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Department of Econometrics & OR, Faculty of Economics and Business Administration,

Tilburg University, P.O.Box 90153, 5000LE Tilburg, The Netherlands.

Abstract

This paper introduces a new class of robust regression estimators. The proposed two-

step least weighted squares (2S-LWS) estimator employs data-adaptive weights determined

from the empirical distribution, quantile, or density functions of regression residuals ob-

tained from an initial robust fit. Just like many existing two-step robust methods, the

proposed 2S-LWS estimator preserves robust properties of the initial robust estimate. How-

ever contrary to existing methods, the first-order asymptotic behavior of 2S-LWS is fully

independent of the initial estimate under mild conditions; most importantly, the initial es-

timator does not need to be
√

n consistent. Moreover, we prove that 2S-LWS is asymptot-

ically normal under β-mixing conditions and asymptotically efficient if errors are normally

distributed. A simulation study documents these theoretical properties in finite samples;

in particular, the relative efficiency of 2S-LWS can reach 85–90% in samples of several tens

of observations under various distributional models.

Keywords: asymptotic efficiency, breakdown point, least weighted squares

JEL classification: C13, C20, C21, C22

1 Introduction

In statistics and econometrics, more and more attention is paid to techniques that can deal with

data containing atypical observations, which can arise from outliers, miscoding, or heterogeneity

not captured or presumed in a model. This is of very high importance especially in (non)linear
∗This research was supported by the grant GA402/06/0408 of GA ČR.
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1 INTRODUCTION

regression models and time series as the least squares (LS) and maximum likelihood (MLE)

estimators are heavily influenced by data contamination. For example using real economic

data, Balke and Fomby (1994) document presence of outliers in macroeconomic time series and

Sakata and White (1998) or van Dijk et al. (1999) evidence data contamination in financial

time series and its adverse effects on estimators (e.g., quasi-maximum likelihood) and tests,

respectively. On the other hand, the use of methods robust to atypical observations is infrequent

and usually limited to detection of outliers even in recent applications (e.g., Temple, 1998; Woo,

2003), although exceptions exist (e.g., Preminger and Franck, 2007). The reasons could range

from missing particular results regarding robust inference, low relative efficiency of many robust

methods, or the necessity to choose auxiliary tuning parameters without rigorous guidance. In

addition, even the straightforward detection of outliers by a robust method or eye-balling and,

after removing outliers, subsequent application of a standard method such as least squares is

not a theoretically justified inference method as the usual standard errors (and statistics based

on them) will be biased as discussed in the following paragraphs.

To address these issues, we propose a new class of robust estimation methods, the two-step

least weighted squares (2S-LWS), which relies on an initial robust estimate and preserves its

robust properties. Contrary to existing methods, 2S-LWS has however an asymptotic distribu-

tion independent of the initial robust estimation, is asymptotically efficient under normality,

and can be free of auxiliary tuning parameters. Most importantly, the asymptotic distribution

independent of the initial robust estimate guarantees that correct inference is possible irrespec-

tive of the properties of the initial estimator and that the quality of 2S-LWS estimation is not

affected by the initial estimator. Consequently, the initial estimator can be chosen to be as

robust as possible without concerns about its other qualities and fine-tuning its parameters.

To quantify the global robustness of an estimator against large errors and data contamination,

one can use, for example, the breakdown point, which measures the smallest contaminated

fraction of a sample that can arbitrarily change the estimates (see Section 4 for definition and

Rousseeuw, 1997, and Genton and Lucas, 2003, for details). Thus, we concentrate here on

the robust methods that achieve the maximum asymptotic breakdown point 1/2 (in contrast,

least squares have its asymptotic breakdown point equal to zero in usual regression settings).

Additionally, note that we focus on estimation in the linear regression model, although there

are many straighforward extensions to other methods and models as indicated later.
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1 INTRODUCTION

There is a number of high breakdown-point methods, which are insensitive to deviations

from the regression model. Most of these methods however pay for their robustness by low

relative efficiency in non-contaminated data, especially in normally distributed data. The first

equivariant regression estimator with the breakdown point asymptotically equal to 1/2 was the

least median of squares (LMS; Rousseeuw, 1984), which converges only at rate n−1/3 (Davies,

1990). Subsequently proposed least trimmed squares (LTS; Rousseeuw, 1985) and S-estimators

(Rousseeuw and Yohai, 1984) achieve the usual
√

n consistency, but they cannot achieve simul-

taneously high breakdown point and high relative efficiency (Hössjer, 1992). Robust regression

methods that can achieve high relative efficiency and maximum breakdown point simultane-

ously are MM-estimators (Yohai, 1987) and τ -estimators (Yohai and Zamar, 1988). Achieving

high relative efficiency of MM- and τ -estimators while preserving the breakdown point 1/2

is however accompanied by a sizable increase of their bias; moreover, the full efficiency and

positive breakdown point cannot be reached at the same time.

To improve the quality of estimation of high breakdown-point methods, Rousseeuw and

Leroy (1987) initially suggested to use weighted least squares (WLS), where observations with

(robustly-estimated) residuals beyond some fixed cut-off point are assigned zero weight. (This

is in spirit similar to one-step M-estimation, see Simpson et al., 1992, and Welsh and Ronchetti,

2002.) Even though this reduces the variability of estimates compared to the initial robust fit,

the WLS method cannot improve the convergence rate of the initial robust estimator (He and

Portnoy, 1992), and even if the initial estimator is
√

n consistent, the asymptotic distribution

of WLS will depend on the initial robust fit (Welsh and Ronchetti, 2002). Therefore, Gervini

and Yohai (2002) proposed to use the WLS strategy with a data-dependent cut-off point. This

approach results in a robust and efficient weighted least squares (REWLS) estimator that is

asymptotically efficient if errors are normally distributed. Apart from this optimal case of

Gaussian data, when REWLS becomes equivalent to the standard least squares (LS) method,

the asymptotic distribution of REWLS still depends on the initial estimator (in a known or

unknown way depending on the asymptotic behavior of the initial estimator).

In this paper, we propose a new class of high breakdown-point estimation methods, 2S-

LWS, which is also based on and improves upon an initial robust estimate. Similarly to Gervini

and Yohai (2002), we construct data-adaptive weights using the empirical distribution, or al-

ternatively, using quantile and density functions of the regression residuals obtained from the
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2 LEAST WEIGHTED SQUARES AND EFFICIENT ROBUST ESTIMATION

initial robust fit. Instead of WLS, we however employ these weights in the context of the least

weighted squares (LWS) estimator, which was proposed by Víšek (2002a,b) as a generaliza-

tion of LTS. To provide an alternative to hard-rejection weights described above for WLS and

REWLS, we additionally propose several weighting schemes with strictly positive weights for

all observations, which lead to significant improvement in the relative efficiency of the method,

especially in small samples.

In comparison to the existing methods, the main benefits of the proposed 2S-LWS method

are, apart from its robust properties: (i) the first-order asymptotic independence of the initial

estimator, which has to converge only at rate n−δ, δ > 0, for any underlying distribution;

(ii) known asymptotic distribution under mild β-mixing conditions, even for initial estimators

that are not
√

n consistent; and (iii) asymptotic efficiency in the normal model and smaller

variance compared to LS for non-Gaussian designs (both asymptotically and in finite samples).

In particular, points (i) and (ii) allow us to use as an initial estimator any robust estimator

as well as methods based on nonparametric smoothing. Moreover, the principle of 2S-LWS is

straightforward to generalize to robust nonlinear regression, instrumental-variables regression

(cf. Víšek, 2006), and maximum likelihood estimation (e.g., using Čížek, 2007).

The rest of this paper is organized as follows. The REWLS and 2S-LWS estimators are

defined in Sections 2 and 3. Next, the robust and asymptotic properties of 2S-LWS are studied

in Sections 4 and 5, respectively. The finite-sample properties of the proposed method, including

its relative efficiency, are evaluated and compared with existing methods using Monte Carlo

experiments in Section 6. Proofs are given in the appendices.

2 Least weighted squares and efficient robust estimation

Let us consider the linear regression model (i = 1, . . ., n)

yi = x>i β0 + εi, (1)

where yi ∈ R and xi ∈ Rp represent the response and explanatory variables and β0 ∈ Rp is the

underlying value of p unknown regression parameters.

Rousseeuw (1985) proposed to robustly estimate this model by the least trimmed squares
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2 LEAST WEIGHTED SQUARES AND EFFICIENT ROBUST ESTIMATION

(LTS) estimator,

β̂(LTS)
n = arg min

β∈Rp

h∑

i=1

r2
[i](β), (2)

where r2
[i](β) represents the ith order statistics of squared regression residuals r2

1(β), . . . , r2
n(β)

and ri(β) = yi − x>i β. The trimming constant h, n
2 < h ≤ n, determines the breakdown point

of LTS since definition (2) implies that n − h observations with the largest residuals do not

directly affect the estimator. The maximum breakdown point equals asymptotically 1/2 and is

attained for h = [n/2] + [(p + 1)/2] (Rousseeuw and Leroy, 1987), whereas for h = n, which

corresponds to LS, the breakdown point is asymptotically 0.

To improve upon LTS, Víšek (2002a,b) studied a weighted form of LTS, least weighted

squares (LWS), which can be defined by

β̂(LWS)
n = arg min

β∈Rp

n∑

i=1

w

(
2i− 1

2n

)
r2
[i](β) (3)

= arg min
β∈Rp

n∑

i=1

w

[
Gn

{
r2
i (β)

}− 1
2n

]
r2
i (β),

where w : 〈0, 1〉 → R+
0 is a weight function and Gn denotes the empirical distribution function

of squared residuals r2
i (β). Note that both LS and LTS are special cases of (3) for w(t) = 1

and w(t) = I(t ≤ c), respectively, for t ∈ 〈0, 1〉 and c = h/n. A crucial distinction between

LWS and the weighted least squares (WLS) is that weights are assigned to the residual order

statistics rather than directly to individual residuals. As the second expression in (3) illustrates,

the weight function thus operates on the distribution function of regression residuals.

The LWS estimator in the cross-sectional linear regression was extensively studied by Mašíček

(2004) who derives its robust properties, asymptotic normality, and the optimal choice of weight

function w provided that the distribution function of the error term εi in (1) is known. How-

ever, to achieve (asymptotically) breakdown point 1/2, one has to trim the same amount of

observation as LTS and to set w(t) = 0 for t > 0.5. For Gaussian data, LTS is even the

variance-minimizing method among LWS estimators with breakdown point 1/2. Hence, both

LTS and LWS cannot combine a high breakdown point and a good performance in terms of

the estimators’ variance: for Gaussian data, the relative asymptotic efficiency of LTS with the

maximal breakdown point is only 7%.

As a remedy, Gervini and Yohai (2002) proposed the robust and efficient weighted least
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3 TWO-STEP LEAST WEIGHTED SQUARES

squares (REWLS), a method to adaptively determine the observations that needs to be trimmed

and to apply LS to the rest of data. Specifically, given initial estimates β̂0
n and σ̂0

n of regression

parameters and residual variance (e.g., from LTS), one can define for each observation weight

wi = I{|ri(β̂0
n)/σ̂0

n| < t0} (4)

for t0 > 0 and i = 1, . . . , n and then estimate weighted least squares. The cut-off point t0 is

determined by comparing the distribution functions F+ and F+
0 of absolute residuals underlying

the data and assumed in the model, respectively:

d0 = sup
t≥c

{
[F+

0 (t)− F+(t)]I[F+
0 (t)− F+(t) ≥ 0]

}
, (5)

t0 = min{t : F+(t) ≥ 1− d0}, (6)

where c = 2.5, for instance. Thus, d0 measures the largest discrepancy between F+
0 and F+ in

the tail of the distributions and the cut-off point t0 is then 1 − d0 quantile of the distribution

F+. In practice, F+ is unknown and has to be replaced by the empirical distribution function

F+
n of absolute regression residuals, which leads to data-dependent choices dn and tn to be used

in (4). The described REWLS estimator combines a high breakdown point and asymptotic

efficiency under the normal model. In general, the asymptotic distribution of REWLS however

depends on the initial robust estimator in a known way if the initial estimator is
√

n consistent

or in an unknown way if the initial estimator converges at a slower rate than n−1/2.

3 Two-step least weighted squares

To eliminate the influence of the initial estimator, and additionally, to allow for slowly con-

verging initial estimators (e.g., LMS or kernel density estimators), we now propose to use the

data-dependent weights within the LWS estimator instead of simple WLS. Furthermore, to

improve the relative efficiency of the estimator asymptotically and in finite samples, we pro-

pose several alternative weighting schemes using strictly positive weights and prove that they

guarantee high breakdown point and asymptotic efficiency under the normal model.

Let us now assume that β̂0
n and σ̂0

n are the initial estimates of regression parameters and

residual variance. Given the model (1), the corresponding initial regression residuals are e0
i =
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r2
i (β̂

0
n) = yi − x>β̂0

n, i = 1, . . . , n. For the ith order residual statistics r2
[i](β̂

0
n), we can define

weight wi = ŵn{(2i−1)/(2n)}, where ŵn is a weight function that can generally depend on β̂0
n,

σ̂0
n, and e0

i , but that is assumed to converge to a piecewise continuous function w : 〈0, 1〉 → R+
0 ,

ŵn(t) → w(t) as n → ∞ for all t ∈ 〈0, 1〉. The two-step least weighted squares (2S-LWS)

estimator is then defined as

β̂(LWS)
n = arg min

β∈Rp

n∑

i=1

ŵn

(
2i− 1

2n

)
r2
[i](β) (7)

= arg min
β∈Rp

n∑

i=1

ŵn

[
Gn

{
r2
i (β)

}− 1
2n

]
r2
i (β). (8)

A specific feature of the proposed estimator is that the weights modify and apply to the values of

the empirical distribution function of the squared regression residuals. Therefore, even though

the functions ŵn and w can be arbitrary, one can expect that the 2S-LWS estimator will achieve

a high-breakdown only if w(t) approaches zero as t increases towards 1, at least in the case of

heavy-tailed distributions. Moreover, since 2S-LWS corresponds to LWS for data-independent

weights (e.g., LS correspond to ŵn(t) = w(t) = 1 and LTS to ŵn(t) = w(t) = I(t ≤ c)

for t ∈ 〈0, 1〉 and c ∈ 〈1/2, 1〉), it might also seem that there is asymptotically no difference

between 2S-LWS using weights ŵn → w and LWS using weights w. The crucial distinction

however lies in the fact that the 2S-LWS weight function ŵn can converge to an unknown

function w (e.g., depending on the unknown distribution or density functions of εi), whereas

LWS can be applied only if weight function w is known.

An example of a data-dependent weight function follows from the hard-rejection weights

used for REWLS by Gervini and Yohai (2002), who define them by wi = I{|ri(β̂0
n)/σ̂0

n| < tn}
using tn = min{t : F+

n (t) ≥ 1 − dn}, see (4). Since σ̂0
n is constant for all observations, we can

define the 2S-LWS using REWLS weights (2S-LWS-R) by the weight function

ŵR
n (t) = I(t < 1− dn), (9)

which converges to wR(t) = I(t < 1 − d0). Constant d0 is defined in (5) using distribu-

tion function F+
0 of |εi| under assumption εi ∼ N(0, 1) and dn is the corresponding sample

analogue defined by (5) using empirical distribution function F+
n of |ri(β̂0

n)/σ̂0
n| and σ̂0

n =

[1.4826 ·MADi=1,...,nr2
i (β̂

0
n)]2 (for other possible robust estimates of the residual variance, see
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3 TWO-STEP LEAST WEIGHTED SQUARES

Rousseeuw and Croux, 1993, for instance). Whereas REWLS corresponds to WLS with weights

{wi}n
i=1, the proposed 2S-LWS-R estimator is in fact the LTS estimator (2) with data-dependent

trimming hn = [(1−dn)n] =
∑n

i=1 wi. In other words, given an initial estimate, REWLS elimi-

nates observations with residuals larger than tn from the sample and apply LS to the remaining

data points, whilst 2S-LWS-R just determines the number hn = [dnn] of observations to be

trimmed and lets LTS to choose them endogenously. This feature permits to update or change

the set of trimmed observations in the second step, which can possibly improve quality estima-

tion if the initial fit is poor.

Using the hard-rejection weights, which are either zero or one, might be appropriate if

data come from the normal distribution, but it does not use much information from the initial

robust estimation. In general, the initial estimate of regression residuals {e0
i }n

i=1 allows us

to estimate the cumulative distribution function, quantile function, and probability density

function of squared residuals. This knowledge can be used to define weight functions that

adapt to the data-generating process so that the variance of estimates is as small as possible

for any underlying distribution. In the following paragraphs, we propose three such weighting

schemes.

First, since the estimation is based on the least squares criterion, which leads to efficient

estimates for Gaussian data, we define weights wQ so that the weighted residuals are normally

distributed at the initial estimate β̂0
n. Assuming that (standardized) residuals ri(β), i = 1, . . . , n,

are from the standard normal distribution N(0, 1) at some β ∈ Rp, the squared residuals r2
i (β)

follow the χ2
1 distribution with one degree of freedom. To achieve this for generally distributed

squared residuals r2
i (β) at β, we have to transform them to F−1

χ

[
Gβ

{
r2
i (β)

}]
, where Gβ is the

true distribution of r2
i (β) and Fχ and F−1

χ denote the distribution and quantile functions of

the χ2
1 distribution. Hence, we propose to use for 2S-LWS in (8) the weight function (σ̂0

n is an

initial estimate of residual variance)

ŵQ
n (t) = σ̂0

n

F−1
χ (max{t, bn})

(G0
n)−1 (max{t, bn})

, (10)

where G0
n and

(
G0

n

)−1 are the empirical distribution and quantile functions of squared residuals

r2
i

(
β̂0

n

)
, respectively, that is,

(
G0

n

)−1 (t) = r2
[tn]+1(β̂

0
n) for t ∈ (0, 1), and bn = min{m/n :

r2
[m](β̂

0
n) > 0} is defined and used to avoid dividing by zero. The estimator corresponding to

8



3 TWO-STEP LEAST WEIGHTED SQUARES

a robust variance estimate σ̂0
n = [1.4826 ·MADi=1,...,nr2

i (β̂
0
n)]2 is referred to as 2S-LWS-Q. The

weights ŵQ
n should converge to wQ(t) = σ2F−1

χ (t)/G−1
β0 (t) under suitable regularity conditions

(see Section 5).

The second approach employs the idea that the LS criterion is a finite-sample equivalent of

the expectation of squared regression residuals, Er2
i (β) =

∫
r2
i (β) gβ{r2

i (β)}dxdε, where gβ is the

density function of r2
i (β). Instead of reweighting residuals to make them normally distributed,

we can thus define weights wD so that, at β̂0
n, the expectation of weighted standardized squared

residuals wD
i r2

i (β)/σ2 is equal to 1 = EZ2 if Z ∼ N(0, 1). Denoting the density of the chi-square

distribution χ2
1 by fχ, the identity

Er2
i (β) =

∫
r2
i (β)fχ

{
r2
i (β)

}
dxdε =

∫
r2
i (β)

fχ

{
r2
i (β)

}

gβ{r2
i (β)} gβ{r2

i (β)}dxdε

indicates that the weight function should be defined by

ŵD
n (t) =

fχ

{(
G0

n

)−1 (t)/σ̂0
n

}

ĝ0
n

{
(G0

n)−1 (t)/σ̂0
n

} I
(
ĝ0
n

{(
G0

n

)−1 (t)/σ̂0
n

}
> 0

)
, (11)

where ĝ0
n denotes an estimate of the density function of the initial standardized squared residuals

r2
i (β̂

0
n)/σ̂0

n (most density estimates are nonzero at all sample observations). For ĝ0
n being the

Rosenblatt-Parzen kernel density estimator with the uniform kernel and bandwidth chosen by

Silverman’s rule of thumb (Pagan and Ullah, 1999, Chapter 2), the resulting estimator is denoted

by 2S-LWS-D. The weights ŵD
n should converge to wD(t) = fχ{G−1

β0 (t)/σ2}/gβ0{G−1
β0 (t)/σ2}

on the support of gβ0 under regularity conditions (see Section 5).

The third proposal aims at simplifying weights wD defined in (11), which rely on nonpara-

metric density estimation. For unimodal distributions with relatively light tails, the density

functions fχ and gβ can be approximated by 1 − Fχ and 1 − Gβ in the tails of the respective

distributions. Because at least half of observations cannot be trimmed by an equivariant robust

estimator, the weight function can be defined, for example, by

ŵP
n (t) = min



1,

1− Fχ

{(
G0

n

)−1 (t)/σ̂0
n

}

1− t
I(1 > t > 1/2)



 . (12)

For the initial variance estimate σ̂0
n = [1.4826 ·MADi=1,...,nr2

i (β̂
0
n)]2, the estimator is referred to

9



4 FUNDAMENTAL PROPERTIES OF 2S-LWS

as 2S-LWS-P. The weights ŵP
n should converge to wP (t) = min{1, [1−Fχ{G−1

β0 (t)/σ2}]/(1− t)}
under suitable regularity conditions (see Section 5).

All four proposed weight functions ŵR
n , ŵQ

n , ŵD
n , and ŵP

n allow us to define and compute a

2S-LWS estimate β̂1
n based on an initial estimate β̂0

n. First note that the proposals can be further

combined and developed; for example, one can use an adaptive cut-off point dn determined for

ŵR
n to improve ŵP

n by replacing I(1 > t > 1/2) by I(1 > t ≥ dn) in (12). Next, one can possibly

iterate: compute a 2S-LWS estimate based on β̂1
n and so on. The asymptotic results in Section

5 and Monte Carlo experiments in Section 6 however indicate that benefits of such an iterative

procedure are negligible both asymptotically and in finite samples.

4 Fundamental properties of 2S-LWS

The four weight functions presented in Section 3 describe four weighted two-step robust esti-

mators based on an initial (high-breakdown point) estimator and LWS. An obvious feature of

these estimators is that the weight functions ŵQ
n , ŵD

n , and ŵP
n are positive on the whole support

of regression residuals and they thus do not reject any observations. The weight functions also

do not depend on any auxiliary tuning parameters with the exception of weights ŵD
n depending

on a smoothing parameter and ŵR
n depending to a small extent on constant c, see (11) and (9),

respectively. Nevertheless, the most important properties, which are to be proved here, include

asymptotic equivalence of the objective functions of 2S-LWS and LS for Gaussian data and the

(high) positive breakdown point of the proposed method. The asymptotic distributions of LWS

and 2S-LWS are studied later in Section 5.

One of reasons motivating REWLS and 2S-LWS was the lack of efficiency of many high

breakdown-point estimators in models with Gaussian errors. To explain how 2S-LWS improves

upon this, we show now that the proposed weight functions functions ŵR
n , ŵQ

n , ŵD
n , and ŵP

n

pointwise converge to a constant function on (0, 1) as n → ∞ if εi ∼ N(0, σ2) in (1). Hence

for normal data, the objective function of 2S-LWS becomes asymptotically identical to the

LS criterion. (Note that the following theorem and its proof hold also under more general

Assumption A introduced later in Section 5.)

Theorem 4.1 Assume that (xi, εi)n
i=1 in (1) forms a sequence of independent and identically

distributed random variables, εi ∼ N(0, σ2), and that the initial estimators β̂0
n of regression

10



4 FUNDAMENTAL PROPERTIES OF 2S-LWS

parameters in (1) and σ̂0
n of residual variance σ2 = varεi are consistent, β̂0

n → β0 and σ̂0
n → σ2

in probability as n →∞. Then for all t ∈ (0, 1), it holds that

lim
n→∞ ŵR

n (t) = 1, lim
n→∞ ŵQ

n (t) = 1, lim
n→∞ ŵD

n (t) = 1, and lim
n→∞ ŵP

n (t) = 1.

Another feature of the proposed 2S-LWS estimator is that it either trims only a (small) adap-

tively chosen proportion of observations (2S-LWS-R analogously to REWLS), or alternatively,

it does not trim observations from its objective function at all, just downweights them (2S-

LWS-Q, -D, -P). We have to prove though that this feature does not eliminate or diminish the

robust properties of an initial estimator. Intuitively, the use of strictly positive weights does

not influence the robust properties to a large extent if the weights decrease sufficiently fast with

the degree of outlyingness of an observation. The most slowly decreasing weights here are in

most cases weights ŵQ
n defined in (10), which are indirectly proportional to the value of squared

residuals.

To formulate and prove a result concerning the breakdown properties of 2S-LWS, we have

to introduce a formal definition of the breakdown point. For the sake of simplicity, we consider

independent and identically distributed observations (yi, xi)n
i=1 (the breakdown point under de-

pendence is generally model-specific; see Genton and Lucas, 2003). The finite-sample breakdown

point of an linear-regression estimator β̂n = T{(yi, xi)n
i=1} can be then defined as (Rousseeuw

and Leroy, 1987)

ε∗n(T ) =
1
n

max
m≥0

{
m : max

Im={i1,...,im}
sup

ỹi1
,...,ỹim ;x̃i1

,...,x̃im

∥∥∥T
{

(yi, xi)i∈{1,...,n}\Im
; (ỹi, x̃i)i∈Im

}∥∥∥ < ∞
}

.

In other words, it is the maximum number m of observations that can be replaced by arbitrary

values ỹi, x̃i, i ∈ Im, without making the estimate infinite, that is, completely uninformative and

deterministic under contamination. The asymptotic breakdown point of the estimator T is then

the corresponding limit, ε∗(T ) = limn→∞ ε∗n(T ), providing it exists. Further, the breakdown

point of a scale estimator σ̂n = S{(yi, xi)n
i=1} can be defined analogously with the only change

that the estimates under contamination must be bounded away both from zero and infinity

(in general, the breakdown of an estimator can be generally described as the collapse of the

estimator’s distribution function to a degenerate one; Genton and Lucas, 2003).

Now, we show that the breakdown point of 2S-LWS with weights ŵR
n , ŵQ

n , ŵD
n , and ŵP

n

11



5 ASYMPTOTICS OF 2S-LWS

equals the minimum of the breakdown points of the initial estimators β̂0
n and σ̂0

n.

Theorem 4.2 Let (yi, xi)n
i=1 be a sequence of independent and identically distributed random

vectors, which are almost surely in a general position for n > p. Further, let ε0∗
n be the

finite-sample breakdown point of an initial estimator (β̂0
n, σ̂0

n) of regression parameters and

residual variance with limit ε0∗ = limn→∞ ε0∗
n . Then the finite-sample breakdown points of

the 2S-LWS-R, 2S-LWS-Q, 2S-LWS-D, and 2S-LWS-P estimators are larger than or equal to

min{ε0∗
n , {[(n + 1)/2]− (p + 1)} /n} and tend to ε0∗ asymptotically.

In Theorem 4.2, we limit ourselves only to independent observations so that the intuitive tradi-

tional definition of the breakdown point holds. Under dependence, deriving exact breakdown-

point results is rather complex and might depend on a specific model. See Sakata and White

(2001) and Genton and Lucas (2003), who indicate that the breakdown point ε∗n of an estimator

in cross-sectional regression becomes approximately ε∗n/(1 + L) in time-series models with at

most the Lth lagged variable.

Finally, let us mention that we do not derive here other robust characteristics of 2S-LWS

such as influence function (Hampel et al., 1986) because the first-order asymptotic equivalence

to LWS proved in the following Section 5 indicates that existing results for LTS (Tableman,

1994) and LWS (Mašíček, 2004) apply.

5 Asymptotics of 2S-LWS

In this section, we first introduce the assumptions necessary for proving the main asymptotic

results. Later, the asymptotic distribution of LWS and 2S-LWS is derived and a consistent

estimator of the asymptotic covariance matrix is proposed.

5.1 Assumptions

Let us now introduce some notation and definitions. First, the distribution functions of εi and

ε2
i in model (1) are referred to as F and G, respectively, their density functions are denoted f

and g, provided that they exist, and the corresponding quantile functions are F−1 and G−1,

respectively.

Further, let us introduce the concept of β-mixing, which is central to the distributional

assumptions made here. A sequence of random variables {xi}i∈N is said to be absolutely regular

12



5.1 Assumptions 5 ASYMPTOTICS OF 2S-LWS

(or β-mixing) if

βm = sup
i∈N

E



 sup

B∈σf
i+m

|P (B|σp
i )− P (B)|



 → 0

as m →∞, where σ-algebras σp
i = σ(xi, xi−1, . . .) and σf

i = σ(xi, xi+1, . . .); see Davidson (1994)

for details. Numbers βm,m ∈ N, are called mixing coefficients. For example, a stationary

ARMA process with continuously distributed innovations is absolutely regular (Mokkadem,

1988).

Now, the assumptions necessary to derive the asymptotic normality of LWS concern the

random variables xi and εi in model (1) and weight function w.

Assumption A

A1 Random vectors (xi, εi)i∈N form a weakly stationary absolutely regular sequence with mix-

ing coefficients βm satisfying

mr/(r−2)(log m)2(r−1)/(r−2)βm → 0

as m →∞ for some r > 2 and have finite rth moments. Moreover, let E(xix
>
i ) = Q be a

nonsingular matrix and

n−1/4 max
i=1,...,n

‖xi‖ = Op(1). (13)

A2 Let {εi}i∈N be a sequence of symmetrically and identically distributed random variables

with finite second moments, E(εi) = 0 and var(εi) = σ2, and additionally, let εi and

xi be independent. The distribution function F of εi is absolutely continuous and its

probability density function f is assumed to be bounded and continuously differentiable.

A3 Let w : 〈0, 1〉 → R+
0 be a non-negative, bounded, and left-continuous function that has

a bounded derivative everywhere except for a finite set D = {d1, . . . , dJ} of points of

discontinuity. Thus, w can be decomposed to w = ws + wc, where ws is a step function

and wc is a continuous and differentiable function.

The first part of Assumption A1 formulates standard conditions of the (uniform) central limit

theorem (e.g., Andrews, 1993). For independent and identically distributed (xi, εi), the exis-

tence of finite second moments is sufficient, r = 2. If only consistency is required, the existence

13



5.2 Asymptotic normality 5 ASYMPTOTICS OF 2S-LWS

of first moments of xi is sufficient (see Čížek, 2006). Further, condition (13) is necessary for the

proof of asymptotic normality because of the (possible) discontinuity of the weight function w,

and consequently, of the (2S-)LWS objective function (a nonrandom version of this assumption

was used for the first time by Jurečková, 1984). Apparently, this condition does not affect

random variables with a finite support at all. Čížek (2006, Proposition 1) proves that (13)

holds even for random variables with finite second moments and distribution functions having

polynomial tails. As the existence of finite second moments is implied by Assumption A1, (13)

should not pose a considerable restriction on the explanatory variables. Finally, note that the

assumption of random carriers for all variables is made for the sake of simplicity and the results

apply in the presence of deterministic variables as well.

Assumption A2 presents standard assumptions on the error term εi and its distribution,

although they are more restrictive than necessary for the sake of simplicity. For example, the

existence of finite second moment can be relaxed if only consistency of (2S-)LWS is required.

Furthermore, random variables εi and xi do not have to be independent in general, but similarly

to Gervini and Yohai (2002), εi conditionally on xi has to be symmetrically distributed (see

Čížek, 2006). Symmetry could be relaxed though by replacing a scale statistics used as an

objective function of LTS and LWS by a generalized scale statistics as in Croux et al. (1994)

and Stromberg et al. (2000). On the other hand, existence of a differentiable density f is

necessary and commonly required when the asymptotic behavior of order statistics is analyzed

(Stromberg et al., 2000; Zinde-Walsh, 2002).

Finally, Assumption A3 specifies the most general assumptions on the weight function w

under which results presented in Section 5.2 hold. Note though that some proofs are done only

for stepwise functions w = ws and general proofs are just indicated to avoid lengthy technical

derivations.

5.2 Asymptotic normality

The main asymptotic results concerning LWS, that is, estimator (3) with a fixed deterministic

weight function w, are summarized in the following theorem.

Theorem 5.1 Let Assumption A hold. Then the least weighted squares estimator β̂
(LWS)
n de-

14
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fined by a weight function w is
√

n-consistent and asymptotically normal,

√
n

(
β̂(LWS)

n − β0
) L→ N(0, Vw) (14)

as n →∞, where the asymptotic covariance matrix equals

Vw =
Q−1var

[
x1ε1w

{
G(ε2

1)
}]

Q−1

[∫
εw {G(ε2)} f ′(ε)dε

]2 (15)

provided that the denominator is positive.

Theorem 5.1 specifies the asymptotic distribution of LWS and covers LS and LTS as special

cases for w(t) = 1 and w(t) = I(t ≤ c), respectively, for t ∈ 〈0, 1〉: denoting a =
√

G−1(c),

using integration by parts, and Assumption A2, the denominator of Vw can be expressed as

∫ a

−a
εf ′(ε)dε = [εf(ε)]a−a −

∫ a

−a
f(ε)dε = 2af(a)− [F (a)− F (−a)] , (16)

which equals Cλ in Čížek (2006, Theorem 1) and converges to −1 for c → 1 and a →∞.

On the other hand, the proposed 2S-LWS estimator uses data-dependent weights, which are

by definition random. In all studied cases, the weights are based on estimates of the cumulative

distribution function, quantile function, or density function of regression residuals and thus

converge to specific nonrandom functions, ŵn → w for n → ∞. In the following corollary, we

show that the asymptotic distribution of 2S-LWS using a random weight function ŵn is the

same as the one in Theorem 5.1 for LWS using the weight function w.

Corollary 5.2 Let Assumption A hold for a weight function w and the two-step least weighted

squares estimator β̂
(2S-LWS)
n be defined by a bounded weighting function ŵn based on initial

estimates β̂0
n and σ̂0

n. Further, assume that, in probability, ŵn(t) → w(t) on t ∈ 〈0, 1〉 and

n−α|ŵn(t) − w(t)| → 0 as n → ∞ uniformly on any compact subset of (0, 1), α > 0. Then

the two-step least weighted squares estimator β̂
(2S-LWS)
n is

√
n-consistent and asymptotically

normal,
√

n
(
β̂(2S-LWS)

n − β0
) L→ N(0, Vw), (17)

as n →∞, where the asymptotic covariance matrix Vw is defined in Theorem 5.1, equation (15).

15
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This result shows that the 2S-LWS estimator follows asymptotically normal distribution inde-

pendent of the initial estimate under very general conditions on the initial first-stage estimator:

the weights determined from the initial estimate have to converge at rate n−α for some α > 0.

Let us compare this requirement with known convergence rates in the most typical cases. For

weights based on the empirical distribution function G0
n of squared regression residuals, Gervini

and Yohai (2002) proved for independent and identically distributed data that Gn is uniformly
√

n consistent even if the initial estimator converges only at n−1/4 rate (this conclusion can be

directly extended to autoregressive models using recent results of Engler and Nielsen, 2007).

Since Corollary 5.2 requires uniform convergence only within compact subset of the w domain,

these results also apply if the quantile function of initial squared residuals is used to define ŵn.

Finally, for weights based on the estimated density function ĝ0
n, Einmahl and Mason (2005), for

instance, prove that ĝ0
n is n−1/2h

−1/2
n log hn consistent uniformly on R and in hn, where hn is the

bandwidth used for the kernel density estimation. A simple example of regularity conditions,

under which the weighting schemes ŵR
n , ŵQ

n , ŵD
n , and ŵP

n satisfy assumptions of Corollary 5.2,

is given in the following lemma.

Lemma 5.3 Assume that (xi, εi)n
i=1 forms a sequence of independent and identically distributed

random variables, the distribution function F of εi satisfies Assumption A2 and z2f ′(z) is

bounded. Furthermore, let the initial estimate (β̂0
n, σ̂0

n) be nα-consistent, α ≥ 2/5, and the

kernel density estimate ĝ0
n be defined by a bandwidth hn and a kernel function K such that

hn = O(n−1/4) as n →∞ and K is a differentiable probability density function with a bounded

support. Then

sup
t∈〈a,b〉

∣∣ŵR
n (t)− I(t < 1− d0)

∣∣ = Op

(
n−

1
2

)
,

sup
t∈〈a,b〉

∣∣ŵQ
n (t)− σ2F−1

χ (t)/G−1(t)
∣∣ = Op

(
n−

1
2

)
,

sup
t∈〈a,b〉

∣∣∣∣ŵD
n (t)− fχ

{
G−1(t)

σ2

}
/g

{
G−1(t)

σ2

}∣∣∣∣ = Op

(
n−

1
2 h−1

n

)
,

sup
t∈〈a,b〉

∣∣∣∣ŵP
n (t)−min

{
1,

1− Fχ[G−1(t)/σ2]
1− t

}∣∣∣∣ = Op

(
n−

1
2

)

for any 0 < a < b < 1 as n →∞, where σ2 = varεi.
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Next, to highlight the difference between the existing REWLS and proposed 2S-LWS estima-

tors, let us now compare the asymptotic variances of the two estimators for the hard-rejection

weights and independent and identically distributed data. Specifically, we compare REWLS

with weights w1(t) = I(t < t0) as used in Gervini and Yohai (2002), see (4), and 2S-LWS-R

with equivalently defined weights w2(t) = I{G(t2) < d0}, see (9). Assuming that the initial

estimator β̂0
n is

√
n consistent and admits asymptotic linear expansion

β̂0
n − β0 =

Γn

n

n∑

i=1

ψ
(εi

σ

)
xi + op

(
n−

1
2

)

for a positive definite matrix Γn → Γ as n → ∞, the asymptotic distribution of REWLS is

known and its variance matrix equals

V (REWLS) =
Q−1

π2
1

var
{

w1(|εi|)εi +
τ1

σ
ψ(εi)Γ

}
(18)

(Gervini and Yohai, 2002, Theorem 4.1), where

πk =
∫

wk(|ε|)f(ε)dε, τk = πk +
∫

εwk(|ε|)f ′(ε)dε.

On the other hand, Theorem 5.1 indicates that the asymptotic variance matrix of 2S-LWS-R

equals

V (2S-LWS-R) =
Q−1

(π2 − τ2)2
var

{
w2(ε2

i )εi

}
. (19)

Using (16), we can express

πk = F (t0)− F (−t0), τk = 2t0f(t0).

Hence for Gaussian data, weighting functions are constant (t0 = ∞ by Theorem 4.1), πk = 1

and τk = 0, and variances of both methods are equal, V (REWLS) = V (2S-LWS-R).

However, if trimming takes place (e.g., for a heavy-tailed F and G), πk < 1, τk > 0, and

the asymptotic variance of REWLS depends on the the initial estimator by means of terms

ψ(εi) and Γ in (18). In comparison, the variance (19) of 2S-LWS-R stays independent of the

initial estimator (this holds even if the initial estimator is not
√

n consistent). Nevertheless, the

asymptotic variance of both estimators is growing as the amount of trimming increases and t0

17
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decreases because πk is increasing, τk decreasing, and πk − τk increasing in t0. Obviously as t0

decreases, the denominator (π2 − τ2)−2 in variance (19) of 2S-LWS-R increases faster than the

denominator π−2
2 in variance (18) of REWLS, but this advantage of REWLS is eliminated by

the already mentioned second term in variance (18) coming from the initial estimator. Exact

comparison thus depends on the initial estimator and underlying data distribution; asymptotic

and finite-sample results for various error distributions are presented in Section 6.

Finally, to make the results of Theorem 5.1 and Corollary 5.2 practically applicable, we

propose now a consistent and computationally feasible estimator of Vw.

Theorem 5.4 Let Assumption A hold and decomposition w = ws + wc be such that ws(1) = 0.

Further, let ein denote the regression residual ri(β̂n) at the LWS or 2S-LWS estimate, CV =

var
[
x1ε1w

{
G(ε2

1)
}]
, and CI = − ∫

εw
{
G(ε2)

}
f ′(ε)dε 6= 0. Finally, let q̂2

jn = e2
[djn] be the

djth empirical quantile of {e2
in}n

i=1 for j = 1, . . ., J and denote dJ+1 = 1. The estimator

V̂wn = Q̂−1
n ĈV nQ̂−1

n /Ĉ2
In is weakly consistent for the asymptotic covariance matrix Vw of β̂n,

V̂wn → Vw in probability as n →∞, where

• Q̂n =
∑n

i=1 xix
>
i /n,

• ĈV n =
∑n

i=1 x2
i e

2
inw2

[
Ĝn(e2

in)− 1
2n

]
/n,

• ĈIn = Ĉs
In + Ĉc

In with

Ĉs
In =

J∑

j=1

{ws(dj)− ws(dj+1)}
{
dj − 2q̂2

jng(q̂2
jn)

}
(20)

and

Ĉc
In =

1
n

n∑

i=1

wc

{
Ĝn(e2

in)− 1
2n

}
+

2
n

n∑

i=1

e2
inw

′
c

{
Ĝn(e2

in)− 1
2n

}
ĝn(e2

in), (21)

• Ĝn denotes a uniformly consistent estimator of the distribution function G,

• and ĝn is a uniformly consistent estimator of the density function g.

Theorem 5.4 does not specify what estimates Ĝn and ĝn of the distribution and density functions

of squared regression residuals should be used. There is however a wide range of estimation

methods available: for example, Ĝn can be a standard or smoothed empirical distribution

function (Fernholz, 1997); similarly, ĝn can be represented by a kernel density estimator (see
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Pagan and Ullah, 1999, Chapter 2, for an overview). Further, let us note that CI and both

terms (20) and (21) are positive in usual situations. For example for unimodal symmetric

distributions, f ′(ε) is an asymmetric function, εf ′(ε) < 0 is a symmetric function, and w(t) ≥ 0

implies CI > 0 (see Assumptions A2 and A3). Similarly, Čížek (2006) proved that (16) and

its empirical counterpart (20) are positive for unimodal distributions. Term (21) is positive for

non-increasing weight functions w, for instance.

6 Finite-sample properties

In this section, we present a Monte Carlo study done to assess finite-sample behavior of the

proposed 2S-LWS estimators and to compare it with existing methods. The influence of some

initial estimators on REWLS and 2S-LWS are discussed as well. First, the relative efficiency

of all methods is examined at various sample sizes and error distributions for cross-sectional

data (Section 6.1). Later, we study all estimators under heteroscedasticity, errors from finite-

mixtures, and data contamination by outliers as well (Section 6.2). In these simulation ex-

periments, we compare all four proposed variants of 2S-LWS with relevant existing estimators:

standard MLE and LS; robust LMS, LTS, and S estimators set up for the maximum possi-

ble breakdown point (i.e., LTS with the trimming constant h = [n/2] + [(p + 1)/2] and the S

estimator with Tukey’s biweight function and c = 1.547; see Rousseeuw and Leroy, 1987, for

details); RDL1, a robustly weighted L1 estimator by Hubert and Rousseeuw (1997), designed

for models with binary covariates, which also does not fully downweight any observation; and

data-adaptive robust REWLS with hard-rejection weights (4) using c = 2.5 in (5), see Gervini

and Yohai (2002) for details. Unless stated otherwise, all adaptive estimators use for the initial

robust fit the described S estimator.

6.1 Finite-sample efficiency

The relative efficiency of an estimator T can be defined as the ratio of the mean squared

errors (MSE) of the asymptotically efficient MLE and the respective estimator T . Having

an experiment consisting of S simulated samples of size n, we thus have to obtain S MLE

estimates β̂
(MLE,s)
n and S estimates β̂

(T,s)
n , s = 1, . . ., S. The relative mean squared efficiency is
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Table 1: Relative MSE efficiencies for normal errors, εi ∼ N(0, 1).
Estimation Sample size n
method 25 50 100 200 400 ∞
LS 1.00 1.00 1.00 1.00 1.00 1.00
LMS 0.21 0.18 0.16 0.14 0.11 0.00
LTS 0.22 0.19 0.15 0.12 0.10 0.07
S 0.35 0.29 0.24 0.23 0.22 0.28
RDL1 0.42 0.50 0.50 0.57 0.57 —

REWLS 0.46 0.63 0.76 0.90 0.91 1.00
2S-LWS-R 0.49 0.65 0.80 0.92 0.92 1.00
2S-LWS-Q 0.74 0.84 0.92 0.97 0.98 1.00
2S-LWS-D 0.45 0.56 0.67 0.85 0.84 1.00
2S-LWS-P 0.44 0.57 0.73 0.88 0.89 1.00

then defined by

Eff =

∑S
s=1

∥∥∥β̂
(MLE,s)
n − β0

∥∥∥
2

∑S
s=1

∥∥∥β̂
(T,s)
n − β0

∥∥∥
2 .

Note that, in this section, the simulated results are complemented by the asymptotic relative

efficiencies if they are known and independent of other factors (e.g., the variance of initial

estimate).

We evaluate the relative efficiency for the regression model

yi = 0.5 + x1i − 2x2i + εi, (22)

where x1i, x2i ∼ N(0, 1) and (x1i, x2i, εi)n
i=1 forms a sequence of independent random vectors.

The considered error distributions are the standard normal εi ∼ N(0, 1), double exponential

εi ∼ DExp(1), and Student εi ∼ t(5) distributions, which are further referred to as NORM,

DEXP, and STD(5), respectively, and cover distribution functions with both exponential and

polynomial tails. Results for sample sizes from n = 25 to 400 are based on 500 simulated

samples.

First, let us compare the behavior of all methods for the linear regression model NORM using

results in Table 1. The initial robust estimators, LMS, LTS, and S, exhibit common behavior

characterized by a low relative efficiency, which is decreasing with the sample size. Only the

relative efficiency of RDL1, which does not fully downweight any observation, increases slightly

as the sample size grows. On the other hand, the relative efficiency of the adaptive robust

estimators, REWLS and 2S-LWS, significantly increases with the sample size and converges to
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Table 2: Relative MSE efficiencies for normal errors, εi ∼ N(0, 1), as a function of an initial
estimator.

Initial Adaptive Sample size n
estimator estimator 25 50 100 200 400 ∞
LMS REWLS 0.28 0.47 0.68 0.74 0.83 1.00

2S-LWS-Q 0.71 0.82 0.94 0.92 0.97 1.00

LTS REWLS 0.37 0.56 0.74 0.79 0.85 1.00
2S-LWS-Q 0.69 0.81 0.93 0.95 0.99 1.00

S REWLS 0.43 0.62 0.77 0.88 0.90 1.00
2S-LWS-Q 0.70 0.82 0.94 0.96 0.99 1.00

1 (asymptotically by Theorem 4.1). The relative efficiency of 2S-LWS-R, which uses the same

hard-rejection weights as REWLS, is a bit better than REWLS at all sample sizes: the relative

efficiencies grow from (0.63, 0.65) at n = 50 to (0.90, 0.92) at n = 400. The performance of

2S-LWS-D and 2S-LWS-P, which heavily downweight observations with large residuals similarly

to 2S-LWS-R, but rely on estimated weights, is slightly worse than that of REWLS and 2S-

LWS-R. On the contrary, 2S-LWS-Q achieves a high relative efficiency 0.84 already at rather

small sample sizes n = 50 and performs almost as well as LS (MLE) at n = 200 and n = 400.

Thus, 2S-LWS-Q is superior to all other robust methods in model NORM.

An additional note concerns the choice of an initial estimation method for REWLS and 2S-

LWS. Both methods rely on an initial robust estimator such as LMS, LTS, and S. For Gaussian

data, the initial estimate does not influence the variance of REWLS estimates asymptotically,

but the (asymptotic) distribution of REWLS depends on the initial estimate if trimming takes

place (Gervini and Yohai, 2002). On the other hand, the (asymptotic) distribution 2S-LWS does

not depend on the initial estimate irrespective of the underlying distribution and the amount of

trimming. In finite samples, the sensitivity of both methods to the choice of an initial estimator

is documented in Table 2 for REWLS and 2S-LWS-Q. Obviously, the dependence on the initial

estimator is practically negligible in the case of the proposed 2S-LWS method at all sample

sizes. On the other hand, REWLS results significantly differ for various initial estimators,

although the differences tend to get smaller as the sample size increases; this is consistent with

the simulation results of Gervini and Yohai (2002).

Before discussing other simulation experiments, we indicate here by an example how quickly

the standard deviations of the 2S-LWS-Q regression estimates, obtained in simulations from

(22), converge to their asymptotic values given in Theorem 5.1. Table 3 summarizes the simu-
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Table 3: Finite-sample and asymptotic variances of 2S-LWS-Q estimates.
Standard deviations Sample size

Parameter 25 50 100 200 400
Intercept 0.252 0.152 0.103 0.080 0.053
Slope x1 0.253 0.168 0.110 0.070 0.053
Slope x2 0.263 0.157 0.112 0.074 0.050

Asymptotic 0.200 0.141 0.100 0.070 0.050

Table 4: Relative MSE efficiencies for Student errors, εi ∼ t(5).
Estimation Sample size n
method 25 50 100 200 400 ∞
LS 0.85 0.83 0.80 0.80 0.78 0.80
LMS 0.25 0.24 0.23 0.20 0.17 0.00
LTS 0.27 0.24 0.22 0.19 0.16 0.14
S 0.42 0.39 0.38 0.33 0.30 0.40
RDL1 0.52 0.57 0.62 0.65 0.63 —

REWLS 0.55 0.71 0.86 0.89 0.91 —
2S-LWS-R 0.57 0.76 0.86 0.88 0.88 0.90
2S-LWS-Q 0.80 0.90 0.96 0.98 0.98 0.98
2S-LWS-D 0.53 0.66 0.82 0.83 0.87 0.97
2S-LWS-P 0.54 0.69 0.83 0.88 0.95 0.97

lated and asymptotic results; note that the asymptotic variances of all regression parameters are

equal due to the design of model NORM. Even though the asymptotic variance underestimates

the true variance as expected, it seems that the error of the asymptotic approximation does not

exceed 10–12% from sample sizes n = 100 on and (15) can be thus reasonably used for such

samples.

Next, Table 4 summarizes the simulation results for model STD(5). The performance of all

initial robust estimators, LMS, LTS, S, and RDL1, mirrors the behavior in model NORM apart

from the fact that the relative efficiencies are slightly higher at all sample sizes. Moreover, LS is

now not efficient anymore (its relative efficiency decreases from 0.85 to 0.80), but its performance

is significantly better than that of LMS. On the contrary, the relative efficiency of all adaptive

robust estimators grows with an increasing sample size. Similarly to model NORM, relative

efficiency for most adaptive methods is relatively low at small samples, for example around 0.7

at n = 50, but reaches levels around or above 0.90 at larger samples. The method 2S-LWS-Q

proves again to be superior to the other ones since it reaches relative efficiency 0.90 already

at n = 50 and further 0.98 at n = 400, being very close to the performance of MLE and

outperforming LS at all samples of 50 or more observations.

22
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Table 5: Relative MSE efficiencies for double exponential errors, εi ∼ DExp(1).
Estimation Sample size n
method 25 50 100 200 400 ∞
LS 0.88 0.73 0.65 0.63 0.56 0.50
LMS 0.35 0.36 0.33 0.27 0.22 0.00
LTS 0.40 0.40 0.40 0.38 0.38 0.35
S 0.58 0.58 0.59 0.55 0.41 0.60
RDL1 0.65 0.77 0.83 0.83 0.82 —

REWLS 0.70 0.81 0.87 0.85 0.73 —
2S-LWS-R 0.69 0.79 0.78 0.77 0.67 0.55
2S-LWS-Q 0.99 1.03 1.01 1.00 0.90 0.76
2S-LWS-D 0.70 0.82 0.84 0.85 0.75 0.63
2S-LWS-P 0.69 0.85 0.90 0.92 0.82 0.70

Finally, we discuss simulation results from model DEXP that are found in Table 5. The

most initial (robust) estimators perform similarly as in models NORM and STD(5). The main

differences are that the relatively efficiency of RDL1 now reaches efficiency levels above 0.8

(which is not surprising given that it is based on the weighted least absolute deviation esti-

mator) and that the relative efficiency of LS drops down to 0.56 at larger samples. Contrary

to previous simulations, the adaptive methods seem to exhibit relative efficiency above 0.7,

which more or less constant or slowly decreasing as n changes from 100 to 400 observations.

Additionally, 2S-LWS-P (and partially also 2S-LWS-D) is now preferable to REWLS, which

in turn outperforms 2S-LWS-R. The 2S-LWS-Q performs again better than all other methods,

with relative efficiencies being above 0.90 all the time and reaching 1.00 at samples with 50 to

200 observations.

Altogether, the only method that achieves in all models relative efficiency above 0.90, at

least at larger samples, was the proposed 2S-LWS-Q estimator.

6.2 Behavior for contaminated data

To learn more about finite-sample behavior of the discussed estimators in the presence of het-

eroscedasticity, outliers, and so on, we again employ model (22) under various distributional

schemes and compare different estimators by means of their mean squared errors: MSE =

1
S

∑S
s=1

∥∥∥β̂
(T,s)
n − β0

∥∥∥ , where β̂
(T,s)
n , s = 1, . . ., S, are the estimates for S simulated samples. We

use following data generating processes, where x1i, x2i ∼ N(0, 1) unless stated otherwise:

NORM: Clean Gaussian data for the reference purpose, εi ∼ N(0, 1).
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Table 6: Mean squared errors of all methods in various cross-sectional regression models, n =
100.

Estimation method
Model LS S REWLS 2S-LWS

R Q D P
NORM 0.032 0.114 0.041 0.040 0.034 0.045 0.042
STD(3) 0.098 0.118 0.054 0.056 0.050 0.056 0.056
MIX 0.096 0.770 0.132 0.134 0.089 0.164 0.214
HET 0.441 0.122 0.090 0.100 0.064 0.90 0.92

OUT(0.10) 2.554 0.112 0.040 0.040 0.042 0.045 0.047
LOUT(0.10,4) 2.756 0.108 0.046 0.046 0.052 0.052 0.053
OUT(0.25) 6.840 0.092 0.045 0.044 0.050 0.055 0.049
LOUT(0.25,6) 3.543 0.101 0.062 0.063 0.088 0.091 0.069
OUT(0.40) 9.986 0.102 0.064 0.064 0.069 0.103 0.062
LOUT(0.40,8) 4.883 0.152 0.119 0.120 0.212 0.190 0.120

STD(d): Data with errors from a heavy-tailed distribution, εi ∼ t(d), where t(d) denotes the

Student distribution with d degrees of freedom.

MIX: Clean data, where the error term comes from a symmetric mixture of normal distribu-

tions, εi ∼ 0.6N(0, 1) + 0.2N(−2.5, 0.25) + 0.2N(2.5, 0.25).

HET: Data with heteroscedasticity of a known form, εi ∼ N(0, e2x1).

OUT(a): Data contaminated by [an] (vertical) outliers, εi ∼ (1− a)N(0, 1) + aU(−50, 50).

LOUT(a,l): Data contaminated by outliers in a leverage position, where a fraction a of obser-

vations satisfies x1i, x2i ∼ N(0, 1) and εi ∼ N(0, 1) and the complementary fraction 1− a

of observations follows x1i, x2i ∼ N(l, 1) and εi ∼ U(−50, 50).

All simulations in this section are done for sample size n = 100 and 500 simulated samples.

The adaptive estimators are based on an initial S estimate in all cases.

Let us now discuss simulation results summarized in Table 6. The results for models NORM

and STD(3) resemble those in Section 6.1: the adaptive methods, REWLS and 2S-LWS, per-

form well both for light-tailed and heavy-tailed data, with 2S-LWS-Q being the best one. In

comparison, LS is preferable in model NORM, but worse than REWLS and 2S-LWS in model

STD(3).

To examine the performance of all methods in less standard situations, where the error

distribution is not unimodal, model MIX is included. In general, the initial S estimator performs

poorly here (the same holds for unreported LMS and LTS). Contrary to the previous simulations,
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7 CONCLUSION

REWLS and 2S-LWS-R perform now significantly better than 2S-LWS-D and 2S-LWS-P, where

the last one is the worst one. This is caused by the fact that the density function g(z) of the

squared errors is not monotonically decreasing for z →∞ as the weighting scheme of 2S-LWS-P

assumes. The best methods is again 2S-LWS-Q, which outperforms both robust methods and

LS.

A similar experiment involves estimation under heteroscedasticity, see model HET, without

actually knowing and modeling heteroscedasticity. In this case, LS becomes inferior to all

(adaptive) robust methods. As in previous simulations, REWLS and 2S-LWS-D/P estimate

equally well and 2S-LWS-Q outperforms by far all other methods.

Finally, simulations with data contaminated by outliers are carried out, see models OUT(0.10)

to LOUT(0.40,8). Although an increasing amount of contamination has an adverse effect on all

estimation methods, LS is affected to such an extent that the estimates are useless. All robust

estimators keep their MSE relatively small even under extreme levels of contamination. In all

cases, adaptive robust methods provide best and most stable estimates. There are however dif-

ferences among weighting schemes. The best performing methods are REWLS and 2S-LWS-R

that assign weight zero to outlying observations. The two methods are closely matched by 2S-

LWS-P, which uses weights decreasing very fast with the absolute value of regression residuals.

On the other hand, 2S-LWS-D and especially 2S-LWS-Q, which downweights outlying obser-

vations as little as possible, exhibit a larger bias and MSE, in particular in models LOUT(·, ·)
containing leverage points. Nevertheless, 2S-LWS-Q is still preferable to the S estimators except

for model LOUT(0.40,8).

To conclude, the 2S-LWS-Q estimator is preferable or at least comparable both to LS and

other robust methods under most distributional models. Due to its no-rejection feature, it

is more sensitive to data contamination than REWLS, for instance, but the difference is not

pronounced unless the contamination level is very high. If this is a concern, REWLS or 2S-

LWS-R can be employed.

7 Conclusion

In this paper, a new class of robust estimation methods is introduced, which offers not only

robustness in terms of a high breakdown point, but also asymptotic efficiency for Gaussian data

and high relative efficiency under many other distributional models both asymptotically and
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in finite samples. This is especially the case of the 2S-LWS-Q method. Its only weak point is

higher sensitivity (bias) in data with a large proportion of outlying leverage points, in which

case REWLS or the proposed 2S-LWS-R estimator form a reasonable alternative.

Although the methods are proposed and discussed in the context of (homoscedastic) linear

regression, many extensions are straightforward. This does not only include regression under

heteroscedasticity, but also instrumental variable estimation proposed for LWS by Víšek (2006),

nonlinear regression using results of Čížek (2006), or maximum likelihood estimation (Čížek,

2007) as long as the response variable is continuous.

A Proofs of the fundamental properties

Proof of Theorem 4.1: Let us consider an arbitrary t ∈ (0, 1) and z ∈ R. We will first establish

consistency of various statistics in (10)–(12) for n →∞; the result for the weight function ŵR
n

defined in (9) is derived in Gervini and Yohai (2002, Lemma 4.1).

By assumptions of the theorem, β̂0
n → β0 and σ̂0

n → σ. Hence, residuals ri(β̂0
n) → ri(β0) ≡ εi

in probability as n → ∞. Further, r2
[tn](β) = G−1

n (t) → G−1
β (t) uniformly in probability over

some neighborhood U(β0, δ), δ > 0, (Čížek, 2004, Lemma A.2), where Gβ and G−1
β are the

distribution and quantile functions of r2
i (β). Finally, the Rozenblatt-Parzen estimator ĝ0

n of

gβ in (11) is uniformly consistent on R, supz∈R
∣∣ĝ0

n(z)− gβ(z)
∣∣ → 0 in probability as n → ∞

(Castellana and Leadbetter, 1986).

For the weight function ŵQ
n (t), the assumption εi ∼ N(0, σ) then implies that G−1

n (t)/σ̂0
n =

r2
[tn](β)/σ̂0

n → F−1
χ (t) in probability. Consequently, ŵQ

n (t) → 1 in probability as n →∞.

For the weight function ŵD
n (t), the uniform consistency of ĝn and the result G−1

n (t)/σ̂0
n →

F−1
χ (t) imply that ĝn

{
G−1

n (t)/σ̂0
n

} → fχ

{
F−1

χ (t)
}

> 0 in probability. Hence, ŵD
n (t) → 1 in

probability as n →∞.

Finally, using once again G−1
n (t)/σ̂0

n → F−1
χ (t), the continuity of Fχ results in Fχ

{
G−1

n (t)/σ̂0
n

} →
t and ŵP

n (t) → 1 in probability as n →∞. ¤

Proof of Theorem 4.2: For a given sample {yi, xi}n
i=1 of size n, let ε∗n = min{ε0∗

n , {[(n +

1)/2] − (p + 1)}/n}. Further, assume that the breakdown point of any proposed 2S-LWS

is smaller than ε∗n, that is, there exist m ≤ nε∗n, an index set Im of size m, and sequences

of points {ỹs
i , x̃

s
i}s∈N, i ∈ Im, such that 2S-LWS estimators β̂s

n applied to samples Cs
m =
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{yi, xi}i∈{1,...,n}\Im
∪ {ỹs

i , x̃
s
i}i∈Im diverge,

∥∥∥β̂s
n

∥∥∥ → ∞ as s → ∞. The rest of the proof is

done for weighting schemes with strictly positive weights because the result for ŵR
n follows from

Gervini and Yohai (2000, Theorem 3.3) and Rousseeuw and Leroy (1987).

Since the data are almost surely in a general position and there is at least p + 1 unmodified

points (otherwise ε∗n = 0 and the theorem holds trivially), we can find for any β̂s
n an observation

(yj , xj) such that x>j β̂s
n 6= 0. Since there is only a finite number of observations, we can

assume without loss of generality that this index j of the observation (yj , xj) is common to

all β̂s
n, s ∈ N. Since

∥∥∥β̂s
n

∥∥∥ → ∞,
∣∣∣x>j β̂s

n

∣∣∣ cannot be bounded for s ∈ N unless there is a

decomposition β̂s
n = β̂s,h

n + β̂s,r
n such that lims→∞ x>j β̂s,h

n = 0 and
∥∥∥β̂s,r

n

∥∥∥ is bounded for s ∈ N.
In such a case, x> limn→∞ β̂s,h

n = 0 defines a hyperplane, and by the same argument as above,

we can find another point (y
′
j , x

′
j) such that x

′
j does not belong to this hyperplane anymore,

(
x
′
j

)>
limn→∞ β̂s,h

n 6= 0. Hence,
∥∥∥β̂s

n

∥∥∥ →∞ implies that
∣∣∣x>j β̂s

n

∣∣∣ and
∣∣∣r2

j

(
β̂s

n

)∣∣∣ diverge as s →∞
for some j ∈ {1, . . . , n}\Im.

We will use this consequence to prove that some β̂s
n cannot correspond to 2S-LWS estimates,

which results in contradiction. First, the initial robust estimator has a breakdown point equal to

or higher than m/n and the corresponding initial estimates (β̂0,s
n , σ̂0,s

n ), s ∈ N, based on samples

Cs
m are thus bounded: there is some K > 0 such that maxs∈N

{∥∥∥β̂0,s
n

∥∥∥ ,
∣∣∣σ̂0,s

n

∣∣∣ , 1/
∣∣∣σ̂0,s

n

∣∣∣
}

< K.

Consequently, the residuals yi − β̂0,s
n xi are bounded as well, r2

i (β̂
0,s
n ) < Kr, for all s ∈ N and

i ∈ {1, . . ., n}\Im.

Moreover, as the sample size n is fixed, the weights assigned to the jth observation by

weighting functions ŵQ
n , ŵD

n , and ŵP
n defined in (10), (11), and (12), respectively, are bounded

both from above and below. This is a consequence of the following observations: (i) (G0
n)−1(t)

corresponds to r2
[tn]

(
β̂0,s

n

)
, which is bounded by Kr at least for t ≤ 1−ε∗n; (ii) 1/K ≤ ∣∣σ̂0

n

∣∣ ≤ K;

(iii) 1/(2n) ≤ t ≤ 1− 1/(2n); and finally, ĝ0
n

{
(G0

n)−1(t)
}

> 1/(1.06n4/5)K(0), where K denotes

a kernel function (which is uniform in our case). Therefore, we can find δw > 0 such that the

weight assigned to the observation (yj , xj) is bounded by δw from below and by 1/δw from

above:

δw < min
{
ŵQ

n (tj), ŵD
n (tj), ŵP

n (tj), 1/ŵQ
n (tj), 1/ŵD

n (tj), 1/ŵP
n (tj)

}
,

where tj = Gn

{
r2
j

(
β̂0,s

n

)}
− 1

2n . An important consequence of this result is that the weighted

residual w
{

r2
j

(
β̂s

n

)}
r2
j

(
β̂s

n

)
> δwr2

j

(
β̂s

n

)
→∞ diverges for s →∞ and the same then applies
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to the objective function (3) of any considered 2S-LWS estimator.

On the other hand, we can evaluate the 2S-LWS objective function at β̂0,s
n . Consider a

squared residual r2 = (yi−x>i β̂0,s
n )2 corresponding to an arbitrary observation from any modified

sample Cs
m and the respective initial estimate β̂0,s

n ; i = 1, . . . , n and s ∈ N. Further, let us take
t = Gn(r2) − 1

2n ∈ 〈
1
2n , 1− 1

2n

〉
, which is valid irrespective of the actual sample Cs

m. Then

it holds for the weighted regression residual w(t)r2 using any of the three proposed weight

functions (10), (11), and (12) that

ŵQ
n (t)r2 ≤ K

F−1
χ

(
1− 1

2n

)

r2
I(r2 > 0)r2 ≤ KF−1

χ

(
1− 1

2n

)
,

ŵD
n (t)r2 ≤ fχ

(
Kr2

)

(1.06n4/5)K(0)
r2 ≤ fχ

(
Kr2

)
r2 =

e−Kr2/2(Kr2)−1/2

√
2Γ(1

2)
r2,

ŵP
n (t)r2 ≤ 1− Fχ

(
Kr2

)

1/(2n)
r2 ≤ {

1− Fχ

(
Kr2

)} 4n

K

Kr2

2
≤ 4n

K

∫ +∞

1
2
Kr2

t−1/2e−tdt,

by the definition of fχ and Fχ. Hence, the weighted residuals at β̂0,s
n in the 2S-LWS objective

function can be bounded by some Kw > 0 uniformly in r ∈ R and s ∈ N (n is fixed).

Therefore, the 2S-LWS objective function at β̂0,s
n is bounded by nKw for all s ∈ N, but at

the same time, this objective function at β̂s
n exceeds nKw for some sufficiently large s. This

contradicts the assumption that β̂s
n is an 2S-LWS estimate for Cs

m. Consequently, the breakdown

point of 2S-LWS must be at least ε∗n, and asymptotically, limn→∞ ε∗n = min{ε0∗, 1/2} = ε0∗,

which concludes the proof. ¤

B Proofs of asymptotic properties

Proof of Theorem 5.1: In linear regression models, this result is derived for a general weight

function in Mašíček (2004) under more restrictive conditions such as explanatory variables being

independent and identically distributed on a bounded support. Here we prove this theorem

under more general conditions A1 to A3, but we limit ourselves only to step functions w = ws

to avoid lengthy technical derivations by using the (non)linear-regression results of Čížek (2006).

Thus, this proof assumes that the weight function w is a left-continuous step function with steps

at points D = {d1, . . . , dJ} in interval (0, 1) (Assumption A3) and possibly at dJ+1 = 1.
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First of all, the objective function of LWS,

S(LWS)
n (w; β) =

n∑

i=1

r2
i (β)w

[
Gn

{
r2
i (β)

}− 1
2n

]

=
J∑

j=1

{w(dj)− w(dj+1)}
[

n∑

i=1

r2
i (β)I

(
r2
i (β) ≤ r2

[djn](β)
)]

(23)

+ w(dJ+1)
n∑

i=1

r2
i (β), (24)

is actually a weighted sum of the objective functions of some LTS estimators; the sums in

the square brackets of (23) are equivalent to the LTS objective functions (2) with trimming

constants h = [djn] (Čížek, 2006). Therefore, we can now employ the existing asymptotic

results for LTS by applying them to every element of sum (23). In this context, note that

Assumption A covers all the assumptions relevant for the linear regression model used by Čížek

(2006) except for the identification assumption that is verified below.

Next, the LWS estimator, minimizing its objective function S
(LWS)
n (w;β), can be also ob-

tained from the normal equations ∂S
(LWS)
n (w; β)/∂β = 0. Using expansion (23), Čížek (2006,

Lemma 1) implies that the normal equations can almost surely be expressed as

∂S
(LWS)
n (w;β)

∂β
=

n∑

i=1

ri(β)xiw

[
Gn

{
r2
i (β)

}− 1
2n

]
= 0. (25)

The second derivative of the objective function ∂2S
(LWS)
n (w; β)/∂β∂β> can be analogously

expressed as
∂2S

(LWS)
n (w;β)
∂β∂β>

=
n∑

i=1

xix
>
i w

[
Gn

{
r2
i (β)

}− 1
2n

]
.

Moreover, Assumption A allows us to use the result of Čížek (2006, Lemma 3), which implies

uniformly in β (over any compact subset of Rp) that

1
n

∂S
(LWS)
n (w; β)

∂β
→ E

{
ri(β)xiw

[
Gβ

{
r2
i (β)

}]}
= S′(β) (26)

and

Qn(β) =
1
n

n∑

i=1

xix
>
i w

[
Gn

{
r2
i (β)

}− 1
2n

]
→ E

{
xix

>
i w

[
Gβ

{
r2
i (β)

}]}
= Q(β)
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in probability for n → ∞, where Gβ denotes the distribution function of r2
i (β). The matrix

Q(β) is a positive semidefinite matrix, and at β0, the matrix Q(β0) = Q is a nonsingular

positive definite matrix (Assumption A1), which guarantees that the identification assumption

of Čížek (2006) is satisfied. (Note that a general proof of the identification conditions under

trimming without using derivatives of the objective function is given in Čížek, 2007.) Due to

the continuity of Q(β) at β0 and the uniform convergence of Qn(β) to Q(β), it is possible to

find some n0 ∈ N such that the matrix Qn(β) is positive definite in a neighborhood of β0 (and

positive semidefinite elsewhere) with a probability greater than 1− ε for any ε > 0 and n > n0.

For a sufficiently large n, we will now show that there is a solution to the normal equations

(25) in an arbitrarily small neighborhood of β0. Because S′(β0) = 0, see (26) and Assumption

A2, and Qn(β) is positive definite around β0 and positive semidefinite elsewhere, this solu-

tion is unique (with an arbitrarily high probability) and equals the LWS estimate minimizing

S
(LWS)
n (w;β). To find the solution of (25), the asymptotic linearity of LTS is employed in a

neighborhood U(β0, n−
1
2 M) of β0, where M > 0. To characterize β ∈ U(β0, n−

1
2 M), one can

express it as β = β0 − n−
1
2 t for t ∈ TM = {t : ‖t‖ ≤ M}. Thus, using the asymptotic linearity

theorem for LTS (Čížek, 2006; Theorem 1) and the expansion (23)–(24) of the LWS objective

function, we can write that

∂S
(LWS)
n (w; β0 − n−

1
2 t)

∂β
=

∂S
(LWS)
n (w; β0)

∂β
− n

1
2 Qt · C(w) + op(1) (27)

uniformly for all t ∈ TM and M > 0, where

C(w) =
J∑

j=1

{w(dj)− w(dj+1)} {dj − 2qjf (qj)}+ w(dJ+1) (28)

and notation qj =
√

G−1(dj) is used for j = 1, . . . , J .

Thus, we have to show that, with an arbitrarily high probability, there is a t∗n ∈ TM such

that β0 − n−
1
2 t∗n solves the normal equations ∂S

(LWS)
n (w; β0 − n−

1
2 t∗n)/∂β = 0. At such a

solution t∗n, equation (27) implies

∂S
(LWS)
n (w; β0)

∂β
= n

1
2 QC(w) · t∗n + op(1) (29)
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and, recalling that Q is a nonsingular matrix and C(w) 6= 0 (see (32)–(33)),

t∗n = Q−1C(w)−1 · 1√
n

∂S
(LWS)
n (w;β0)

∂β
+ op

(
n−

1
2

)
(30)

as n →∞. To prove that t∗n is bounded in probability, we have to show that

1√
n

∂S
(LWS)
n (w;β0)

∂β
=

1√
n

n∑

i=1

ri(β0)xiw

[
Gn

{
r2
i

(
β0

)}− 1
2n

]

=
1√
n

n∑

i=1

ri(β0)xiw
[
G

{
r2
i

(
β0

)}]
+ op(1) (31)

is bounded in probability (equality (31) follows, after using expansion (23)–(24), from Čížek,

2006, Theorem 4 and its proof). Due to decomposition (23)–(24), equation (31) can be rewritten

as a finite sum of random variables that are all asymptotically normally distributed (Čížek, 2006;

Theorem 4). Hence, (31) and t∗n in (30) are bounded in probability, and for some n0 ∈ N and

ε > 0, the left-hand side of (27) equals zero for some t∗n ∈ TM , n > n0, with probability higher

than 1−ε. Then β0−n−
1
2 t∗n is the unique solution of (25), and consequently, the LWS estimate

itself, β̂
(LWS)
n = β0−n−

1
2 t∗n. Apparently, it holds that

√
n

(
β̂

(LWS)
n − β0

)
= t∗n = Op(1), which

implies the
√

n-consistency of LWS.

Finally, we have to prove the asymptotic normality of LWS, that is, to find the asymptotic

distribution of t∗n. Because C(w) and Q in (30) are constants, we just have to derive the

asymptotic distribution of (31). The summands of (31),

ri(β0)x>i w
[
G

{
r2
i

(
β0

)}] ≡ εix
>
i w

{
G(ε2

i )
}

,

form by Assumption A2 a sequence of martingale differences with finite variances since the law

of large numbers for L1-mixingales (Andrews, 1988) implies

1
n

n∑

i=1

ε2
i xix

>
i w2

{
G(ε2

i )
} → var

[
ε1x1w

{
G(ε2

1)
}]

in probability as n → ∞. Hence, we can employ the central limit theorem for martingale

differences (e.g., Davidson, 1994, Theorem 24.3) for (31), which proves its asymptotic normality.
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By (30) and
√

n
(
β̂

(LWS)
n − β0

)
= t∗n, it follows that

√
n

(
β̂(LWS)

n − β0
) L→ N(0, Vw),

where Vw = C(w)−2Q−1var
[
ε1x1w

{
G(ε2

i )
}]

Q−1.

The result of Theorem 5.1 then follows by rewriting of the constant C(w) in (28): using

integration by parts,

2qjf (qj)− dj = {qjf (qj) + qjf (−qj)} − {F (qj)− F (−qj)} (32)

= [εf(ε)]qj

−qj
−

∫ qj

−qj

f(ε)dε =
∫ qj

−qj

εf ′(ε)dε, (33)

and
∫ +∞
−∞ εf ′(ε)dε = −1 for dj → 1 and qj →∞, (28) can be expressed as

C(w) = −
J∑

j=1

{w(dj)− w(dj+1)}
∫ qj

−qj

εf ′(ε)dε + w(dJ+1)

= −
J∑

j=1

∫ qj

−qj

{w(dj)− w(dj+1)} εf ′(ε)dε−
∫ +∞

−∞
w(dj+1)εf ′(ε)dε

= −
∫ +∞

−∞
εw

{
G(ε2)

}
f ′(ε)dε,

which concludes the proof. ¤

Proof of Corollary 5.2: Similarly to the proof of Theorem 5.1, we prove the result for stepwise

weight functions w = ws under Assumption A. In linear regression models with independent

and identically distributed variables, one can derive the result for a general weight function

analogously using the asymptotic linearity of the LWS normal equation derived in Víšek (2002a)

or Mašíček (2004), who also use the representation (23)–(24).

First note that the first part of the proof of Theorem 5.1 holds also for estimated step-

wise weight function since it only employs the asymptotic linearity for LTS and multiplies the

corresponding expressions by appropriate weights. Hence, expressions (27)–(31) hold also for a

weight function ŵn. To prove the claim of the corollary, we just have to show that the difference

between (29) with the weight function w and

1√
n

∂S
(LWS)
n (ŵn; β0)

∂β
= QC(ŵn) · t∗n + op(1)

32



B PROOFS OF ASYMPTOTIC PROPERTIES

is negligible in probability. Because |C(ŵn)−C(w)| → 0 as n →∞ follows from the consistency

of ŵn, ŵn → w, and continuity of G,G−1, and f (use Assumption A2 and G(z2) = F (|z|) −
F (−|z|)), we only have to show that

1√
n

∂S
(LWS)
n (ŵn;β0)

∂β
− 1√

n

∂S
(LWS)
n (w;β0)

∂β
= op(1). (34)

Using (31), we can rewrite this difference up to a term negligible in probability as

1√
n

n∑

i=1

ri(β0)xi

{
ŵn

[
G

{
r2
i

(
β0

)}]− w
[
G

{
r2
i

(
β0

)}]}

≤ 1√
n

n∑

i=1

εixi

{
ŵn

[
G(ε2

i )
]− w

[
G(ε2

i )
]}

I
(
1/K ≤ ε2

i ≤ K
)

(35)

+
C√
n

n∑

i=1

εixiI
(
ε2
i 6∈ 〈1/K, K〉) (36)

for any K > 1 and some C > 0 (weight functions are bounded).

First, (36) has a zero expectation (Assumption A2) and variance equal to V2(K) = E{ε2
i I(ε2

i 6∈
〈1/K, K〉)xix

>
i }. Since V2(K) → 0 as K →∞, the Chebyshev inequality implies that (36) can

be made arbitrarily small in probability by choosing sufficiently large K.

Next, for a given K, let us denote νi(K) the summands in (35),

νi(K) = εixi

{
ŵn

[
G(ε2

i )
]− w

[
G(ε2

i )
]}

I
(
1/K ≤ ε2

i ≤ K
)
.

The conditional expectations of these summands are zero,

E [νi(K)| ε1, . . . , εi−1, x1, . . . , xi−1] = 0,

and due to the nα consistency of ŵn, the variance of nανi(K) is bounded since by the Schwarz

inequality

E
[
ε2
i n

2α
{
ŵn

[
G(ε2

i )
]− w

[
G(ε2

i )
]}2

I
(
1/K ≤ ε2

i ≤ K
)
xix

>
i

]

≤ E
[
ε2
i xix

>
i

]
· E

[
n2α

{
ŵn

[
G(ε2

i )
]− w

[
G(ε2

i )
]}2

I
(
1/K ≤ ε2

i ≤ K
)]

(note that the convergence of ŵn → w in probability implies convergence in mean because all
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weight functions are bounded). Hence, we can apply the law of large numbers for L2-mixingales

(Davidson and de Jong, 1997, Corollary 2.1) to (35) written as n−1/2−1/α
∑n

i=1 nανi(K) → 0

in probability as n →∞.

Consequently by letting K →∞, both (35) and (36) are negligible in probability and (34)

holds. ¤

Proof of Lemma 5.3: In the case of weights ŵR
n , the result follows from Gervini and Yohai

(2002, Lemma 4.1). For other weight functions, ŵQ
n , ŵD

n , ŵP
n , the continuity and differentiability

of Fχ and fχ, which implies their uniform continuity on any compact subset of their support,

indicates that it is enough to prove for any 0 < a < b < 1 that

sup
z∈R

|Gn(z)−G(z)| = Op

(
n−

1
2

)
, (37)

sup
t∈〈a,b〉

|G−1
n (t)−G−1(t)| = Op

(
n−

1
2

)
, (38)

sup
z∈R

|ĝ0
n(z)− g(z)| = Op

(
n−

1
2 h−1

n

)
, (39)

where hn denotes the bandwidth used for estimating ĝ0
n. The statement (37) follows from

Gervini and Yohai (2002, Lemma 4.2) because G(z) = F+(
√

z), where F+ denotes the distri-

bution function of |εi|. Further, (39) is derived in Cai and Roussas (1992), for instance.

Hence, we only have to prove that (37) implies (38). For a given t ∈ 〈a, b〉, let z = G−1
n (t).

The Taylor expansion implies

G−1(t) = G−1{G(z)}+
t−G(z)

g(ξ)
≤ G−1

n (t) +
1

g(ξ)

{
|Gn(z)−G(z)|+ 1

n

}
,

G−1(t) = G−1{G(z)}+
t−G(z)

g(ξ)
≥ G−1

n (t) +
1

g(ξ)

{
|Gn(z)−G(z)| − 1

n

}
,

where ξ ∈ (G(z), t). Because |Gn(z) − G(z)| = Op

(
n−

1
2

)
and g(ξ) > cg > 0 for any ξ ∈

〈a/2, (1 + b)/2〉 by Assumption A2,

|G−1
n (t)−G−1(t)| ≤ c−1

g

{
|Gn(z)−G(z)|+ 1

n

}

with an arbitrarily high probability and (37) thus implies (39). ¤

Proof of Theorem 5.4: The consistency of the proposed variance-matrix estimator is a direct

consequence of the weak law of large number; we use here its form for L1-mixingales due to
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Andrews (1988).

First, Assumption A1 indicates that {xi}n
i=1 is a β-mixing sequence with finite rth moments,

r > 2. Hence, Q̂n =
∑n

i=1 xix
>
i /n → Q in probability as n → ∞. Similarly, since w(t) is

bounded, w(t) ≤ Kw for t ∈ 〈0, 1〉, and Theorem 5.1 and Corollary 5.2 imply |ein − εi| =

Op

(
n−

1
2

)
(where ein = ri(β̂n)), Assumption A2 ensures that xieinw[Gn(e2

in)] possesses finite

rth moments (
∥∥xieinw[Gn(e2

in)]
∥∥ ≤ ‖xiεi‖Kw +Op

(
n−

1
2

)
). Due to the symmetry of the LWS

objective function with respect to regression residuals and the symmetry of the error distribution

F ,
{
xieinw[Gn(e2

in)]
}n

i=1
forms a sequence of martingale differences (see Assumption A2 and

also the proof of Theorem 5.1). Hence, by the law of large numbers for triangular arrays

(Andrews, 1988)

ĈV n =
1
n

n∑

i=1

x2
i e

2
inw2

{
Gn(e2

in)− 1
2n

}
→ var

[
x1ε1w{G(ε2

1)}
]
,

since x1e1nw{G(e2
1n)} → x1ε1w{G(ε2

1)} in probability as n →∞ (see Assumption A3, decom-

position (23)–(24), and Čížek, 2006, Lemma 3).

Next, we estimate the denominator of the LWS covariance matrix,

−
∫

εw{G(ε2)}f ′(ε)dε = −
∫

ε
[
ws{G(ε2)}+ wc{G(ε2)}] f ′(ε)dε = CS

I + CC
I .

Let us first prove that the latter term CC
I can be consistently estimated by (21). By integration

by parts,

−
∫

εwc{G(ε2)}f ′(ε)dε =
∫

wc{G(ε2)}f(ε)dε +
∫

2ε2w
′
c{G(ε2)}g(ε2)f(ε)dε

= E[wc{G(ε2
1)}] + 2E[ε2

1w
′
c{G(ε2

1)}g(ε2
1)],

because the error term εi has finite second moments (Assumption A2) and wc is bounded and

continuously differentiable (Assumption A3). Since the proof follows the same steps for both

part, we prove only the consistency of the first term. We assume that Ĝn and ĝn are uniformly

consistent estimators of the distribution and density functions, G and g, respectively. That is,

for any δ > 0 there is n0 such that supz |Ĝn(z)−G(z)|+ 1
2n < δ and supz |ĝn(z)− g(z)| < δ for

n > n0 with probability larger than 1− ε. Due to the continuity of wc on 〈0, 1〉, wc is uniformly

continuous and sup|t−t′|<δ |wc(t)− wc(t′)| < η for all t, t′ ∈ 〈0, 1〉 and some η > 0, where η can
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be made arbitrarily small by choosing a sufficiently small δ. Consequently, we can write for

n →∞

1
n

n∑

i=1

wc

{
Ĝn(e2

in)− 1
2n

}
=

1
n

n∑

i=1

wc

{
G(e2

in)
}

+
1
n

n∑

i=1

[
wc

{
G(e2

in)
}− wc

{
Ĝn(e2

in)− 1
2n

}]

=
1
n

n∑

i=1

wc

{
G(e2

in)
}

+ op(1)

As ein → εi in probability as n →∞ and functions wc and G are continuous, the Slutsky lemma

and the law of large numbers for triangular arrays imply 1
n

∑n
i=1 wc

{
G(e2

i )
} → E

[
wc

{
G(ε2

1)
}]

,

and thus, ĈC
In → CC

I in probability as n →∞.

Finally, let us deal with CS
I , which is claimed to be consistently estimated by (20). Let q2

j

denote G−1(dj) for j = 1, . . . , J . Using decomposition (23)–(24) for ws, ws(1) = 0, integration

by parts leads to

∫
εws{G(ε2)}f ′(ε)dε =

J∑

j=1

{ws(dj)− ws(dj+1)}
∫ qj

−qj

εf ′(ε)dε =

=
J∑

j=1

{w(dj)− w(dj+1)}
{

[εf(ε)]qj

−qj
−

∫ qj

−qj

f(ε)dε

}

=
J∑

j=1

{w(dj)− w(dj+1)} ×

× [qj {f(qj) + f(−qj)} − {F (qj)− F (−qj)}]

=
J∑

j=1

{w(dj)− w(dj+1)}
[
2q2

j g(q2
j )− dj

]

because G(z2) = F (z)− F (−z) and g(z2) = {f(z) + f(−z)}/2z. The only unknown quantities

are quantiles q2
j , which are estimated by q̂2

jn = e2
[djn], and density g, which is estimated by ĝn.

Since q̂2
jn → q2

j in probability as n → ∞ (Čížek, 2004, Lemma A.2) and ĝn(qj) is uniformly

consistent and bounded, it holds that

q̂2
j ĝn(q̂2

j )− q2
j g(q2

j ) = (q̂2
j − q2

j )ĝn(q̂2
j )− q2

j

{
ĝn(q̂2

j )− g(q2
j )

} → 0

in probability as n →∞, which closes the proof. ¤

36



REFERENCES REFERENCES

References

[1] Andrews, D. W. K. (1988) Laws of large numbers for dependent non-identically distributed

random variables. Econometric Theory 4, 458–467.

[2] Andrews, D. W. K. (1993) An introduction to econometric applications of empirical pro-

cess theory for dependent random variables. Econometric Reviews 12, 183–216.

[3] Balke, N. S. & T. B. Fomby (1994) Large shocks, small shocks, and economic fluctuations:

outliers in macroeconomic time series. Journal of Applied Econometrics 9, 181–200.

[4] Cai, Z. & G. G. Roussas (1992) Uniform strong estimation under α-mixing with rates.

Statistics & Probability Letters 15, 47–55.

[5] Castellana, J. V. & M. R. Leadbetter (1986) On smoothed probability density estimation

for stationary processes. Stochastic Processes and their Applications 21, 179–193.

[6] Čížek, P. (2004) Asymptotics of least trimmed squares regression. CentER discussion

paper 2004/72, CentER, Tilburg University.

[7] Čížek, P. (2006) Least trimmed squares under dependence. Journal of Statistical Planning

and Inference 136, 3967–3988.

[8] Čížek, P. (2007) General trimmed estimation: robust approach to nonlinear and limited

dependent variable models. CentER discussion paper 2007/1, CentER, Tilburg University,

submitted to Econometric Theory.

[9] Croux, C., Rousseeuw, P. and Hössjer, O. (1994) Generalized S-estimators. Journal of the

American Statistical Association 89, 1271–1281.

[10] Davidson, J. (1994) Stochastic Limit Theory. New York: Oxford University Press.

[11] Davies, L. (1990) The asymptotics of S-estimators in the linear regression model. The

Annals of Statistics 18, 1651–1675.

[12] Einmahl, U. & D. M. Mason (2005) Uniform in bandwidth consistency of kernel-type

function estimators. The Annals of Statistics 33, 1380–1403.

37



REFERENCES REFERENCES

[13] Engler, E. & B. Nielsen (2007) The empirical process of autoregres-

sive residuals. Discussion Paper, Nutffield College, University of Oxford,

http://www.nuff.ox.ac.uk/Economics/papers/2007/w1/ EnglerNielsen07.pdf.

[14] Genton, M. G. & A. Lucas (2003). Comprehensive definitions of breakdown points for

independent and dependent observations. Journal of the Royal Statistical Society, Series

B 65, 81–94.

[15] Gervini, D. & V. J. Yohai (2002). A class of robust and fully efficient regression estimators.

The Annals of Statistics 30, 583–616.

[16] Hampel, F. R., E. M. Ronchetti, P. J. Rousseeuw & W. A. Stahel (1986) Robust statistics:

The approach based on influence function. New York: Wiley.

[17] He, X. & S. Portnoy (1992) Reweighted LS estimators converge at the same rate as the

initial estimator. The Annals of Statistics 20, 2161–2167.

[18] Hössjer, O. (1992) On the optimality of S-estimators. Statistics and Probability Letters

14, 413–419.

[19] Hubert, M. & P. J. Rousseeuw (1997) Robust regression with both continuous and binary

regressors. Journal of Statistical Planning and Inference 57, 153–163.

[20] Jurečková, J. (1984) Regression quantiles and trimmed least squares estimator under a

general design. Kybernetika 20, 345–357.

[21] Mašíček, L. (2004) Diagnostics and sensitivity of robust models. Unpublished Ph.D. The-

sis, Faculty of Mathematics and Physics, Charles University, Prague.

[22] Mokkadem, A. (1988) Mixing properties of ARMA processes. Stochastic Processes and

Their Application 29, 309–315.

[23] Pagan, A. and Ullah, A. (1999) Nonparametric Econometrics. Cambridge: Cambridge

University Press.

[24] Preminger, A. & R. Franck (2007) Foreign exchange rates: a robust regression approach.

International Journal of Forecasting 23, 71–84.

38



REFERENCES REFERENCES

[25] Rousseeuw, P. J. (1984) Least median of squares regression. Journal of the American

Statistical Association 79, 871–880.

[26] Rousseeuw, P. J. (1985) Multivariate estimation with high breakdown point. In W. Gross-

man, G. Pflug, I. Vincze & W. Wertz (eds.) Mathematical statistics and applications, Vol.

B. Dordrecht: Reidel, pp. 283–297.

[27] Rousseeuw, P. J. (1997) Introduction to positive-breakdown methods. In G. S. Maddala,

& C. R. Rao (eds.) Handbook of statistics 15: Robust inference. Amsterdam: Elsevier,

pp. 101–121.

[28] Rousseeuw, P. J. & C. Croux (1993). Alternatives to the median absolute deviation.

Journal of the American Statistical Association 88, 1273–1283.

[29] Rousseeuw, P. J. & A. M. Leroy (1987). Robust regression and outlier detection. New

York: Wiley.

[30] Rousseeuw, P. J. & V. J. Yohai (1984). Robust regression by means of S-estimators. In

J. Franke, W. Härdle & R. D. Martin (eds.) Robust and nonlinear time series analysis,

Lecture notes in statistics, Vol. 26. Springer, New York, 256–272.

[31] Sakata, S. & H. White (1998) High breakdown point conditional dispersion estimation

with application to S&P 500 daily returns volatility. Econometrica 66, 529–567.

[32] Sakata, S. & H. White (2001) S-estimation of nonlinear regression models with dependent

and heterogeneous observations. Journal of Econometrics 103, 5–72.

[33] Simpson, D. G., D. Ruppert & R. J. Carroll (1992) On one-step GM estimates and

stability of inferences in linear regression. Journal of the American Statistical Association

87, 439–450.

[34] Stromberg, A. J., O. Hössjer & D. M. Hawkins (2000) The least trimmed difference

regression estimator and alternatives. Journal of the American Statistical Association 95,

853–864.

[35] Tableman, M. (1994) The influence functions for the least trimmed squares and the least

trimmed absolute deviations estimators. Statistics & Probability Letters 19, 329–337.

39



REFERENCES REFERENCES

[36] Temple, J. R. W. (1998) Robustness tests of the augmented Solow model. Journal of

Applied Econometrics 13, 361–375.

[37] Van Dijk, D., P. H. Franses & A. Lucas (1999) Testing for ARCH in the presence of

additive outliers. Journal of Applied Econometrics 14, 539–562.

[38] Víšek, J. Á. (2002a) The least weighted squares I. The asymptotic linearity of normal

equations. Bulletin of the Czech Econometric Society 9(15), 31–58.

[39] Víšek, J. Á. (2002b) The least weighted squares II. Consistency and asymptotic normality.

Bulletin of the Czech Econometric Society 9(16), 1–28.

[40] Víšek, J. Á. (2006) Instrumental weighted variables. Austrain Journal of Statistics 35,

379–387.

[41] Welsh, A. H. & E. Ronchetti (2002) A journey in single steps: robust one-step M-

estimation in linear regression. Journal of Statistical Planning and Inference 103, 287–310.

[42] Woo, J. (2003) Economic, political, and institutional determinants of public deficits.

Journal of Public Economics 87, 387–426.

[43] Yohai, V. J. & R. H. Zamar (1988) High breakdown point estimates of regression by means

of the minimization of an efficient scale. Journal of the American Statistical Association

83, 406–413.

[44] Zinde-Walsh, V. (2002) Asymptotic theory for some high breakdown point estimators.

Econometric Theory 18, 1172–1196.

40


