries are penalized with for not providing inflation protection, we use the CLR model of

nominal and real yields. We follow the most recent literature and adjust the estimated model

parameters for finite-sample bias. We also demonstrate the sensitivity of the CLR model

decomposition of BEI to variations in the TIPS liquidity correction by estimating the model

at both extremes of the maximum range for the TIPS liquidity premium. This exercise can

be done with any term structure model to assess its robustness under different assumptions
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about liquidity effects in TIPS pricing.

Our analysis provides insight into the economic costs and benefits of the U.S. Treasury’s

TIPS issuance with the most concrete result being that it is very likely that the U.S. Treasury

gets a cost reduction in the form of saved inflation risk premiums from TIPS that surpasses

the liquidity penalty investors price into their rates. We roughly calculate that these savings

could be augmented by tens of billions of dollars if the Treasury were to allocate a larger

portion of its portfolio to TIPS over the next ten years and, given the conservative nature of

the assumptions in the construction of our metric, these figures likely understate the benefit

of issuing TIPS.
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Appendices

A). Calculation of the Expected Inflation and the Inflation Risk Premium

From the theoretical discussion in Section 4.1, it follows that the model-implied expected inflation is given

by

π
e
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τ
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t

[
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. (20)

For the affine framework, we are working within, it holds that
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where δ is given by30
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and the boundary condition is Bπ(T, T ) = 0, while Aπ(t, T ) is the unique solutions to the following ODE
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Here, KP , θP , and Σ reflect the P -dynamics of the state variables. Now, the ODEs above are solved with a

standard fourth order Runge-Kutta method.

By Equation (11), we can easily calculate the inflation risk premiums, once we have the corresponding

expected inflation, πe
t (τ ), and the fitted nominal and real yields from Equations (17) and (18), respectively.

B). Model Specification Evaluation

We start the model selection from the unrestricted specification of the mean-reversion matrix KP , which

provides the maximally admissible flexibility in fitting the data given our restrictions on the state variable

volatility structure. We then pare down this matrix using a general-to-specific strategy that restricts the least

significant parameter (as measured by the ratio of the parameter value to its standard error) to zero and then

re-estimate the model. This strategy of eliminating the least significant coefficients continues to the most

parsimonious specification, which has a diagonal KP matrix.

Each estimated specification is listed with its maximum log likelihood, its number of estimated parameters

(k), and the p-value from a likelihood ratio test of the hypothesis that it differs from the specification with

30In the equation above, δj denotes the jth row of δ.
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Alternative Goodness-of-fit statistics
specifications Max logL k p-value BIC

(1) Unrestricted KP 253,078.4 38 n.a. -505,841.9
(2) κP14 = 0 253,078.4 37 1.0000 -505,850.2
(3) κP14 = κP41 = 0 253,078.4 36 1.0000 -505,858.5
(4) κP14 = κP41 = κP24 = 0 253,077.9 35 0.3173 -505,865.8
(5) κP14 = . . . = κP32 = 0 253,076.5 34 0.0943 -505,871.2
(6) κP14 = . . . = κP31 = 0 253,076.3 33 0.5271 -505,879.1
(7) κP14 = . . . = κP21 = 0 253,074.4 32 0.0513 -505,883.6
(8) κP14 = . . . = κP34 = 0 253,073.7 31 0.2367 -505,890.5

(9) κP14 = . . . = κP23 = 0 253,067.3 30 0.0003 -505,886.0

Table 4: Evaluation of Alternative Specifications of the CLR Model With No TIPS

Liquidity Premiums.

Nine alternative estimated specifications of the CLR model of nominal and real Treasury bond yields

are evaluated assuming no liquidity premiums in TIPS yields. Each specification is listed with its

maximum log likelihood (Max logL), number of parameters (k), the p-value from a likelihood ratio

test of the hypothesis that the specification differs from the one directly above that has one more free

parameter. The Bayes information criterion (BIC) is also reported, and its minimum value is given in

boldface.

one more parameter—that is, comparing specification (s) with specification (s− 1). We also report the Bayes

information criterion commonly used for model selection, which is defined as BIC = −2 logL+ k log T , where

T is the number of data observations (see e.g., Harvey 1989).31

We start with the case where it is assumed that there are no liquidity premiums priced into TIPS yields.

In that case we use the GSW yields without any corrections in the model estimation. The result of the model

selection in this case is shown in Table 4. The preferred specification according to BIC has a mean-reversion

matrix KP given by

K
P
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44













.

This is identical to the specification preferred in CLR. Table 5 contains the estimated parameters in this case.

In Table 6 we evaluate various model specifications assuming that there are no liquidity risk premiums in

the inflation swap rates, that is, the model estimations are performed on TIPS yields that have been maximally

corrected for liquidity differentials as described in Section 3. Under this assumption, the preferred specification

of the mean-reversion matrix is again given by

K
P
BIC =













κP
11 0 0 0

0 κP
22 κP

23 0

0 0 κP
33 0

0 0 0 κP
44













.

Table 7 contains the estimated parameters in this case.

31We have 3,972 nominal yield and 1,482 real yield daily observations. We interpret T as referring to the
longest data series and fix it at 3,972.
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KP KP
·,1 KP

·,2 KP
·,3 KP

·,4 θP Σ

KP
1,· 1.0188 0 0 0 0.0421 σ11 0.0634

(0.2481) (0.0035) (0.0003)
KP

2,· 0 0.6073 -0.5678 0 -0.0110 σ22 0.0126

(0.1610) (0.1285) (0.0131) (0.0001)
KP

3,· 0 0 0.7530 0 -0.0065 σ33 0.0315

(0.2168) (0.0114) (0.0004)
KP

4,· 0 0 0 1.4246 0.0148 σ44 0.0554

(0.2281) (0.0017) (0.0004)

Table 5: Parameter Estimates for the Preferred Specification of the CLR Model

With No TIPS Liquidity Premiums.

The estimated parameters of the KP matrix, θP vector, and diagonal Σ matrix are shown for the

preferred specification of the CLR model when there are no liquidity premiums in TIPS yields. The

Q-related parameters are estimated at: λ = 0.5980 (0.0011), αR = 0.3860 (0.0032), θQ
LN = 32,600

(18.09), and θQ
LR = 15,368 (32.50). The numbers in parentheses are the estimated parameter standard

deviations. The maximum log likelihood value is 253,073.70.

Alternative Goodness-of-fit statistics
specifications Max logL k p-value BIC

(1) Unrestricted KP 252,354.8 38 n.a. -504,394.7
(2) κP24 = 0 252,354.7 37 0.6547 -504,402.8
(3) κP24 = κP32 = 0 252,351.5 36 0.0114 -504,404.7
(4) κP24 = κP32 = κP41 = 0 252,351.3 35 0.5271 -504,412.6
(5) κP24 = . . . = κP21 = 0 252,349.6 34 0.0652 -504,417.4
(6) κP24 = . . . = κP14 = 0 252,348.8 33 0.2059 -504,424.1
(7) κP24 = . . . = κP31 = 0 252,346.9 32 0.0513 -504,428.6
(8) κP24 = . . . = κP34 = 0 252,343.7 31 0.0114 -504,430.5

(9) κP24 = . . . = κP32 = 0 252,337.1 30 0.0003 -504,425.6

Table 6: Evaluation of Alternative Specifications of the CLR Model With the

Maximum TIPS Liquidity Premiums.

Nine alternative estimated specifications of the CLR model of nominal and real Treasury bond yields

are evaluated for the case when TIPS yields are assumed to contain the maximum liquidity premium.

Each specification is listed with its maximum log likelihood (Max logL), number of parameters (k), the

p-value from a likelihood ratio test of the hypothesis that the specification differs from the one directly

above that has one more free parameter. The Bayes information criterion (BIC) is also reported, and

its minimum value is given in boldface.

C). The Simulations-Based Finite-Sample Bias Correction

In this appendix, we detail the classic parametric bootstrap simulation exercise we use to correct for the

finite-sample bias of the parameter estimates in the CLR model. As in the model estimation, we consider

both extremes: (1) Assuming no TIPS liquidity premiums and (2) assuming the maximally admissible TIPS

liquidity premium.

To begin the exercise, we consider the model parameters estimated as of December 31, 2010 and reported

in Tables 5 and 7, respectively, as the “true” parameters in each case. In the next step, we use the model to
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KP KP
·,1 KP

·,2 KP
·,3 KP

·,4 θP Σ

KP
1,· 0.8707 0 0 0 0.0436 σ11 0.0573

(0.2257) (0.0036) (0.0003)
KP

2,· 0 0.5858 -0.5610 0 -0.0124 σ22 0.0122

(0.1857) (0.1351) (0.0136) (0.0001)
KP

3,· 0 0 0.7531 0 -0.0074 σ33 0.0320

(0.1681) (0.0117) (0.0003)
KP

4,· 0 0 0 2.1022 0.0129 σ44 0.0609

(0.2299) (0.0011) (0.0003)

Table 7: Parameter Estimates for the Preferred Specification of the CLR Model

With the Maximum TIPS Liquidity Premiums.

The estimated parameters of the KP matrix, θP vector, and diagonal Σ matrix are shown for the

preferred specification of the CLR model when TIPS yields are assumed to contain the maximum

liquidity premium. The Q-related parameters are estimated at: λ = 0.5937 (0.0010), αR = 0.5890

(0.0030), θQ
LN = 30,120 (18.48), and θQ

LR = 18,559 (32.37). The numbers in parentheses are the

estimated parameter standard deviations. The maximum log likelihood value is 252,343.70.

simulate N = 100 artificial data sets identical to the actual sample of nominal and real U.S. Treasury yields.

Specifically, (i) the number of observation dates and the time in between observations are identical to the

original sample, (ii) the yield maturities on each observation date are identical to those in the original sample,

and (iii) i.i.d. errors are added with a maturity-specific standard deviation given by the estimated values of

σε(τ ) from the original sample (reported in the third and sixth column of Table 3, respectively). Third, we

use the N = 100 artificial data samples as input into the original Kalman filter estimation, whereby we obtain

N = 100 alternative optimal parameter sets. Importantly, if the model is true, these alternative parameter

sets are each statistically just as likely as the “true” parameter set we got from the original data set. Thus,

for each parameter, we can rank the estimated values and take out the median. It is worth noting that this

approach implicitly handles any correlation there might be between various parameter estimates, in particular

joint outliers naturally occur.

The details of the simulation of the factor paths are provided in the following. The continuous-time

P -dynamics are, in general, given by

dXt = K
P (θP −Xt)dt+ ΣD(Xt)dW

P
t .

For both restricted square-root processes and unconstrained processes we approximate the continuous-time

process using the Euler approximation.32 To exemplify, for a restricted square-root process,

dX
i
t = κ

P
ii(θ

P
i −X

i
t )dt+ κ

P
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j −X

j
t )dt+ σii

√
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tdW
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the algorithm is

X
i
t = X

i
t−1 + κ

P
ii(θ
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i
t−1)∆t+ κ

P
ij(θ

P
j −X

j
t−1)∆t+ σii

√

Xi
t−1

√
∆tzit, z

i
t ∼ N(0, 1).

We fix ∆t at a uniform value of 0.0001, which is equivalent to approximately 27 shocks to the Xi
t -process via

the Brownian motion per day. As Feller conditions and other non-negativity requirements are imposed in the

estimations performed with the observed bond yields, the parameter sets used in the simulations naturally sat-

32Thompson (2008) is a recent example.
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1st iteration 2nd iteration 3rd iteration 4th iteration
Parameter

Estimate Median Value Median Value Median Value Median

κP
11 1.0188 1.2712 0.7664 0.9441 0.8412 1.0865 0.7735 1.0748
κP
22 0.6073 0.7498 0.4648 0.5745 0.4976 0.6033 0.5016 0.6076
κP
23 -0.5678 -0.6007 -0.5348 -0.5871 -0.5155 -0.5377 -0.5456 -0.5919
κP
33 0.7530 1.0178 0.4883 0.6139 0.6273 0.8132 0.5672 0.7958
κP
44 1.4246 1.9298 0.9193 1.4826 0.8613 1.5144 0.7716 1.3592

σ11 0.0634 0.0637 0.0631 0.0634 0.0632 0.0635 0.0631 0.0633
σ22 0.0126 0.0126 0.0126 0.0126 0.0126 0.0126 0.0126 0.0126
σ33 0.0315 0.0314 0.0315 0.0316 0.0315 0.0314 0.0315 0.0314
σ44 0.0554 0.0553 0.0556 0.0557 0.0554 0.0555 0.0554 0.0554

θP1 0.0421 0.0428 0.0413 0.0411 0.0423 0.0423 0.0422 0.0420
θP2 -0.0110 -0.0126 -0.0095 -0.0103 -0.0102 -0.0081 -0.0131 -0.0132

θP3 -0.0065 -0.0062 -0.0067 -0.0047 -0.0085 -0.0062 -0.0087 -0.0098
θP4 0.0148 0.0145 0.0151 0.0152 0.0147 0.0143 0.0152 0.0145

λ 0.5980 0.5979 0.5981 0.5981 0.5979 0.5980 0.5979 0.5982

αR 0.3860 0.3874 0.3847 0.3846 0.3861 0.3828 0.3893 0.3860

θ
Q
1 32,600 32,683 32,517 32,634 32,484 32,623 32,461 32,585

θ
Q
4 15,368 15,341 15,396 15,511 15,253 15,398 15,223 15,367

σN
ε (3m) 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020
σN
ε (6m) 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008
σN
ε (1yr) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
σN
ε (2yr) 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002
σN
ε (3yr) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

σN
ε (5yr) 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
σN
ε (7yr) 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

σN
ε (10yr) 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005

σR
ε (5yr) 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018

σR
ε (6yr) 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011
σR
ε (7yr) 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
σR
ε (8yr) 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
σR
ε (9yr) 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004

σR
ε (10yr) 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008

Table 8: Summary Statistics of the Finite-Sample Bias Correction Assuming No

Liquidity Correction of TIPS Yields.

The table reports the summary statistics of the first four steps of the finite-sample bias correction of

the CLR model with no liquidity correction of TIPS yields. The results of each step of the algorithm

is based on N = 100 simulated data sets identical to the original data sample.

isfy all non-negativity requirements, so the “true” underlying continuous-time process never becomes negative

P -a.s. However, for the discretely observed process above there is always a positive, but usually very small,

probability that the approximation will become negative. Whenever this happens, we truncate the simulated

square-root processes at 0 similar to what we do in the model estimations.

As for the starting point, X0, of the simulation algorithm, we ideally want to draw it from the uncon-

ditional joint distribution of the state variables. However, due to the non-Gaussian property of the model,

the unconditional distribution of the state variables is unknown. We overcome this problem by taking the

estimated value of the state variables at the end of the observed bond yield sample and simulate the state

variables according to the algorithm above for 100 years and repeat this N = 100 times. This effectively gives

us random draws from the joint unconditional distribution of Xt.

The linear bias correction itself proceeds as follows. Denote the “true” parameter set obtained from the
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1st iteration 2nd iteration 3rd iteration 4th iteration
Parameter

Estimate Median Value Median Value Median Value Median

κP
11 0.8707 0.9421 0.7992 0.9961 0.6738 0.8599 0.6846 0.8291
κP
22 0.5858 0.6994 0.4723 0.5586 0.4995 0.6584 0.4270 0.5440
κP
23 -0.5610 -0.5633 -0.5586 -0.6232 -0.4964 -0.5223 -0.5351 -0.5626
κP
33 0.7531 0.9153 0.5909 0.7877 0.5563 0.7573 0.5520 0.7764
κP
44 2.1022 2.6977 1.5067 2.0320 1.5769 2.0197 1.6594 1.9662

σ11 0.0574 0.0575 0.0572 0.0575 0.0571 0.0574 0.0571 0.0572
σ22 0.0122 0.0122 0.0122 0.0122 0.0122 0.0122 0.0122 0.0122
σ33 0.0320 0.0319 0.0320 0.0320 0.0320 0.0319 0.0321 0.0319
σ44 0.0609 0.0609 0.0610 0.0612 0.0608 0.0609 0.0608 0.0606

θP1 0.0436 0.0434 0.0437 0.0432 0.0440 0.0437 0.0439 0.0425
θP2 -0.0124 -0.0112 -0.0136 -0.0110 -0.0149 -0.0138 -0.0135 -0.0154

θP3 -0.0074 -0.0059 -0.0089 -0.0065 -0.0097 -0.0085 -0.0086 -0.0102
θP4 0.0129 0.0130 0.0128 0.0129 0.0128 0.0126 0.0131 0.0127

λ 0.5937 0.5935 0.5940 0.5942 0.5935 0.5932 0.5940 0.5940

αR 0.5890 0.5905 0.5875 0.5839 0.5925 0.5890 0.5925 0.5883

θ
Q
1 30,120 30,146 30,094 30,226 29,988 30,114 29,995 30,033

θ
Q
4 18,559 18,545 18,574 18,758 18,375 18,589 18,345 18,412

σN
ε (3m) 0.0020 0.0020 0.0020 0.0019 0.0020 0.0020 0.0020 0.0019
σN
ε (6m) 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008
σN
ε (1yr) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
σN
ε (2yr) 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002
σN
ε (3yr) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

σN
ε (5yr) 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
σN
ε (7yr) 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

σN
ε (10yr) 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005

σR
ε (5yr) 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015

σR
ε (6yr) 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009
σR
ε (7yr) 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004
σR
ε (8yr) 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003
σR
ε (9yr) 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006

σR
ε (10yr) 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010

Table 9: Summary Statistics of the Finite-Sample Bias Correction Assuming the

Maximum Liquidity Correction of TIPS Yields.

The table reports the summary statistics of the first four steps of the finite-sample bias correction of

the CLR model with maximum liquidity correction of TIPS yields. The results of each step of the

algorithm is based on N = 100 simulated data sets identical to the original data sample.

estimation based on the observed data by ψ1. In the first step of the bias correction algorithm, we use ψ1 to

simulate the model as described above. The median of the N = 100 estimation results from the simulated

data is denoted med(ψ1). As a result, the initial bias is given by

bias(ψ1) = med(ψ1)− ψ1.

To determine the parameter set to be used in the second step of the algorithm, we assume that the shape

of the bias function for each parameter is approximately linear, monotonically increasing, and independent of

all other model parameters. As a consequence, the best guess of the bias-corrected parameter set given the

information available from the first step is

ψ2 = ψ1 − bias(ψ1).
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No TIPS liquidity premium Maximum TIPS liquidity premium
Parameter

Estimate Bias corrected Median Estimate Bias corrected Median

κP
11 1.0188 0.7735 1.0748 0.8707 0.6846 0.8291
κP
22 0.6073 0.5016 0.6076 0.5858 0.4270 0.5440

κP
23 -0.5678 -0.5456 -0.5919 -0.5610 -0.5351 -0.5626
κP
33 0.7530 0.5672 0.7958 0.7531 0.5520 0.7764
κP
44 1.4246 0.7716 1.3592 2.1022 1.6594 1.9662

σ11 0.0634 0.0631 0.0633 0.0574 0.0571 0.0572
σ22 0.0126 0.0126 0.0126 0.0122 0.0122 0.0122
σ33 0.0315 0.0315 0.0314 0.0320 0.0321 0.0319
σ44 0.0554 0.0554 0.0554 0.0609 0.0608 0.0606

θP1 0.0421 0.0422 0.0420 0.0436 0.0439 0.0425
θP2 -0.0110 -0.0131 -0.0132 -0.0124 -0.0135 -0.0154
θP3 -0.0065 -0.0087 -0.0098 -0.0074 -0.0086 -0.0102
θP4 0.0148 0.0152 0.0145 0.0129 0.0131 0.0127

λ 0.5980 0.5979 0.5982 0.5937 0.5940 0.5940
αR 0.3860 0.3893 0.3860 0.5890 0.5925 0.5883

θ
Q
1 32,600 32,461 32,585 30,120 29,995 30,033

θ
Q
4 15,368 15,223 15,367 18,559 18,345 18,412

σN
ε (3m) 0.0020 0.0020 0.0020 0.0020 0.0020 0.0019
σN
ε (6m) 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008

σN
ε (1yr) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
σN
ε (2yr) 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002
σN
ε (3yr) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
σN
ε (5yr) 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
σN
ε (7yr) 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

σN
ε (10yr) 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005

σR
ε (5yr) 0.0018 0.0018 0.0018 0.0015 0.0015 0.0015
σR
ε (6yr) 0.0011 0.0011 0.0011 0.0009 0.0009 0.0009
σR
ε (7yr) 0.0005 0.0005 0.0005 0.0004 0.0004 0.0004
σR
ε (8yr) 0.0001 0.0001 0.0001 0.0003 0.0003 0.0003

σR
ε (9yr) 0.0004 0.0004 0.0004 0.0006 0.0006 0.0006

σR
ε (10yr) 0.0008 0.0008 0.0008 0.0010 0.0010 0.0010

Table 10: Finite-Sample Bias-Corrected Parameter Estimates.

The table reports the summary statistics of the fourth step of the finite-sample bias correction of

the CLR model, first assuming no liquidity correction of TIPS yields, second assuming the maximum

liquidity correction of TIPS yields. In each case, the results are based on N = 100 simulated data sets

identical to the original data sample in each step of the bias correction algorithm.

Now, ψ2 is used in the simulation of the model and everything is repeated. In general, after step i, the

remaining bias is

bias(ψi) = med(ψi)− ψ1,

and the parameter set to be used in step i+ 1 is

ψi+1 = ψi − bias(ψi).

This algorithm is continued until a satisfactory level of accuracy is obtained. In terms of determining the

stopping point, it should be kept in mind that there is an unavoidable base level of uncertainty inherent in

the bias correction tied to the structure of the observed data as well as the number of simulations. Here,

we choose to stop the bias-correction algorithm after the fourth step as the remaining bias is within the
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Figure 7: Variation in Medians of Estimated KP Parameters.

Illustration of the medians of estimated parameters in the KP matrix in the CLR model from subsam-

ples containing 100 parameter estimates each (1-100, 101-200 etc.) out of a total of 1,000 parameter

estimates from simulated data as described in the text. In each chart, the solid grey line indicates the

median of all 1,000 estimates.

base level uncertainty. The results of the first four steps of the bias correction for the case where no TIPS

liquidity premiums are assumed are reported in Table 8, while the corresponding results for the case where

the maximum TIPS liquidity premiums are assumed are reported in Table 9. Finally, the summary result of

the bias correction with the bias-corrected parameter sets are reported in Table 10.

To illustrate the inherent base uncertainty in the median-based bias correction we employ in this paper,

we simulate N = 1,000 artificial samples based on the “true” parameters from the observed data for the case
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where no TIPS liquidity premiums are assumed. Using the simulated data in model estimations, gives us a

total of N = 1,000 alternative parameter sets that we split into 10 subgroups each containing 100 parameter

sets (1-100, 101-200 etc.). Now, we calculate the median estimates of each parameter from the ten subgroups

and compare them to the median of all N = 1,000 parameter estimates. The result is shown in Figure 7 for the

four parameters in the diagonal of KP that are most severely affected by the finite-sample bias. The important

thing to note is that there is a tradeoff between accuracy and computation time to be made when choosing

the number of simulations to use in the bias correction, and 100 simulations in each iteration appear sufficient

as the median is not that sensitive to the number of simulations.33 Also, in light of the statistical uncertainty

of the parameter estimates we obtain from the observed data, we think that N = 100 strikes a reasonable

balance in terms of the tradeoff. Importantly, we do not want to leave the impression that the bias-corrected

parameters are estimated with greater accuracy than the “true” parameters we get from the data.

33This differs from situations where the tails of each parameter distribution are of interest, say, for the
generation of confidence bands. In those cases, a thousand or more simulations could be required to reach an
adequate level of accuracy.
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