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Value of Ultrasound-based Predictions of Carcass Quality Grade

Introduction

Since the early 1980s, the beef industry has faced a significant decline in consumer

demand (Koontz et al).  Fausti, Feuz and Wagner attribute this decline in beef demand to two

things: changes in consumer lifestyles (i.e., eating healthier diets that include less beef) and

changes in relative prices (i.e., other meat products became cheaper relative to beef products).

Today consumer demands for beef have changed, emphasizing quality as the top priority.  The

challenge faced by the beef industry is that higher quality must be balanced against the need to

reduce waste associated with external fat.  In order to meet quality demands, some cattle have to

be fed longer, which has a negative effect: excess external fat amounts (backfat) rapidly increase.

Current market signals emphasize a desire for high quality beef while holding external fat

to an acceptable level.  Problems exist, however preventing the clear transmission of demand

signals from consumers through the beef supply chain to cattle producers.  Inaccurate pricing

information as well as producer uncertainty about cattle quality is at the root of the demand

problems faced by the beef industry today.  The industry would clearly benefit from research that

focuses on improving management practices at the cow/calf and feedlot levels of the beef

production chain.

Perhaps the most critical production point in the beef supply chain is at the feedlot level

just prior to slaughter.  Traditionally feeder cattle arrive at the feedlot, get placed into groups to

be fed out, and are slaughtered as a group on the same day.  In a live or dressed weight pricing

system, cattle are sold in pen-sized lots on an average price basis (i.e., every animal in the pen

receives the same price).  Thus, the same value is placed on all cattle in the same group

regardless of individual quality (Brethour, 2000b).



2

Average pricing cannot provide adequate, accurate information to producers because this

system does not allow for price discovery that is based upon the quality of the product.  Costs at

the feedlot level may be reduced through average pricing, but the accuracy of pricing signals

suffers tremendously as a result (Feuz).  Producers do not see differentiation in prices for fed

cattle while there may be distinct differences in cattle quality.  Average pricing does not provide

a system of incentives for changes in the production of beef.  Since profit is the ultimate goal in

the business world and price is the most important signal back to producers, price incentives

must be clear in order for production, management and marketing decisions to reflect what

consumers want.  Price incentives are especially critical between the producer and processor

levels of the supply chain (Schroeder et al.).

The three traditional cash pricing systems are live, dressed weight, and dressed weight

and grade (Fausti, Feuz and Wagner).  Dressed weight and grade pricing (or grid pricing) is

actually value-based (i.e., cattle are valued individually using discounts and premiums for

specific carcass characteristics).  Despite this fact, this method is unpopular among beef

producers.  Two factors contributing to grid pricing�s lack of popularity are: (1) producers don�t

have complete trust in the subjective carcass grading done by USDA graders; and (2) there is a

time lag between when the animal is sold and when the check is received for the sale (Fausti,

Feuz and Wagner).  Determining which pricing system to use is a critical decision as it dictates

which production characteristics will be rewarded.  Selling animals based on live weight only

rewards producers for average daily gain.  In contrast, the dressed weight and grade pricing

system rewards quality (Fausti, Feuz and Wagner).

Value-based marketing (VBM, also referred to as grid pricing) represents an alternative

to the traditional average price system of marketing finished cattle.  The beef industry uses these
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terms to describe this marketing strategy and its ability to pass signals from consumers backward

through each link in the marketing chain to the cow-calf producers (Thonney).  These economic

signals are clearly and accurately communicated in a VBM system (Cross and Whittaker).  It is

considered by some to be the ideal strategy for the beef industry to regain market share (Fausti,

Feuz and Wagner).  In a VBM system, cattle are priced on an individual basis.  This means that

the correct market signals voiced by consumers are more likely to reach beef producers (Feuz).

Each animal receives a price that is based on the quality of the carcass produced when the animal

is slaughtered.  Animals that meet or exceed standards receive price premiums, and those who

fail to meet standards receive price discounts (Fausti, Feuz and Wagner).  The benefits of VBM

to the beef industry are that prices derived from VBM convey more accurate and complete

consumer demand and price information back through the supply chain than an average pricing

system (Fausti, Feuz and Wagner).

From the perspective of some individual fed cattle producers, however, VBM may or

may not be an attractive option.  As a general principle, cattle of above average quality receive a

higher price through VBM than they would through average pricing.  On the other hand, cattle of

below average quality receive a higher price through average pricing (Cross and Savell).

Producers typically have a choice of how to price their finished cattle.  The dilemma for

producers is that this decision must be made at the feedlot before the quality of the cattle is

known.  Cattle cannot currently be sorted or priced based on the eventual USDA quality grade

that is designated to each carcass.  Uncertainty related to carcass quality prior to slaughter is a

significant obstacle to the adoption of VBM by fed cattle producers (Cross and Savell).

Thane and Whittaker suggest that the beef industry�s future viability would be based on

improving production efficiency through the use of strategies involving new technologies such as
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instrument grading.  Since this task would be impossible with traditional grading methods,

instrument grading appears to be a necessary condition for the successful adoption and

continuation of a VBM system.  Instrument grading replaces subjective human grading with

objective grading equipment.  Some examples of technology which could potentially be used in

instrument grading include digital A mode ultrasound and video image analysis (Forrest).1

As a result of this situation, suggestions began to be made that instrument grading

technology may be the most effective means of improving the marketing of feedlot cattle through

a VBM system.  Recently, ultrasound technology has been researched for this very purpose.

Ultrasound was considered for its potential as a predictor of carcass value and quality prior to

slaughter (Whittaker et al.).  Using ultrasound to predict the final carcass characteristics of

feedlot cattle can increase efficiency and facilitate the transition from average pricing to a VBM

(Koontz et al.).  The simplest description of ultrasound is the measurement of echoes bouncing

off soft tissues (Houghton and Turlington).  Sound waves from the ultrasound equipment are

passed through a transducer into the animal and reflected off the different tissues in the body.

The image created by the reflection of the sound waves is then projected onto a screen for

analysis (Houghton and Turlington).2  According to Brethour (2000b) ultrasound technology can

provide the operator with fast results and be affordable at the same time.

Many studies have been done on the usefulness of ultrasound data taken on live animal

subjects in predicting carcass merits.  The majority of this research has been performed by

animal scientists who have focused more on technical considerations and implications for

production practices rather than economic applications.  McCauley, Thane and Whittaker used

ultrasound in their study to predict and classify percentages of marbling using a neural network

                                                
1 See Forrest for more examples of instrument grading equipment.
2 See Houghton and Turlington for more description of the ultrasound process.
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based boolean logic technique known as Adaptive Logic Networks.  These ultrasound

measurements were taken with a different kind of ultrasound equipment than Brethour used on

the data set used in this research.3  Perkins, Green and Hamlin conducted a study using

ultrasound technology and two relatively inexperienced ultrasound technicians to predict carcass

backfat and marbling.  They found that ultrasound measurements taken on cattle before slaughter

were reasonably accurate in predicting backfat and marbling.

In 1991 Brethour found correlation between ultrasound estimates of marbling and carcass

marbling (Brethour 2000a).  Herring et al. (1998) also found correlation between these two

variables in a study on the accuracy of four real-time ultrasound software systems.  They found

correlation with two of the four ultrasound systems analyzed in their study.  Another study by

Thane and Whittaker tested for correlation between ultrasound marbling estimates taken on live

cattle and actual marbling scores as well as ultrasound marbling estimates taken on the same

cattle after slaughter and the actual marbling scores.  They found that the ultrasound estimates

taken from live cattle correlated better with actual marbling scores than did the estimates taken

from the slaughtered cattle.  This discovery is extremely important because it proves that

ultrasound estimates can be used in predicting actual carcass traits.

Brethour (2000b) utilized a model for marbling that was nearly 80% accurate in

determining if a carcass would grade Choice or not.  His research is the most similar in

comparison to the research that is conducted in this paper.  In this research Brethour used and

compared three kinds of models testing the accuracy of backfat and marbling ultrasound

estimates.  Brethour does not however, attempt to determine what if any economic benefits

ultrasounding live cattle might hold.  Brethour only tested the accuracy of ultrasound estimates

                                                
3 See Brethour (2000b) for a complete description of the ultrasound equipment used to obtain the data set used in
this research.
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taken at different times during the feeding period.  Few have focused on the economic aspect of

ultrasound research.

Walker identified the factors determining the economic benefit of ultrasounding cattle as

feedlot management preference, demographics of the cattle, and accuracy of the marketing

method used.  Koontz et al. evaluated these benefits by measuring the economic returns to

feeding operations that sorted animals into pens for the duration of the feeding process.  The

sorting process was based on ultrasound readings and the pens were determined based on similar

return potential of cattle weights, yield grades and quality grades.  The ultimate goal of their

work was to determine the value of being able to pinpoint the optimal marketing timing of fed

cattle.  Their study found that sorting cattle at the feedlot returned $11-$25 per head.  These

figures are based on a technique known as backcasting where the ultrasound technology is

assumed to be 100% accurate in its predictions.  As a result, this assumption places a higher

estimate of returns on the sorting procedure then one would realistically expect.  Lusk et al.

reported average revenue increases of  $5.33 per head.  Skalland was cited in Lusk et al.

reporting average revenue increases of $10 per head to $17 per head respectively.

Objectives

This paper will take a different look at the use of ultrasound to achieve the general

objective of assessing the potential of ultrasound data on live animals to reduce uncertainty

related to quality grade prior to slaughter.  This research is unique as its methodology provides

an empirically sound framework for evaluating ultrasound predictions under a variety of market

conditions.  In contrast to Brethour (2000b), this research will be more specific by concentrating

on the carcass trait, marbling.  This analysis will use a more straightforward, simplistic version

of the modeling used in Brethour.  Where Brethour�s research ends at predicting carcass traits,



7

this research will continue to explore the economics of ultrasound research.  The task of placing

a value on ultrasound technology will be taken one step further than the work of Koontz et al. by

also addressing optimal marketing methods.  Koontz et al. measured the economic returns of

sorting cattle and this research will measure the value of information derived from the predicting

ability of ultrasound data.

Specific objectives of this paper are twofold: (1) to predict carcass quality grade from

ultrasound measurements; and (2) to estimate the value of the information provided by carcass

quality grade predictions based on ultrasound estimates.  To achieve the first objective,

ultrasound data will be used in a logit model to estimate the probability of an individual animal

grading USDA Choice or higher.  The second objective�determining the value of ultrasound-

based predictions�will be accomplished using a Bayesian analysis framework.

Data and Methods

Ultrasound data collected and provided by Brethour (Personal Data Set) was used to

estimate the probability of an individual animal grading USDA Choice or higher (> = Choice).

The initial data set consisted of 292 Angus and Angus X Hereford steers with an average age of

12 months and an average placement weight of 390 kg.  Soon after arrival at the feedlot, an

initial ultrasound estimate for marbling was taken.  About 90 days later a second estimate was

taken.  Brethour, who is certified by the Animal Ultrasound Practitioners Association, made all

of the ultrasound estimates.  Marbling measurements were taken until a consistant estimate could

be found. The cattle were on feed for an average of 148 days and were group-fed in pens of 25.

This data was also used in a previous study by Brethour (2000b) focused on using

ultrasound data to predict carcass characteristics.4  All of the cattle were processed at the IBP

                                                
4 Further detail of the data used in this paper can be found in Brethour (2000b).
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plant in Emporia, Kansas.  Processing the steers for Brethour�s study was completed when an

experienced USDA grader estimated marbling scores to the nearest 0.1 unit.

The actual USDA quality grades assigned to the cattle in this data set are influenced by

what are known as regards.  That is, the IBP plant at which the cattle were slaughtered felt as

though some of the cattle were not correctly graded.  In these cases, the carcasses were railed or

set aside until they could be regarded or re-graded by another USDA grader.  However, since

IBP is paid based on these quality grades regardless of how they may be determined, it is still

appropriate to use this data in this analysis (Brethour, Personal e-mail).

Due to incomplete data, observations on 80 of the steers were removed prior to modeling

the data.  The final data set consists of observations on 212 animals.  Table 1 shows a summary

of the data.  Marbling scores range from 1 to 10 with 10 being the highest amount of marbling

(Brethour, Personal e-mail).  The average carcass marbling score for this data set is 5.64, which

is representative of a low Choice carcass.

The set of 212 cattle were priced using both live and grid pricing systems.  A base price

($107/cwt) for the grid pricing system was taken from the average price for 500 to 700 pound

weekly boxed beef cutout values from January of 1996 to January of 2001.  The live price

($65.75/cwt) used in this research was the average weekly Western Kansas live price for 1100 to

1300 pound steers from January of 1996 to January of 2001 (Livestock Marketing and

Information Center).  Average carcass premium and discount values added to the base price were

taken from National Carcass Premiums and Discounts for Slaughter Steers and Heifers covering

the period from October 1996 to December 1998 (USDA-AMS).  Premiums and discounts for

USDA quality grades, USDA yield grades and carcass weights were used.
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Table 2 shows the pricing data used to determine the value of each animal in both live

and grid pricing systems.  For simplicity, the base price, live price and average premium and

discount values were all rounded to the nearest $0.25.  The live price value of an animal is

determined by multiplying the live price by the slaughter weight of the animal.  The grid price

value of an animal is determined by adding or subtracting premium and discount values based on

the quality grade, yield grade and carcass weight of the animal from the base price.  This new

modified base price is then multiplied by the slaughter weight of each animal.  Average grid and

live revenue per head are determined for the steers that graded Choice or better and the steers

that graded less than Choice.

The probability models were estimated with a binary quality grade variable (< Choice; >=

Choice) as a function of the ultrasound marbling estimates.  Quality grade is obviously not

binary.  There are, in fact, four relevant quality grades for finished cattle (Prime, Choice, Select,

Standard).  However, on most VBM price grids, cattle grading Choice or higher will not be

discounted (and may receive some premium) while cattle grading less than Choice will be

discounted (Fausti, Feuz and Wagner et al.).  Thus, in evaluating which pricing method (average

or grid) will maximize returns for a given animal, the critical distinction is whether the animal�s

carcass will grade Choice or not.   For this reason, a binary choice model was appropriate for this

investigation.

The estimation of two probability models using two different levels of ultrasound

information will permit comparison of the value of ultrasound readings taken at different times in

the feeding process.  These models are represented as follows:

(1) ( ) and ,1f MBQG =

(2) ( ),2f MBQG =
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where QG is a binary variable indicating whether a carcass is Choice or Not Choice; MB1 is the

ultrasound estimate of marbling taken upon arrival at the feedlot and MB2 is the ultrasound

marbling estimate taken 90 days into the feeding period.  The probabilities derived from these

models will be used in the Bayesian analysis to determine the value of the ultrasound data.

The logistic distribution forms the basis for the logit models. The logistic cumulative

distribution function is given by the following (based on Greene, p. 638):

(3) Prob(Y=1)= ,
1 '

'

x

x

e

e
β

β

+

where β is a matrix of coefficients and x is a matrix of independent variables (MB1 and MB2).  In

each of the models above, the independent variable (QG) has a value of 1 if the observed quality

grade is USDA Choice or higher and a value of 0 if the observed quality grade is lower than

USDA Choice (i.e., Select or Standard).

In a logit model, maximum likelihood estimation (MLE) is used to estimate values for β.

The probit model (i.e., a binary choice model based on the normal distribution) is also commonly

used in estimation with a binary dependent variable.  The logit model was chosen for this

application because of its mathematical convenience.  In most situations, logit and probit models

yield consistent probability estimates (Greene).

Determining the value of ultrasound-based prediction was accomplished using Bayesian

analysis.5  The states of nature (θ) used in the ultrasound analysis are quality grade > = Choice

(θ1) and quality grade < Choice (θ2).  These states of nature represent the two subsets of cattle

that represent the basic units of analysis throughout the paper.  The logit models calculate the

probability that a given animal will fall into one of the groups, and the results of valuing the

                                                
5 See Eidman, Dean and Carter for a description of the Bayesian analysis process.
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cattle using grid and live pricing systems in chapter three are reported for the same groups.  This

information can be incorporated into the decision evaluation through the application of Bayes�

formula (Anderson, Dillon and Hardaker):

(4) ( ) ( ) ( )
( )Z Prob

|Z Prob  ProbZ| Prob θθθ = ,

where θ again represents a given state of nature and Z represents a prediction related to that state

of nature.

Pricing cattle on either grid or live basis represents a choice between two marketing

strategies for fed cattle.  These marketing strategies become the actions (grid (a1) and live (a2))

that could be taken by a cattle producer given the states of nature in which he produces.  The

final element needed to begin the Bayesian analysis of the ultrasound data is to identify the prior

probabilities P(θ).  Again, these probabilities are subjective expectations regarding the states of

nature.  In the ultrasound analysis, the prior probability P(θ1) is 0.65 for quality grade > = Choice

and the prior probability P(θ2) for quality grade < Choice is 0.35.  These probabilities were

chosen based on an assumption that the majority of the cattle in the data set would grade > =

Choice.  The conditional, joint, and posterior probabilities are calculated and used to calculate

the marginal value of the ultrasound data.  This value represents the per head benefit that

incorporating the ultrasound data into the decision process can bring to a cattle producer.

Results

Live and grid pricing results are summarized in Table 3.  The first numbers reported are

the average grid prices for the cattle.  The revenues summarized in this table were calculated

using the pricing data presented in Table 2.  Average revenues using both pricing systems are

reported for all cattle and then broken into Choice and Not Choice cattle groups.  The

disincentive to adopt grid pricing is evident in this table of data.  The difference in average
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revenue between Choice and Not Choice cattle for the grid pricing system is $74.30.  In contrast,

the average difference in revenue between Choice and Not Choice cattle for the live pricing

system is only $2.34.  This illustrates the fact that live pricing does not discourage the production

of lower quality cattle.  This is the current state of the market for fed cattle.  A producer who

does not know what his cattle will grade has an incentive to price cattle on a live basis to avoid

the risk of losing revenue on lower quality cattle.  On a grid a producer runs the risk of receiving

significant discounts if his cattle are of a lower quality than expected.  On average Choice cattle

receive $27.07 more in total revenue when priced on a grid than when priced in a live pricing

system.  The higher quality of the cattle is rewarded through grid pricing with more premiums

and fewer discounts.  Not Choice cattle receive on average $44.62 less in total revenue when

priced on a grid than when priced in a live pricing system.

The results of the two logit models (equations 1-2) used in this research are reported in

Table 4.  The coefficient estimates as well as the standard errors for the coefficients are also

reported in Table 4.  The signs on the estimated coefficients in the models are consistent with

economic theory and beef industry structure.  In particular, MB1 has a positive relationship with

QG in Model 1 and the MB2 variable has a positive relationship with QG in Model 2.  The

positive marbling coefficients for MB1 and MB2 indicate that as these coefficients increase, the

probability that an animal will grade Choice is increased.  This relationship is expected since

marbling is the primary determinant in the quality grade assigned to a beef carcass (Fausti, Feuz

and Wagner).  In the first model using MB1 as the primary independent variable, both the

intercept and MB1 are significant at the 0.01 level.  The second logit model using MB2 in place

of MB1 had a similar outcome.  In this model, both the intercept and MB2 are also significant at

the 0.01 level.
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The estimated coefficients in each of the logit models were incorporated into the logistic

function (equation 3) to begin the process of deriving the posterior probabilities for the Bayesian

analysis.  A subjective decision threshold was then used as a benchmark to interpret the

probability estimates from the logit models.  In this analysis, a decision threshold of 0.80 was

used.  That is, the probability estimate obtained from the logistic distribution function had to be

at least 0.80 in order to assume that the model was predicting an observation to be Choice.

The 212 data observations for quality grade were used in combination with the logistic

function results in a contingency table to specifically evaluate the accuracy of each predicted

observation from the logistic functions.  The results of the evaluation of the logit models are

shown in Table 5.  This contingency table consists of the number of true positive, true negative,

false positive and false negative observations.  In this example positive refers to Choice cattle

and negative refers to Not Choice cattle.  For example, an animal will be true positive if its

probability estimate is greater than the decision threshold and its USDA quality grade is Choice

or higher.  That is, the animal was predicted to be a Choice animal by the logit model and was a

Choice animal according to the USDA quality grade.  An animal will be false positive if its

corresponding probability estimate is greater than the decision threshold but its actual USDA

quality grade is less than Choice.

True positive, true negative, false positive and false negative fractions are also presented

in Table 5.  The true positive fraction, for example, is calculated by taking the total number of

observations that are true positive and dividing it by the total number of actual Choice cattle in

the data set.  In the Bayesian analysis, these fractions are used to derive posterior probabilities

and are analogous to the price forecasts in the example from chapter two.
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There were 177 Choice and 35 below Choice cattle in the data set.  Model 2 provided the

most accurate prediction of Choice cattle by correctly identifying 145 true positive observations

or about 82% of the actual number of Choice cattle.  The model falsely identified (false negative

fraction) the remaining 18% of Choice cattle as less than Choice.  Model 1 correctly identified

138 true positive observations or about 78% of the actual number of Choice cattle respectively.

Model 1 and Model 2 correctly identified 23 and 26 true negative observations or about 66% and

74% of the actual number of Not Choice cattle respectively.

Looking at the fractions in combinations, Model 2 has the highest total percentage of

correctly predicted quality grades (82% Choice and 74% Not Choice).  Model 2 also has the

lowest total percentage of incorrectly predicted quality grades (26% Choice and 18% Not

Choice).  The least effective model in accurately predicting quality grade is Model 1.  Model 1

correctly predicted 78% Choice and 66% Not Choice while incorrectly predicting 34% Choice

and 22% Not Choice.

The Bayesian analysis results will show if the previous results favoring Model 2 are

repeated when the value of the ultrasound information from each model is determined.  The two

states of nature in this analysis were quality grade < Choice and quality grade >= Choice.  The

subjective prior probabilities associated with each state of nature were 0.35 for < Choice

observations and 0.65 for >= Choice observations (i.e., subjective expectation that 65% of cattle

in the pen will be >= Choice and 35% will be < Choice).  The actions evaluated are pricing cattle

on a grid and live basis.

The results of the Bayesian analysis done on Model 1 and Model 2 are shown in Tables 6

and 7, respectively.  Many of the components of these tables are identical in both models.  The

prior probabilities discussed above are a constant in this Bayesian analysis.  The values
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associated with the actions in each state of nature come from Table 3.1.  These values are the

average revenues per head using both actions (grid or live pricing) in both states of nature

(>=Choice carcass or <Choice carcass).  The results of the expected values of the actions using

the prior probabilities (the no data problem) are the same in all three models since the same

revenues and prior probabilities are represented in all of the models.  Without any data, the

optimal decision given the prior probabilities is to take the action associated with the average

revenue per head of $847.07 (price the cattle on a grid).  In this case grid pricing averages just

under $2.00 more per head in revenue than does pricing cattle using the live pricing system.

The posterior probabilities derived for both models are summarized in Table 8.  These

numbers represent the probabilities of each state of nature given a certain prediction (P(θ|Z)).

The value of the data calculated for both models is also shown in Table 8.  Model 2 has the

highest value of $8.42 per head, followed by Model 1 with $6.38 per head.  The value of a

perfect predictor, that is an analysis with a model that is 100% accurate in predicting quality

grade, is the same in both models with a value of $15.62 per head.

The second ultrasound estimate is truly the strongest quality grade predicting variable in

this analysis.  Again, this second estimate was taken about 90 days after the first ultrasound

estimate and about 58 days before the cattle were slaughtered.  Therefore, these results show that

of the two points in the feeding period the optimal time to conduct an ultrasound estimate is

closer to the slaughter date.  These results also show that of both combinations of ultrasound

estimates Model 2 was the optimal model to use to predict carcass quality grade.  For the purpose

of this analysis, the second ultrasound estimate data would be the only information beneficial (in

terms of value) to determining quality grade before slaughter.
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Conclusion

The general objective of this paper was to assess the potential of ultrasound data on live

animals to reduce uncertainty related to quality grade prior to slaughter.  This study has

immediate implications at feedlots to help producers make better marketing decisions about their

cattle.  Producers can be notified by the feedlot before slaughter as to the quality of their cattle

based on ultrasound estimates taken to predict carcass quality.  This would reduce producer risk

surrounding how and where cattle should be marketed.  Producers would also have quicker

feedback as to which breeding stock produced the quality of cattle they desire.

In the future, feedlots may be able to use ultrasound technology to sort fed cattle into

more uniform groups.  While this would commingle cattle from different producers into the same

group, the cattle would be more uniform in terms of the composition of carcass traits when they

are ready to be slaughtered.  Currently, cattle are grouped as lots in which they arrived at the

feedlot from the cattle producer.  In this case, when the feedlot determines that the pen of cattle

is say about 60% Choice, the entire pen will be slaughtered whether or not all of the cattle are

ready.  Sorting and commingling cattle from different owners can help ensure that each animal is

slaughtered at an appropriate endpoint.  Obviously, this kind of production system requires that

individual animals be identified by owner throughout the feeding process for the purpose of

allocating costs.  Even if individual animals are identified, allocation of feed costs can be

problematic when cattle from different owners are commingled.

Producers contracting with packers to lock in a live price for their cattle are trying to

mitigate the risk of price volatility as well as uncertainty surrounding the quality of their cattle

prior to slaughter.  If the producer feeds his or her cattle at a feedlot using ultrasound technology

then the producer has better information about his or her cattle and more options when it comes
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time to market the cattle.  Ultrasound gives producers more complete information necessary to

make decisions regarding the marketing of their cattle.  Instead of depending on a visual

appraisal of the cattle from the feedlot or a contract from the packer, a producer with ultrasound

information has an alternative to contracting on a live basis with the packer.  While contracting is

an existing form of vertical coordination within the beef industry, ultrasound would provide

producers with an additional method of vertical coordination where an increase in the quantity

and quality of information between the producer, feeder and packer helps transmit clearer market

signals originating from the consumer.

The government also has an interest in facilitating the coordination of various agricultural

industries as a means of improving source verification.  While ultrasound technology per se is

not related to source verification, the use of ultrasound technology at the feedlot level may

encourage additional management practices such as sorting cattle into more uniform groups and

keeping track of them using electronic identification.  These management practices and

technologies do facilitate source verification within the beef industry.  The government would

have a great interest in these management practices as they relate to issues of food safety.

Identifying a food safety problem and then being able to efficiently and accurately locate the

source of the problem has significant value to the government.  Thus, in the future it can be

speculated that the possibility does exist for the government to become more involved in the

increased adoption of a VBM system by taking such actions as subsidizing some of the costs of

ultrasound incurred by cattle producers.

The primary limitation of this study is that a limited number of situations were evaluated.

Only one set of prior probabilities, grid premium and discount values, base and live prices,

decision threshold level, and data were used in this study.  Multiple studies similar to the one
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presented in this paper should be conducted to determine if the results found in this paper could

be generalized.  Sensitivity analysis needs to be conducted on the prior probabilities, grid

premium and discount values, base and live price levels and decision threshold values.

An area for research may be to investigate a real-life example of ultrasound application

through a case study on a cow/calf producer operation or a feedlot operation.  A look into how

ultrasound technology is used in either of these types of operation could yield interesting and

useful results.  An examination of how ultrasound technology has changed either of the above

operations and what kinds of impacts the use of this technology has had on the success of either

operation could be helpful as other producers consider the adoption of this technology.

The application of ultrasound research is a vast topic requiring a substantial amount of

future research.  This paper is a start in the right direction and is a contributing factor to finding a

solution to the price information and uncertainty problems faced by the beef industry today.
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Table 1: Data Summary

Carcass
Marbling Marbling Marbling Slaughter
Score 1a Score 2a Scorea Weighta Quality Gradeb

Average 4.11 4.76 5.64 1285.97 2
Standard Deviation 0.39 0.57 0.90 98.32 1
Minimum 3.20 3.27 3.80 928.00 1
Maximum 5.08 6.13 8.80 1513.00 9
aSource: Brethour (Personal Data Set).
bSource: IBP, Emporia, Kansas as reported in Brethour (Personal Data Set).
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Table 2: Summary of Pricing Data

Carcass Average
Characteristic Premium/Discount ($)

Base Pricea 107.00
Live Pricea 65.75

Quality Gradeb

Prime 5.75
Choice 0.00
Select -7.00
Standard -17.00
Dark Cutter -30.75

Yield Gradeb

1-2 1.75
2-2.5 0.75
2.5-3 0.75
3-3.5 -0.25
3.5-4 -0.25
4-5 -14.25
5+ -20.00

Carcass Weightb

400-500 -21.00
500-550 -16.75
550-600 0.00
600-900 0.00
900-950 0.00
950-1000 -15.75
1000+ -20.00
aSource: Livestock Marketing and Information Center.
bSource: USDA-AMS. National Carcass Premiums and
Discounts for Slaughter Steers and Heifers, October
1996-December 1998.
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Table 3: Live and Grid Pricing Results

Averages  ($ per Head)
All Choice Not Choice

Cattle Cattle Cattle
Grid Price 105.16 106.89 96.41
Grid Revenue 860.76 872.98 798.95
Live Revenue 845.53 845.91 843.57
Number of
Observations 212 177 35

Table 4: Parameter Coefficients of Quality Grade Probability Model for Fed Cattle

Model 1 Model 2
Intercept -11.5142 -11.2244

(2.4981) (2.1906)

Marbling 1 3.3142 N/A
(0.6468) (N/A)

Marbling 2 N/A 2.8423
(N/A) (0.5002)

Note: Standard error values shown in parenthesis.

Table 5: Logit Models Contingency Table

Data Observations
True Positive True Negative False Positive False Negative

MB 1 138 23 12 39
MB 2 145 26 9 32

Fractions
True Positive True Negative False Positive False Negative

MB 1 0.7797 0.6571 0.3429 0.2203
MB 2 0.8192 0.7429 0.2571 0.1808



22

Table 6: Bayesian Analysis of Model 1

States of Actions (Pricing) Prior Probabilities
Nature (θ) grid (a1) live (a2) P(θ)

Quality Grade > = Choice (θ1) 872.98 845.91 0.65
Quality Grade < Choice (θ2) 798.95 843.57 0.35

Posterior Probabilities
States of P(θ) P(Z|θ) / P(Z)

Nature (θ) Z1 Z2
Quality Grade > = Choice (θ1) 0.8085 0.3837
Quality Grade < Choice (θ2) 0.1915 0.6163

Expected value using
Actions (Pricing)  prior probabilities P(θ)

grid (a1) 847.07
live (a2) 845.09

Expected value using
posterior probabilities

P(θ) P(Z|θ) / P(Z)
Actions (Pricing) P (θ|Z1) P (θ|Z2)

grid (a1) 858.8 827.36
live (a2) 845.46 844.47
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Table 7: Bayesian Analysis of Model 2

States of Actions (Pricing) Prior Probabilities
Nature (θ) grid (a1) live (a2) P(θ)

Quality Grade > = Choice (θ1) 872.98 845.91 0.65
Quality Grade < Choice (θ2) 798.95 843.57 0.35

Posterior Probabilities
States of P(θ) P(Z|θ) / P(Z)

Nature (θ) Z1 Z2
Quality Grade > = Choice (θ1) 0.8554 0.3113
Quality Grade < Choice (θ2) 0.1446 0.6887

Expected value using
Actions (Pricing)  prior probabilities P(θ)

grid (a1) 847.07
live (a2) 845.09

Expected value using
posterior probabilities

P(θ) P(Z|θ) / P(Z)
Actions (Pricing) P (θ|Z1) P (θ|Z2)

grid (a1) 862.27 821.99
live (a2) 845.57 844.30
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Table 8: Summary of Posterior Probabilities and Calculated Values of the Data
    

Posterior Probabilities Value of
 P (θ|Z1) P (θ|Z2) the Data
Model 1 $6.38
Quality Grade > = Choice 0.808545 0.383742
Quality Grade < Choice 0.191455 0.616258

Model 2 $8.42
Quality Grade > = Choice 0.855418 0.311284
Quality Grade < Choice 0.144582 0.688716
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