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Abstract

In this paper, we examine the question of which coalition structures far-
sighted players form in coalition formation games with externalities. We in-
troduce a stability concept for a coalition structure called a sequentially stable
coalition structure. Our concept of domination between two coalition structures
is based on a “step-by-step” approach to describe negotiation steps concretely
by restricting how coalition structures can change: when one coalition structure
is changed to another one, either (i) only one merging of two separate coalitions
into a coalition occurs, or (ii) only one breaking up of a coalition into two
separate coalitions happens. As applications of our stability notion, we show
that the efficient grand coalition structure can be sequentially stable in simple
partition function form games and common pool resource games.
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1 Introduction

This paper examines the question of which coalition structures farsighted players form
in coalition formation games with externalities. In a novel paper, Ray and Vohra
(1997) introduce a stability concept for a coalition structure called an equilibrium
binding agreement (EBA). They capture explicitly credibility of blocking coalitions,
and then induce a recursive definition of a stable coalition structure. Efficiency can
no longer be guaranteed even with free negotiation among farsighted players. In
particular, the efficient grand coalition structure in which all players form one coalition
may not be an EBA in various economic situations such as public goods economies
and Cournot oligopolies.

In their definition, however, coalitions can only break up into smaller sizes of
coalitions, but cannot merge into larger sizes of coalitions. This especially means that
the singleton coalition structure consisting only of one-person coalitions is always
an EBA. Diamantoudi and Xue (2007) recently propose an extension of the EBA
notion, called an extended EBA (EEBA), to allow for any coalitional deviations, so
that breaking up as well as merging are possible for coalitions. They strengthen
Ray-Vohra’s negative result by providing a robust example in which every stable
EEBA coalition structure is inefficient even when negotiation processes are open and
unrestricted.

These pessimistic conclusions on efficiency are quite striking, but allowing arbi-
trary changes in coalition structures may not be appropriate when we look for a pos-
itive result that an efficient coalition structure is attained. Under unrestricted coali-
tional deviations, for example, the inefficient singleton coalition structure in which
no cooperation among players is formed can be suddenly changed into the efficient
grand coalition structure in which all players cooperate. Then the following question
naturally arises: through which negotiation steps is the singleton coalition structure
changed to the grand coalition structure? More generally, how is some coalition struc-
ture transformed into another coalition structure when the two coalition structures
are quite different? Answers to these questions are not clear under the EEBA con-
cept. Furthermore, unrestricted changes in coalition structures may not be feasible
in many practical situations. For instance, mergers of more than two firms have been
little often observed in comparison with bilateral mergers of two firms, because their
possibilities of going against anti-trust laws are higher.

Taking account of the above points, we use a ”step-by-step” approach to describe
negotiation steps concretely by restricting how coalition structures can change at
each step: when one coalition structure is changed to another one, either (i) only
one merging of two separate coalitions into a single coalition occurs, or (ii) only one
breaking up of a coalition into two separate coalitions happens. More specifically,
we consider the following definition of domination between two coalition structures
with farsighted players. The coalition structure P is said to sequentially dominate the
coalition structure P ′ if there is a sequence of coalition structures {Pt}T

t=0 starting
from P0 = P to PT = P ′ such that at each step t, one of the following holds:

(1) Two separate coalitions in Pt merge into one coalition in Pt+1 and no other change
occurs. All members in the two merging coalitions prefer the payoffs under the final
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coalition structure P ′ to those under the coalition structure Pt before merging; or

(2) One coalition in Pt breaks up into two separate coalitions in Pt+1 and no other
change occurs. All members in at least one breaking up coalitions prefer the payoffs
under the final coalition structure P ′ to those under the coalition structure Pt before
breaking up.

A coalition structure is said to be sequentially stable if it sequentially dominates
all other coalition structures.

We compare the three stability notions, EBA’s, EEBA’s, and sequential stability.
First, all of them are characterized by the von Neumann-Morgenstern stable sets with
respect to different domination relations. Second, sequential stability is a refinement
of the EEBA notion in the sense that if a coalition structure P is sequentially stable,
then the singleton set consisting only of P is an EEBA. However, the converse is not
true: the singleton set consisting of one coalition structure that is not sequentially
stable may be an EEBA. Moreover, there is no logical relation between sequential
stability and the EBA notion. Finally, our condition of sequential stability is much
simpler and relatively easier to check than those of an EBA and an EEBA are. This
point is important for applications.

We also identify a simple condition for which the efficient grand coalition structure
is a unique sequentially stable coalition structure in a partition function form game.
Furthermore, as another application of our stability concept, we study a model of an
economy with a common pool resource which has been often examined (e.g., Weitzman
(1974), Roemer (1989), and Funaki and Yamato (1999)). We show that the efficient
grand coalition structure can be sequentially stable in common pool resource games.
Our positive results on efficiency contrast with the previous negative ones by Ray and
Vohra (1997) and Diamantoudi and Xue (2007).

The rest of the paper is organized as follows. In Section 2, we introduce notation
and definitions. In Section 3, we define sequential stability of coalition structures and
compare our notion with EBA’s and EEBA’s. In Section 4, as an application, we
examine sequential stability in common pool resource games. Section 5 contains some
concluding remarks.

2 Basic Concepts

Let N = {1, 2, ..., n} be a set of players. A subset S of N is called a coalition. We
use the concept of a coalition structure to express how players form coalitions. Here a
coalition structure P is a partition {S1, S2, ..., Sk} of N , where S1, S2, ..., Sk in P are
disjoint and ∪k

j=1Sj = N. The set of partitions of N is denoted by Π(N).
We assume that given any coalition structure P ∈Π(N), the feasible payoff vector

under P , u(P) = (u1(P), u2(P), ..., un(P))∈IRn, is uniquely determined. The triple
(N, Π(N), (ui)i∈N) is called a game with externalities.

We give two examples of games with externalities.

Example 1. Games in partition function form.
A game in partition function form (N, v) is defined by a pair of a set of players N

and a partition function v which assigns to each pair of a partition P ∈ Π(N) and a
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coalition S ∈ P , a real number v(S|P). Given a game in partition function form, the

feasible payoff vector under P is given by ui(P) = v(S|P)
|S| ∀i ∈ S, ∀S ∈ P . (See Thrall

and Lucas(1963)).

Example 2. Hedonic games.
A hedonic game (N, {Âi}i∈N) is defined by a pair of a set of players N and a

binary relation Âi on {S ⊂ N |S 3 i} for all i ∈ N , which represents i’s preference
over coalitions that contain i. Consider i’s utility function ui over Π(N) defined from
Âi: For P and P ′ ∈ Π(N), we define

ui(P) > ui(P ′) ⇐⇒ S Âi T,

where i ∈ S, S ∈ P and i ∈ T, T ∈ P ′. Then (N, Π(N), (ui)i∈N) becomes a game
with externalities. (See, for example, Dreze and Greenberg (1980), Bogomalnia and
Jackson(2002), Diamantoudi and Xue (2003).)

We introduce two special types of coalition structures. PN = {N} is called a
grand coalition structure, and PI = {{1}, {2}, ..., {n}} is called a singleton coalition
structure. We also say that P ′ is a finer coalition structure of P (P is a coarser
coalition structure of P ′) if the coalition structure P ′ is given by re-dividing the
coalition structure P , that is, ∀S ′ ∈ P ′, ∃S ∈ P such that S ′ ⊆ S and |P ′| > |P|.

3 Sequentially Stable Coalition Structures

In this section, we give our main stability concept called a “sequentially stable coalition
structure”. First we give a definition of sequential domination, and after that we give
a definition of a sequentially stable coalition structure.

Definition 1. Let P ,P ′ ∈ Π(N). We say that P sequentially dominates P ′ if there
is a sequence of coalition structures {Pt}T

t=0 such that
(1) PT = P and P0 = P ′,
(2) for all t (0 ≤ t ≤ T − 1), either Pt+1 is a finer coalition structure of Pt with

|Pt+1| = |Pt|+ 1, or Pt+1 is a coarser coalition structure of Pt with |Pt+1| = |Pt| − 1,
and

(3) for all t (0 ≤ t ≤ T − 1), for some S ∈ Pt+1 with S ∈/ Pt,

ui(Pt) < ui(PT ) ∀i ∈ S.

We use the following notation for this sequence of coalition structures:

P0 → P1 → P2 → ... → PT .

The condition (3) means that if Pt+1 is a finer coalition structure of Pt, for any
member i in one of the two divided coalitions S and T such that S, T ∈ Pt+1 and
S ∪ T ∈ Pt, his payoff ui(Pt) is smaller than his terminal payoff ui(PT ); and if Pt+1

is a coarser coalition structure of Pt, for any member i in two combined coalitions S
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and T such that S, T ∈ Pt and S ∪ T ∈ Pt+1, his payoff ui(Pt) is smaller than his
terminal payoff ui(PT ).

Definition 2. We say that P∗ ∈ Π(N) is a sequentially stable coalition structure if
for all other coalition structures P 6= P∗, P∗ sequentially dominates P .

We will compare our domination relation with that of Ray and Vohra (1997).
An important difference is that Ray and Vohra allowed only refinement of coalition
structures, but we consider both of refinement and coarseness. We present domination
due to Ray and Vohra called RV-domination.

Consider a case that only refinement of coalitions is allowed. Then if P sequentially
dominates P ′, then there is a sequence of coalition structures {Pt}T

t=0 such that PT =
P , P0 = P ′ and Pt+1 is a finer coalition structure of Pt with |Pt+1| = |Pt|+ 1. Hence
for each t, Pt+1 \ Pt consists of two coalitions, say S ′ and S ′′. Then

ui(Pt) < ui(PT ) either (1) for all i ∈ S ′ or (2) for all i ∈ S ′′. (3.1)

by Definition 1. We call S ′ or S ′′ which satisfies (3.1) the leading perpetrator or
simply perpetrator 1. Then we can take a sequence of perpetrators {St}T−1

t=0 induced
from {Pt}T

t=0. In this case, we say that P sequentially dominates P ′ via a sequence of
perpetrators {St}T−1

t=0 .
Suppose St ∈ P ′ for any t. Then if we change the order of the perpetrators, we

get another sequence of perpetrators and it also implies the same coalition structure
P ′ starting from P . If P sequentially dominates P ′ via a sequence of perpetrators for
all the possible sequences, then we say P sequentially dominates P ′ via a collections
of perpetrators {S0, S1, ..., ST−1}.

Definition 3.2 Let P ,P ′ ∈ Π(N). We say that P RV-dominates P ′ if there is a
sequence of coalition structures {Pt}T

t=0 such that

(1) PT = P and P0 = P ′,
(2’) for all t (0 ≤ t ≤ T − 1), Pt+1 is a finer coalition structure of Pt with

|Pt+1| = |Pt|+ 1,
(3) for all t (0 ≤ t ≤ T − 1), for some S ∈ Pt+1 with S ∈/ Pt,

ui(Pt) < ui(PT ) ∀i ∈ S.

(4) Let S ≡ {S1, S2, ..., ST−1} be a set of perpetrators starting from P1, and sup-
pose all the perpetrators S0, S1, S2, ..., ST−1 are in P ′. Take any subset {Sk1 , Sk2 , ..., Skp}
of S, and let P ′′ = (P \ (Sk1 ∪ Sk2∪, ...,∪Skp}) ∪ {Sk1 , Sk2 , ..., Skp}. Then the coali-
tion structure P ′′ is sequentially dominated by P ′ via a collection of perpetrators
S \ {Sk1 , Sk2 , ..., Skp}.

In condition (2’), only refinement of coalition structures is allowed, but both re-
finement and coarseness are allowed in (2).

1If both S′ and S′′ satisfy (3.1), take any of the two coalitions.
2This definition is different from the original one by Ray and Vohra (1997). This is an equivalent

condition given by Proposition 1 in Diamantoudi and Xue (2007)
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The condition (4) ensures a sequential domination on arbitrary paths or sequences
of deviations starting from P1. This is different from the definition of a sequential
domination. In our definition of a sequential domination, we only consider one possible
path.

Ray and Vohra (1997) introduce an EBA coalition structure by applying their very
general concept of ”Equilibrium Bidding Agreement” to a coalition formation problem.
Diamantoudi and Xue (2007) characterize the set of EBA coalition structures by RV-
domination and the vNM-stable set concept. Let E be the set of coalition structures
such that

(a) external stability: for any coalition structure P ′ ∈/ E , there exists P ∈ E such
that P RV-dominates P ′, and

(b) internal stability: for any coalition structure P ′ ∈ E , there is no P ∈ E such
that P RV-dominates P ′.

Diamantoudi and Xue (2007) proved that the set of EBA coalition structures
coincide with E . For our notion of sequential domination, the singleton set consisting
of the sequentially stable coalition structure is also the vNM-stable set via a sequential
domination.

Let us introduce a domination relation of Diamantoudi and Xue (2007) called
DX-domination.

Definition 4. Let P ,P ′ ∈ Π(N). We say that P DX-dominates P ′ if there is a
sequence of coalition structures {Pt}T

t=0 such that

(1) PT = P , P0 = P ′, and

(2”) for all t (0 ≤ t ≤ T − 1), Pt+1 and Pt ≡ {S1, S2, ..., Sk} satisfy the following
condition; there exists a coalition Q(t) ⊆ N such that

(i) Q(t) = Q1 ∪Q2 ∪ ... ∪Ql, Qj ∈ Pt+1 ∀j = 1, 2, .., l and Qjs are disjoint,

(ii) ∀j = 1, 2, ..., k, Sj ∩Q(t) 6= ∅ ⇒ Sj \Q(t) ∈ Pt+1,

(iii) ∀j = 1, 2, ..., k, Sj ∩Q(t) = ∅ ⇒ Sj ∈ Pt+1.

(3’) for all t (0 ≤ t ≤ T − 1),

ui(Pt) < ui(PT ) ∀i ∈ Q(t).

The element of the vNM-stable set of the coalition structures using DX-domination
is called the set of Extended EBA (EEBA) coalition structures. Condition (2”) in Def-
inition 4 implies that all possibilities of refining and merging are allowed for coalitions.
On the other hand, the way of changing coalitions should be step by step and no jump
are allowed in Definition 1 of a sequential domination. For two coalition structures
P and P ′, P DX-dominates P ′ if P sequentially dominates P ′ because (2) and (3) in
Definition 1 together imply (2”) and (3’) in Definition 4. Hence, sequential stability
is a refinement of the notion of EEBA’s in the sense that if a coalition structure P is
sequentially stable, then the singleton set consisting only of P is an EEBA. However,
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the converse is not true: the singleton set consisting of one coalition structure that
is not sequentially stable may be an EEBA. Moreover, there is no logical relation be-
tween sequential stability and the notion of EBA’s. The following example illustrate
these facts:

Example 3. Consider a symmetric 5-person game in partition function form (N, v),
where N = {1, 2, 3, 4, 5} and

v(N |PN) = 50. For any P2 s.t. |P2| = 2 and for any S ∈ P2, v(S|P2) = 18.

For any P3 s.t. |P3| = 3 and for any S ∈ P3, v(S|P3) = 8.

For any P4 s.t. |P4| = 4 and for any S ∈ P4, v(S|P4) = 5.

For any {i} ∈ PI , v({i}|PI) = 3.

Figure 1 shows all the possible coalition structures and the feasible payoff vectors
under each coalition structure. Here the circle shows the coalition and the number in
the circle indicates the cardinality of the coalition. The vector under each coalition
shows the feasible payoffs ui(P) = v(S|P)

|S| .

We will show that the grand coalition structure PN is sequentially stable.
The proof consists of 4 steps.

(Step 1)(A) {2; 3} → PN because every player in {2; 3} gets more payoff at PN .3

(B) {1; 1; 3} → {2; 3} → PN because every player in {1; 1; 3} gets more payoff at PN

and (Step 1)(A) holds. Thus {1; 1; 3} and {2; 3} are sequentially dominated by PN .
(Step 2) {1; 2; 2} → {2; 3} → PN because every player in {1; 2; 2} gets more payoff
at PN and (Step1)(A) holds. Thus {1; 2; 2} is sequentially dominated by PN .
(Step 3) {1; 4} → {1; 1; 3} → {2; 3} → PN because the deviation of one person in
the 4-person coalition in {1; 4} increases his payoff at the final coalition structure PN

and (Step 1)(B) holds. Thus {1; 4} is sequentially dominated by PN .
(Step 4)(A) {1; 1; 1; 2} → {1; 1; 3} → {2; 3} → PN because every player in {1; 1; 1; 2}
gets more payoff at PN and (Step 1)(B) holds. Thus {1; 1; 1; 2} is sequentially domi-
nated by PN .
(B) {1; 1; 1; 1; 1} → {1; 1; 1; 2} → {1; 1; 3} → {2; 3} → PN because every player in
{1; 1; 1; 1; 1} gets more payoff at PN and (Step 4)(A) holds. Thus {1; 1; 1; 1; 1} is
sequentially dominated by PN .

These observations imply that the grand coalition structure PN is sequentially
stable.

Moreover, PN is only one sequentially stable coalition structure. The reason is as
follows: All the coalition structures P except for PN and {1; 4} are not sequentially
stable because ui(PN) > ui(P) for any i ∈ N. and then P cannot sequentially dom-
inate PN . Next consider {1; 4}. It is not sequentially stable, because {1; 4} cannot
sequentially dominate {1; 1; 1; 2}. The reason is as follows: If {1; 4} sequentially dom-
inates {1; 1; 1; 2}, one of two coalitions in {1; 1; 1; 2} should merge in the first step,

3Here {2; 3} means any coalition structure with one 2-person coalition and one 3-person coalition.
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but it is not profitable for all the members in the two coalitions since some of them
should be in 4-person coalition in {1; 4}. This is a contradiction.

On the other hand, {1; 4} DX-dominates {1; 1; 1; 2}. Hence it is easy to check that
{1; 4} as well as PN is an EEBA. Besides, it is not difficult to see that {1; 4}, {1; 2; 2},
and PI are EBA’s.

The properties of EEBA’s are examined in Diamantoudi and Xue (2007). In their
paper, they give the following proposition:

Definition 5. The coalition structure P ∈ Π(N) is Pareto efficient if there does not
exist P ′ ∈ Π(N) such that ui(P ′) > ui(P) for any i ∈ N.

Proposition 1 (Diamantoudi and Xue (2007)). Let P∗ ∈ Π(N) be Pareto
efficient. P∗ is an EEBA if

(a) ui(P∗) > ui(PI) ∀i ∈ N , and

(b) for all P ∈ Π(N) such that P 6= P∗ and P 6= PI , there is a coalition S ∈ P
such that |S| > 1 and ui(P∗) > ui(P) for some i ∈ S.

The similar proposition holds for sequential stability.

Proposition 2. Let P∗ ∈ Π(N) be Pareto efficient. P∗ is sequentially stable if

(a) P∗ sequentially dominates PI , and

(b) for all P ∈ Π such that P 6= P∗ and P 6= PI , there is a coalition S ∈ P such
that |S| > 1 and for some member i ∈ S, ui(P∗) > ui(P).

Proof. Take any P such that P 6= P∗. We have to find a sequence of coalition
structures from any P to P∗ satisfying (1), (2) and (3) in Definition 5. First we
construct a sequence {Pk}R

k=0 of coalition structures from P to PI , where P0 = P
to PR = PI (R ≤ n). In the sequence {Pk}R

k=0, for any Pk such that Pk 6= PI , one
person deviates from one of the largest coalition in Pk. In this step, the deviated
person prefers P∗ to P because of (b). Second, (a) implies that the existence of a
sequence of coalition structures from PI to P∗. Combining these sequences, we obtain
the desired sequence of coalition structures. This implies P∗ sequentially dominates
P . Q.E.D.

We will give a simple condition for which only the grand coalition structure is
sequentially stable in a partition function form game.

Proposition 3. Consider an n-person partition function form game which satisfies

v(N |PN)

n
>

v(S|P)

|S| ∀S ∈ P ∀P ∈ Π(N).

Then only PN is sequentially stable.

Proof. Take any P 6= PN . For any S and P such that S ∈ P , we have ui(PN) =
v(N |PN )

n
> v(S|P)

|S| = ui(P) for all i ∈ S. Then first every member of the coalitions
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in P2 with 2 coalitions prefers the grand coalition structure, that is, PN sequentially
dominates P2. Similarly we can show that PN sequentially dominates P3, P4,...,PI ,
where |Pk| = k. This shows that PN is sequentially stable. It is obvious that PN

cannot be sequentially dominated by any other coalition structure. Q.E.D.

The above result says that in a partition function form game, if the per capita
value of the grand coalition is larger than that of any other coalition under any
coalition structure, then the set of sequential stable coalition structures consists only
of the grand coalition. Moreover, it coincides with the set of EEBA’s. However it is
different from EBA’s because PI is also EBA.

4 Applications to Common Pool Resource Games

4.1 The Basic Model

We will apply our concept of sequential stability to the following game of an economy
with a common pool resource. For any player i ∈ N , let xi ≥ 0 represent the
amount of labor input of i. Clearly, the overall amount of labor is given by

∑
j∈N xj.

The technology that determines the amount of product is considered to be a joint
production function of the overall amount of labor f : IR+ → IR+ satisfying

f(0) = 0, limx→∞ f ′(x) = 0, f ′(x) > 0 and f ′′(x) < 0 for x > 0. The distribution
of the product is supposed to be proportional to the amount of labor expended by
players. In other words, the amount of the product assigned to player i is given by

xi∑
j∈N

xj
· f(

∑
j∈N xj). The price of the product is normalized to be one unit of money

and let q be a cost of labor per unit, and we suppose 0 < q < f ′(0).

Then individual i’s income is denoted by

mi(x1, x2, ..., xn) =
xi

xN

f(xN)− qxi.

The total income of coalition S is denoted by

mS ≡
∑

i∈S

mi =
xS

xN

f(xN)− qxS,

where xS ≡ ∑
i∈S xi. We consider a game where each coalition is a player. It chooses

its total labor input and its payoff is given by the sum of the income over its members.
Naturally we can define a Nash equilibrium of that game.

Definition 6. The list (x∗S1
, x∗S2

, ..., x∗Sk
) is an equilibrium under P if

mSj
(x∗Sj

, x∗S−j
) ≥ mSj

(xSj
, x∗S−j

), ∀j, ∀xSj
∈ IR+.

There is a unique equilibrium under every coalition structure:

Proposition 4 (Funaki and Yamato (1999)). For any P = {S1, S2, ..., Sk}, there
exists a unique equilibrium (x∗S1

, x∗S2
, ..., x∗Sk

) under P which satisfies

f ′(
k∑

j=1

x∗Sj
) +

(k − 1)f(
∑k

j=1 x∗Sj
)

∑k
j=1 x∗Sj

= kq, x∗Si
=

∑k
j=1 x∗Sj

k
> 0 ∀i.
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Given a coalition structure P = {S1, ..., Sk}, let (x∗S1
(P), ..., x∗Sk

(P)) be a unique

equilibrium under P and let x∗N(P) =
∑k

i=1 x∗Si
(P). Moreover, let m∗

Si
(P) = mSi

(x∗S1
(P),

..., x∗Sk
(P)) be the equilibrium income of coalition Si for i = 1, .., k and therefore

m∗
N(P) =

∑k
i=1 mSi

(x∗S1
(P), ..., x∗Sk

(P)).

Proposition 5 (Funaki and Yamato (1999)). For two coalition structures
Pk = {S1, S2, ..., Sk} and P ′k′ = {S ′1, S ′2, ..., S ′k′} with k < k′,

x∗N(Pk) < x∗N(P ′k′),
m∗

N(Pk)

n
>

m∗
N(P ′k′)

n
,

S ∈ Pk and S ∈ P ′k′ =⇒ m∗
S(Pk) > m∗

S(P ′k′).
Proposition 5 says that as the number of coalitions decreases, the total amount of

labor input decreases, whereas the average income increases. Also, if the number of
coalitions in one coalition structure is smaller than that in another coalition structure
and coalition S belongs to both coalition structures, then the income of coalition S
under the former structure is larger than that under the latter.

We assume that for a common pool resource game, the feasible payoff vector is

given by ui(P) =
m∗

Sj
(P)

|Sj | ∀i ∈ Sj,∀Sj ∈ P . It is natural to consider this because of

the symmetry of players.

4.2 Sequentially Stable Coalition Structures in Common Pool
Resource Games

We will examine sequential stability of the grand coalition structure in common pool
resource games. The following lemma will be useful below, which gives a sufficient
condition for which all players prefer the grand coalition structure to another coalition
structure.

Lemma 1. In a common pool resource game, let a coalition structure P be given.
Without loss of generality, denote the coalition structure by P = {S1, S2, S3, ..., Sk},
where |S1| = r1 ≤ |S2| = r2 ≤ |S3| = r3 ≤ ... ≤ |Sk| = rk. Let

B(k) ≡ {f(x∗N(P))− f ′(x∗N(P))x∗N(P)}/[k2{f(x∗N(PN))− f ′(x∗N(PN))x∗N(PN)}],
where PN = {1, 2, .., n} is the grand coalition structure. Then for each i ∈ N , ui(P) <
u∗i (PN) if B(k) < r1/n. Moreover, for each i ∈ S2 ∪ S3 ∪ ... ∪ Sk, ui(P) < u∗i (PN) if
B(k) < r2/n.

Proof. By Proposition 4,

ui(P) = m∗
Sj

(P)/rj = [f(x∗N(P))− qx∗N(P)] /(rjk)

= [f(x∗N(P))− f ′(x∗N(P))x∗N(P)] /(rjk
2),
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for i ∈ Sjand j = 1, ..., k. Notice that for the grand coalition structure PN , k = 1

and r1 = n, so that ui(PN) =
[
f(x∗N(PN))− f ′(x∗N(PN))x∗N(PN)

]
/n for i ∈ N . We

also remark that a player belonging to the smallest coalition, S1, obtains the highest
payoff among all players, that is, the payoff of each player i, ui(P), is less than or
equal to uj(P) = m∗

S1
(P)/r1 for j ∈ S1. Therefore, for each i ∈ N , ui(P) < ui(PN)

if B(k) = {f(x∗N(P))− f ′(x∗N(P))x∗N(P)}/[k2{f(x∗N(PN))− f ′(x∗N(PN))x∗N(PN)}] <
r1/n.

In similar, note that a player belonging to the smallest coalition, S2, among the
coalitions, S2, S3, .., Sk, obtains the highest payoff among players in those k− 1 coali-
tions, that is, the payoff of each player i ∈ S2∪S3∪ ...∪Sk, ui(P), is less than or equal
to uj(P) = m∗

S2
(P)/r2 for j ∈ S2. Hence, for each i ∈ S2∪S3∪...∪Sk, ui(P) < ui(PN)

if B(k) = {f(x∗N(P))− f ′(x∗N(P))x∗N(P)}/[k2{f(x∗N(PN))− f ′(x∗N(PN))x∗N(PN)}] <
r2/n. Q.E.D.

We will identify a condition for which the grand coalition structure is sequentially
stable. We begin by studying the simple case in which the number of players can be
expressed as n = 2m(m ≥ 2).

Theorem 1. Let n = 2m(m ≥ 2). If B(k) < 1/2k−1 for all k (k = 2, ..., m,m +
1) and B(k) is monotonically decreasing in k, then the grand coalition structure is
sequentially stable.

Then we extend Theorem 1 to the general case of the number of players:

Theorem 2. Let n = 2m + l, where m ≥ 2 and 0 ≤ l ≤ 2m − 1. If the inequalities

B(2m−h−1 + 2) <
2h−1

n
(h = 1, 2, ..., m− 1) (4.1)

and B(2) < 2m−1

n
hold, and B(k) is monotonically decreasing in k, then the grand

coalition structure is sequentially stable.

The basic ideas behind the proofs of Theorems 1 and 2 are the same, although the
construction of sequences of coalition structures for the sequential domination by the
grand coalition structure becomes more complicated in the proof of Theorem 2. The
outline of the proofs of Theorems 1 and 2 is as follows. It consists of 4 steps:
(Step 1) The grand coalition structure PN sequentially dominate some key coalition
structure P∗.
(Step 2) Every coalition structure P such that |P| = |P∗| is sequentially dominated
by PN .
(Step 3) Every coalition structure P such that |P| < |P∗| other than PN is sequen-
tially dominated by PN .
(Step 4) Every coalition structure P such that |P| > |P∗| is sequentially dominated
by PN .

By Steps 1-4, every coalition structure other than PN is sequentially dominated
by PN . We illustrate these steps by using an example:
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Example 4. Let n = 5 and f(x) =
√

x.4 It is easy to check the following:

m∗
N(PN) = 0.5. For any P2 s.t. |P2| = 2 and for any S ∈ P2,m

∗
S(P2) = 0.1875.

For any P3 s.t. |P3| = 3 and for any S ∈ P3, m∗
S(P3) = 0.0926.

For any P4 s.t. |P4| = 4 and for any S ∈ P4, m∗
S(P4) = 0.547.

For any {i} ∈ PI , m∗
{i}(PI) = 0.036.

Figure 2 depicts all possible coalition structures and the feasible payoff vectors
under each coalition structure in this example. Notice that the basic payoff structure
of Figure 2 is the same as that of Figure 1 for Example 3, although the payoff values
are different. Therefore, by applying the same arguments as those of Steps 1-4 in
Example 3, we can see that PN is sequentially stable in this example. Here the key
coalition structure P∗ is {1; 1; 3}. In fact, as in Example 3, PN is only one sequentially
stable coalition structure.5 On the other hand, {1; 4} and PN are EEBA’s, and {1; 4},
{1; 2; 2} and PI are EBA’s.

The proof of Theorem 1 is given as follows. The proof of Theorem 2 is in the
appendix.

Proof of Theorem 1.

In the following, we denote a coalition structure P = {S1, S2, S3, ..., Sk}, where
|S1| = r1 ≤ |S2| = r2 ≤ |S3| = r3 ≤ ... ≤ |Sk| = rk, by {r1; r2; r3; ...; rk}, because the
payoff is determined by the sizes of all coalitions in a coalition structure.

Consider a coalition structure P∗ consisting of the following (m + 1) coalitions:
two 1-person coalitions, one 2-person coalition, one 4-person coalition, one 8-person
coalition, ..., and one 2m−1-person coalition. This coalition structure is denoted by
{1; 1; 2; 4; 8; ....; 2m−1}. In what follows we say that P is a k-th stage coalition structure
if |P| = k.

The proof consists of four steps.

(Step 1) P∗ is sequentially dominated by PN :
Consider a sequence of coalition structures {Pt}m

t=0 such that P0 = P∗,Pm = PN ,
and the two coalitions of the smallest size in Pt merge into one coalition in Pt+1 for
t = 0, 1, 2, ...,m− 1. This sequence is expressed by

P0 = P∗ = {1; 1; 2; 4; 8; ...; 2m−2; 2m−1} → P1 = {2; 2; 4; 8; ...; 2m−2; 2m−1}

→ P2 = {4; 4; 8; ...; 2m−2; 2m−1} →

.... → .... → Pm−2 = {2m−2; 2m−2; 2m−1} → Pm−1 = {2m−1; 2m−1} → Pm = PN = {2m}

4Notice that the conditions in Theorem 2 are satisfied. Here m = 2, l = 1, and B(k) = 2k−1
k3 .

Clearly, B(2) = 3
8 < 2

5 = 2m−1

n and B(k) is monotonically decreasing in k.
5This is not true in general. Coalition structures other than the grand coalition structure could

be sequentially stable. See the example given just before Theorem 3.

11



First, it follows from Lemma 1 that the 2nd stage coalition structure Pm−1 =
{2m−1; 2m−1} is dominated by PN , since r1/n = 2m−1/2m = 1/2 > B(2) by the
hypothesis.

Next, it follows from Lemma 1 that the 3rd stage coalition structure Pm−2 =
{2m−2; 2m−2; 2m−1} is sequentially dominated by PN , since r1/n = 2m−2/2m = 1/4 >
B(3) by the hypothesis.

In general, for k = 2, ..., m,m + 1, it follows from Lemma 1 that the k-th stage
coalition structure Pm−k+1 = {2m−k+1; 2m−k+1; 2m−k+2; 2m−k+3; ...; 2m−1} is sequen-
tially dominated by PN , since r1/n = 2m−k+1/2m = 1/2k−1 > B(k) by the hypothesis.

Therefore, the (m + 1)-th stage coalition structure P0 = P∗ = {1; 1; 2; 4; ...; 2m−1}
is sequentially dominated by PN .
(Step 2) Every (m+1)-th stage coalition structure is sequentially dominated by PN :

Take any (m + 1)-th stage coalition structure P .
First we consider a sequence {Pt}T

t=0 such that
1) P0 = P = {r1; r2; r3; ...; rm−1; rm; rm+1}
2) PT = {1; 1; 1; ...; 1; 2m −m}, where |PT | = m + 1.
3) If t is zero or even, then the largest and the second largest coalitions in Pt merge

into one coalition in Pt+1.
4) If t is odd, then one person belonging to the largest coalition in Pt deviates and

forms one person coalition in Pt+1.
Then the sequence {Pt}T

t=0 of coalition structures is given by:

P0 = {r1; r2; r3; ..., rm−1; rm; rm+1} ((m + 1)-th stage)

→ P1 = {r1; r2; r3; ...; rm−1; rm + rm+1} (m-th stage)

→ P2 = {1; r1; r2; r3; ...; rm−1; rm + rm+1 − 1} ((m + 1)-th stage)

→ ... → ...

→ PT−2 = {1; 1; 1; ...; 1; r1;
m+1∑

k=2

rk −m + 1} ((m + 1)-th stage)

→ PT−1 = {1; 1; 1; ...; 1;
m+1∑

k=1

rk −m + 1} (m-th stage)

→ PT = {1; 1; 1; 1; ...; 1;
m+1∑

k=1

rk −m} = {1; 1; 1; ...; 1; 2m −m} ((m + 1)-th stage)

Next consider {Pt}T+T ′
t=T such that

1) PT = {1; 1; 1; ...; 1; 2m −m},
2) PT+T ′ = P∗ = {1; 1; 2; 4; 8; ...; 2m−2; 2m−1},
3) If t = T + λ and λ is zero or even (λ ≤ T ′ − 2), then the smallest coalition of

more than one members and a 1-person coalition in PT+λ merge into one coalition in
PT+λ+1.
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4) If t = T + λ and λ is odd (λ ≤ T ′ − 2), then 2m−λ+1
2 persons in the coalition of

2m−λ+1
2

+1 − (m− λ+1
2

) persons in PT+λ deviate and form a coalition in PT+λ+1. Note

that 2m−λ+1
2

+1 − (m− λ+1
2

) ≥ 1.
5) If t = T + T ′ − 1, then two one-person coalitions in PT+T ′−1 merge into one

coalition in PT+T ′ .
This sequence {Pt}T+T ′

t=T of coalition structures is given by:

PT = {1; 1; 1; 1; ...; 1; 1; 1; 1; 2m −m} ((m + 1)-th stage)

→ PT+1 = {1; 1; 1; 1; ...; 1; 1; 1; 2m −m + 1} (m-th stage)

→ PT+2 = {1; 1; 1; 1; ...; 1; 1; 1; 2m −m + 1− 2m−1; 2m−1}

= {1; 1; 1; 1; ...; 1; 1; 1; 2m−1 −m + 1; 2m−1} ((m + 1)-th stage)

→ PT+3 = {1; 1; 1; 1; ...; 1; 1; 2m−1 −m + 2; 2m−1} (m-th stage)

→ PT+4 = {1; 1; 1; 1; ...; 1; 1; 2m−1 −m + 2− 2m−2; 2m−2; 2m−1}

= {1; 1; 1; 1; ...; 1; 1; 2m−2 −m + 2; 2m−2; 2m−1} ((m + 1)-th stage)

→ PT+5 = {1; 1; 1; 1; ...; 1; 2m−2 −m + 3; 2m−2; 2m−1} (m-th stage)

→ ... → ...

→ PT+T ′−1 = {1; 1; 1; 1; 4; 8; ...; 2m−3; 2m−2; 2m−1} ((m + 1)-th stage)

→ PT+T ′ = {1; 1; 2; 4; 8; ...; 2m−3; 2m−2; 2m−1} (m-th stage)

This sequence ends at the coalition structure PT ′ = P∗.
Hence if we combine two sequences {Pt}T

t=0 and {Pt}T+T ′
t=T , we can get a sequence

{Pt}T+T ′
t=0 from any (m + 1)-th stage coalition structure P to P∗. Note that only

(m + 1)-th stage and m-th stage coalition structures appear in this sequence.
Since B(k) = B(m + 1) < 1/2m = r1/n, it follows from Lemma 1 that each

member of any coalition in (m + 1)-th stage coalition structure prefers the payoff
under the grand coalition structure PN to the payoff under the (m + 1)-th stage
coalition structure.

Also, notice that any deviating coalition in the process from m-th stage coalition
structure to (m+1)-th stage coalition structure consists of at least two players. Since
B(k) = B(m) < 1/2m−1 = 2/2m ≤ r2/n, it follows from Lemma 1 that each member
of such a deviating coalition prefers the payoff in the grand coalition structure PN to
the payoff in the m-th stage coalition structure.

Therefore if we combine this sequence {Pt}T ′
t=0 and a sequence from PT+T ′ = P∗ to

PN , every coalition structure in the sequence {Pt}T+T ′
t=0 is sequentially dominated by

PN . And so is the (m + 1)-th stage coalition structure P . This completes the proof
of Step 2.
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(Step 3) Every coalition structure P of less than m + 1 coalitions other than the
grand coalition structure PN is sequentially dominated by PN .

First, we show that each member of a coalition of the maximal size in any coalition
structure P prefers her payoff under PN to her payoff under P . Denote P by P =
{S1, S2, S3, ..., Sk}, where |S1| = r1 ≤ |S2| = r2 ≤ |S3| = r3 ≤ ... ≤ |Sk| = rk. Because
rk ≥ ri for all ri, krk ≥ ∑k

i=1 ri = n, that is, rk/n ≥ 1/k. Since B(k) < 1/2k−1, it
follows that rk/n ≥ 1/k ≥ 1/2k−1 > B(k). By Lemma 1, we have the desired result.

Take any coalition structure P of less than m + 1 coalitions other than PN . Con-
sider the following sequence {Pt} starting from P to some (m + 1)-th stage coalition
structure P ′: one person in a coalition of the maximal size in Pt deviates and forms
a 1-person coalition in Pt+1. Notice that such a person in Pt prefers her payoff under
PN to her payoff under Pt, as shown above. Moreover, it is easy to construct a se-
quence of coalition structures from P to PN by combining the above sequence from P
to P ′ and the sequence from P ′ to PN in Step 2. These imply that P is sequentially
dominated by PN .

(Step 4) Every coalition structure P of more than m + 1 coalitions is sequentially
dominated by PN .

Take any k-th stage coalition structure P of more than m + 1 coalitions. Since B
is a decreasing function and k > m+1, B(k) < B(m+1) < 1/2m = 1/n ≤ ri/n holds
for any ri ≥ 1. This together with Lemma 1 imply that each member of any coalition
in P prefers her payoff under the grand coalition structure PN to her payoff under P .

Consider a sequence {Pt} starting from P to some (m+1)-th stage coalition struc-
ture P ′ such that two coalitions in Pt merge into one coalition in Pt+1. Notice that
each member in these two coalitions in Pt prefers her payoff under PN to her payoff
under Pt, as shown above. Moreover, it is easy to construct a sequence of coalition
structures from P to PN by combining the above sequence from P to P ′ and the se-
quence from P ′ to PN in Step 2. These imply that P is sequentially dominated by PN .

Q.E.D.

We now apply the above theorem when the production function is given by f(x) =
xα (0 < α < 1). First of all, by Proposition 4, it is easy to check that for any P

x∗N(P) = (α + k − 1)(x∗N(P))α−1/(kq) =

(
α− 1 + k

kq

)1/(1−α)

,

ui(P) = m∗
S1

(P)/r1 = [f(x∗N(P))− qx∗N(P)] /(r1k)

= [f(x∗N(P))− f ′(x∗N(P))x∗N(P)] /(r1k
2) = (1− α)(x∗N(P))α/(r1k

2),∀i ∈ S1.

Notice that if P = PN , then k = 1 and r1 = n, so that

x∗N(PN) = α(x∗N(PN))α−1/q =

(
α

q

)1/(1−α)

.

f(x∗N(PN))− f ′(x∗N(PN))x∗N(PN) = (1− α)(x∗N(PN))α.
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This implies

B(k) = {f(x∗N(P))− f ′(x∗N(P))x∗N(P)}/[k2{f(x∗N(PN))− f ′(x∗N(PN))x∗N(PN)}]

=
1

k2

(
α− 1 + k

αk

)α/(1−α)

.

Corollary 1. If f(x) = xα, then for some α ∈ (0, 1), the grand coalition structure
PN is sequentially stable for any number of players n = |N | ≥ 4.

Proof. We will apply Theorem 2. First of all, note that B(k) is an increasing function
of α, and limα→0 B(k) = 1/k2 for any k. Hence for sufficiently small α > 0, B(k) is
very close to 1/k2.

Let m ≥ 2 be given. Consider any integer n ∈ [2m, 2m+1). First we will show
that limα→0 B(2m−h−1 + 2) = 1/(2m−h−1 + 2)2 < 2h−1/n for h = 1, ..., m − 2. Since
2h−1/n > 2h−1/2m+1 = 1/2m−h+2, it is sufficient to prove that 1/(2m−h−1 + 2)2 ≤
1/2m−h+2, that is, (2m−h−1 + 2)2 ≥ 2m−h+2. If h ≤ m − 4, then 22(m−h−1) ≥ 2m−h+2,
implying the desired result. Also,

for h = m− 3, (2m−h−1 + 2)2 = (22 + 2)2 > 25 = 2m−h+2,
for h = m− 2, (2m−h−1 + 2)2 = (2 + 2)2 = 24 = 2m−h+2and
for h = m− 1, (2m−h−1 + 2)2 = (1 + 2)2 = 32 > 23 = 2m−h+2.
Moreover, limα→0 B(2) = 1/4 = 2m−1/2m+1 < 2m−1/n. Finally, it is clear that

B(k) is decreasing in k. Therefore, by Theorem 2, PN is sequentially stable for some
α ∈ (0, 1). Q.E.D.

This corollary says that if we apply our stability concept to a common pool resource
game, the grand coalition structure can be sequentially stable for any number of
players.

Coalition structures other than the grand coalition structure could be sequentially
stable. For example, in a 6-person game with f(x) =

√
x, the coalition structures

consisting of (n − 1)-person coalition and one-person coalition, PN\{i} = {{i}, N \
{i}}({i} ∈ N) are also sequentially stable. However, such a coalition structure is
quite unfair in the sense that the payoff of the player in one-person coalition is equal
to the sum of all other players’ payoffs. We will examine under which condition
these unfair coalition structures are unstable. For P with |P| = k, let C(k) ≡
{f(x∗N(P))− f ′(x∗N(P))x∗N(P)}/{f(x∗N(PN\{i}))− f ′(x∗N(PN\{i}))x∗N(PN\{i})}.
Theorem 3. Let n ≥ 5. If C(3) ≥ 9

8
, then the coalition structures PN\{i} =

{{i}, N \ {i}}, ({i} ∈ N) are not sequentially stable.

Proof. We will show that any coalition structure containing three coalitions is not
sequentially dominated by PN\{i} if C(3) ≥ 9

8
. Let P = {S1, S2, S3}, |S1| ≤ |S2| ≤

|S3|, be a coalition structure containing 3 coalitions.

In any sequence from P to PN\{i}, two coalitions must merge into one coalition.
Thus it is enough to show that the payoff of each player in one of two coalitions is
smaller than the payoff in the coalition N \ {i} of PN\{i}. Hence if the largest payoff
of a player in the second largest S2 among all coalition structures with 3 coalitions is
smaller than the payoff of a player in N \ {i}, we can attain our purpose.
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Then we have to compare the payoff m∗
j(P) of player j in a coalition S2 of the

smallest size with the payoff m∗
j(PN\{i}).

Remark that such a coalition structure is given by |S1| = 1, |S2| = |S3| = n−1
2

if n
is odd, and |S1| = 1, |S2| = n−2

2
, |S3| = n+2

2
if n is even.

By Proposition 4,

m∗
j(P) = [f(x∗N(P))− f ′(x∗N(P))x∗N(P)] /(9r2),

for j ∈ S2, and

m∗
j(PN\{i}) =

[
f(x∗N(PN\{i}))− f ′(x∗N(PN\{i}))x∗N(PN\{i})

]
/(4(n− 1)),

for j ∈ N\{i}. Note that for j ∈ S2, m∗
j(P) ≥ m∗

j(PN\{i}) iff [4(n−1)/(9r2)]{f(x∗N(P))−
f ′(x∗N(P))x∗N(P)}/{f(x∗N(PN\{i}))−f ′(x∗N(PN\{i}))x∗N(PN\{i})}] = [4(n−1)/(9r2)]C(3) ≥
1. There are two cases to examine. First, if n is even, consider a coalition structure
P with r2 = (n − 2)/2. In this case, 4(n − 1)/(9r2) =8(n−1)

9(n−2)
, so that if C(3) ≥ 9

8
,

then m∗
j(P) > m∗

j(PN\{i}). Second, if n is odd, consider a coalition structure P with
r2 = (n − 1)/2. In this case, 4(n − 1)/(9r2) =8

9
, so that if C(3) ≥ 9

8
, then m∗

j(P) ≥
m∗

j(PN\{i}). Q.E.D.

By applying this theorem to the case in which the production function is give by
f(x) = xα (0 < α < 1), we have the following:

Corollary 2. Let n ≥ 5. If f(x) = xα and α ≥ 0.583804, then the coalition structures
PN\{i} = {{i}, N \ {i}}, ({i} ∈ N) are not sequentially stable.

Proof. It is easy to see that

C(3) =

(
3(α + 1)

2(α + 2)

)−α/(1−α)

.

Therefore, C(3) > 9
8

iff 1/C(3) =
(

3(α+1)
2(α+2)

)α/(1−α)
< 8

9
. Figure 3 illustrates the func-

tion 1/C(3)−8
9
. It is not hard to check that if 1/C(3) < 8

9
if α ≥ 0.583804. Q.E.D.

The above result shows that for any number of players, the coalition structures
PN\{i} = {{i}, N \ {i}} cannot be sequentially stable if α is suitably large.

Remark 1. In our definition of domination, either (i) only two coalitions can merge
into one coalition, or (ii) one coalition can break up into two coalitions at each step
in a sequence. It is possible to define a slightly different notion of domination such
that more than two coalitions are allowed to merge into one coalition at each step
in a sequence. Our original concept of sequential stability is a refinement of this
alternative notion. For this definition of domination, however, we can prove that the
unfair coalition structure PN\{i} sequentially dominates any other coalition structure
for a sufficiently large n.
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Proposition 6. Suppose we allow that singleton coalition structure PI can merge
into PN\{i} directly at one step. Given α ∈ (0, 1), PN\{i} is sequentially stable for a
sufficiently large n.

Proof. uk(PN\{i}) > uk(PI) for all k ∈ N\{i} ∈ PN\{i} if C(n) < 1
n−1

, that is,

(
2(α− 1 + n)

(α + 1)n

)α/(1−α)
1

n2
<

1

n− 1
.

For any α ∈ (0, 1), this inequality holds if n is sufficiently large for fixed α. Then
under the supposition, PN\{i} sequentially dominates PI . In every coalition struc-
ture P such that |P| ≤ n − 2, a member in the largest coalition get more payoff in
N\{i} by Proposition 5. Hence one member deviates from the largest coalition in
P . On the other hand, since one-person deviation from the grand coalition is prof-
itable by Lemma 1, PN\{i} sequentially dominates the grand coalition structure PN .

Q.E.D.

Remark 2. Because our sequential domination implies DX-domination, it follows
from Corollary 1 that the grand coalition structure can be an EEBA for any number
of players if |N | ≥ 4. However, a set of EEBA’s might contain several other coalition
structures. In particular, the unfair coalition structure PN\{i} = {{i}, N \ {i}} is
an EEBA for a sufficiently large n. In fact, this follows from Proposition 6, because
DX-domination is implied by domination under the assumption in Proposition 6 that
the singleton coalition structure PI can merge into PN\{i} directly at one step. It is
difficult to eliminate the possibility that the coalition structures PN\{i} is an EEBA
because the singleton player gets the maximal payoff among the payoffs under all
coalition structures. (See Diamantoudi and Xue (2007) for a related argument.)

5 Concluding Remarks

We have proposed a sequentially stable coalition structure as a new concept of stability
in coalition formation games with externalities. Our concept of domination is based
on a step-by-step approach to describe negotiation processes concretely. We have
shown that the efficient grand coalition structure can be sequentially stable in simple
partition function form games and common pool resource games.

In this paper, each coalition structure corresponds to one payoff vector. For a
more general case in which each coalition structure corresponds to many possible
payoff vectors, we have to consider a payoff configuration defined by (z,P), which
satisfies z ∈ {z|z ∈ F(P)}. Here F(P) is a set of feasible payoff vectors under P .
In this case, it is not easy to compare the present payoff configuration to the final
payoff configuration because of the multiplicity of the final payoff vectors. Then we
should take into account sequential domination between two feasible payoff vectors in
the same coalition structure. This topic is left for a future research.

We can apply our stability concept to other economic situations like public goods
provision games and Cournot oligopoly games. It is generally difficult to check which
coalition structures are EBA’s in Cournot oligopoly games (Ray and Vohra(1997)).
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Examining sequential stability of coalition structures in these economic environments
is an open question.

6 Appendix

Proof of Theorem 2.
Consider a coalition structure P∗∗ = {1; 1; 2; 2; 2; 2; ....; 2; 2; 2m−1 + l} consisting of

2m−2 + 2 coalitions instead of P∗ = {1; 1; 2; 4; 8; ...; 2m−1} in the proof for Theorem 1.

(Step 1) P∗∗ is sequentially dominated by PN .

We have to find a sequence of coalition structures {Pt}2m−2+2
t=1 from P1 = P∗∗ to

P2m−2+2 = PN . We will show the following is a domination sequence of coalition
structures.

P∗∗ = P1 = {1; 1; 2; 2; 2; 2; 2; ...; 2; 2; 2m−1 + l} ((2m−2 + 2)-th stage)

→ P2 = {2; 2; 2; 2; 2; 2; ...; 2; 2; 2m−1 + l} ((2m−2 + 1)-th stage)

→ P3 = {4; 2; 2; 2; 2; ...; 2; 2; 2m−1 + l} (2m−2-th stage)

→ P4 = {4; 4; 2; ...; 2; 2; 2m−1 + l} ((2m−2 − 1)-th stage)

→ .... → ....

→ P2m−3+1 = {4; 4; 4; 4; ...; 2; 2; 2m−1 + l} ((2m−3 + 2)-th stage)

→ P2m−3+2 = {4; 4; 4; 4; ...; 4; 2m−1 + l} ((2m−3 + 1)-th stage)

→ P2m−3+3 = {8; 4; 4; ...; 4; 2m−1 + l} (2m−3-th stage)

→ .... → ....

→ P2m−3+2m−4+1 = {8; 8; ...; 8; 4; 4; 2m−1 + l} ((2m−4 + 2)-th stage)

→ P2m−3+2m−4+2 = {8; 8; ...; 8; 8; 2m−1 + l} ((2m−4 + 1)-th stage)

→ .... → ....

→ P2m−3+2m−4+...+2m−h−1+1 = {2h; 2h; 2h; 2h; ..; 2h; 2h−1; 2h−1; 2m−1 + l} ((2m−h−1 + 2)-th stage)

→ P2m−3+2m−4+...+2m−h−1+2 = {2h; 2h; 2h; 2h; ..; 2h; 2h; 2m−1 + l} (2m−h−1 + 1-th stage)

→ .... → ....

→ P2m−2−2 = {2m−3; 2m−3; 2m−3; 2m−3; 2m−1 + l} (5-th stage)

→ P2m−2−1 = {2m−2; 2m−3; 2m−3; 2m−1 + l} (4-th stage)

→ P2m−2 = {2m−2; 2m−2; 2m−1 + l} (3-th stage)
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→ P2m−2+1 = {2m−1; 2m−1 + l} (2-th stage) → P2m−2+2 = PN

For t = 1, the payoff of every player in the two singletons under P1 is smaller than
that under the final coalition structure PN by Lemma 1 because 1

n
> B(2m−2 + 2),

which is given by (4.1) for h = 1. Remark that |P1| = 2m−2 + 2.
For t = 2, 3, ..., 2m−3 + 1, the payoff of every player in 2-person coalitions under

Pt, (t = 3, ..., 2m−2), which is the minimal size among the coalitions, is smaller than
that under the final coalition structure PN by Lemma 1 because 2

n
> B(2m−3 + 2) >

B(2m−3 +3) > ... > B(2m−2 +1). Here this inequality is obtained by 2
n

> B(2m−3 +2)
and the monotonicity of B(k).

Let h ∈ {3, 4, ..., m−2}. For t = (2m−3 +2m−4 + ...+2m−h)+2, 2m−3 +2m−4 + ...+
2m−h)+3, ..., (2m−3 +2m−4 + ...+2m−h)+1, the payoff of every member in 2h−1-person
coalitions under Pt, t = (2m−3 + 2m−4 + ... + 2m−h) + 2, 2m−3 + 2m−4 + ... + 2m−h) +
3, ..., (2m−3+2m−4+...+2m−h)+1 is smaller than that under PN by Lemma 1, because
2h−1

n
> B(2m−h−1 + 2) and B(k) is decreasing.

For t = 2m−2 − 1 or 2m−2 − 2, which correspond to the case of h = m − 2 above,
the payoff of every member in two 2m−3-person coalitions under P2m−2−1 is smaller
than that under PNbecause 2m−3

n
> B(4) = B(21 + 2) > B(5).

For t = 2m−2, the payoff of every member in two 2m−2-person coalitions under
P2m−2 is smaller than that under PN because 2m−2

n
> B(3) = B(20 + 2).

For t = 2m−2 + 1, the payoff of every member in the two coalitions under P2m−2+1

is smaller than that under PNbecause 2m−2

n
> B(2).

Thus we get a sequence from P∗∗ to PN .

(Step 2) Every (2m−2 + 2)-th stage coalition structure is sequentially dominated.
We denote M = 2m−2 + 2. Take any M -th stage coalition structure P .
First we consider a sequence {Pt}T

t=0 such that
1) P0 = P = {r1; r2; r3; ...; rM−2; rM−1; rM} (r1 ≤ r2 ≤ r3 ≤ ... ≤ rM−1 ≤ rM).
2) PT = {1; 1; 1; ...; 1; n−M + 1}, where |PT | = M .
3) If t is zero or even, then one person belonging to the largest coalition in Pt

deviates and forms one person coalition in Pt+1.
4) If t is odd, then the largest and the second largest coalitions in Pt merge into

one coalition in Pt+1.
Then the sequence {Pt}T

t=0 of coalition structures is given by:

P0 = {r1; r2; r3; ..., rM−2; rM−1; rM} (M -th stage)

→ P1 = {1; r1; r2; r3; ...; rM−2; rM−1; rM − 1} ((M + 1)-th stage)

→ P2 = {1; r1; r2; r3; ...; rM−2; rM−1 + rM − 1} (M -th stage)

→ P3 = {1; 1; r1; r2; r3; ...; rM−2; rM−1 + rM − 2} ((M + 1)-th stage)

→ ... → ...

→ PT−2 = {1; 1; 1; ...; 1; r1;
M∑

k=2

rk −M + 2} (M -th stage)
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→ PT−1 = {1; 1; 1; 1; ...; 1; r1;
M∑

k=2

rk −M + 1} ((M + 1)-th stage)

→ PT = {1; 1; 1; 1; ...; 1;
M∑

k=1

rk −M + 1} = {1; 1; 1; 1; ...; 1; n−M + 1} (M -th stage)

Next consider {Pt}T+T ′
t=T such that

1) PT = {1; 1; 1; ...; 1; n−M + 1},
2) PT+T

′ = P∗∗ = {1; 1; 2; 2; 2; 2; ...; 2; 2; 2m−1 + l}.
3) If t = T + λ and λ is 0 or even, then 1-person in the largest coalition in PT+λ

deviate and form a singleton in PT+λ+1.
4) If t = T + λ and λ is odd, then two 1-person coalitions in PT+λ merge into one

coalition in PT+λ+1.
This sequence {Pt}T+T ′

t=T of coalition structures is given by:

PT = {1; 1; 1; 1; ...; 1; 1; 1; n−M + 1} (M -th stage)

→ PT+1 = {1; 1; 1; 1; ...; 1; 1; 1; 1; n−M} ((M + 1)-th stage)

→ PT+2 = {1; 1; 1; 1; ...; 1; 1; 2; n−M} (M -th stage)

→ PT+3 = {1; 1; 1; 1; ...; 1; 1; 1; 2; n−M − 1} ((M + 1)-th stage)

→ PT+4 = {1; 1; 1; 1; ...; 1; 2; 2; n−M − 1} M -th stage)

→ PT+5 = {1; 1; 1; 1; ...; 1; 1; 2; 2; n−M − 2} ((M + 1)-th stage)

→ ... → ...

→ PT+T ′−2 = {1; 1; 1; 2; ...; 2; 2; n− 2M + 3} M -th stage)

→ PT+T ′−1 = {1; 1; 1; 1; 2; ...; 2; 2; n− 2M + 4} (M + 1)-th stage)

→ PT+T ′ = {1; 1; 2; 2; ...; 2; 2; n− 2M + 4} = {1; 1; 2; 2; ...; 2; 2; 2m−1 + l}
= P∗∗ (M -th stage)

Hence if we combine two sequences {Pt}T
t=0 and {Pt}T+T ′

t=T , we can get a sequence
{Pt}T+T ′

t=0 from any (m+1)-th stage coalition structure P to P∗∗. Note that only devi-
ation of a coalition with 2 or more members appears for all M -th coalition structures
in this sequence.

(Step 3) Every coalition structure P of less than (2m−2 +2) coalitions other than the
grand coalition structure PN is sequentially dominated by PN .

The proof is similar to that in Theorem 1 except for the cardinality of the key
coalition structure P∗∗.
(Step 4) Every coalition structure P of more than (2m−2+2) coalitions is sequentially
dominated by PN .

The proof is the same as that in Theorem 1.

Steps 1-4 show that every coalition structure other than PN is sequentially domi-
nated by PN . Q.E.D.
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