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We use extreme-value theory to estimate the ultimate world records
for the 100-m running, for both men and women. For this aim we
collected the fastest personal best times set between January 1991
and June 2008. Estimators of the extreme-value index are based on
a certain number of upper order statistics. To optimize this number of
order statistics we minimize the asymptotic mean-squared error of the
moment estimator. Using the thus obtained estimate for the extreme-
value index, the right endpoint of the speed distribution is estimated.
The corresponding time can be interpreted as the estimated ultimate
world record: the best possible time that could be run in the near
future. We find 9.51 seconds for the 100-m men and 10.33 seconds
for the women.
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1. Introduction

Extreme-value theory deals with statistical problems concerning the far tail of the
probability distribution. It provides solid mathematical tools for semi-parametric
inference, in particular for the estimation of extreme quantiles and the endpoint
of the support of the distribution. The obtained statistical procedures have many
applications, for example, in hydrology (flood prevention), finance, (re)insurance,
meteorology, and engineering.

In this article we focus on one of the most popular events in athletics: the 100-m,
for both men and women. We would like to know: How fast can we run? In other
words, we are interested in the ultimate world record. Most research concerning
ultimate world records considers the development of the world record over time and
extrapolates the trend to the future. That approach necessarily uses only a limited
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number of past world records and therefore gives rather unstable estimates. Our
approach, however, is based on as many as possible personal best times of top
athletes. As a consequence the estimated ultimate world record tells us what could
be achieved ‘tomorrow’, not what could happen in 500 years from now. Observe that
the usual approaches do not tell much about the world record in the near future.
The present approach is similar to that in Einmahl and Magnus (2008). We will
use, however, more refined methods to estimate the ultimate world records. Also, we
base our estimates on a data set which is more up-to-date and, in addition, excludes
performances from before 1991 (when modern doping control was introduced), to
avoid as much as possible doping related times.

The properties of the tail of a distribution depend crucially on one parameter,
the so-called extreme-value index. Many good estimators have been derived for this
index. All these estimators depend on the number of upper order statistics, say k, used
in the estimation. A too low number of order statistics results in a large variance;
a too high number of order statistics may cause a large bias. To determine a good
value of k we use a method based on minimizing the asymptotic mean-squared error
(AMSE).

This article is organized as follows. In section 2, we will comment on the data that
are used. Section 3 briefly reviews the relevant extreme-value theory and discusses
the choice of a good k. Our results will be presented in section 4 and in section 5
the results are compared with those in the recent literature.

2. The data

We investigate two events: the 100 m both for men and women. For this purpose
we collect the fastest personal best times that are set in a certain, relatively short,
period. Since each athlete appears only once on our list and since the period is short,
we will assume later on that these times are the lower order statistics of a sample
consisting of i.i.d. observations.

The use of doping is an important issue in athletics. A first international legal
standard on the use of drugs in sports in general was set by the Council of Europe
at the Anti-Doping Convention in 1989. In 1990, the International Association of
Athletic Federations (IAAF) started with out of competition controls. To exclude,
as much as possible, doping-related times, our observation period therefore starts
on January 1, 1991. The observation period ends at June 19, 2008.

For the period before 2001 the data were taken from the Swedish website, http://
hem.bredband.net/athletics/athletics all-time best.htm. This website provides all best
times up to 2001. For the time period from January 1, 2001 to June 19, 2008 we use
the eight official seasonal time lists of the IAAF website, http://www.iaaf.org. Note
that we only consider officially recognized times; so times with a wind speed of more
than 2 m/s are not taken into account. Times of athletes that are not recognized by
the IAAF because of doping use are deleted too.
© 2010 The Authors. Statistica Neerlandica © 2010 VVS.
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Table 1. Data summary

Event Sample size Fastest Slowest

100-m men 762 9.72 10.30
100-m women 479 10.65 11.38

When combining the lists we have to make sure that no gaps occur. So, when a
certain personal best time is included then all personal best times lower than this
time have to be included too. Therefore, we consider the highest personal best time
of each list and take the lowest of these times as an upper bound on our combined
list. All times higher than this upper bound are removed. The result is then an all
time list, without gaps, containing the personal best times up to the aforementioned
upper bound time. To obtain the final list it remains to delete all personal bests that
are set before our starting date January 1, 1991.

Times for the 100 m are available in hundredths of seconds. Since many athletes
have equal personal bests the data show ties. To avoid estimation problems the data
are smoothed as in Einmahl and Magnus (2008). When m athletes have a personal
best of 9.85 then these m results are smoothed equally over the interval (9.845, 9.855)
as follows:

tj =9.845+0.01
2j −1

2m
, j =1, . . ., m.

As a last step all smoothed times are converted into speeds. Higher speeds corre-
spond to ‘better’ times.

Table 1 shows the sample size and the time range for each event. Note that the
world record of Florence Griffith-Joyner for the 100-m women, 10.49 seconds, has
been set in 1988 (before 1991) and is therefore not the fastest time in our sample.
The current world record for the 100-m men of Usain Bolt, 9.58 seconds, dates from
August 2009 and therefore falls also outside our sample.

3. Extreme-value theory

Suppose that X1, X2, . . ., Xn (the speeds) are n i.i.d. observations with continuous
distribution function F. Let X1:n ≤ X2:n ≤ · · · ≤ Xn:n denote the corresponding order
statistics.

Suppose that there exist a sequence an > 0 and a sequence bn such that the
maximum Xn:n, scaled and centered by an and bn, converges in distribution to a
non-degenerate distribution G: for all continuity points x of G,

lim
n→∞ P

(
Xn:n −bn

an
≤x

)
= lim

n→∞ F n(anx +bn)=G(x). (1)

Then the class of non-degenerate distributions that can occur as a limit in Equation 1
is the class of extreme-value distributions. This class is G�(ax +b), with a > 0 and
b∈R, where
© 2010 The Authors. Statistica Neerlandica © 2010 VVS.
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G�(x)= exp
(−(1+ �x)−1/�) for 1+ �x ≥0;

� ∈ R is the extreme-value index. So, apart from the scale and location constants
this class of extreme-value distributions is characterized by the extreme-value index
�. Condition (1) is the so-called extreme-value condition. If the extreme-value con-
dition holds for G =G�, then we say that F is in the max-domain of attraction of
G�, denoted by F ∈ D(G�). See, for example, de Haan and Ferreira (2006) for a
thorough account.

As we study the ultimate world records we are interested in the right endpoint
of the distribution, x∗ = sup{x ∈ R : F (x) < 1}. This endpoint is finite (infinite) if
�< 0 (�> 0). If �< 0, an approximation of x∗ can be obtained as follows. Rewrite
Condition 1 as:

lim
t→∞ t(1−F (atx +bt))=− log G�(x)= (1+ �x)−1/�, (2)

with G�(x) > 0 and t ≥ 1. When t is not an integer, at and bt are defined by intra-
polation. For large values of t we then have,

1−F (atx +bt)≈ 1
t

(1+ �x)−1/�.

Define y =atx +bt to obtain

1−F (y)≈ 1
t

(
1+ �

y −bt

at

)−1/�

. (3)

Now suppose that �< 0. Take y =x∗ and note that F (x∗)=1. So we find, with t =n/k
for some positive integer k much smaller than n,

x∗ ≈bn/k − an/k

�
. (4)

3.1 Estimators of � and x∗

First we present an estimator for �, the so-called moment estimator, introduced in
Dekkers, Einmahl and de Haan (1989). Define, for k ∈{2, 3, . . ., n−1}:

M (r)
n =M (r)

n (k)= 1
k

k−1∑
i =0

(log Xn−i:n − log Xn−k:n)r, for r =1, 2.

The moment estimator is given by

�̂=M (1)
n +1− 1

2

⎛
⎜⎝1−

(
M (1)

n

)2

M (2)
n

⎞
⎟⎠

−1

.

Under certain conditions, including Equation 1 and k/n → 0 and k → ∞ (n → ∞),
we have for all �∈R asymptotic normality of �̂, with rate 1/

√
k.

Using the usual estimators for an/k and bn/k,

ân/k = (1−min{0, �̂})Xn−k:nM (1)
n and b̂n/k =Xn−k:n,
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(see, e.g., de Haan and Ferreira, 2006), we obtain, using Equation 4, as an estima-
tor for x∗:

x̂∗ = b̂n/k − ân/k

�̂
. (5)

To construct a confidence interval for the endpoint x∗ we can use that under cer-
tain conditions (see Dekkers et al. 1989, or de Haan and Ferreira, 2006):

√
k(x̂∗ −x∗)

ân/k

d→N
(

0,
(1− �)2(1−3�+4�2)

�4(1−2�)(1−3�)(1−4�)

)
. (6)

Clearly the estimators of � and x∗ depend on the choice of the number of upper
order statistics k. The next subsection will deal with this issue.

3.2 Optimal threshold selection

It is useful to depict �̂ as a function of k. For low values of k the estimator has
a large variance whereas for high values of k the estimator may have a large bias.
We seek to find a value of k such that the AMSE of �̂ is minimized. The AMSE
can be written as the sum of the asymptotic variance (AVar) and the square of the
asymptotic bias (ABias).

Suppose �< 0. Then

AVar(�̂)= (1− �)2(1−2�)(1− �+6�2)
(1−3�)(1−4�)

1
k

,

see, for example, Beirlant et al. (2004). The ABias depends on the so-called second-
order parameter � ≤ 0; � appears in the usual strengthening of the extreme-value
condition (Equation 1). ABias depends on whether �< � or �> �, but in practice
it is almost impossible to ‘know’ which case holds. The estimates of � in athletics
are negative but close to zero, like −0.1 or −0.2, see Einmahl and Magnus (2008).
Therefore, and since �≤0 we use the expression for ABias in case �< �:

ABias(�̂)= 1−2�
�(1− �)

c
( n

k

)
,

where c is a function for which c(x)→0 as x→∞; see, for example, Beirlant et al.
(2004). So, ABias depends not only on � but also on the function c. To eventually
estimate the AMSE, we need to estimate AVar and ABias. AVar requires an initial
estimator of �; ABias requires in addition an estimator for c(n/k).

To get an initial estimator of � we plot �̂ against k. For small values of k the graph
will be highly volatile; for large values of k the estimator typically shows a bias and
the graph will typically move downwards or upwards. We will choose the first stable
region in the graph and take the average over this region, �̂ini, as an initial estimator
of �. This is not so straightforward in practice. To make our method less sensitive
a range of values for �̂ini will be specified, rather than one singe value.
© 2010 The Authors. Statistica Neerlandica © 2010 VVS.
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In Beirlant, Dierckx and Guillou (2005), under certain conditions the follow-
ing approximate model is derived:

Zj := (j +1) log
UHj

UHj +1
= �+ c

( n
k

)(
j
k

)−�

+ �j , for j =1, . . ., k,

with UHj =Xn−j:nM (1)
n (j) and where the �j are mean-zero error terms. In case �< � we

have �= �. Given the initial estimator of �, c(n/k) now can be estimated by ‘ordinary
least squares’ from

Z̃j :=Zj − �̂ini = c
( n

k

)(
j
k

)−�̂ini

+ �j , for j =1, . . ., k.

This yields

ĉ(n/k)=
∑k

j =1 Z̃j

(
j
k

)−�̂ini

∑k
j =1

(
j
k

)−2�̂ini
.

4. Results

First we will test whether the data satisfy the extreme-value condition. Secondly, we
will use the estimators and methods from the previous section to find a final �̂ for
both events. Finally, the endpoint is estimated.

4.1 Testing the extreme-value condition

We will test the extreme-value condition (Equation 1), using the test in Dietrich, de
Haan and Hüsler (2002). This is a Cramér-von Mises type test based on the tail
empirical quantile function. Figure 1 presents the test statistic and its estimated,
asymptotic 95% quantile under the null hypothesis (Equation 1). For values of the
test statistic lower than its quantile the null hypothesis is not rejected. For the 100-m
men and 100-m women the extreme-value condition is not rejected for almost all
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Fig. 1. Testing the extreme-value condition (Dietrich et al., 2002) for: (a) 100-m men and (b) 100-m
women. The dashed line represents the 95% quantile, the solid line gives the test statistic
(both as a function of k).
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values of k, except for some very low values. This means that we can continue our
analysis, which is based on Equation 1. The final choices of k, however, should not
be very low.

4.2 Estimation of � and threshold selection

Figure 2 shows the moment estimator �̂ versus k. All estimates are negative. Recall
that a negative � guarantees a finite right endpoint of the distribution. Instead of
using only one value of �̂ini, we consider a range of s0 values for �̂ini. This will make
the procedure less sensitive to this initial choice. The ‘steps’ in this range will be of
size 0.01. When choosing the k-region for �̂ini we also keep in mind that the extreme-
value condition must be satisfied. For the 100-m men we are not sure whether to
search for the initial �̂ in the first stable region (k from 50 to 80) or the second
stable region (k from 110 to 200). The first region shows volatile behavior whereas
the second may lead to a bias. The first region gives, by averaging, an �̂ini of −0.25;
the second one gives a �̂ini of −0.17. Therefore, we let �̂ini range from −0.25 to −0.17
(s0 =9). For the 100-m women the first stable region is from about 60 to 100; the
second is from about 110 to 200. Again, the first region shows slightly more volatile
behavior. For the first region we get �̂ini =−0.28; for the second region �̂ini =−0.18.
�̂ini will range between those two bounds (s0 =11).

Consider one of these s0 values, say �̂(s)
ini. After estimating ĉ(n/k) we are able to

estimate the AMSE of the moment estimator, ̂AMSE(k, �̂(s)
ini). We can plot this

estimated AMSE against k for each value of �̂ini in the specified range. This results
in s0 different AMSE plots. Comparing these plots we notice that the general shape
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Fig. 2. The moment estimator versus k for: (a) 100-m men and (b) 100-m women; the horizontal
line shows the final �̂.
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Fig. 3. Average estimated asymptotic mean-squared error of the moment estimator for: (a) 100-m
men and (b) 100-m women.

Table 2. Estimates of �

�̂ini �̂

100-m men −0.25 to −0.18 −0.19
100-m women −0.28 to −0.18 −0.18

of the plots is the same; it does however happen that the k-region for which the
minimum estimated AMSE is attained, differs among the plots. We aim at choosing
a k-region for which the AMSE is relatively small, independent of the s0 initial
estimates. Therefore, we consider the average AMSE:

AMSE(k)= 1
s0

s0∑
s =1

̂AMSE(k, �̂(s)
ini),

see Figure 3. By analyzing these average AMSE plots a k-region is chosen for which
the estimated average AMSE is small. The vertical dotted lines show the ultimately
chosen k-regions. For the 100-m men we take k between 45 and 70 and between 101
and 175 and for the women between 80 and 250. The last step is then to average �̂
over these k-regions. Table 2 presents the final �̂ for both events.

4.3 Endpoint estimation

In this section we will estimate the ultimate world records. To estimate the endpoint
we plug the final �̂ into the formula for x̂∗, given in Equation 5. The thus obtained
expression only depends on k through M (1)

n (k) (via ân/k), and Xn−k:n. Figure 4 shows
the plots of the endpoint estimator. These plots are quite stable. At first glance we
get already a good indication of the ultimate world records. For the 100-m men
the estimated ultimate world record will be between 37.6 km/h (9.57s) and 38.0
km/h (9.47s); the ultimate record for the 100-m women will be between 34.7 km/h
(10.37s) and 35.0 km/h (10.29s). To arrive at a single value, we again use the method
of finding a first stable region. Moreover, we keep in mind that within this region
the extreme-value condition must be satisfied. The precise k-regions for men and
women are 110–200 and 80–210, respectively. Left-sided 95% confidence intervals
can be obtained by using Equation 6. Using the final �̂, the confidence intervals
© 2010 The Authors. Statistica Neerlandica © 2010 VVS.



40 John H. J. Einmahl and Sander G. W. R. Smeets

0 200 400 600

37.2

37.8

38.4a

k

E
nd

po
in

t

100 200 300 400

34.4

34.8

35.2
b

k

E
nd

po
in

t

Fig. 4. Estimated endpoint x̂∗ in km/h with �̂ fixed for: (a) 100-m men and (b) 100-m women; the
dashed-dotted line represents the final choice of the endpoint.

Table 3. Ultimate world records (WR) both given in speed (km/h)
and time. The last column presents the lower 95% confidence limit

Current Endpoint Endpoint Confidence
WR (time) (speed) (time) limit (time)

100-m men 9.58 37.85 9.51 9.21
100-m women 10.49 34.85 10.33 9.88

depend on k through x̂∗, ân/k, and
√

k. For each k in the k-region for the endpoint
estimation, the one-sided confidence interval is computed; the final approximated
lower bound for the confidence interval is obtained by averaging over the k-region.
Table 3 shows our final results.

The 100 m for men and and in particular the 100 m for women still show some
room for improvement, respectively, 0.07 seconds (0.7%) and 0.16 seconds (1.5%).
The 95% confidence limits are, respectively, 0.37 seconds (3.9%) and 0.61 seconds
(5.8%) away from the current world record. Recall that the current world records
have been set outside our observation period.

5. Comparison with the literature

Our ultimate world records can be compared with those in Einmahl and Magnus
(2008). In that paper all data from before 2005 were considered and the obtained
ultimate world records are 9.29 seconds (men) and 10.11 seconds (women). These
times are about 0.2 seconds sharper than our estimated records. The results might
differ because the time horizon of the data differs. In this article, we have excluded
data from before 1991 (recall that modern doping control was introduced in 1991)
© 2010 The Authors. Statistica Neerlandica © 2010 VVS.



Ultimate 100-m world records 41

Table 4. Ultimate world records

Period/author 100-m men 100-m women

1991–2008 9.51 10.33
1991–2005 9.37 10.36
–2005 9.29 10.11
Berthelot 9.73 10.43
Denny 9.48 10.39

Bold values represent the results of the
present paper.

and have added data from after 2005. An interesting question is whether the removal
of times from before 1991 has led to the less sharp ultimate world records on the
100-m. To investigate this question we consider data from 1991 to 2005.

Using the same methods as before we find estimated ultimate world records based
on these data. Table 4 compares the estimated endpoints for the datasets with dif-
ferent time horizons. The results for the period 1991–2005 are from this section;
the period 1991–2008 has been investigated in the previous sections and the results
for the period before 2005 are from Einmahl and Magnus (2008). Note that we
only present the point estimates. The results seem to indicate that the doping sus-
picious data from before 1991 have contributed to the sharper estimated ultimate
world records in Einmahl and Magnus (2008). Removing the data from before 1991
and not adding the data from 2005 onwards gives about the same estimate for the
women as earlier in this article and for the men we find an estimate in between the
two earlier estimates; see Table 4.

We also briefly comment on two other recent papers, from researchers in biology/
physiology. In Berthelot et al. (2008) a regression-type approach is used to find
many ultimate world records in sports, including those on the 100-m running. The
results can be found in Table 4; for the 100-m men the estimate is much less sharp
than ours and actually far above the current world record. For the 100-m women
the estimate is somewhat less sharp than ours, but it is indicated in that paper that
the suspicious 10.49 world record, set in 1988, has a large influence on the value
10.43. Deleting that world record leads to an estimate of 10.73, much higher than
our estimates and above the current world record and above 10.65, the best time
since 1991. In Denny (2008) an extreme-value theory-related approach (quite dif-
ferent from ours) is followed, but not only humans, but also dogs and horses are
studied. The results for the 100-m can also be found in Table 4. The 9.48 for the
men agrees very much with our 9.51 and so does the 10.39 (calculated excluding the
10.49 world record) for women with our 10.33.
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