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ABSTRACT 
Productivity and efficiency analyses have been indispensable tools for evaluating firms’ 
performance in the banking sector. In this context, the use of Artificial Neural Networks 
(ANNs) has been recently proposed in order to obtain a globally flexible functional form 
which is capable of approximating any existing output distance function while enabling 
the a priori imposition of the theoretical properties dictated by production theory, 
globally. Previous work has proposed and estimated the so-called Neural Distance 
Function (NDF) which has numerous advantages when compared to widely adopted 
specifications. In this paper, we carefully refine some of the most critical characteristics 
of the NDF. First, we relax the simplistic assumption that each equation has the same 
number of nodes because it is not expected to approximate reality with any reasonable 
accuracy and different numbers of nodes are allowed for each equation of the system. 
Second, we use an activation function which is known to achieve faster convergence 
compared to the conventional NDF model. Third, we use a relevant approach for 
technical efficiency estimation based on the widely adopted literature. Fitting the model 
to a large panel data we illustrate our proposed approach and estimate the Returns to 
Scale, the Total Factor Productivity and the Technical Efficiency in US commercial 
banking (1989-2000). Our approach provides very satisfactory results compared to the 
conventional model, a fact which implies that the refined NDF model successfully 
expands and improves the conventional NDF approach. 
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1. Introduction 
There is no doubt that estimating a functional form for output distance functions 

that satisfies globally the curvature conditions dictated by neoclassical production theory 

has been “one of the most vexing problems applied economists have encountered in 

estimating flexible functional forms” (Diewert and Wales, 1987) and remains “one of the 

most difficult challenges faced by empirical economists” (Terrell, 1996). After all, 

“Ultimately, the biggest challenge for researchers remains the issue of the appropriate … 

specification to represent the underlying process technology” (Vaneman and Triantis, 

2007). 

Recently, a novel approach for measuring technical efficiency was proposed in 

Vouldis et al. (2010) using the advantages of the nonlinear nature of Artificial Neural 

Networks (ANNs) to deal with the endogeneity of outputs issue raised in Kumbhakar and 

Lovell (2000). In Michaelides et al. (2010) (MVT thereafter), this approach for dealing 

with the endogeneity of outputs was extended by enabling the a priori imposition of the 

properties dictated by neoclassical production theory globally, providing thus a globally 

flexible functional form.  

Analytically, the authors proposed and estimated the so-called Neural Distance 

Function (NDF) which has the following advantages when compared to the widely 

adopted specifications: (a) it gives an approximation to any arbitrary production process; 

(b) it is flexible with respect to time; (c) it allows for arbitrary returns to scale; (d) it is 

simple to estimate; (e) it avoids the need for nonlinear estimation; (f) it uses fewer 

estimated parameters than other globally flexible functional forms; (g) it provides a very 

good fit to real-world data; (h) it has a functional form which is consistent with 

neoclassical production theory data; (i) it is based on a system of equations which deals 

with the endogeneity of outputs issue in estimation; and (j) it satisfies the properties 

dictated by production theory globally and not only over the set of inputs and outputs 

where inferences are drawn. It should be stressed that the NDF enables the a priori 

imposition of the properties dictated by neoclassical economic theory, globally. 

In this paper, we carefully refine some of the critical characteristics of the NDF 

proposed by MVT. Analytically: First, the authors, for reasons of convenience, used “the 
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same number of nodes for each equation”. However, this assumption is not expected to 

approximate reality with any reasonable accuracy. In this paper, this arbitrary assumption 

is relaxed, in the sense that different numbers of nodes are allowed for each equation of 

the system. Second, the ANN has to be implemented by choosing its activation function. 

The authors, in their application, used probably, the most popular activation function, i.e. 

“the so-called sigmoidal”. By contrast, in this paper, we use an activation function which 

is known to achieve faster convergence. Third, we use a relevant approach for technical 

efficiency estimation based on the widely adopted approaches proposed, among others, in 

Kumbhakar and Lovell (2000).  

An application investigating the model’s performance illustrates our technique. 

Fitted to the same data set which consists of all US commercial banks over the period 

1989-2000, the refined approach explains a slightly higher proportion of the variance and 

satisfies all the theoretical properties dictated by production theory. Moreover, in order to 

assess whether the refined NDF model provides satisfactory results, we refer to the 

conventional NDF and the refined NDF model is found to expand and improve 

significantly upon the conventional NDF model.  

 

2. The neural distance function (NDF): a brief overview 

2.1  The model 

An output distance function provides a measure of how close a particular level of 

output is to the maximum attainable level of output that could be obtained from the same 

level of inputs. In other words, it represents how close a particular output vector is to the 

production frontier given a particular input vector.  

The output distance function takes a value of unity if Y is located on the production 

frontier (i.e. the maximum attainable output) for the specific input vector x. We adopt a 

setup consistent with revenue maximization so that production technology can be 

described by a distance function of the form:  

( ), 1x Y ε∆ = −                  (1) 
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where the Y s are endogenous, the s are predetermined and x ε  is a non-negative 

stochastic term representing inefficiency (Kumbhakar and Lovell, 2000). Because of the 

presence of inefficiency, we have:  

( ),x Y∆ 1≤                   (2) 

The proposed output distance function allows for multi-output approaches without 

having to aggregate outputs. Analytically, any given output JY  is expressed as a function 

of the others: . In order to account for endogeneity, the 

reduced form is considered: 

( 1ln ln , ln ,..., lnJY f x Y Y −= )1J

( )ln lnJY g x− = , where , and g is a 

vector function . The reduced form expresses all other outputs as functions 

of the inputs alone. Thus, a system of equations is formed: 

[ ]1ln ln ,..., lnJY Y Y− −
′= 1J

1: −→ JN RRg

( )1 1ln ln , ln ,..., lnJ J JY f x Y Y e−= +                (3) 

( )ln lnJ JY g x e− = + −

1 ]

                (4) 

where , and [ ]1,...,J Je e e− −
′= [ ,J Je e e−

′′=  represents a J-dimensional random vector. The 

crucial part is, however, to specify the g and f functions. The neural reduced form 

function, for each output, is given by: 

tδxβxaaxY jj

m

k
kjjkjjj

j

+θ⋅+⋅φ+= ∑
=

ln)(ln)(ln
1

0  , 1,..., 1j J= −            (5) 

where ( )jY x  is the reduced form function of j-th output, jm  is the number of 

intermediate nodes, t is a time index and  are parameters. In 

general, for vectors  and  , 

N
j

N
kJkJj RRRa ∈∈∈ θβδ ,,,

a b a b⋅  denotes the inner product. Thus, given equation (5) 

the output distance function can be written as: 

0
1

ln (ln ) ln ln
Jm

J kJ J kJ J
k

D a a x Y x tφ β γ ξ
=

= + ⋅ + ⋅ + ⋅ +∑ δ            (6) 
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where  are parameters, 1,,, −∈∈∈ JN
kJkJJ RRRa γβδ Jm  is the number of intermediate 

nodes for output J and t is a time index. Equation (6) represents the specification for the 

distance function, and equations (5) are reduced forms. 

An alternative form imposing homogeneity of degree one in inputs is: 

0
1

ln ( ) (ln ) ln ln
Jm

J
J J kJ kJ J J

k J

YY x a a x x t u
Y

φ β γ ξ δ−
−

=

⎛ ⎞
− = + ⋅ + ⋅ + ⋅ +⎜ ⎟

⎝ ⎠
∑ +

D

          (7) 

where  is a non-negative term such that 0<D≤1, lnu = − ln 0D−∞ < ≤  that captures 

the effects of inefficiency (Kumbhakar and Lovell, 2000). If we add a symmetric error 

term e to capture the effects of white noise, the neural output distance function f takes the 

form: 

0
1

ln ( ) (ln ) ln ln
Jm

J
J J kJ kJ J J

k J

YY x a a x x t u e
Y

φ β γ ξ δ−
−

=

⎛ ⎞
− = + ⋅ + ⋅ + ⋅ + +⎜ ⎟

⎝ ⎠
∑ +          (8) 

2.2 The theoretical properties 

MVT showed that in order for monotonicity, curvature and homogeneity conditions to be 

satisfied for any economically admissible value of inputs and outputs, the values of the 

parameters need to be as follows: jγ ≥0, 
1

1
J

j
j
γ

=

=∑ , iξ ≤0, 0≤kJa , 0≥βkiJ ,( , 

, 

1,...,j J=

1,...i N= 1,... Jk = m ), x≥1.  

2.3. Returns to scale and total factor productivity 

MVT showed that the RTS index is equal to: 

RTS=
1

1 1 1 1 1 1

1 (ln ) ( (ln ) )
jJ mmN J N

kJ kiJ J kJ j kj kij i kj ji i
i k j i k iJ

a x a x
N

β φ β γ β φ β θ ξ
γ

−

= = = = = =

⎧ ⎫⎡ ⎤⎪ ⎪′ ′− ⋅ + ⋅ +⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭
∑ ∑ ∑ ∑∑ ∑ +   

(9) 

Also, the TFP index is equal to: 

1

1

1 J

j j J
jJ

TFP γ δ δ
γ

−

=

⎡ ⎤
= − +⎢

⎣ ⎦
∑ ⎥              (10) 
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3. Technical efficiency 

Farrell (1957) provided us with a definition of technical efficiency and until the late 

1970s its empirical application was relatively limited. However, Aigner et al. (1977) 

introduced the stochastic frontier production function, and Meeusen and van den Broeck 

(1977) presented the Cobb-Douglas production function with a (multiplicative) 

disturbance term. Since then, Farrell’s idea became a useful tool for estimating technical 

(in)efficiency. 

In the conventional approach, the typical assumption about equation (8) is that e are 

iid (0, σ ) and uncorrelated with the regressors. Of course, distributional assumptions on 

the two error components should be made. In this context, a conventional assumption, 

typically employed in empirical work, is that u ~ N ) . In the typical approach of 

measuring efficiency by means of an output distance function for any given year, the 

technical efficiency (TE i ) of firm i is equal to  

2

,0( 2σ+

*exp( )ii iD TE u= = −              (11) 

The estimation leads to consistent estimators for all the parameters, under the 

assumption that e is normally and u is half-normally distributed (Kumbhakar and Lovell, 

2000). 

Empirical estimation of equation generates the residuals e. The second and third 

central moments of the residuals, m (e) and m (e) respectively, are calculated, as 

follows: 

2 3

m (e) = [1/(N-k)] Σ e             (12) 2
2

i

m 3 (e) = [1/(Ν-k)] Σ e              (13) 3
i

where: N is the number of observations and k is the number of regressors, the 

constant term included. Then, we estimate σ  and σ  using the formulae: 2
u

2
v

σ    = [(π/2)[(π/(π-4) m (e)]             (14) 2
u 2

3/2
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σ  = m (e) - [(π-2)/π)] σ            (15) 2
v 2

2
u

According to Kumbhakar and Lovell (2000), the point measure of technical 

efficiency is:  

TEi = E(exp{-ui}/εi) = [[1-F[σ⋅-(Μi
*/σ⋅)]/[1-F⋅(-Μi

*/σ⋅)]exp[-Μi
* + (σ⋅2/2)]       (16) 

where F⋅ denotes the distribution function of the standard normal variable. Also:  

Μi
* = (-σ2

uεi)(σ2
u + σ2

v)-1                                       (17)

σ⋅2 = σ2
u σ2

v (σ2
u + σ2

v)-1                                      (18) 

Finally, given the measures of TE and TFP change, a measure of technical change 

may be computed routinely (Färe et al. 1994). 

3.1. Econometric estimation 

We know that typical transfer functions must be continuous, bounded, 

differentiable and monotonically increasing (e.g. Hornik et al., 1989, 1990). The 

activation function may be defined as: 

xx

xx

ee
eeZ −

−

+
−

=)(φ , Rz∈                (19) 

Another popular activation function which is employed by MVT is the so-called 

sigmoidal which differs in a linear transformation. However, Eq. (19) is chosen in this 

paper because it achieves faster convergence (Berndt, 1991). 

Our approach is based on a four-step algorithm which employs the SUR equations 

technique for estimating the coefficients of a system of linear equations and an iterative 

optimization algorithm for the nonlinear parameters of the NDF as in MVT. However, 

note that in the present paper, different numbers of nodes are allowed for each equation of 

the system. For reasons of convenience we use a maximum of three (3) nodes for each 

equation. 

The number of nodes m will be selected using the generalized 2R , 2R  goodness-of-

fit criterion which is a modification of R2 for systems of equations. According to this 

criterion one should select the number of nodes for each equation that maximizes 2R . 
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3.2 Result analysis  

For reasons of comparison, we use the same dataset as in MVT. The data set comes 

from the commercial bank and bank holding company database managed by the Federal 

Reserve Bank of Chicago (1989-2000). It is based on the Report of Condition and Income 

(Call Report) for all U.S. commercial banks that report to the Federal Reserve banks and 

the FDIC. There are five output variables: (1) instalment loans (to individuals for 

personal/household expenses), (2) real estate loans, (3) business loans, (4) federal funds 

sold and securities purchased under agreements to resell, and (5) other assets (assets that 

cannot be properly included in any other asset items in the balance sheet). There are also 

five input variables, namely: (1) labour, (2) capital, (3) purchased funds, (4) interest-

bearing deposits in total transaction accounts and (5) interest-bearing deposits in total 

non-transaction accounts.  

The estimation procedure, described in great detail in MVT, is used to estimate the 

propose NDF model. A choice has to be made regarding the number of nodes of the 

ANN. In this paper, we drop the simplistic assumption that every equation has the same 

number of node. Thus, we use a different number of nodes for each equation. For reasons 

of convenience we use a maximum of three (3) nodes for each equation. The 2R  criterion 

has a maximum value for , 1, 2, 1, 1  nodes for each of the five (i=5) estimated 

equations, respectively (see Fig. 1). For reasons of simplicity, we have plotted 3 lines 

where each line represents the value of 

1=im

2R for the different possible number of nodes 

(m=1, 2, 3) of the J-th (i.e. fifth) equation. The horizontal axis depicts all the 

combinations of the remaining nodes corresponding to the previous four (4) equations. In 

addition, Fig. 2 presents the 2R  values obtained when the iterative estimation algorithm 

is applied to the best node configuration for 2000 iterations and is found to provide very 

satisfactory results. In Table 1, the estimated coefficients for the NDF are shown along 

with their t-values in parentheses. We can note that they all take values that are consistent 

with production theory and the great majority of the estimated coefficients are highly 

significant.  
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Next, the RTS are calculated (Fig. 3) and are found to follow a Gaussian-like 

distribution with the following characteristics: Mean=0.875, Skewness=0.101, 

Kurtosis=3.436. Finally, TE is calculated by means of the methodology described above 

and is depicted in Fig. 4. It follows a Gaussian-like distribution (Mean= 0.589, 

Skewness=0.015, Kurtosis= 3.294). 

 

4. Comparison and conclusion 

Recently, the advantages of the nonlinear nature of ANNs have been exploited in 

order to obtain a globally flexible output distance function which is capable of 

approximating any existing distance function while enabling the a priori imposition of 

the properties dictated by neoclassical production theory, globally. In this paper, we 

carefully refined some of the most critical characteristics of the conventional NDF. An 

application investigating the proposed model’s performance illustrated our approach.  

In order to assess whether the refined approach provides satisfactory results, we 

briefly compare it with the conventional NDF specification. More precisely, simple 

visual inspection of the RTS, TFP and TE results calculated routinely with the aid of the 

conventional NDF specification are found to be very close to the ones calculated by 

means of the proposed NDF. The proposed refined NDF is found to provide very similar 

results in terms of RTS, TFP and TE, and very good results in model fitting which is a 

clear indication of the fact that it successfully expands the conventional NDF. 

More precisely, in this paper, we carefully refined some of the critical 

characteristics of the NDF. First, we relaxed the assumption that “the same number of 

nodes for each equation” had to be used, given that this extremely simplistic and 

restrictive assumption was not expected to approximate reality with any reasonable 

accuracy. In this context, this arbitrary assumption was relaxed in the sense that different 

numbers of nodes were allowed for each equation of the system.  

Second, the ANN had to be implemented by choosing its activation function. In 

this paper, we used an activation function which is known to achieve faster convergence 

than the “popular activation function” used in the MVT paper, i.e. “the so-called 
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sigmoidal”. Third, we used a relevant approach for technical efficiency according to 

Kumbhakar and Lovell (2000).  

Finally, we should bear in mind that the proposed refined NDF approach still has 

the desired properties of the conventional NDF model, namely it satisfies the properties 

dictated by neoclassical production theory globally; it gives an approximation to any 

arbitrary production process; it is flexible with respect to time; it allows for arbitrary 

returns to scale; it is simple to estimate; it avoids the need for nonlinear estimation; it 

uses fewer parameters than other globally flexible functional form; it provides a very 

good fit to real world data; it deals with the endogeneity issue in estimation, and, most 

important, it has a functional form which is consistent with neoclassical production 

theory. We believe that the proposed NDF approach which is superior in three respects to 

the conventional NDF approach could inspire further research in the field.  
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FIGURE CAPTIONS 

Figure 1: R2 as a function of the number of nodes 
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Figure 2: R2 as a function of the iteration number using the best node configuration 

(1,1,2,1) 
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Figure 3: Returns to scale 
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Figure 4: Technical efficiency 

 

 

 18



TABLE CAPTIONS  
 

Table 1: NDF estimate (t-statistic in parenthesis) 

 Equation 1 Equation 2 Equation 3 Equation 4 Equation 5 

α0j
-5.2700 

(-2.5806) 
-308.5769 
(-3.8605) 

29.0721 
(3.5523) 

-17.8371 
(-0.6754) 

107.9164 
(20.5504) 

α1j
15.2114  
(1.9200) 

611.6839 
(3.8498) 

-47.4426 
(-3.0725) 

39.8154 
(0.7836) 

84.7833 
(9.7530) 

α2j   17.3787 
(4.6673)   

θ1
0.7541 

(9.9443) 
2.0900 

(3.6331) 
0.7297 

(7.4347) 
0.0654 

(0,1895)  

θ2
0.0674 

(4.6327) 
1.0780 

(3.2661) 
0.2476 

(2.4704) 
0.0298 

(0.4327)  

θ3
0.1416 

(1.3694) 
0.2499 

(2.6522) 
0.4623 

(3.7308) 
0.0547 

(0.2707)  

θ4
0.0751 

(3.5507) 
1.6980 

(3.9244) 
0.3447 

(3.4439) 
0.0626 

(0.3656)  

θ5
0.1787 

(5.9576) 
1.8812 

(2.7077) 
0.3203 

(6.3425) 
0.0713 

(0.1773)  

δj
-0.0034 

(-1.5483) 
-0.0263 

(-5.6816) 
-9.1032e-004 

(-0.1770) 
0.0368 
(2.803) 

0.0557 
(4.8433) 

b1,1 0.1313 0.3072 0.5678 0.6407 0.7693 

b1,2 0.6099 0.1698 0.5697 0.0720 0.0634 

b1,3 0.6562 0.0488 0.7788 0.3658 0.9715 

b1,4 0.8410 0.2258 0.5902 0.2873 0.5952 

b1,5 0.4998 0.3670 0.1107 0.7414 0.4861 

b2,1   0.1445   

b2,2   0.5392   

b2,3   0.7234   

b2,4   0.7944   

b2,5   0.6761   

 

 19



Table 1: continued 
 

ξ1     -1.8462 

ξ2     -4.4378 

ξ3     -2.0384 

ξ4     -5.5632 

ξ5     -0.6749 

γ1     0.2281 

γ2     0.0336 

γ3     0.3422 

γ4     0.0463 

TFP     0.1585 

2R      0.9670 

 

Note: Equations (1) – (4) above refer to Eq (5) for j = 1, …,4. Also, Equation (5) above refers to Eq (6) for 

J=5.  
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