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Introduction

An issue of continuing interest in international economics is the so called Prebisch-Singer, or

PS, hypothesis (Prebisch, 1950; Singer, 1950). According to the PS hypothesis commodity

prices decline over the long run relative to the prices of manufactured goods, thereby placing

developing countries (i.e., primary producers and exporters of commodities) at a disadvantage

relative to developed countries (i.e., producers and exporters of manufactured goods). In this

manner there will be a long-term deterioration in the commodity terms of trade.

Of course the validity of the PS hypothesis is, at root, an empirical question, and one which

has received considerable attention over the years. See, for example, Grilli and Yang (1988),

Cuddington and Urzua (1989), Powell (1991), and Ardeni and Wright (1992). In modern, time

series terms, a key question surrounding the PS hypothesis is whether the relative commodity

price series in question contains a deterministic trend or is associated with a unit root (i.e.,

stochastic trend). The original work on the PS hypothesis assumed that commodity prices were

trend stationary (Prebisch (1950), Singer 1950). In more recent work researchers have tested

for and, if called for, incorporated stochastic trends (i.e., difference stationarity). Examples of

studies of this sort include Newobold and Vougas (1996) and Kim et al. (2003). In the later

case there is generally less empirical support for long-term attenuation in the commodity terms

of trade. The results may also be sensitive to the period used.

A key issue in testing the PS hypothesis is whether the underlying price series has experienced

structural change, especially since relatively long time periods are preferably employed in any

empirical analysis. Ocampo and Parra (2004) argued that deteriorations in the terms of trade

have been discontinuous, with the 1920s and the 1980s being periods for which the decline in

the commodity terms of trade was particularly notable. To the extent that structural breaks

have been observed in the data, standard unit root tests may provide misleading results (Perron,

1989). For these reasons, recent research examining the PS hypothesis has focused on employing

unit root tests where the possibility of structural breaks is allowed. Relevant examples include

Leon and Soto (1997), Zanias (2005), and Keller and Wohar (2006). The empirical results

generally support the observation that, in contrast to the PS hypothesis, deteriorations in the
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terms of trade have been discontinuous and episodic.

While considerable progress has been made in terms of the econometric framework employed

in examining the PS hypothesis, more work is required. To begin, research on this topic has

yet to consider the question of whether or not commodity price dynamics are also changing

with time. Specifically, previous research has considered only the case where the intercept term

and/or the coefficient associated with a linear trend term have experienced structural change. A

more complete analysis would also examine the possibility for structural change in the model’s

autoregressive coefficients. Alternatively, the data may also exhibit nonlinear features with, for

example, small shocks having potentially different impacts from large shocks. This case was

considered explicitly by Persson and Tersvirta (2003), who used the Grilli and Yang (1988)

data to estimate a member of the family of smooth transition autoregressions (STARs). These

authors did not, however, formally test for nonstationarity, an important component of any

formal assessment of the PS hypothesis. Finally, it is possible that the underlying commodity

price data exhibit features consistent with both structural change and nonlinearity. If so, it is

important that each of these aspects be incorporated in any formal testing framework, including

tests of the unit root hypothesis.

In this paper we investigate whether the commodity price data exhibit unit roots, either

globally or possibly locally. The basic methodology to be used builds upon previous research

by Tersvirta (1994) and will examine the potential for STARs, time–varying autoeregressions

(TVARs) (Lin and Tersvirta (1994)), and models that contain both nonlinearity and time vari-

ation, or TV-STARs (Lundbergh et al. (2003)). Each of these models employs a member of the

family of univariate logistic functions to capture structural change or nonlinearity. As well, a

key feature of the TVAR is that by including higher-order trend terms in the logistic function,

structural change may be nonmonotonic and, depending on the speed of adjustment, instan-

taneous, therefore implying that multiple structural breaks (changes) may occur. This later

feature may, of course, be important for investigating the PS hypothesis.

This study uses the data on individual commodity prices, 1900–98, that represents an ex-

tension of the original Grilli and Yang (1998) index, and used recently by Kim et al. (2003)

and Kellard and Wohar (2006). Building on Eklund (2003), we test a linear unit root model
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against STAR–type alternatives. A low-order Taylor series expansion of the underlying STAR–

type model is used as an approximation, therefore eliminating unidentified nuisance parameters.

This model is then used as the alternative in a series of nonparametric bootstrap simulations

wherein the unit root hypothesis is formally tested. As well, Tersvirta’s (1994) testing frame-

work will be used to determine if, in fact, the data are adequately characterized by a linear

model, or whether a STAR-type or TVAR–type specification might be required. If a nonlinear

model is called for this model will be econometrically estimated, with the resulting model sub-

jected to a battery of diagnostic tests. Among other things, the resulting model will be used to

recover any trends in the commodity terms of trade over time. Finally, if nonlinear features are

identified, the implications of the PS hypothesis are examined by using stochastic simulations

along forward paths.

A key result is that for eighteen of the 24 commodities examined, the linear unit–root model

is rejected in favor of either a STAR–type alternative. Moreover, we are able to successfully

fit a STAR–type model to the data in fourteen instances. A central finding, and one that is

largely consistent with more recent research in the area, is that while nonlinearity and parameter

nonconstancy often are relevant features of the model, in no case do we find substantial evidence

in support of the PS hypothesis.

The Modeling Framework

As noted in the introduction, a central thrust of the present paper is to model appropriately

identified commodity prices by using nonlinear time series techniques, specifically, by using one

or more members of the family of smooth transition autoregressions (STARs). The staring point

in any STAR–type modeling exercise is the linear autoregressive (AR) model. Let yt denote the

(natural logarithm) of a commodity price. A corresponding pth–order AR model is then simply

specified as

∆yt = α + βyt−1 + φ
′
xt + εt, (1)

where ∆ is a first difference operator such that ∆yt−k = yt−k − yt−k−1 for any k > 0, xt =

(∆yt−1, . . . ,∆yt−p)
′
, φ = (φ1, . . . , φp)

′
is a vector of autoregressive parameters to be estimated,
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and εt is an additive error process such that εt ∼ iid(0, σ2). As written in (1) the AR model

does not impose a (global) unit root; such a specification may, however, be obtained by simply

imposing the restriction β = 0. Aside from determining whether or not a unit root should be

imposed, the modeling exercise must also determine the lag order p for the model, perhaps by

using data–based procedures such as the AIC or BIC. See, for example, Hall (1994).

Variants of the AR model in (1) have been used in recent years to model commodity price

data, either individually or in aggregate, and to otherwise examine the PS hypothesis. Examples

include Newbold and Vogas (1996), Leon and Soto (1997), and Kim et al. (2000). In the context

of the unit root version of (1), a statistically significant estimate of the drift term α–and assuming

that its sign is negative–is taken as premia facie evidence in favor of the PS hypothesis.

A potential limitation of testing for a unit root hypothesis in the context of (1) is that

isolated structural breaks may bias the results in favor of finding that β = 0 (see, e.g., Perron,

1989). For example, suppose that the model in (1) is associated with a single, discrete structural

break and trend break. Assume these breaks occur at time tb, such that 0 < tb < T . We might

then specify the model in (1) alternatively as

∆yt = α0 + β0yt−1 + φ
′
xt + (α1 + β1yt−1)Db,t + εt, (2)

where Db,t = 1 if t > tb, and is 0 otherwise.1 Tests of models similar (2) against a linear unit

root model without trend breaks, that is, against equation (1) with β = 0, and where the breaks

are determined as part of the testing/estimation framework, have been proposed by Bannerjee

et al. (1992), Zivot and Andrews (1992), and Perron (1997), among others. Lumsdaine and

Papell (1997) extend the framework to allow for two distinct shifts in intercept and trend terms.

These methods have been applied recently by Zanias (2005) and Kellard and Wohar (2006) in

testing for unit roots in, respectively, an aggregate commodity price index and a series of 24

individual commodity prices. Although the results are somewhat mixed, there is considerable

evidence that many commodity prices are stationary once structural breaks are considered.

1A more typical specification for (2) is ∆yt = α0 + β0yt−1 + φ
′
xt + α̃1D1b,t + β̃1D2b,tyt−1 + εt, where D1b,t

is identical to Db,t above, and D2b,t = (t− tb)D1b,t. These two specifications are essentially identical in that the

model in (2) simply absorbs the term −tbD1b,t into the β1 parameter, that is, β1 + tb = β̃.
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Moreover, once structural breaks are allowed for there is generally less evidence in support of

the PS hypothesis (Kellar and Wohar, 2006).

While allowing for one or possibly two breaks in intercept and trend terms admits richer

alternatives in testing the unit root hypothesis–and, by extension, the PS hypothesis–the above

does not exhaust the full range of alternatives. For example, none of these tests allow the

model’s higher-order dynamics, that is, the autocorrelation parameters in the vector φ, to

change. Moreover, prior research has not considered the possibility that structural change is

a potentially smooth process over time. Finally, with the exception of Persson and Teräsvirta

(2003), prior research has not investigated the possibility that nonlinearity could be a feature

of historical commodity price data. To begin, consider the following generalization of (1)

∆yt = α0 + β0yt−1 + φ
′
0xt + (α1 + β1yt−1 + φ

′
1xt)G(st; γ, c) + εt, (3)

where st = t∗ = t/T . In (3) G(t∗; γ, c) is the so–called transition function, which in the spirit of

the structural break model in (2) has a value bounded between 0 and 1. The main difference,

however, is that intermediate values, that is, values within the unit interval, are now admitted,

and thus Db,t is no longer restricted to be a Heaviside indicator function. Moreover, unlike

(2) the specification in (3) allows the autocorrelation coefficients, the φi’s, to vary over time.

As written, the model in (3) is a member of the family of time–varying autoregressions, or

TVARs, introduced initially by Lin and Teräsvirta (1994). Note in particular that if β0 = β1

and φ0 = φ1, the model in (3) would provide a direct way of incorporating the PS hypothesis

as originally envisaged by Prebisch (1950) and Singer (1950).

Of course it is possible to generalize the model in (3) in one or more substantive ways. One

important generalization is to note that regime change, that is, structural change, need not

be triggered solely or in fact, at all, by a trend variable. Specifically, if t∗ is replaced in G(.)

by a variable that is a continuous function of the lagged endogenous variable yt−d, d > 0, say,

st = f(yt−d), then (3) becomes a member of the family of smooth transition autoregressions,

or STARs, as described initially by Teräsvirta (1994). Here st is refereed to as the transition

variable and d as the delay parameter. Henceforth we adopt the following notation. The variable
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st will be used to denote the transition variable, and unless otherwise indicated it will be used

generically to signify either t∗ or f(yt−d).

A central question then is how exactly to specify the transition function in (3). Several

alternatives exist, including the first–order logistic and the exponential functions. These are

specified respectively as

G(st; γ, c) = (1 + exp{−γ(st − c)})−1, γ > 0 (4)

and

G(st; γ, c) = 1− exp{−γ(st − c)2}), γ > 0. (5)

If (4) is used in conjunction with (3), the resulting model is a member of Teräsvirta’s (1994)

logistic smooth transition autoregression (LSTAR) family. Alternatively, if (5) is used in con-

junction with (3), the resulting model is a member of Teräsvirta’s (1994) exponential smooth

transition autoregression (ESTAR) family.

For both transition functions γ is referred to as the speed of adjustment parameter. More

specifically, the specification in (4) is such that as γ → ∞ then G(.) becomes a Heaviside

indicator function, that is, a function such that G(.) = 0 for st < c and G(.) = 1 for st > c. In

this manner the model in (2) is a special case of the LSTAR. Alternatively, for (5) as γ → ∞

or γ → −∞ then G(.) → 1. In (4) c, the location parameter, indicates exactly the point where

G(c; γ, c) = 0.5, whereas in (5) G(c; γ, c) = 0. Therefore, the structural break model in (2) is

also a special case of the ESTAR. Finally, in the particular instance where st = t∗ and where

(4), that is, in the case where a TVAR is specified, and when γ → ∞, the resulting model

becomes one of discrete structural change with a single break point.

A generalization of (4) is also available, a generalization that, in fact, may be quite useful

in empirical work when structural change over time is being modeled. Specifically, the general

nth–order logistic function is defined as

G(st; γ, c) = (1 + exp{−γ
n∏

i=1

(st − ci)})−1, γ > 0, c1 ≤ c2 ≤ . . . ≤ cn, (6)
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where c is now a vector such that c = (c1, c2, . . . , cn). If n is set to two in (6), the resulting

model, called a quadratic STAR, or QSTAR, is similar in several respects to an ESTAR. For

example, as γ →∞ and assuming c1 6= c2, G(st; γ, c) will equal unity for st < c1 and for st > c2

and zero in between. The central difference is that as γ → 0 the underlying model becomes

linear in parameters. Of course the ESTAR is slightly more parsimonious than the QSTAR.

In the case where n > 2, considerable flexibility is afforded in the model’s specification. In

particular, and in the context of a TVAR, if n ≥ 3 any structural change need no longer be

monotonic function of t∗. As well, and in the spirit of the prior discussion on testing for unit

roots against alternatives that are stationary but allow for one or more structural breaks, the

transition function in (6) has enough flexibility to accommodate such a situation. See, for

example, Lin and Teräsvirta (1994). To recapitulate, when (6) is combined with (3) and when

st = t∗, the resulting model will readily nest the one– and two–regime change models considered

respectively by Zanias (2005) and by Kellard and Wohar (2006).

A distinct possibility is that the model in (3) does not adequately capture all of the es-

sential features of the data. Specifically, and in the spirit of single hidden layer feed–forward

artificial neural networks (ANNs), the model in (3) may require additional (additive) nonlinear

components. For example, a three–regime model may be specified as

∆yt = α0 + β0yt−1 + φ
′
0xt + (α1 + β1yt−1 + φ

′
1xt)G1(st; γ1, c1)

+ (α2 + β2yt−1 + φ
′
2xt)G2(st; γ2, c2) + εt. (7)

Additional details on this model specification are provided in Eitrheim and Teräsvirta (1996).

Importantly, these authors also describe a framework in which Lagrange multiplier (LM) tests

may be constructed to test the model in (3) for remaining additive nonlinearity of the sort

implied in (7).2 Of interest is that the specification in (7) may accommodate a situation in which

both structural change (i.e., st = t∗) and nonlinearity (i.e., st = f(yt−d) might be prevailing

features of the data. That is, the model in (7) is a form of the TV–STAR models developed
2More elaborate versions of (7), referred to as multiple regime STARs, or MRSTARs, have been developed by

van Dijk and Franses (1999). These models are not considered here, however, because substantially more data
than are presently available for empirical tests of the PS hypothesis are required for their implementation.
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originally by Lundbergh, Teräsvirta, and van Dijk (2003). With the exception of Holt and Craig

(2006), models of this sort have generally not been considered in prior research on commodity

price behavior.

The Testing Framework

In view of the foregoing discussion, several important questions remain. First, how is it possible

to know if nonlinearity is truly a feature of the data, that is, how might linearity tests be

performed? And second, and not unrelated to the first question, how might tests for (global) unit

roots be performed when either nonlinearity or structural change is considered as an alternative?

Both issues are now examined in greater detail.

Linearity Testing

Regarding the first question, it is desirable to have a method of testing the linear model in

(1) against time–varying and/or nonlinear alternatives such as those in (3) or (7). At first

blush this would seem to be a simple task in that a simple test of the statistical significance

of the estimated γ parameter in the relevant transition function should surely suffice. Such

an approach is not appropriate in the present context, however, because there are unidentified

nuisance parameters under the null hypothesis, that is, the linearity hypothesis, notably the

autoregressive coefficients implied in φ1 and the constant term a1. In the statistics literature

this is generally referred to as the Davies (1978, 1988) problem, a problem that is, moreover,

pervasive in the literature on testing linear models against nonlinear or threshold alternatives.

See, for example, Andrews and Ploberger (1994) and Hansen (1996). The implication is that

the sampling distribution for the estimator of γ no longer has the usual asymptotic properties,

and therefore standard asymptotic tests (i.e., standard t–tests, etc.) no longer apply.

In the case where smooth transition models are considered as an alternative, Luukkonen,

Saikkonen, and Teräsvirta (1988) have proposed one workable solution to the Davies–type prob-

lem. Specifically, they recommend replacing G(st; γ, c) in (3) with a suitable Taylor series ap-

proximation. For example, if a third–order Taylor series in st is used to approximate G(.), we
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may rewrite (3) as follows

∆yt = δ
′
1x̃t + δ

′
2x̃tst + δ

′
3x̃ts

2
t + δ

′
4x̃ts

3
t + et, (8)

where x̃t = (1, yt−1,x
′
t)

′
and where the parameters in (8) are functions of the original parameters

in (3) including the speed–of–adjustment parameter γ and the location parameter c. Also, the

error term et in (8) is a function of the original error term εt as well as a remainder term

R3(st; γ, c). It follows that under the null hypothesis of linearity R3(st; γ, c) = 0 and et = εt;

standard testing strategies may therefore be applied.

As noted by van Dijk, Teräsvirta, and Franses (2003), it is straightforward to deduce that the

parameter δ1,1 and the parameter vectors δi, i = 2, 3, 4, are functions of the original parameters

a0, a1, β0, β1,φ0, and δ1 in (3) such that testing H
′′
0 : δ2 = δ3 = δ4 = 0 now constitutes a direct

test of the linearity hypothesis H
′
0 : γ = 0. This test, denoted as FL, may be performed as a

standard extra–sum–of–squares test, which under the null hypothesis will have a test statistic

that is distributed asymptotically as an F statistic with 3(p + 2) and T − (p + 2) degrees of

freedom.3 As outlined by Teräsvirta and Anderson (1992), Lin and Teräsvirta (1994), and

Teräsvirta (1994), an additional testing sequence may be pursued in an attempt to identify

whether an LSTAR or ESTAR model is more appropriate. Specifically, (8) may be used to test

the following sequence of hypotheses:

H04: δ4j = 0, j = 1, . . . , p + 2, (9)

H03: δ3j = 0 | δ4j = 0, j = 1, . . . , p + 2, (10)

H03: δ2j = 0 | δ3j = δ4j = 0, j = 1, . . . , p + 2. (11)

F versions of the LM tests associated with testing the hypotheses in (9), (10), and (11) are

referred to respectively as F4, F3, and F2. Assuming that linearity is rejected, that is, that H
′′
0

is rejected, then an LSTAR is chosen if either F4 or F2 has the minimal p–value in the sequence.
3Alternatively, and in the usual spirit of LM–type tests, a χ2 version of the linearity test with 3(p+2) degrees

of freedom could also be constructed. In small samples of the sort used here, however, the χ2 test may be seriously
oversized while the F version of the test generally has better size properties. For this reason we rely throughout
on the corresponding F version of all LM–type tests.
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Otherwise, an ESTAR is chosen. See Teräsvirta (1994) for additional details.

Combined Unit Root and Linearity Testing

Newbold and Vougas (1996) demonstrated that the evidence for the Prebisch-Singer hypothesis

is weaker if the commodity price data are generated by a unit-root process. Thus, testing for

the presence of unit roots is a crucial part of evaluating the PS hypothesis.

As noted previously, in the context of a linear autoregressive model standard unit root tests

may be conducted by testing whether or not β = 0 in (1), assuming of course that structural

change and/or nonlinearly are not a feature of the data. See Dickey and Fuller (1979, 1981) and

Said and Dickey (1984). And as also observed before, numerous studies have investigated tests

of linear unit root models against stationary alternatives that allow for one and possibly two

structural breaks. However, testing the unit version of (1) against nonlinear alternatives such

as those depicted in (3) is still an emerging field of inquiry. For example, Enders and Granger

(1998) and Canner and Hansen (2001) test the unit root hypothesis against stationary threshold

autoregressive (TAR) alternatives. Alternatively, Kapetanios, Shin, and Snell (2003)propose a

test of the linear unit root model against an alternative that allows the constant term to change

according to an ESTAR transition function. Finally, Eklund (2003) has recently proposed a test

of the linear unit root model against a specific LSTAR alternative. Among other things, Eklund

(2003) finds that bootstrapping the relevant test statistics enhances the size properties of the

relevant tests in certain limiting cases. In what follows we adopt the overall strategy proposed

by Eklund (2003), although with some modifications.

What is desired here is a test of the unit root version of the linear autoregression in (1)

against the more general STAR–type alternative in (3). That is, we seek a test of (1)

∆yt = α + φ
′
xt + εt, (12)

against the alternative

∆yt = α0 + β0yt−1 + φ
′
0xt + (α1 + β1yt−1 + φ

′
1xt)G(st; γ, c) + εt, (13)
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where xt and st are as previously defined and G(.) is given by either (4) or (5). For reasons

already mentioned, that is, for reasons associated with unidentified nuisance parameters under

the null, it is not possible to directly test (12) against (13).

As discussed above, it may be possible to circumvent this problem by replacing G(st; γ, c)

with a suitable Taylor series approximation. For example, if, as before, G(st; γ, c) is replaced

by a third–order approximation, we obtain

∆yt = δ0 + λ0yt−1 + ϑ
′
0xt +

3∑
i=1

δis
i
t +

3∑
i=1

λiyt−1s
i
t +

3∑
i=1

ϑ
′
ixts

i
t + ξt, (14)

where, as before, ξt is a function of a remainder term R3(st; γ, c) as well as εt in (13). It is now

possible to use the auxiliary regression in (14) to directly test for both linearity and a unit root

in the underlying yt series. Specifically, testing the hypothesis H lur
0 : λ0 = δ1 = δ2 = δ3 = λ1 =

λ2 = λ3 = ϑ1,1 = . . . = ϑ3,p = 0 constitutes such a test inasmuch as the linear autoregression

with a single unit root in (12) is obtained. Note also that under the null hypothesis that εt = ξt

since the remainder term R3 is identically zero. It is, moreover, possible to construct the usual

F test, denoted here by Flur, associated with imposing H lur
0 . In general Flur will be associated

with (7 + 3p) and T − (8 + 4p) degrees of freedom.

The problem in the present case, is that for conventional reasons the standard F statistic is

no longer associated with the usual limiting distribution under the null of linearity and a unit

root. Eklund (2003) did, in fact, obtain asymptotic results for a special case of (14). Specifically,

he worked with the alternative model

∆yt = δ0 + λ0yt−1 + ϑ0,1∆yt−1 + ϑ0,1∆yt−1st + ξt, (15)

where, moreover, st = yt−1.

While testing (12) against (15) allows for the development of asymptotic results, the tradeoff

is that the alternative in (15) lacks considerable generality and flexibility. Alternatively, it is

always possible, as in Li and Maddala (1996) and Enders and Granger (1998), and as suggested

by MacKinnon (2002), to simply obtain the empirical distributions of the relevant Flur statistic

by using simulation methods. Of course this method has no particular grounding in asymptotic
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theory, and therefore it may be of some limited appeal, but it does allow for greater flexibility in

modeling and testing than would otherwise be the case; we leave it to future research to derive

asymptotic results for testing (12) against the more general model in (14).

In implementing our test of the nonstationary AR model in (12) against the (possibly locally)

stationary nonlinear model in (15), we estimate both models using the observed sample data

and obtain the sample estimate for Flur. We then use a dynamic bootstrap of the null model’s

estimated residuals to construct a reasonably large number, B, of pseudo samples (Li and

Maddala, 1996). Both the null and the auxiliary regression models are re–estimated on each

pseudo data, and, as well, simulated values for the Flur statistic are obtained. To construct

an empirical p–value for the Flur test statistic we simply observe the fraction of times that the

sample value exceeds the corresponding simulated values. In the empirical implementation we

base our results on B = 999 bootstrap replications.

Data

In the empirical analysis we use annual data on prices for 24 primary commodities spanning

1900–98. Nominal prices are deflated by the United Nations Manufactures Unit Value index.

These data were recently used by Kellard and Wohar (2006) and Kim et al. (2003), and are

also used to calculate the commodity price index developed by Grilli and Yang (1988), and

later extended by the Cashin and McDermott (2002). We conduct our analysis on the natural

logarithms of the various price series. Plots of the raw data are not reported to conserve space;

they are available in Kellard and Wohar (2006).

Results

Linear Unit Root Tests

The analysis begins with an examination of the linear unit root hypothesis, that is, with tests for

a single unit root against an alternative that is stationary in the levels. To this end we compute

augmented Dickey–Fuller (ADF) tests for the case where the model includes an intercept but
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may or may not include a linear trend (i.e., the tτ and tµ test statistics, respectively). Specifically,

models similar to (1) are estimated for each commodity with and without a trend term. In

each case the AIC is used to choose the optimal lag length, where a maximum of six lags

may be included. Approximate p–values are constructed by performing B=999 dynamic, non–

parametric bootstrap simulations. The results are recorded in Table 1.

Based on the preliminary evidence in Table 1, there is substantial support for the unit root

hypothesis. For example, in the case where the trend is excluded the null hypothesis is rejected

at the 5% level for only tobacco and zinc. If a trend is included, the hypothesis is rejected at

the 5% level for hides, rubber, and timber, and at the 10% level for wheat. While there is some

discrepancy in results depending on whether a trend is included, the overall picture emerging

from Table 2 is one of general support for the unit root hypothesis in commodity prices. This

conclusion is, moreover, consistent with results reported elsewhere by Kim et al. (2003) and

Kellard and Wohar (2006), among others.

Unit Roots versus Nonlinearity

Of course the ADF results reported in Table 1 do not take account of any structural change or

nonlinearities, features that might otherwise be part of the data generating process. To examine

this issue in greater detail, we perform tests of the linear unit root model against stationary

nonlinear and time–varying alternatives by using the general testing framework outlined in the

previous section. Specifically, for each commodity a model consistent with (12) is tested against

a model consistent with (15), the point being to construct the Flur statistic. Approximate p–

values for this statistic are then constructed by using bootstrap procedures. Regarding tests for

nonlinearity, we follow Persson and Teräsvirta (2003) in using st = ∆yt−d = yt−1−d − yt−2−d as

the candidate transition variable, where d = 1, . . . , 6. As with the ADF tests, lag lengths are

determined by using the AIC. Results are recorded in Table 2. With several exceptions, noted

below, we report results associated with only the minimal p–value for the Flur test statistic

across candidate transition variables for all 24 commodities.

As reported in Table 2, the null model is rejected for 16 commodities at the 5% level including

aluminum, beef, cocoa, copper, cotton, hides, lamb, lead, palmoil, rubber, silver, sugar, tea,
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timber, tin, and tobacco. An additional two, wool, and zinc, are associated with a rejection

of the null at the 10% level. Only in the case of bananas, coffee, jute, maize, rice, and wheat

does a linear unit root model seem to adequately characterize the data.4 For four commodities

(aluminum, cotton, silver, and sugar) the linear unit root model is rejected rather strongly for

more than one candidate transition variable. We report these additional results because, as

noted in additional detail below, some added degree of latitude might be afforded in specifying

and estimating a STAR–type model for these commodities.

One surprising result revealed in Table 2 is that, with the exception of tin, all commodities

for which the null is rejected are associated with nonlinearity (i.e., an ESTAR or LSTAR model)

as opposed to structural change (i.e., a TVAR model). For the series associated with rejection

of linearity, we perform the testing sequence described by Teräsvirta in an attempt to identify

whether an ESTAR or LSTAR specification is more appropriate. These results are also reported

in Table 2. Accordingly, there are fourteen occasions when an LSTAR model is identified and

eight instances where and ESTAR is called for.5 At this stage of the analysis there seems

to be only limited support for the PS hypothesis. Of course it is necessary to attempt to fit

appropriate nonlinear models for the eighteen commodity price series for which the linear unit

root model is rejected. This is the task to which we now turn.

Estimated STAR–Type Models

The preliminary investigation of STAR or TVAR models for commodity prices begins by at-

tempting to fit the specification called for in Table 2. This is accomplished by using a nonlinear

algorithm to estimate each model’s parameters, including those that characterize the relevant

transition function (van Dijk, Teräsvirta, and Franses, 2003). Of course model estimation is

only a preliminary part of the modeling cycle used to fit and assess the performance of the

fitted models. Specifically, we employ the diagnostic methods, in the form of LM tests, de-

scribed by Eitrheim and Teräsvirta (1996) to evaluate the estimated model for: (i) remaining
4Among the commodities for which the linear unit root model is not rejected, each is, with the single exception

of coffee, associated with a negative drift term. In every instance, however, this term is statistically insignificant
at any usual level. We therefore conclude that there is little support for the Prebisch–Singer hypothesis for these
commodities.

5The total is greater than 18 because, as already noted, for several commodities we consider more than one
candidate delay variable.
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additive nonlinearity, that is, for specifications similar to that described in (13); and (ii) re-

maining autocorrelation.6 In order to conduct tests for remaining nonlinearity, we reserve the

first six observations, such that we use st = ∆yt−1, . . . ,∆yt−6 as candidate transition variables

in testing for remaining nonlinearity. The result is there are 92 observations available for model

estimation and diagnostic testing. To conserve space, intermediate diagnostic test results are

not reported. For each fitted model the estimated speed–of–adjustment parameters, the γ̂i’s,

and the estimated location parameters, the ĉi’s, along with asymptotic standard errors, are

reported in Table 3. A summary of diagnostic test results for the final version of the fitted

models are recorded in Table 4. Plots of the estimated transition functions, both with respect

to the identified transition variable and with respect to time, are displayed in, respectively, the

left–hand and right–hand panels of Figure 1.

To begin, initial results revealed that in a handful of instances STAR–type models were

inappropriate. Specifically, for cocoa, copper, rubber, and wool the estimated nonlinear models

fail to improve on the fit of their linear counterparts as indicated by the AIC.7 In each instance

this seems to be a result of the identified nonlinearity stemming from a relatively small number

of outliers. We therefore restrict our attention to the remaining fourteen commodities.

As indicated in Table 2, sevean of these remaining fourteen commodities are associated

with a TV–STAR or three–regime STAR model similar to (13). Specifically, aluminum, cotton,

lamb, silver, sugar, timber, and tobacco require additional additive components to adequately

characterize the data. Of these, four are TV-STAR models (aluminum, cotton, timber, and

tobacco) while the remaining three are three-regime STAR models (lamb, silver, and sugar). As

implied in Table 2 and Figure 1, and based on the estimated values for γ, five are associated

with TAR–type specifications (beef, hides, silver, sugar, and timber). Only in the case of tin

does a TVAR model appear to be an entirely adequate specification.

In every instance in which parameter non–constancy is a feature (i.e., aluminum, cotton,

timber, tin, and tobacco), the parameter change is smooth. In the case of aluminum a first–order
6Because because overall sample sizes are relatively small, we only consider alternatives to first–order STAR–

type model specifications that include a second additive term.
7Each of these commodities is associated with a negative but otherwise statistically insignificant drift term at

usual levels. Indeed, only in the case of wool does the p–value on the drift term approach conventional levels–0.060
for a one–sided test. There is therefore apparently little support for the PS hypothesis for these commodities as
well.
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logistic function similar to (4) is utilized. Results reveal that the structural break commences

in 1927 and is effectively complete by 1947 (Figure 1). For cotton a restricted version of (13)

is estimated wherein c1 = c2 = c3. Figure 1 reveals that the structural change begins in 1959,

plateaus between 1972 and 1979, and is complete by 1990. A similar specification is used for

timber (i.e., a restricted third–order TVAR in the second additive component). As indicated

in Figure 1, the structural change initiates in 1929, plateaus between 1948 and 1960, resumes

again, and finishes by 1978. In the case of tin, the first-order logistic specification in (4) is also

called for. The structural change begins in 1940 and is essentially complete by the early 1960s

(Figure 1). Finally, and of some particular interest, tobacco is identified with ESTAR–type

structural change, that is, with a TVAR in the second additive component specified according

to (5). As revealed in Figure 1, the structural change for tobacco begins in the late 1930s,

reaches its nadir in 1963, and returns to its original state by the late 1980s. In part, this may

reflect the rapid rise in tobacco use in developed countries beginning in the 1930s, a peak that

apparently occurred in early 1960s, and a steady decline in use thereafter.

As indicated in Table 4, the estimated STAR–type models apparently fit the data reasonably

well. For example, as indicated by the ratio of the standard error of the fitted STAR–type model

to its linear counterpart, that is, by, σ̂NL/σ̂L, most estimated STAR–type models provide a

substantial improvement relative to the linear ones (Table 4). In some cases, for example,

cotton, lamb, silver, and sugar, the improvement in fit is substantial. In seven instances the

error distribution of the estimated residuals departs significantly from normality, specifically, in

the case of aluminum, beef, lamb, silver, tea, tin, and zinc. With the exception of zinc, this

violation is linked to excess kurtosis. As well, and again with the exception of zinc, there is

little evidence of remaining residual autocorrelation at four lags (Table 4).

Diagnostic tests of remaining nonlinearity were also performed where where up to six lags, d,

of the transition variable st = ∆yt−d are used as candidates. These results are also recorded in

Table 4. There is little evidence of remaining nonlinearity in the estimated STAR–type models.

While there is some evidence of remaining nonlinearity at the 5% level for aluminum, beef, cot-

ton, and tobacco, attempts to fit additional nonlinear components for these commodities yielded

no significant improvements. Only in the case of cotton is the null hypothesis of parameter con-
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stancy clearly rejected. But again, attempts to fit a time varying component to cotton resulted

in no improvement in fit as measured by AIC. Overall, the diagnostic test results suggest that

the estimated models provide a reasonable fit to the data.

Model Simulations

While the foregoing results provide ample evidence of nonlinearity and, in some cases, param-

eter nonconstancy for a relatively large number of commodities in the sample data, the basic

question still remains. Is there evidence that the PS hypothesis holds among the commodities

for which STAR–type models are fitted? While there are several ways to investigate this issue,

one approach is to examine forward iterations of each model, possibly where stochastic shocks

are introduced. That is, what is required are the k–step–ahead forecasts from the estimated

models using the ending points of the sample data as initial values.

There are at least two reasons for performing forward simulations of the estimated models.

First, and as already mentioned, such simulations will reveal something about the role of the

PS hypothesis among commodities for which STAR–type models have been estimated. But of

equal importance, forward extrapolations of the model will reveal something about its dynamic

properties. Indeed, a necessary condition for stability of an estimated STAR model is that

forward iterations of its “skeleton,” that is, the forward iterations that do not include stochastic

shocks and therefore result in biased forecasts, either converge to a steady–state or a limit

cycle path (Tong, 1990). Alternatively, a necessary and sufficient condition for stability is that

the forward iterations of the model obtained when shocks are included, that is, the unbiased

forecasts, converge to a stable path (Tong, 1990). In this manner useful information may be

obtained about each model’s dynamic properties.

For the nonlinear models being considered, that is, for the STAR and TV–STAR models,

analytical expressions for the forecasts are not available for forecast horizons k ≥ 2.8 Therefore,

numerical methods must be employed. To see this, let the candidate nonlinear model, rewritten
8Because TVAR models do not involve nonlinearity in lagged values of the dependent variables, forecasts from

these models may be obtained analytically, and therefore require no special attention.
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in levels form, be represented by

yt = f(yt−1, . . . , yt−p−1;θ) + εt, t = 1, . . . , T, (16)

where θ is a parameter vector and εt ∼ iid(0, σ2). Multiple–step–ahead forecasts are desired

from (16) for the period T + 1, . . . , T + M , M ≥ 1. To begin, the one-step-ahead forecast of yt

may be obtained analytically as

ŷT+1|T = f(yT−1, . . . , yT−p−1;θ),

where the usual assumption E(εT+1|Ψ) = 0 has been applied, where Ψ denotes the history

yT , yT−1, . . . of observations on yt. For forecasts at horizons k ≥ 2, analytical results are no

longer available. For example, suppose that we desire a forecast at horizon k = 2. We then have

ŷT+2|T =
∫ ∞

−∞
f(ŷT+1|T + εT+1, yT , . . . , yT−p;θ)dεT+1, (17)

To solve (17) numerical integration techniques must be employed. If forecasts at horizons k > 2

are desired, computing the forecast will involve multidimensional numerical integration. At this

point several methods may be applied, including Monte Carlo integration and bootstrapping.

Here we use the bootstrap method explored originally by Clements and Smith (1997). The

requirement is, of course, that the error terms in (16) be independent.

To implement the bootstrap algorithm we simulate N paths for yT+1, yT+2, . . . , yT+kmax .

For present purposes we set N = 1000 and kmax = 200. We then obtain forecasts for horizons

k ≥ 2 by averaging across all N paths. At horizon k = 2, for example, we have

ŷT+2|T =
1
N

N∑
i=1

ŷi
T+1 =

1
N

N∑
i=1

f(ŷT+1|T + ε̂i, yT , . . . , yT−p;θ),

where ε̂i denotes an estimated residual from (16) sampled with replacement. A näıve forecast

or forward simulation may be obtained by simply setting N = 1 and ε̂i = 0. The latter amounts

to nothing more than a deterministic extrapolation of the so–called “skeleton” of the model.
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The forward simulations obtained for each of the fourteen STAR–type models, along with

the historical sample data, are presented in Figure 2. In the case of silver, sugar, tea, and lamb,

the necessary but not sufficient condition for dynamic stability is satisfied. These results are not

at all surprising for silver. As noted by Escribano and Granger (1998), this series is dominated

by a bubble during the 1979–80 period. See also Figure 2. From June, 1979 to March, 1980, the

Hunt brothers, of Texas, apparently were able to corner the silver market. This bubble period

is apparently associated with unstable dynamics. The bootstrap simulations obtained for lamb

display a somewhat slow tendency toward explosive behavior; the forecast confidence intervals

move well beyond the observed range of the data rather quickly–after about 30 or so forward

iterations. As illustrated in Figure 2, the nonlinear dynamics associated with lamb prices are

apparently dominated by a steep rise during WWII and a subsequent sharp decline in the early

and mid 1950s. In any case, for this group of four commodities only the näıve forecasts are

plotted. As well, because tin is associated exclusively with a time–varying autoregression, the

forecast results may be obtained analytically–no stochastic simulations are required.

A general conclusion is that for silver, sugar, tea, and lamb, the nonlinear behavior is

apparently rather extraordinary in that locally explosive behavior is a prominent feature. In

the case of tea, for example, the characteristic polynomial associated with regime G(.) = 1

has a dominant real root of 1.40. Even though this regime is observed rather infrequently in

the data, see Figure 1, it seems that the model is unable to break free of this dynamic once

stochastic shocks are included. Similar results apply for silver, sugar, and lamb. The overall

implication is that the estimated STAR models for these commodities might be useful for short–

run forecasting, but certainly not for obtaining longer–term predictions. See Hall, Skalin, and

Teräsvirta (2001) for a similar example in the context of a nonlinear model of El Niño events.

For the remaining nine commodities, that is, for aluminum, beef, cotton, hides, lead, palmoil,

timber, tobacco, and zinc, plots of the bootstrap–based forecasts along with approximate ±2σ

confidence bands are reported in Figure 2.9 The predictions (both biased and unbiased) plotted

in Figure 2 reveal a lack of support in every instance for the PS hypothesis. That is, there is no
9As noted by Teräsvirta, van Dijk, and Mederios (2005), a direct benefit of using the bootstrap–based approach

to obtain forecasts is that information on the forecast density at each horizon k ≥ 2 is readily available as a
byproduct.
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evidence that forward simulations of the estimated STAR–type models results in a continued

deterioration of the terms of trade. In part these results are as expected given that the estimated

models include lagged level terms. But even so, the TV–STAR models in particular do not

require a priori that the parameter change be completed by the end of the sample period. And

yet this seems to be the case, as depicted in both Figures 1 and 2.

Conclusions

An issue of continuing interest to development and international economists is the prediction,

based on the Prebisch–Singer hypothesis, that commodity prices will continue to decline relative

to the price of finished or manufactured goods. Numerous studies have in recent years sought

to obtain empirical evidence either for or against this basic conjecture. See, for example, Grilli

and Yang (1988), Cuddington and Urzua (1989), and Powell (1991). As well, Kim et al. (2003)

discuss the need to carefully distinguish between deterministic versus stochastic trends, while

others, including Zanias (2005) and Kellard and Wohar (2006), have examined models that

allow for one or more trend breaks. Finally, Persson and Teräsvirta (2003) examined the PS

hypothesis in the context of a nonlinear time series model. The emerging evidence based on the

application of more modern techniques often militates against the PS hypothesis.

Several issues left unexplored in prior research include more formal tests of the linear unit

root model against nonlinear or time–varying alternatives, and the specification, estimation,

and testing of STAR–type models where called for. Surprisingly, we find that the linear unit

root model is rejected in favor of a STAR–type alternative for eighteen of the 24 commodities

investigated. Somewhat surprisingly, of these, seventeen were associated with nonlinearity as a

viable alternative while only in the case of tin was a TVAR model identified. Of interest is that,

with the exception of maize, jute, and rice, all of the commodities associated with a rejection

of the linear unit root model were also identified previously by Kellard and Wohar (2006) as

being associated with stationary trend break models. Of course Kellard and Wohar (2006) did

not consider nonlinear alternatives, as we do here. Among other things it seems that with the

relatively small sample sizes that are available it may be difficult to distinguish between trend
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stationarity (when breaks are incorporated) and nonlinearity.

Of the eighteen commodities for which linearity was rejected, we were able to successfully

fit STAR–type models in fourteen instances. Of these, one commodity is associated exclusively

with time–varying parameters (tin) while the remaining commodities are best characterized by

STAR or additive TV–STAR models. Simulating the models along forward trajectories, either in

a stochastic or a deterministic environment, suggest very limited support for the PS hypothesis.

At this stage any associated policy implications are not so clear. In part this is because the big

peaks and valleys observed in many of the commodity prices seem to be adequately characterized

by nonlinearity. That said, it is essentially impossible to predict the the size and direction of any

future shocks, and therefore impossible to know with any precision the precise trajectory that

relative commodity prices might follow in future. For this reason it will likely remain difficult for

developing countries to anticipate how and when to intervene in primary commodity markets,

as well as to know which policies to pursue to enhance export earnings.
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Table 1: Results of Dickey–Fuller Tests Applied to 24 Commodities.

No Trend under the Alternative Trend under the Alternative

Commodity ρ̂ tµ̂ p–value ρ̂ tτ̂ p–value

Aluminum 0.920 -2.344 0.121 0.864 -2.620 0.244

Bananas 0.919 -1.710 0.414 0.887 -2.248 0.472

Beef 0.923 -2.006 0.290 0.848 -2.547 0.299

Cocoa 0.870 -2.290 0.167 0.865 -2.355 0.395

Coffee 0.838 -2.470 0.107 0.841 -2.372 0.410

Copper 0.851 -2.178 0.164 0.851 -2.149 0.438

Cotton 0.984 -0.365 0.902 0.870 -1.991 0.570

Hides 0.851 -2.169 0.225 0.618 -3.519 0.045∗∗

Jute 0.848 -1.757 0.421 0.799 -2.187 0.503

Lamb 0.918 -1.998 0.274 0.793 -3.025 0.152

Lead 0.847 -1.921 0.296 0.843 -1.636 0.695

Maize 0.955 -0.692 0.866 0.665 -3.017 0.120

Palm Oil 0.926 -1.214 0.688 0.747 -2.691 0.224

Rice 0.942 -1.167 0.665 0.790 -2.598 0.249

Rubber 0.923 -2.097 0.181 0.762 -3.628 0.040∗∗

Silver 0.912 -1.831 0.350 0.898 -2.018 0.564

Sugar 0.834 -1.839 0.372 0.689 -2.646 0.295

Tea 0.928 -1.463 0.524 0.893 -1.990 0.583

Timber 0.902 -2.222 0.174 0.734 -3.507 0.043∗∗

Tin 0.883 -2.086 0.261 0.832 -2.336 0.402

Tobacco 0.913 -2.765 0.032∗∗ 0.918 -1.610 0.653

Wheat 0.975 -0.429 0.895 0.635 -3.088 0.072∗

Wool 1.020 0.515 0.988 0.887 -1.486 0.609

Zinc 0.560 -3.016 0.026∗∗ 0.557 -3.005 0.102

Note: ρ̂ is the estimated root. The test statistics tµ̂ and tτ̂ are t–ratios for (ρ̂ − 1),
and correspond, respectively, to: (1) the case where the estimated model does not
include a trend, and (2); the case where the estimated model does include a linear
trend. Columns headed p–value record approximate p–value’s based on B = 999
bootstrap simulations. A superscripted * indicates significance at the 10% level, **
significance at the 5% level and, *** significance at the 1% level.
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Table 2: Results of Testing a Linear Unit Root Model Against STAR or
TVAR Alternatives and of Applying Teräsvirta’s (1994) Model Selection
Sequence.

Commodity p min[pFlur
] d pF4 pF3 pF2 STAR/TVAR

Aluminum 2 0.023∗∗ 2 0.185 0.466 0.026 LSTAR
2 0.028∗∗ 6 0.019 0.148 0.160 LSTAR
2 0.032∗∗ 1 0.315 0.009 0.276 ESTAR

Banana 2 0.164
Beef 1 0.015∗∗ 3 0.005 0.022 0.502 LSTAR
Cocoa 2 0.025∗∗ 3 0.048 0.184 0.125 LSTAR
Coffee 2 0.118
Copper 5 0.019∗∗ 6 0.005 0.775 0.313 LSTAR
Cotton 3 0.002∗∗∗ 3 0.001 0.050 0.692 LSTAR

3 0.051∗ 2 0.618 0.046 0.145 ESTAR
Hides 2 0.028∗∗ 2 0.273 0.095 0.035 LSTAR
Jute 4 0.115
Lamb 5 0.047∗∗ 1 0.202 0.019 0.478 ESTAR
Lead 4 0.014∗∗ 6 0.490 0.018 0.026 ESTAR
Maize 4 0.312
Palmoil 5 0.014∗∗ 2 0.001 0.194 0.196 LSTAR
Rice 4 0.115
Rubber 1 0.020∗∗ 4 0.003 0.144 0.375 LSTAR
Silver 2 0.001∗∗∗ 2 0.001 0.194 0.196 LSTAR

2 0.001∗∗∗ 6 0.018 0.394 0.001 LSTAR
Sugar 5 0.022∗∗ 1 0.168 0.511 0.061 LSTAR

5 0.085∗ 2 0.147 0.985 0.045 LSTAR
Tea 2 0.091∗ 4 0.950 0.020 0.129 ESTAR
Timber 2 0.009∗∗∗ 1 0.114 0.018 0.061 ESTAR
Tin 3 0.045∗∗ t 0.130 0.319 0.262 TVAR
Tobacco 4 0.004∗∗∗ 4 0.176 0.001 0.231 ESTAR
Wheat 6 0.302
Wool 4 0.057∗ 1 0.427 0.064 0.298 ESTAR
Zinc 6 0.093∗ 5 0.696 0.490 0.038 LSTAR

Note: The column headed p denotes the optimal number of lags in the linear AR
model. The column headed min[pFlur

] denotes the minimum p–value of the linear
unit root test over delays d = 1, . . . , 6. The column headed d denotes the delay
corresponding to min[pFlur

], and columns headed, respectively, pF4 , pF3 , and pF2

correspond to p–values of tests in the model selection sequence. All p–values are
obtained by performing B = 999 recursive bootstraps of the model’s residuals under
the respective null hypothesis. The final column indicates whether an LSTAR,
ESTAR, or TVAR model is chosen. A superscripted * indicates significance at the
10% level, ** significance at the 5% level, and *** significance at the 1% level.
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Table 3: Estimated Speed of Adjustment Parameters, γ, and Location Parame-
ters, c, in the Transition Functions of the Estimated Models.

First Transition Function Second Transition Function

Commodity Type d γ̂1 ĉ1 Type d γ̂2 ĉ2

Aluminum ESTAR 1 0.716 -0.102 LTVAR t 14.531 0.347
(0.461) ( 0.034) (11.607) (0.030)

Beef LSTAR 3 500 0.159
– (0.002)

Cotton ESTAR 2 4.341 -0.018 LTVAR t3 27.414 0.744
(2.752) ( 0.016) (11.685) (0.020)

Hides LSTAR 2 500 -0.097
– ( 0.015)

Lamb ESTAR 1 0.382 -0.208 LSTAR 2 4.247 0.108
(0.160) ( 0.049) (2.159) (0.038)

Lead ESTAR 6 1.109 -0.052
(0.501) ( 0.022)

Palmoil LSTAR 2 25.945 0.175
(19.069) (0.010)

Silver LSTAR 2 264.574 0.154 LSTAR 4 500 0.026
(613.244) (0.002) – (0.003)

Sugar LSTAR 1 500 7.20E-05 LSTAR 2 104.708 0.073
– (0.002) (151.382) (0.004)

Tea ESTAR 4 0.929 -0.094
(0.614) ( 0.028)

Timber ESTAR 1 0.807 0.062 LTVAR t3 7.054 0.521
(0.557) (0.019) (3.454) (0.038)

Tin LTVAR t 11.756 0.510
(13.357) (0.049)

Tobacco ESTAR 4 0.756 0.036 ETVAR t 4.170 0.620
(0.325) (0.017) (2.781) (0.043)

Zinc LSTAR 6 500 -0.007
– ( 0.003)

Note: Values in parentheses are asymptotic standard errors. LTVAR denotes a logistic transition function
with time as an argument. Alternatively, ETVAR denotes an exponential transition function with time as
an argument. Under the column headed d the entry t3 denotes a restricted third–order LTVAR transition
function.
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Figure 1: Transition Functions versus the Respective Transition Variable (left–hand column)
and Transition Functions Over Time (right–hand column) for Fourteen Commodities.
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Figure 2: Actual (1900–1998) and Simulated (1999–2097) Commodity Price Data for Fourteen
Commodities.
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