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ABSTRACT

This paper presents a uni�ed study of duality properties for the problem of minimizing a linear

function over the intersection of an a�ne space with a convex cone in �nite dimension. Existing

duality results are carefully surveyed and some new duality properties are established. Examples are

given to illustrate these new properties. The topics covered in this paper include Gordon-Stiemke
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and conic convex programs are also discussed.

KEY WORDS: Conic convex programming, duality, semide�nite programming.

AMS subject classi�cation: 90C25, 15A39, 15A45, 90C05.

1 The research of the �rst author is supported by the Natural Sciences and Engineering Research Council of Canada,

Grant No. OPG0090391, and was performed during a research leave to the Econometric Institute, Erasmus University

Rotterdam.

2 Room 225/CRL, Department of Electrical and Computer Engineering, McMaster University, Hamilton, Ontario,

L8S 4L7, Canada.

3 Econometric Institute, Erasmus University Rotterdam, The Netherlands.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6238817?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 Introduction

A conic convex program is an optimization problem for which the objective is linear and the

constraint set is given by the intersection of an a�ne space with a convex cone. As such, it

contains as special cases the linear programming problem, the quadratic programming problem,

and most notably, the semide�nite programming problem. Recently, the latter problem has been

the focus of many studies due to mainly two reasons. First, it has a wide range of applications

in, among others, system and control theory [11] and combinatorial optimization [1]. Second, it

appears that interior point methods are well suited for solving this type of optimization problems,

see e.g. [27, 28, 30, 31, 32, 40].

In this paper, we consider the following conic convex programming problem

inf cTx

s:t: x� b 2 A (P)

x 2 K;

where A is a linear subspace of <n, K is a convex cone in <n, c and b are vectors in <n. Throughout

this paper we assume, without loss of generality, that c and b lie in A and its orthogonal complement

respectively. We shall denote this conic convex program by CP(b; c;A;K). Notice that in this

setting, the convex cone K is not necessarily closed, and consequently, the domain of the conic

convex program may not be closed either.

The importance of duality theory is well recognized in the context of convex programming.

Among other things, it has played a central role in detecting infeasibility, lower-bounding the

optimal objective value, and in the design and analysis of iterative algorithms for solving linear and

quadratic programs. Indeed, if the optimal value p� of (P) is �nite and the in�mum is attained,

then an optimal solution of (P) should consist of a feasible solution x� with cTx� = p� and a dual

certi�cate proving the claim that p� is indeed the in�mum. Similarly, infeasibility of (P) can be

established by using a Farkas{type dual solution.

To a large extent, duality results for linear programming can be generalized to the setting of

conic convex programming, as was pointed out by Du�n [15]. However, certi�cates in the context

of conic convex programming, such as those proposed in [15], can be in�nitely long. More recently,

Borwein and Wolkowicz [10] proposed a regularization scheme which results in certi�cates of �nite

length. We will see however, that checking the feasibility (correctness) of regularized certi�cates can

be a nontrivial task. Fortunately, the structure of regularized certi�cates is now well understood

for an important class of conic convex programming, viz. semide�nite programming, due to the

recent results of Ramana [34].

Since computational algorithms can only generate approximate solutions and certi�cates, we

are led naturally to study the properties of approximate dual solutions for CP(b; c;A;K). We will

see that while exact dual solutions provide a lower bound on the optimal value of a conic convex
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optimization problem, approximate dual solutions provide a lower bound for the optimal value of

`reasonably' sized (primal) solutions. Our analysis of approximate solutions follows the approach

initiated by Todd and Ye [42].

This paper presents a uni�ed treatment of duality theory for �nite dimensional conic convex

programming. We consider the conic convex programming problem in its most general form in the

sense that we do not make such assumptions as closedness, pointedness, solidness, or constraint

quali�cations. We carefully survey some existing results known for CP(b; c;A;K), and show that

various duality results that were previously known only for the case of closed, pointed and / or

solid convex cones can be extended to this general setting. Many new and interesting proofs and

examples make the survey self{contained.

This paper is organized as follows. Section 2 introduces the terminologies for describing fea-

sibility and related issues in conic convex programming. Section 3 provides some relevant results

from convex analysis. Characterizations of strong feasibility, boundedness and related issues are

discussed in Section 4. In Section 5, we present several extensions of Farkas' lemma to conic con-

vex programming, yielding characterizations of (in)feasibility and strong infeasibility. Section 6

contains comprehensive duality results of conic convex programming. In particular, it provides a

derivation of the relationships between the standard primal and dual conic convex programming

problems. In Section 7, we give a new and simpli�ed treatment of regularization. In Section 8, we

study the structure of regularized programs in the special case of semide�nite programming, and

this leads to Ramana's semide�nite programming duality. The exact meaning of inexact solutions

is revealed in Section 9. This paper is concluded with some �nal remarks in Section 10.

Notation. Given a set S, we let clS; intS and rel S denote the closure of S, the interior of
S and the relative interior of S respectively. If S is a subset of <n and A is an m� n matrix, then

the image of S under the linear mapping A is denoted by AS, i.e.

AS = fy 2 <m j y = Ax; for some x 2 Sg:

The kernel, the image and the rank of A are denoted by KerA, ImgA and rankA respectively. If

A is a linear subspace, then PA denotes the orthogonal projection matrix onto A. The dimension
of A is denoted dimA. In particular, there holds dim ImgA = rankA. If A is a symmetric matrix,

we write A � 0 if and only if A is positive semide�nite.

Given a vector x 2 <n, we let kxk denote a norm of x, for which the dual norm is kxk�, i.e.

kxk� = max
y
fyTx j kyk = 1g:

The Euclidean norm of x is denoted by kxk2. The distance from a vector x 2 <n to a convex set

S � <n is

dist(x;S) = inf
s2S

kx� sk:

Similarly, we let

dist(S;S0) = inf
x2S

dist(x;S0)
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denote the distance between two convex sets S and S0. The Minkowski sum of S and S0 is

S � S0 = fz 2 <n j z = x+ y for some x 2 S; y 2 S0g;

and the (asymmetric) di�erence of S and S0 is

S n S0 := fx 2 S j x 62 S0g:

We let <+ ( <++ ) denote the half{line of nonnegative (positive) real numbers.

2 Terminologies and Preliminaries

A convex cone is by de�nition a set K with the property that f0g 2 K and

�(K �K) = K; for all � > 0:

Instead of `convex cone', some authors prefer the name `nonempty convex cone' for the above

notion. Let K� denote the dual cone of K, i.e.

K� := fs 2 <n j sTK � <+g:

The cone �K� is also known as the polar cone of K [38]. It is easily veri�ed that the dual cone K�
is convex and closed. We let subK denote the largest linear subspace that is contained in K, i.e.

subK := K \ (�K):

Notice that

subK� = fs 2 <n j sTK = f0gg;

we de�ne K? := subK�. A convex cone K is said to be pointed if subK = f0g; K is said to be solid

if intK 6= ;. The linear subspace that is spanned by elements of K is

spanK := K��K:

Example 1 Let K = < � <+ � f0g, then K� = f0g � <+ � <, spanK = <2 � f0g, subK =

<� f0g � f0g and K? = f0g � f0g � <.

Consider now problem (P), i.e. the conic convex program CP(b; c;A;K). If K is closed, we say

that (P) is a closed conic convex program. The set of feasible solutions of (P) is

FP := (b+ A) \ K:
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It is easy to see that

FP = FP � (A \ K): (1)

If x 2 A \ K, then x is called a direction (or a recession direction in the terminology of Rockafel-

lar [38]); x is an interior direction if it belongs to A \ relK. If x is a direction and �x is not, i.e.

x 2 (A \ K) n sub (A \ K), then x is a one{sided direction. If x 2 A \ K is such that cTx � 0,

then x is a lower level direction; such x is a one{sided lower level direction if �x is not a lower level

direction. An improving direction is a direction x with cTx < 0. An improving direction sequence

is a sequence x(1); x(2); : : : in K such that cTx(i) � �1 for all i and

lim
i!1

dist(x(i);A) = 0:

Notice that if there exists an improving direction, then there certainly exists an improving direction

sequence. We will see later that the converse is in general not true.

If sub (A \K) 6= f0g, it is often convenient to restrict ourselves to solutions in (sub (A \K))?.
Namely, it follows from (1) that

FP =
�
FP \ (sub (A \ K))?

�
� sub (A \ K):

Based on this observation, we say that x 2 <n is a normalized feasible solution of (P) if

x 2 FP \ (sub (A \K))? :

Obviously, if A \K is pointed, then any feasible solution is a normalized feasible solution.

Example 2 The standard LP problem

minf~cTy j ATy + s = ~b; y 2 <m; s � 0g;

where A is an m � n matrix, can be cast as a conic convex program CP(b; c;A;K) in <m+n by

letting

bT :=
h
0 ~bT

i
T

; cT =
h
~cT 0

i
T

;

A := Ker
h
AT I

i
; K := <m �<n

+;

where I denotes the identity matrix of order n. Since in this case there holds

sub (A \ K) = (KerAT)� f0gn;

the normalized feasible set is

FP \ (sub (A \K))? = f(y; s) 2 FP j y 2 ImgAg:

It is customary in linear programming theory to assume that A has full row rank, i.e. ImgA = <m,

which implies that FP consists only of normalized feasible solutions.
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The set of interior solutions is de�ned as

o

FP := FP \ relK:

We say that (P) is feasible (or consistent) if FP 6= ; and (P) is strongly feasible (or super{consistent
in the terminology of Du�n [15]) if

o

FP 6= ;. If (P) is feasible but not strongly feasible, then (P) is

said to be weakly feasible.

Strong feasibility as de�ned above is also known as the generalized Slater's constraint quali�-

cation.

Obviously, if (P) is feasible, i.e. if (b+ A) \ K 6= ;, then dist(b+A;K) = 0. The converse is in

general not true, even if K is closed; see Example 3 at the end of this section. This observation gives

rise to the de�nition of weak infeasibility, which is sometimes referred to as sub{consistency [15] or

asymptotic consistency [5]. Problem (P) is said to be weakly infeasible if

dist(b+A;K) = 0 but FP = ;:

If

dist(b+A;K) > 0;

then (P) is called strongly infeasible.

Let

p� := inf cTFP

denote the optimal value of (P). The set of feasible solutions for which the optimal value is attained

is

F�P := fx 2 FP j cTx = p�g;

and the normalized optimal set is

F�P \ (sub (A \K))? :

Problem (P) is said to be solvable (or convergent in the terminology of Du�n [15]) if F�P 6= ;. A
special case of unsolvability occurs when p� = �1. In this case, we say that (P) is unbounded.

Notice that if (P) is feasible and there exists an improving direction, then (P) is unbounded.

Associated with (P) is a dual program (D), viz.

inf bTs

s:t: s� c 2 A? (D)

s 2 K�:

In other words, the dual of the conic convex program CP(b; c;A;K) is by de�nition the closed conic

convex program CP(c; b;A?;K�). In analogy to the de�nitions of FP ,
o

FP , p
� and F�P for the primal

program, we de�ne

FD := (c+ A?) \ K�;
o

FD:= (c+A?) \ relK�;
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and

d� := inf bTFD; F�D := fs 2 FD j bTs = d�g;

for the dual program. If (D) is weakly (in)feasible, strongly (in)feasible or solvable, then (P) is said

to be dual weakly (in)feasible, dual strongly (in)feasible or dual solvable, respectively. Similarly,

(P) is said to have a dual level direction, dual improving direction, etc., if (D) has a level direction,

improving direction, etc. We will see later that if K is closed, then the dual of (D) is again (P).

The following example illustrates some of the terminologies introduced above.

Example 3 Consider the program CP(b; c;A;K) in <3, with

b =
h
0 0 1

i
T

; c =
h
0 c2 0

i
T

;

A = fx 2 <3 j x1 = 0; x3 = 0g;

and

K =

(
x 2 <3

�����
"

x1 x3=
p
2

x3=
p
2 x2

#
� 0

)
:

Then K� = K and A? = fs 2 <3 j s2 = 0g. The primal is weakly infeasible,

p� = inf

(
c2x2

�����
"

0 1=
p
2

1=
p
2 x2

#
� 0

)
=1:

The dual is

d� = inf

(
s3

�����
"

s1 s3=
p
2

s3=
p
2 c2

#
� 0

)
:

Hence, the dual is strongly infeasible if c2 < 0, weakly feasible and solvable with optimal value

d� = 0 if c2 = 0, and strongly feasible and unbounded if c2 > 0.

Example 3 is a semide�nite programming problem. We refer to Vandenberghe and Boyd [45]

for an introduction to semide�nite programming and its applications.

3 Basic properties of convex cones

The result below is quoted from Corollary 16.4.2 of Rockafellar [38]. We give a direct proof for

completeness.

Lemma 1 Let K1 and K2 be two convex cones, then

K�1 \ K�2 = (K1 �K2)
�:
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Proof: By de�nition, we have

x 2 (K1 � K2)
�

if and only if

xT(K1 � K2) � <+:

Since 0 2 K1 \ K2, the above relation is equivalent with

xTK1 � <+; xTK2 � <+;

i.e. x 2 K�
1
\ K�

2
.

2

Based on Lemma 1, one may guess that the cones K�
1
� K�

2
and (K1 \ K2)

� are identical.

However, this is in general not true even if K1 and K2 are both closed, since the Minkowski sum

K�1 � K�2 may not be closed. For instance in Example 3, we have
h
0 0 1

iT
2 cl (A � K), buth

0 0 1
i
T

62 A � K.

Corollary 1 Let K be a convex cone. Then spanK = (subK�)? = K??, i.e. spanK is the smallest

linear subspace containing K.

Proof: Apply Lemma 1 with K1 = K and K2 = �K.

2

Recall that a solid convex cone in <n is by de�nition a convex cone K for which intK 6= ;, or
equivalently, for which the smallest subspace containing K is <n. Hence, we obtain from Corollary 1

that K is solid if and only if K� is pointed. Notice however, that if K is not closed then K may be

pointed whereas K� is not solid. (For instance, consider K = (<� <++)[ f0g. )

Notice from Lemma 1 and Corollary 1 that

�
sub (A? \ K�)

�?
= (sub (A� \ K�))?

= (sub (A� K)�)?

= span (A� K):

Hence, it follows that

FD \ span (A�K)

is the normalized dual feasible set.

A well known result is the bipolar theorem (see Du�n [15], Ben-Israel [4] and Rockafellar [38],

among others).
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Theorem 1 (bipolar theorem) Let K be a convex cone in <n. There holds

clK = K��:

The bipolar theorem shows the nice symmetry between the dual pair (P) and (D): if K is closed,

then CP(b; c;A;K) is the dual of the conic convex program CP(c; b;A?;K�).

The bipolar theorem gives a dual characterization of clK. Theorem 2 below gives a dual

characterization of relK. To the best of our knowledge, this characterization is new.

Theorem 2 Let K be a convex cone in <n. Then

x 2 relK

if and only if

x 2 spanK; xT(K� n K?) � <++:

Proof: Let s be an arbitrary nonzero vector in (K� n K?), and let ŝ denote the nonzero orthogonal
projection of s onto the subspace K?. By de�nition, x 2 relK implies that there exists a positive

number �(s) such that x� �(s)ŝ 2 K. This yields

0 � sT(x� �(s)ŝ) = sTx� �(s)kŝk22 < sTx:

Moreover, since relK � spanK, we have x 2 spanK.

Conversely, suppose that x 2 spanK is such that xT(K� n K?) � <++. Since x
TK? = f0g (see

Corollary 1), it follows that xTK� � <+, i.e. x 2 K��. Let

� := inf
s
fxTs j s 2 K� \ spanK; ksk = 1g:

Then � > 0, because K� and spanK are closed. By construction, we have for all y 2 spanK, y 6= 0,

and s 2 K� that
sT
�
x+

�

kyk�y
�
� 0;

which implies that x 2 relK��, Using the bipolar theorem, it follows that x 2 relK.

2

The following lemma gives a formula for the relative interior of a Minkowski sum of cones. It

follows from Corollary 6.1.1 in Rockafellar [38], but we give a direct proof for completeness.

Lemma 2 Let K1 and K2 be convex cones in <n. Then

rel (K1 �K2) = (relK1)� relK2:
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Proof: From Corollary 1, we know that span (K1�K2) is the smallest linear subspace containing

K1 � K2. Since

span (K1 �K2) = (spanK1)� spanK2;

it follows that

x 2 (relK1)� relK2 ) x 2 rel (K1 �K2): (2)

On the other hand, we have cl relK1 = clK1 and cl relK2 = clK2 because K1 and K2 are convex,

and hence

K1 �K2 � cl ((relK1)� relK2); (3)

where we used the fact that the closure of a set is the union of that set with its limit points.

Relation (3) implies that

rel (K1 �K2) � (relK1)� relK2: (4)

Combining (2) and (4) yields

(relK1)� relK2 = rel (K1 � K2):

2

In fact, Lemma 2 holds not only for convex cones but also for more general sets known as robust

sets. (A set S is said to be robust if it satis�es cl rel S = clS.) This fact can be shown by the same

proof as used in Lemma 2.

The following lemma shows how an invertible linear transformation of a cone a�ects its dual.

Lemma 3 Let K be a convex cone in <n and let M 2 <n�n be an invertible matrix. Then

(MTK)� =M�1K�:

Proof: We note the following relations

y 2 (MTK)� () yTMTK � <+

() My 2 K�

() y 2M�1K�:

2
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4 Characterization of strong feasibility

Combining Lemma 1, Theorem 2, and Lemma 2, we obtain the following result.

Theorem 3 There exists a primal interior solution if and only if there exists no one{sided dual

level direction.

Proof: By de�nition, a conic convex program CP(b; c;A;K) has an interior solution if and only

if (b+A) \ relK 6= ;, i.e.
b 2 A� relK = rel (A� K);

where we used Lemma 2. From Theorem 2, we know that the above relation holds if and only if

b 2 span (A�K); bT((A� K)� n (A� K)?) � <++;

which, using Lemma 1, is equivalent with

bT(A? \ K�) = f0g; bT((A? \ K�) n sub (A? \ K�)) � <++;

i.e. there exist no one{sided dual level directions.

2

The above characterization of strong feasibility was established by Carver [12] for the case that

K = <n
+
. For general solid closed convex cones, the result can be found in Fan [17], Du�n [15],

and Berman and Ben-Israel [6]. Notice however, that Theorem 3 above is applicable also if K is

not solid.

Special cases of Theorem 3 are the arbitrage and pricing result in the theory of �nancial mar-

kets [22] and well known theorems of Lyapunov, Stein and Taussky in matrix theory (see the

discussion in Berman and Ben-Israel [6] and Berman [5]). Applying Theorem 3 to the conic convex

program CP(0; 0;A;K) yields a characterization of the existence of primal interior directions:

Corollary 2 Consider a conic convex program CP(b; c;A;K). There exists a primal interior di-

rection, i.e.

A \ relK 6= ;

if and only if there is no one{sided dual direction.

If K = <n
+ (the polyhedral case), Corollary 2 reduces to a classical result of Gordan [21] and

Stiemke [39].

Combining Theorem 3 and Corollary 2, it follows that if there exists an interior direction

(A \ relK 6= ;), then there must also exist an interior solution (
o

FP 6= ;).
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Based on Theorem 3, we derive a characterization of the existence of improving interior direc-

tions:

Corollary 3 Consider a conic convex program CP(b; c;A;K). There exists a primal improving

interior direction, i.e.

cT(A \ relK) 6� <+

if and only if the dual is infeasible and there is no one{sided dual direction.

Proof: Notice that if c = 0 then there exist no primal improving directions, and the dual has a

feasible solution, viz. 0 2 A? \ K�.

Suppose now that c 6= 0. Below, we will construct an arti�cial conic convex program, for

which the interior solutions correspond to primal improving directions of the original program.

The corollary will then follow as an application of Theorem 3. First, since c 2 A, there holds

� c

kck2
2

+ (A \Ker cT) = fx 2 A j cTx = �1g:

Hence, x is a primal improving interior direction if and only if there exists some � > 0 such that

�x 2
�
� c

kck2
2

+ (A \Ker cT)

�
\ relK:

Applying Theorem 3, it follows that there exist primal improving interior directions if and only if

the conic convex program CP(�c=kck2
2
; 0;A\KercT;K) has no one{sided dual level directions. The

dual of CP(�c=kck2
2
; 0;A\ Ker cT;K) is CP(0;�c=kck2

2
;A? � Img c;K�), and if it has a one{sided

level direction s, it must be contained in (A? � Img c) \ K�. Since c 2 A, it follows that either
cTs > 0 and there is � > 0 such that �s 2 (c+A?) \ K, or cTs = 0 and

s 2 (A? \ K�) n � K�:

Hence, CP(�c=kck22; 0;A\Ker cT;K) has no one{sided dual level directions if and only if the conic

convex program CP(b; c;A;K) is dual infeasible and has no one{sided dual directions.

2

We remark that Nesterov, Todd and Ye [33] called a closed conic convex program strictly

infeasible if it has a dual improving interior direction. Corollary 3 shows that a program is strictly

infeasible in the sense of [33] if and only if it is infeasible and has no one{sided directions. We will

see in Corollary 4 that strict infeasibility implies strong infeasibility.

The relation between dual directions and primal strong feasibility has now been fully investi-

gated. We now proceed to study the relationships between dual directions and boundedness of the

dual feasible set, the dual lower level sets and the dual optimal set.
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Lemma 4 Consider a conic convex program CP(b; c;A;K) for which the primal is strongly feasible.

Let s(1); s(2); : : : in K� \ span (A� K) be a sequence with

lim
i!1

dist(s(i); c+ A?) = 0; lim sup
i!1

bTs(i) <1:

Then s(i), i = 1; 2; : : :, is a bounded sequence.

Proof: Suppose to the contrary that K�\ span (A�K) contains some sequence s(1); s(2); : : : such
that

lim
i!1

s(i) =1; (5)

whereas limi!1 dist(s(i); c+ A?) = 0 and lim supi!1 bTs(i) <1 .

Without loss of generality, we assume that
s(i) > 0 for all i and that the limit

y := lim
i!1

s(i)s(i)
exists. Since the sequence s(i)=

s(i), i = 1; 2; : : :, is contained in the closed cone K�\span (A�K),
it follows that

y 2 K� \ span (A �K) = K� \ (sub (A? \ K�))?; (6)

where we used Lemma 1. Moreover, using (5) we have

y = y � lim
i!1

1s(i)c = lim
i!1

s(i) � cs(i) 2 A?; (7)

and, since lim supi!1 bTs(i) <1,

bTy = lim
i!1

bTs(i)s(i) = 0: (8)

By construction, kyk = 1, so that (6)|(8) implies

y 2 (A? \ K�) n � K�; bTy = 0;

i.e. y is a one{sided lower level direction, which contradicts the primal strong feasibility (see The-

orem 3).

2

Theorem 4 Consider a conic convex program CP(b; c;A;K). If the dual is weakly infeasible then

the primal has no interior direction.
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Proof: Apply Lemma 4 to the dual feasibility problem CP(0; c;A;K).

2

Combining Theorem 4 with the dual characterization of (primal) interior directions (Corollary 2)

yields the following result.

Corollary 4 Consider a conic convex program CP(b; c;A;K). If the dual is weakly infeasible then

the dual has a one{sided direction.

Notice that Corollary 4 is stated in terms of the dual program, since the closedness of K� is
essential for this result.

Theorem 5 A dual feasible conic convex program is primal strongly feasible if and only if the

normalized dual optimal set is nonempty and bounded.

Proof: If the normalized dual optimal set is nonempty and bounded, then there is obviously no

one{sided dual level direction. Using Theorem 3, this implies that
o

FP 6= ;.

Conversely, we know from Lemma 4 that if
o

FP 6= ; then any sequence s(1); s(2); : : : of normalized
dual feasible solutions with limi!1 bTs(i) = d� is bounded. Since FD is nonempty and closed, it

follows that the normalized dual optimal set is nonempty and bounded.

2

Corollary 5 Consider a dual feasible conic convex program. The normalized dual feasible set is

bounded if and only if there exists a primal interior direction.

Proof: Apply Theorem 5 to the dual feasibility problem CP(0; c;A;K).

2

5 Farkas{type lemmas

In the previous section, we have discussed a dual characterization of strong feasibility. We will now

give a characterization of strong infeasibility.

Lemma 5 (First Farkas{type lemma) Consider a conic convex program CP(b; c;A;K). The

primal is strongly infeasible if and only if there exists a dual improving direction.
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Proof: By de�nition, the primal is not strongly infeasible if and only if dist(b+A;K) = 0. Since

dist(b+A;K) = 0 if and only if there exists a sequence x(1); x(2); : : : in K such that

lim
i!1

PA?x(i) = b;

we obtain the relation

dist(b+A;K) = 0() b 2 cl PA?K: (9)

It is easy to see that a linearly transformed convex cone is also a convex cone. Therefore, we can

apply the bipolar theorem, which states that

clPA?K = (PA?K)��: (10)

Combining the relation (9){(10) yields

dist(b+A;K) = 0() bT(PA?K)� � <+; (11)

where

(PA?K)� = f� 2 <n j �TPA?K � <+g
= f� 2 <n j PA?� 2 K�g
= (K� \ A?) +A:

Combining the above relation with (11) and noting b 2 A?, we obtain

dist(b+ A;K) = 0() bT(K� \ A?) � <+:

2

For the case that K = <n
+, Lemma 5 reduces to the famous lemma of Farkas [18]. For general

closed convex programming, the result has been established by Du�n [15] and Berman [5].

Applying Lemma 5 to the conic convex program CP(c; b;A?;K�), we see that

dist(c+A?;K�) = 0 () cT(A \K��) � <+: (12)

However, from the bipolar theorem we have K�� = clK. This together with Theorem 4 leads to the

following characterization of feasibility for conic convex programs satisfying a generalized Slater

condition.

Corollary 6 Consider a conic convex program CP(b; c;A;K) with A \ relK 6= ;. There holds

FD 6= ;

if and only if

cT(A \ K) � <+:

14



Proof: Since A \ relK 6= ;, we have

A \ clK = cl (A \K):

Hence, we can replace K�� with K in relation (12). Moreover, we know from Theorem 4 that (D)

cannot be weakly infeasible. The corollary thus follows from relation (12).

2

The result of Corollary 6 is due to Wolkowicz [46]. For the special case that K is closed and

pointed, Corollary 6 reduces to a generalization of Farkas' lemma as it can be found in many papers,

including [6, 5, 4, 14, 1, 44].

Naturally, we are also interested in a characterization of feasibility without a Slater-type con-

dition. We can easily obtain such a characterization from Lemma 5.

Lemma 6 (Second Farkas{type lemma) A conic convex program CP(b; c;A;K) is dual feasible
if and only if there does not exist any primal improving direction sequence.

Proof: Notice that if c = 0 then 0 2 FD and cTK = f0g. In other words, we have dual feasibility

and no primal improving direction sequence if c = 0. It remains to consider the case that c 6= 0.

Suppose c 6= 0. We use a similar technique as in the proof of Corollary 3, namely we will

construct an arti�cial conic convex program, for which the dual improving directions correspond

to dual feasible solutions of the original program. The corollary will then follow from Lemma 5.

First, since c 2 A, there holds

cTs > 0 and s 2 (A? � Img c) \ K�

if and only if

�s 2 (c+A?) \ K� for some � > 0:

We conclude that the dual feasible set (c + A?) \ K� is nonempty if and only if the conic convex

program CP(�c=kck2
2
; 0;
�
A? � Img c

�?
;K) has a dual improving direction. Applying Lemma 5,

it follows that FD 6= ; if and only if

dist

� �c
kck2

2

+
�
A? � Img c

�?
;K
�
> 0: (13)

From Lemma 1, we have

�c
kck2

2

+
�
A? � Img c

�?
=

�c
kck2

2

+ (A \Ker cT)

= fx 2 A j cTx = �1g:

This implies that (13) holds if and only if there exists no primal improving direction sequence.
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primal dual

Interior direction Bounded normalized feasible set

Strongly feasible
Nonempty and bounded normalized optimal

set

Weakly feasible
One{sided level direction, but no improving

direction sequence

Weakly infeasible
Improving direction sequence, but no im-

proving direction

Strongly infeasible Improving direction

Strongly infeasible and no one{sided direc-

tion
Interior improving direction

Table 1: Feasibility characterizations (`if{and{only{if') for dual feasible closed conic convex pro-

grams

2

The result of Lemma 6 can also be found in Du�n [15], with a di�erent proof. It is remarkable

that this is the only reference where we have found this beautiful characterization of feasibility.

Table 1 summarizes the feasibility characterizations for dual feasible closed conic convex pro-

grams. Since duality is completely symmetric for closed conic convex programs, we can make an

analogous table of dual (in)feasibility characterizations for primal feasible programs. The charac-

terizations that are listed in Table 1 are direct applications of Corollary 5, Theorem 5, Theorem 3,

Lemma 6, Lemma 5 and Corollary 3.

6 Strong duality

It is well known that if (P) is a linear program and p� is �nite, then strong duality holds, i.e.

p� + d� = 0. Our objective is to generalize the strong duality result for linear programming to

conic convex programming. Notice that, for a general conic convex program, it is possible that d�

is �nite but (P) is weakly infeasible (see e.g. Example 3 with c2 = 0). This means that we should

allow an arbitrarily small constraint violation for the primal and de�ne its subvalue as:

p� := lim
�#0

inf
x
fcTx j x 2 K; dist(x; b+ A) < �g:

If (P) is strongly infeasible, then p� = 1, but for weakly infeasible programs, the subvalue is

possibly �nite. We also de�ne a matrix Mc,

Mc :=

"
I �c
0 1

#
; (14)
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where I denotes the identity matrix of order n.

Lemma 7 Let  2 <, and consider a conic convex program CP(b; c;A;K). Then there holds

dist

 "
b



#
+MT

c (A� f0g);K�<+

!
= 0

if and only if p� � .

Proof: By de�nition, we have p� �  if and only if there exists a sequence x(1); x(2); : : : in K such

that

lim
i!1

dist(x(i); b+A) = 0; lim
i!1

cTx(i) � : (15)

Letting

x
(i)
n+1 := maxf0;  � cTx(i)g for i = 1; 2; : : : ;

we obtain a sequence (x(1); x
(1)

n+1); (x
(2); x

(2)

n+1); : : : in K� <+ with

lim
i!1

dist

 "
x(i)

x
(i)

n+1

#
;

"
b



#
+MT

c (A� f0g)
!
= 0: (16)

Conversely, if (x(i); x
(i)

n+1) 2 K�<+, i = 1; 2; : : :, is a sequence satisfying (16), then x(1); x(2); : : :

is a sequence satisfying (15).

2

Lemma 8 Let  2 <, and consider a conic convex program CP(b; c;A;K) with dist(b+A;K) = 0.

Then there holds h
bT 

i �
(K�<+) \M�1

c (A? � <)
�
� <+

if and only if d� � �.

Proof: Notice that

M�1
c =

"
I c

0 1

#
: (17)

By de�nition, we have d� < � if and only if there exists a vector s 2 FD such that

bTs +  < 0:

Letting sn+1 := 1, we see that"
s

sn+1

#
2 (K� � <+) \M�1

c (A? � <); bTs + sn+1 < 0: (18)
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Conversely, suppose that there exists (s; sn+1) satisfying (18). Notice that if sn+1 = 0 then s is

a dual improving direction which contradicts the assumption that dist(b+A;K) = 0 (see Lemma 5).

Hence, sn+1 > 0 and s=sn+1 2 FD. Moreover, we have

d� � cTs=sn+1 < �;

which completes the proof.

2

Combining Lemmas 7 and 8 with the extended Farkas' lemma, we obtain a strong duality

theorem:

Theorem 6 (Strong duality) Consider a conic convex program CP(b; c;A;K). If the dual is

infeasible and the primal is strongly infeasible, then

p� = d� =1:

Otherwise, there holds

p� = �d�:

Proof: First consider the case of primal strong infeasibility, i.e. dist(b + A;K) > 0. In that we

case, p� =1. From Lemma 5 it then follows that there exists a dual improving direction. Hence,

we have d� = �1 = �p� if there exists a dual solution, and d� =1 = p� otherwise.

It remains to consider the case dist(b+ A;K) = 0. Given  2 <, we know from Lemma 7 that

p� �  () dist

 "
b



#
+MT

c (A� f0g);K�<+

!
= 0:

The above relation implies, using Lemma 5 and Lemma 3, that

p� �  ()
h
bT 

i �
(K�<+)\M�1

c (A? �<)
�
� <+:

Applying now Lemma 8 yields

p� �  () d� � �:

Since  is arbitrary, it follows that

p� = �d�:

2

Since p� � p�, we obtain from Theorem 6 the weak duality relation

p� � �d�: (19)

18



For the case that the primal and the dual are not both infeasible, we see from the above theorem

that p� = �d�. We will now show that if the primal has an interior solution (generalized Slater

condition), then the subvalue coincides with the optimal value, i.e. p� = p�. Hence, we can

strengthen the duality result for the case in which the generalized Slater condition holds. We thus

arrive at the following strong duality theorem.

Theorem 7 (Slater duality) Suppose that
o

FP 6= ;. Then

p� = p� = �d�:

Moreover, if p� > �1 then

F�D 6= ;;

and the normalized dual optimal solution set is bounded.

Proof: Observe that since
o

FP 6= ;, there holds

clFP = (b+A) \ clK:

Therefore, for the purpose of proving the theorem, we can assume without loss of generality that

K is closed, i.e. K = K��.

Analogous to the de�nition of p�, we de�ne the dual subvalue d� as

d� := lim
�#0

inf
s
fbTs j s 2 K�; dist(s; c+A?) < �g:

Applying Theorem 6 to the conic convex program CP(c; b;A?;K�), we obtain p� = �d� � �d�.
Hence, if p� = �1 then d� =1 and the theorem holds true. It remains to consider the case that

p� = �d� > �1. By de�nition, the condition

d� = �p� <1

means that there exists a sequence s(1); s(2); : : : in K� \ span (A �K) with

lim
i!1

dist(s(i); c+ A?) = 0 and lim sup
i!1

bTs(i) = �p� <1:

It follows from Lemma 4 that this sequence has a cluster point, say s(1). Obviously

s(1) 2 FD; bTs(1) = �p�:

It follows from the relation

�p� = d� � bTs(1) = �p�;

that

p� + d� = 0; F�D 6= ;:
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Finally, the boundedness of the normalized dual optimal solution set follows from Theorem 5.

2

For the case that K is closed and solid, the strong duality theorem with Slater condition is well

known; see for example [1, 15, 31], among others. The result of Theorem 7, which holds for general

convex cones, is due to Borwein and Wolkowicz [9].

Theorem 7 implies the following well known fact: if K is closed and
o

FP �
o

FD 6= ;, then
F�P � F�D 6= ; and

(x�)Ts� = cTx� + bTs� = 0; for all (x�; s�) 2 F�P � F�D:

For the above case, we say that a conic convex programming problem has a complementary solution.

A complementary solution is a pair (x; s) 2 FP � FD such that

xTs = 0:

A face of a cone K is a set

face (K; s) := fx 2 K j xTs = 0g;

where s 2 K�. Notice for x; y 2 K that

x+ y 2 face (K; s) =) x; y 2 face (K; s);

which explains why \face (K; s)" is called a face of K. We remark that Theorem 2 implies that

K \ subK is the smallest face of K. If (x; s) is a complementary solution, then

F�P = FP \ face (K; s); F�D = FD \ face (K�; x):

Therefore, F�P and F�D are also known as the optimal faces of (P) and (D) respectively. A strictly

complementary solution pair of (P) is a pair (x; s) 2 FP � FD such that

x 2 rel (face (K; s)); s 2 rel (face (K�; x)):

By de�nition, such a solution pair is also a complementary solution pair. It was shown by Tucker [43]

and Goldman and Tucker [20] that any solvable linear programming problem has a strictly com-

plementary solution pair. Unfortunately, a conic convex program may not have any strictly com-

plementary solution pair, even if it satis�es primal and dual Slater conditions. One therefore also

encounters the term maximal complementary solution pair, which is a complementary solution pair

(x; s) 2 (relF�P )� rel (F�D).

Obviously, any complementary solution pair is an optimal solution pair. The converse however,

is in general not true unless
o

FP 6= ; or
o

FD 6= ;. This is because without the latter condition, there
may exist a positive duality gap and as a result there cannot exist a complementary solution. More-

over, strong duality is necessary, but not su�cient for the existence of a complementary solution.
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primal feasible primal infeasible

strong weak weak strong

1 2 3 4

dual

feasible
strong A

p� = �d�

(P)+(D) solvable

p� = �d�

(P) solvable
(D) unbounded (D) unbounded

weak B possible possible (D) unbounded

dual

infeasible
weak C possible possible

strong D possible

Table 2: Duality for closed conic convex programs

The duality relations for conic convex programs CP(b; c;A;K) with K closed are summarized in

Table 2.

All entries in the table represent possible combinations of the status of the primal and dual

problem. Only if we cannot conclude anything more, we explicitly mention that the entry represents

a possible state. Due to the complete symmetry of the closed conic convex programming duality,

the table is symmetric, so we only need to consider the upper-right block. The entries in the �rst

row of the table are denoted by `A1', `A2', `A3' and `A4', in the second row by `B1', `B2', and so

on. The entries `A1', `A2', `A3' and `A4', are due to Theorem 7. Lemma 5 implies entry `B4'. The

possibility of states `A3' and `B3' and `D3' (and hence `C4') is demonstrated by Example 3, while

the entry `C3' is illustrated by Example 4, which is a semide�nite programming problem.

Example 4 Consider the program CP(b; c;A;K) in <6 with

b =
h
0 0 0 0 1 0

iT
; c =

h
0 0 0 1 0 0

iT
;

A = fx 2 <6 j x2 = 0; x5 = 0g;

and

K =

8><
>:x 2 <6

�������
2
64

x1 x4=
p
2 x6=

p
2

x4=
p
2 x2 x5=

p
2

x6=
p
2 x5=

p
2 x3

3
75 � 0

9>=
>; :

Then K� = K and A? = fs 2 <6 j s1 = s3 = s4 = s6 = 0g. The primal is weakly infeasible,

p� = inf

8><
>:x4

�������
2
64

x1 x4=
p
2 x6=

p
2

x4=
p
2 0 1

x6=
p
2 1 x3

3
75 � 0

9>=
>; =1;
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and the dual is also weakly infeasible:

d� = inf

8><
>:s5

�������
2
64
0 1 0

1 s2 s5=
p
2

0 s5=
p
2 0

3
75 � 0

9>=
>; =1:

Finally, the possibility of the entries in Table 2 where weak infeasibility is not involved, can be

demonstrated by a 2-dimensional linear programming problem:

Example 5 Let n = 2, c 2 <2, K = K� = <2
+
and

A = f(x1; x2) j x1 = 0g; A? = f(s1; s2) j s2 = 0g:

We see that (P) is strongly feasible if c1 > 0, weakly feasible if c1 = 0 and strongly infeasible if

c1 < 0. Similarly, (D) is strongly feasible if c2 > 0, weakly feasible if c2 = 0 and strongly infeasible

if c2 < 0.

Weak infeasibility does not exist in linear programming. However, Examples 3 and 4 illustrate

that weakly infeasible problems do exist in semide�nite programming. The latter is an important

class of conic convex programming problems.

7 Regularization

In Theorem 6, we have shown that s 2 FD is an optimal solution of (D) if and only if there exists

a sequence x(i) 2 K, i = 1; 2; : : :, with

lim
i!1

dist(b+ A; x(i)) = 0; lim
i!1

cTx(i) = �bTs: (20)

Such a sequence is called a certi�cate of the optimality of the dual solution s. Since this certi�cate

is a sequence, it has a rather inconvenient property: its length is in�nite. We will see in this section

that �nite length certi�cates can be obtained by means of regularization.

If
o

FP 6= ; (a generalized Slater condition), then p� = �d� and no regularization is needed, see

Theorem 7. For a weakly feasible conic convex program CP(b; c;A;K) however, we may try to

replace K by a lower dimensional face, say face (K; s) for a certain s 2 K�, such that

(b+A) \ face (K; s) = (b+ A) \ K; (b+A) \ rel face (K; s) 6= ;:

If we succeed in �nding such a face (which is then known as the minimal cone [10, 9, 46]), then

we can regularize CP(b; c;A;K) to CP(b; c;A; face(K; s)), which satis�es the generalized Slater

condition. Such a regularization approach, which we call primal regularization, was proposed by

Borwein and Wolkowicz [10, 9] and Wolkowicz [46].
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In this section, we propose a dual regularization approach, which is based on the dual char-

acterization of strong feasibility, Theorem 3. In this approach, we transform all one{sided, non{

improving, dual level directions into two{sided directions (lines), thus enlarging the dimension of

subK�. For notational convenience, we will now interchange the role of the primal and the dual:

we assume that we want to solve the dual program CP(c; b;A?;K�), and to this end we transform

one{sided primal level directions into lines, thus enlarging K.

Let K be a convex cone in <n, and let A be a linear subspace of <n. We de�ne an operator �A

on K as follows:

�AK := cl (K� span (A \ clK)) : (21)

Observe from this de�nition that

A \ clK � sub (�AK);

i.e. if x 2 A \ K n � K is a one{sided direction with respect to K, then this direction x is not

one{sided with respect to �AK. Observe also that �AK = clK if and only if the convex program

CP(b; c;A;K) has no primal one{sided directions, i.e.

�AK = clK () span (A \ clK) � clK: (22)

Although CP(b; c;A;K� span (A \ K)) has no primal one{sided directions, it is quite possible

for the closed conic convex program CP(b; c;A;�AK) to have primal one{sided directions (see

Example 6 below). Therefore, it makes sense to apply the operator �A k times in succession,

resulting in an operator �kA. More precisely, we let8<
:

�0AK := K;

�kAK := �A�
k�1
A K; for k = 1; 2; : : ::

(23)

In addition, we de�ne

�1AK := �dimA
A K: (24)

Each time that we apply the operator �A to a cone �kAK, we move any one{sided direction

in A \ �kAK into sub �k+1A K, so that it is not one{sided with respect to the larger cone �k+1A K.
After applying the �A operator dimA times in succession, there will be no one{sided directions in

A \ �1AK, as the following lemma shows.

Lemma 9 Let K be a convex cone in <n and let A be a linear subspace of <n. Then

�kAK = �1AK for all k � dimA:

Proof: Since the sets f�kAK : k = 0; 1; 2; : : :g are nested, we only need to show that �kAK = �k+1A K
for some �nite k. Suppose �kAK 6= �k+1A K for some k so that

span (A \ �kAK) 6� �kAK: (25)
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From the de�nition (21), we have

sub (A \ �kAK) � span (A \ �kAK) � sub (A \ �k+1A K);

so that

dim sub
�
A \ �kAK

�
< dim sub

�
A \ �k+1A K

�
� dimA:

Thus, the dimension of sub
�
A \ �kAK

�
is increased by one whenever (25) holds. Using an inductive

argument, it follows that k + 1 � dimA. Consequently, there will be some k � dimA for which

(25) does not hold. Together with (22), this implies the lemma.

2

We will now show that the property of strong infeasibility is invariant under the operator �A.

Lemma 10 Consider a conic convex program CP(b; c;A;K) and let A0 � A be a linear subspace.

There holds

dist
�
b+ A;�k+1A0 K

�
= dist

�
b+ A;�kA0K

�
for all k = 0; 1; : : :.

Proof: Since �kA0K � �k+1A0 K, we obviously have

dist
�
b+ A;�k+1

A0 K
�
� dist

�
b+ A;�kA0K

�
: (26)

To prove the converse, we �x any vector x in �k+1A0 K. It follows from the de�nition (21) that there

exists a sequence f(u(i); v(i))g with

u(i) 2 �kA0K; v(i) 2 span
�
A0 \ �kA0K

�
; i = 1; 2; : : : ;

such that

x = lim
i!1

(u(i) + v(i)):

As v(i) 2 span
�
A0 \ �kA0K

�
� A0 � A, we have

dist(u(i) + v(i); b+A) = dist(u(i); b+ A) � dist
�
b+A;�kA0K

�
;

where the last step is due to u(i) 2 �kA0K. Letting i!1 yields

dist(x; b+A) � dist
�
b+ A;�kA0K

�
:

Since x is an arbitrary element of �k+1A0 K, we obtain

dist
�
b+ A;�k+1

A0 K
�
� dist

�
b+ A;�kA0K

�
:
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Combining this with (26) proves the lemma.

2

The following lemma shows that regularization with the subspace (A\Ker cT) does not change
the dual feasible set.

Lemma 11 Consider a conic convex program CP(b; c;A;K). There holds

FD = (c+A?) \
�
�kA\Ker cTK

��
for all k 2 f0; 1; 2; : : :g.

Proof: Let s 2 FD. It su�ces to prove that this implies

s 2
�
�kA\Ker cTK

��
; k = 0; 1; 2; ::: (27)

Since
�
�0
A\Ker cT

K
��

= K�, relation (27) holds trivially for k = 0. Now assume that (27) holds for

some k 2 f0; 1; 2; : : :g. We need to show that (27) holds for k+1 in the sense that xTs � 0 for any

x 2 �k+1
A\Ker cT

K. By de�nition, x 2 �k+1
A\Ker cT

K means that there exists some sequence (u(i); v(i)),

i = 1; 2; : : :, satisfying

u(i) 2 �k
A\Ker cT

K; v(i) 2 span
�
A \Ker cT \ �k

A\Ker cT
K
�
;

such that

x = lim
i!1

(u(i) + v(i)):

However, since s 2 c + A? we have sTv(i) = 0, whereas (27) implies sTu(i) � 0, for all i. Conse-

quently, there holds sTx � 0.

2

Although regularization does not a�ect the dual feasible set, it can change the nature of dual

(in)feasibility.

Lemma 12 For a conic convex program CP(b; c;A;K), the regularized program

CP
�
b; c;A;�1

A\KercT
K
�

is either dual strongly feasible or dual strongly infeasible.

Proof: Recall from Lemma 9 that �A\Ker cT�
1
A\Ker cT

K = �1
A\Ker cT

K. Hence, if the regularized
primal has a one{sided level direction, it must be an improving direction. It thus follows from
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Lemma 5 that the regularized dual is strongly infeasible if and only if the regularized primal has

one{sided level directions. Using Theorem 3, we conclude that the regularized dual is either dual

strongly feasible or dual strongly infeasible.

2

Together, Lemma 11 and Lemma 12 imply that the regularization of a dual weakly feasible

problem results in a dual strongly feasible problem. Similarly, the regularization of a dual weakly

infeasible problem results in a dual strongly infeasible problem. However, the set of dual feasible

solutions is not a�ected by regularization. These conclusions are summarized in the following

theorem.

Theorem 8 Consider a conic convex program CP(b; c;A;K) and let

K0 := �1A\Ker cTK:

There holds

� The dual feasible sets of CP(b; c;A;K) and its regularization CP(b; c;A;K0) coincide, i.e.

FD = (c+ A?) \ (K0)�:

� The regularized program CP(b; c;A;K0) is dual strongly feasible if and only if FD 6= ;.

� The regularized program CP(b; c;A;K0) is dual strongly infeasible if and only if FD = ;.

Combining Theorem 8 with Table 2, we see that the regularized conic convex program is in

perfect duality:

Corollary 7 Assume the same setting as in Theorem 8. Then there holds

� If d� =1, then the regularized primal CP(b; c;A;K0) is either infeasible or unbounded.

� If �1 < d� <1, then the regularized primal is solvable with optimal value equal to �d�, i.e.

d� = �min cT
�
(b+ A) \ K0

�
:

� If d� = �1 then the regularized primal CP(b; c;A;K0) is infeasible.

Applying Corollary 7 to the conic convex program CP(0; c;A;K), we obtain a generalization of

Farkas' lemma:
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Corollary 8 A conic convex program CP(b; c;A;K) is dual feasible if and only if

cT
�
A \ �1A\Ker cTK)

�
� <+:

We have seen that the regularization of a dual feasible conic program results in a conic program

with strong dual feasibility. Due to this property, the dual regularized cone is called the minimal

cone for (D). The regularization scheme presented here is a dual version of the minimal cone duality

of Borwein and Wolkowicz [9, 10] and Wolkowicz [46]. Namely, the dual conic convex program (D) is

regularized in [9, 10, 46] by replacing the original cone K� by a smaller cone, such that the resulting
program will be strongly feasible whenever (D) is feasible. In the preceding, we regularized (P) by

transforming all its one{sided, non-improving, level directions into two-sided directions (lines), thus

enlarging the cone K. In this way, new primal solutions are created that play the role of sequences

that approach feasibility for the original problem (P), as can be seen from Lemma 9 and Lemma 10.

An illustration of regularization for a semide�nite programming problem is given in Example 6.

Example 6 Consider the program CP(b; c;A;K) in <6 with

K = S � S;

where we let

S :=

(
x 2 <3

�����
"

x1 x3=
p
2

x3=
p
2 x2

#
� 0

)
:

Moreover, we let

b =
h
0 0 0 0 0

p
2
i
T

; c =
h
0 0 c4 c4 0 0

i
T

;

A = fx 2 <6 j x2 = 0; x3 = x4; x5 = x6 = 0g:

Then K� = K and A? = fs 2 <6 j s1 = 0; s3 = �s4g. In other words, the primal is

p� = inf

(
2c4x4

�����
"

x1 x4=
p
2

x4=
p
2 0

#
� 0;

"
x4 1

1 0

#
� 0

)
=1

with dual

d� = inf

(p
2s6

�����
"

0 s3=
p
2

s3=
p
2 s2

#
� 0;

"
2c4 � s3 s6=

p
2

s6=
p
2 s5

#
� 0

)
:

Notice that the primal is weakly infeasible, whereas (D) is

� weakly infeasible if c4 < 0,

� weakly feasible and solvable with optimal value d� = 0 if c4 = 0, and

� weakly feasible and unbounded if c4 > 0.
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Since A \ K = <+ � f0g5 � Ker cT, we obtain

�A\Ker cTK = <� <+ �<� S; (�A\Ker cTK)� = f0g � <+ � f0g � S;

for all c4. Notice that if c4 6= 0, then dim (A \ Ker cT) = 1 and CP(b; c;A;�A\KercTK) is the

regularized program. Indeed, the regularized dual is strongly infeasible for c4 < 0 and strongly

feasible for c4 > 0.

However, if c4 = 0 then dim (A \ Ker cT) = dimA = 2, and we have to take one step more. It

can easily be veri�ed that

�2AK = (<� <+ � <)� (<� <+ � <);

and �
�2AK

��
= (f0g � <+ � f0g)� (f0g � <+ � f0g):

Consequently, the regularization makes the dual strongly feasible, and makes the primal solvable

with optimal value 0.

Example 6 reveals a drawback of the regularization scheme: although the regularized certi�cates

are �nite, it may not be easy to check their feasibility, since this involves the cone �1
A\Ker cT

K. For
semide�nite programming (as in Example 6) however, we will see in Section 8 that �1

A\Ker cT
K

can be completely described by semide�niteness constraints, after adding arti�cial variables. The

resulting regularized semide�nite program coincides with the regularized dual of Ramana [34],

which was originally derived in a very di�erent way. The relation between primal regularization

and the so-called extended Lagrange{Slater dual of Ramana [34] was already recognized by Ramana,

Tun�cel and Wolkowicz [37]. The way in which Zhao, Karisch, Rendl and Wolkowicz [47] make the

regularization explicit, is more or less the opposite of the technique of Ramana. Namely, in [47], the

regularized semide�nite relaxation of a quadratic assignment problem is transformed into a strongly

feasible semide�nite programming problem by eliminating variables, instead of adding variables.

8 Regularization of semide�nite programs

We will now further analyze the structure of the regularized conic convex program, for the special

case thatK is the cone of positive semide�nite matrices. We consider two types of semide�nite cones:

the semide�nite cone for symmetric matrices and the semide�nite cone for Hermitian matrices.

We let S(�n) denote the real linear space of �n � �n symmetric matrices, with dimension

dim S(�n) = 1

2
�n(�n+ 1):

The standard inner product X � Y for two symmetric matrices X; Y 2 S(�n) is de�ned as

X � Y = trXY:
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Similarly, we let H(�n) denote the real linear space of �n� �n Hermitian matrices, with dimension

dimH(�n) = �n2:

As a real valued inner product X � Y for two Hermitian matrices X; Y 2 H(�n), we de�ne

X � Y = trXY;

exactly as in the symmetric case.

In terms of the above inner product, we can de�ne an orthonormal basis of H(�n) (S(�n)). In

this way, we obtain a one{to{one correspondence between Hermitian (symmetric) matrices in H(�n)

(S(�n)) and their coordinate vectors in <n, where n = dimH(�n) (n = dimS(�n)). In particular, if

we have an orthonormal basis U (1); U (2); : : : ; U (n) of �n� �n Hermitian (symmetric) matrices, then

x 2 <n is the coordinate vector of X 2 H(�n) (X 2 S(�n)) if and only if

X =
nX
i=1

xiU
(i):

Moreover, if x; y 2 <n are the coordinate vectors of X; Y 2 H(�n) (X; Y 2 S(�n)), then

X � Y =

 
nX
i=1

xiU
(i)

!
�
 

nX
i=1

yiU
(i)

!
= xTy:

We can therefore treat elements of H(�n) (S(�n)) both as �n� �n Hermitian (symmetric) matrices, and

as real vectors of order n. We refer to Alizadeh, Heaberly and Overton [2] and Todd, Toh and

T�ut�unc�u [41] for a speci�c orthonormal basis of S(�n). Below, we will treat the Hermitian case only.

However, all derivations can be immediately translated to the symmetric case; the main di�erence

is the dimension n.

We let H(�n)
+ denote the convex cone of positive semide�nite matrices. For a semide�nite program

CP(b; c;A;H(�n)
+ ), we let B 2 H(�n) and C 2 H(�n) denote the matrix representations of the coordinate

vectors b 2 <n and c 2 <n, respectively.

Consider an l � �n matrix R satisfying RRH = I , where 1 � l � �n and RH denotes the complex

conjugate transpose (or adjoint) of R. Notice that for such R, there must exist a (�n� l)� �n matrix

Q such that
h
QH RH

i
is a unitary matrix. We de�ne the following linear subspace of H(�n),

HKer (R) := fX 2 H(�n) j RXRH = 0g:

(In terms of the symmetric Kronecker product [2, 41], HKer (R) corresponds to Ker (R 
s R) in

<n, for the symmetric case.) There holds

H(�n)
+ �HKer (R) = fX 2 H(�n) j RXRH � 0g; (28)
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which is a closed convex cone in H(�n). Here, it is convenient to interpret the unitary matrixh
QH RH

i
as a basis of the complex Euclidean space Cn, since

HKer (R) =

(
X

�����
"
Q

R

#
X
h
QH RH

i
=

"
X11 X12

XH

12
0

#
for some X11; X12

)
;

and

H(�n)
+ � HKer (R) =

(
X

�����
"
Q

R

#
X
h
QH RH

i
=

"
X11 X12

XH
12

X22

#
; X22 � 0

)
:

We will derive in this section that the regularized cones �kAH
(�n)
+

are of the form (28). First of

all, we notice that this is indeed the case for k = 0, viz.

H(�n)
+ = H(�n)

+ � HKer (I);

where I is the �n � �n identity matrix.

Let C�n denote the space of complex �n-tuples. We will see below that ImgRH = RHCl plays a
crucial role. We want to make clear that ImgRH is a complex linear subspace of C�n, where we use
the standard complex valued inner product yHx for x; y 2 C�n. This is in contrast with the space

of Hermitian matrices which is real: although the o�{diagonal entries of Hermitian matrices are

complex, the inner product X � Y is real valued for X; Y 2 H(�n).

Lemma 13 Let A be a linear subspace of H(�n), and let K = H(�n)
+ �HKer (R). If Y 2 rel (A \K),

then

(KerY ) \ ImgRH � (Ker ~Y ) \ ImgRH 8 ~Y 2 A \ K:

Proof: Suppose to the contrary that there exists a ~Y 2 A \ K such that ~Y u 6= 0 for some

u 2 (KerY ) \ ImgRH. Since ~Y 2 K, it holds

uH ~Y u > 0:

This implies that for any � > 0,

uH(Y � � ~Y )u = �� uH ~Y u < 0;

which contradicts the fact that Y 2 rel (A \K).

2

Lemma 14 Let R and K be as in Lemma 13, and let Y 2 A \ K. If

W 2 (Y + HKer (R))\H(�n)
+

then

KerW � (Ker Y ) \ ImgRH; (29)

with equality holding if and only if W 2 rel ((Y + HKer (R))\H(�n)
+ ).
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Proof: First, we remark that since W is positive semide�nite, we have

u 2 KerW () uHWu = 0:

Since W 2 Y + HKer (R) and Y 2 K, it holds

uHWu = uHY u � 0 8u 2 ImgRH; (30)

with uHY u = 0 if and only if u 2 (Ker Y )\ ImgRH. This proves the conclusion (29). Now consider

v 2 (ImgRH)? = KerR, v 6= 0, and notice that

vvH 2 HKer (R):

Hence,

W + �vvH 2 (Y +HKer (R))\ H(�n)
+ for all � � 0:

For W 2 rel ((Y + HKer (R)) \ H(�n)
+ ), it thus follows that vHWv > 0. Consequently, KerW �

ImgRH. Together with (30), we obtain

KerW = (Ker Y ) \ ImgRH:

2

We arrive now at the central result of this section, viz., if K is of the form (28), then so is �AK.

Theorem 9 If K = H(�n)
+ � HKer (R), then

�AK = H(�n)
+ �HKer ( ~R);

where ~R is any matrix satisfying8<
:

Img ~RH = (ImgRH) \Ker Y; for some Y 2 rel (A \K);
~R ~RH = I:

Proof: Suppose that X 2 �AK, i.e. X = limi!1X(i) � Y (i) for some sequences X(1); X(2); : : :

and Y (1); Y (2); : : : in K and A \ K respectively. We know from Lemma 13 and the de�nition of ~R

that Img ~RH � (ImgRH) \Ker Y (i), so that

~R(X(i) + Y (i)) ~RH = ~RX(i) ~RH � 0

for all i 2 f1; 2; : : :g. The above relation shows that X 2 H(�n)
+ �HKer ( ~R), from which we conclude

that �AK � H(�n)
+ � HKer ( ~R): To prove the converse inclusion, consider a matrix X 2 H(�n)

+ �
HKer ( ~R). Without loss of generality, we may assume that there exists a matrix Q such that

RH =
h
QH ~RH

i
:
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We partition RY RH, Y 2 rel (A \K) as follows:

RY RH =

"
Q
~R

#
Y
h
QH ~RH

i
=

"
Y11 Y12

Y H
12 Y22

#
:

By de�nition of ~R and using the fact that RY RH � 0, it follows that

Y11 � 0; Y12 = 0; Y22 = 0:

Similarly, we partition the matrix RXRH as follows:

RXRH =

"
X11 X12

XH
12 X22

#
:

Since X 2 H(�n)
+ � HKer ( ~R), we have X22 � 0. Let �1 and �2 be positive numbers such that

�1Y11 +X11 � 0; �2Y11 � X12X
H

12:

(Such numbers exist, because Y11 is positive de�nite.) Then for any � > 0 there holds

R(X + �I + (�1 + �2=�)Y )R
H � 0:

Letting

X(�) := X + �I + (�1 + �2=�)Y;

it follows that X(�) 2 K and

X = lim
�#0

(X(�)� (�1 + �2=�)Y );

so that X 2 �AK.

2

We already observed that

�0AH
(�n)
+ = H(�n)

+ = H(�n)
+ �HKer (I):

With an inductive argument, it thus follows from Theorem 9 that there exist matrices R(1); R(2); : : :

such that

�kAH
(�n)
+ = H(�n)

+ � HKer (R(k));

for k = 1; 2; : : :. Notice also from Theorem 9 that �AK 6= K if and only if rank ~R < rankR.

Together with Lemma 9, this implies that

�kAK = �1AK for all k � minf�n; dimAg: (31)

It should be noted that �n can be considerably smaller than dimA.

The following lemma shows the interesting fact that the linear subspace HKer ( ~R), where ~R is

de�ned as in Theorem 9, can be modeled by semide�nite constraints.
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Lemma 15 Let R and ~R as in Theorem 9. There holds

HKer ( ~R) =

(
W12 +WH

12

�����
"
W11 W12

WH
12 I

#
� 0;W11+ U 2 A; U 2 HKer (R)

)
: (32)

Proof: We �rst notice that"
W11 W12

WH
12 I

#
� 0 () W12W

H

12
� W11: (33)

Consider W11; W12; W22 and U satisfying the right hand side of (32). Let Y =W11 + U , then

W11 2 (Y + HKer (R))\H(�n)
+ ; Y 2 H(�n)

+ �HKer (R):

Using respectively Lemma 13, Lemma 14 and (33), we obtain

Img ~RH � (ImgRH) \Ker Y � KerW11 � KerWH

12;

so that WH
12
~RH = ( ~RW12)

H = 0, and

W12 +WH

12 2 HKer ( ~R):

Conversely, suppose that X 2 HKer ( ~R). Since ~R ~RH = I there exists some matrix Q such thath
QH ~RH

i
is unitary. By de�nition, X 2 HKer ( ~R) means that

"
Q
~R

#
X
h
QH ~RH

i
=

"
X11 X12

XH
12 0

#
;

for some X11 and X12. Letting

W12 :=
h
QH ~RH

i " X11=2 X12

0 0

# "
Q
~R

#
;

it follows that

X = W12 +WH

12
; Img ~RH � KerWH

12
:

Since Img ~RH = (ImgR)\KerY for some Y 2 rel (A\ (H�n
+
�HKer (R))), we know from Lemma 14

and the above inclusion that

Ker �W11 = Img ~RH � KerWH

12

for any �W11 2 rel ((Y + HKer (R))\H(�n)
+ ). Letting �U = Y � �W11, it follows that"

� �W11 W12

WH
12 I

#
� 0; �W11 + �U 2 A; �U 2 HKer (R)

for su�iciently large � > 0. Letting W11 := � �W11 and U := � �U , we see that (32) is satis�ed.
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2

Consider the kth regularized semide�nite program

inffC �X j X 2 (B + A) \ �kA\Ker cTH
(�n)
+ g: (34)

We already know from (31) that for all k = 0; 1; 2; : : :, there exist R(k) such that

�k
A\Ker cT

H(�n)
+ = H(�n)

+ �HKer (R(k)):

Using Lemma 15, it follows that (34) is equivalent to

inf C � (X +W
(k)
12

+ (W
(k)
12

)H)

s.t. X +W
(k)
12

+ (W
(k)
12

)H 2 B + A"
W

(k)
11

W
(k)
12

(W
(k)
12

)H I

#
� 0; X � 0;

W
(k)
11

+ U 2 A \Ker cT; U 2 HKer (R(k�1)):

With a recursive argument, we obtain

inf C � (X +W
(k)
12

+ (W
(k)
12

)H)

s.t. X +W
(k)
12

+ (W
(k)
12

)H 2 B +A

X � 0;"
W

(i)

11
W

(i)

12

(W
(i)
12
)H I

#
� 0 for i = 1; 2; : : : ; k (PRAM)

W
(i)
11

+W
(i�1)
12

+ (W
(i�1)
12

)H 2 A \Ker cT for i = 2; 3; : : : ; k

W
(1)

11
2 A \ Ker cT;

which is again a semide�nite program. This regularized program was proposed by Ramana [34]

for the real symmetric case, see also [37, 36]. Moreover, Ramana uses k = dimA? = �n2 � dimA,
whereas we show that k = min(�n; dimA) is su�cient. It is important to note that checking the

feasibility of a solution for Ramana's regularized semide�nite program is easy, because it involves

only linear and positive semide�niteness constraints.

Remark 1 The introduction of auxiliary variables W (k) into the regularized program has also dis-

advantages. In particular, the duality relation of (D) and its Ramana dual (PRAM) is asymmetric,

since Ramana's dualization scheme increases the dimension of the problem. In order to regain

symmetricity, Ramana and Freund [35] propose to consider the primal{dual pair of (PRAM) and

its standard dual semide�nite programming problem. Since the subvalue of (PRAM) is equal to its
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optimal value, it follows from (6) that this primal{dual pair is again in perfect duality, and this

fact is known from Ramana and Freund [35]. However, as recently noticed by De Klerk, Roos and

Terlaky [26], it is possible that the dual of (PRAM) is weakly (in)feasible, and we can therefore not

obtain results as in Theorem 8 for the primal{dual pair of Ramana and Freund.

9 Inexact dual solutions

As pointed out by Nesterov and Nemirovsky [31], interior point methods are well suited for solving

conic convex programs. Although interior point methods typically require the existence of primal

and dual interior solutions, it is possible to solve conic programs that are not strongly feasible

by using the self{dual embedding technique [29]. With (P) being a nonlinear program, it is not

surprising that the interior point methods (or indeed any other methods) require an in�nite number

of iterations to obtain an exact solution. Within a �nite number of iterations these iterative methods

can only compute an approximate solution of (P). Naturally such an approximate solution of (P)

can be interpreted as an exact solution of a perturbed problem (backward error analysis). However,

this interpretation is of little practical use. In what follows, we show that an approximate solution

of (P) can be used to infer many useful properties of the original conic program (P) such as

`approximate infeasibility'.

In the analysis of approximate solutions, it is convenient to add a variable which measures the

constraint violation. A good way to construct such a variable is by making use of the norm cone,

which is de�ned as follows:

Knorm := f(x0; x) 2 <+ �<n j x0 � kxkg:

Using the basic properties of norms, it is easily seen that Knorm is a closed, pointed and solid convex

cone. Moreover, it follows from the de�nition of dual norms that

K�norm = f(x0; x) 2 <+ �<n j x0 � kxk�g:

The theorem below shows that if we have an approximate primal improving direction, viz. some

x 2 A such that cTx = �1 and x `almost' in K, then the dual cannot have any `reasonably' sized

feasible solution.

Theorem 10 Consider a conic convex program CP(b; c;A;K). There holds

inf
s2FD

ksk� = supf�cTx j x 2 A; dist(x;K) � 1g:

Proof: Construct the conic convex program

CP

 "
1

0

#
;

"
0

c

#
; f0g � A; (f0g � K)� Knorm

!
; (35)
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which can be written as

inffcTx j x 2 A; x� u 2 K; kuk � x0 = 1g = inffcTx j x 2 A; dist(x;K)� 1g:

Using Lemma 1, it follows that the dual of the conic convex program (35) is

inffs0 j s 2 (c+ A?) \ K�; ksk� � s0g = inffksk� j s 2 FDg:

Notice now that (35) is primal strongly feasible, because it has a trivial interior solution
h
1 0

i
T

2
intKnorm. Theorem 7 is therefore applicable, and it yields

inf
s2FD

ksk� = � inffcTx j x 2 A; dist(x;K)� 1g:

2

Remark 2 For the case of lp norms and K = <n
+, the statement of Theorem 10 is known from

Todd and Ye [42].

Remark 3 Suppose that we have an approximate solution x̂, with dist(x̂;K)< �1, dist(x̂;A) < �2,

cTx̂ < �1. Let �x be such that x̂ + �x 2 A and k�xk < �2. Then, we can invoke Theorem 10

with x := (x̂+�x)=(�1 + �2) to conclude that

inf
s2FD

ksk� � �cTx � �cTx̂
�1 + �2

� �2

�1 + �2
kck�;

We will now show that based on an approximate primal solution, viz. some x 2 b+A such that

x is `almost' in K, we obtain a lower bound on the objective value of any `reasonably' sized dual

feasible solution. To the best of our knowledge, this result (Theorem 11) is new.

Theorem 11 Consider a conic convex program CP(b; c;A;K). For all  2 <, there holds

inffksk� j s 2 FD; b
Ts � g

= supf�(cTx+ xn+1) j x 2 xn+1b+A; dist(x;K)� 1; xn+1 � 0g:

Proof: Recall from (14) and (17) that

Mb :=

"
I �b
0 1

#
; M�1

b =

"
I b

0 1

#
: (36)

Now, we use a similar argumentation as in the proof of Theorem 10. First, construct the conic

convex program

CP

0
B@
2
64
1

0

0

3
75 ;
2
64
0

c



3
75 ; f0g �M�1

b (A� <); ((f0g � K)�Knorm)�<+

1
CA ; (37)

36



which can be written as

inffcTx + xn+1 j x� xn+1b 2 A; x� u 2 K; kuk � x0 = 1; xn+1 � 0g
= inffcTx+ xn+1 j x 2 xn+1b+A; dist(x;K)� 1; xn+1 � 0g:

Using Lemma 1, it follows that the dual of the conic convex program (35) is

inffs0 j s 2 (c+A?) \ K�; sn+1 =  � bTs � 0; s0 � ksk�g = inffksk� j s 2 FD; b
Ts � g:

If b = 0, then (37) has the trivial interior solution
h
1 0 1

i
T

2 (intKnorm)�<++. And if b 6= 0,

then
h
1 bT=kbk 1=kbk

iT
2 (intKnorm)�<++ is a primal interior feasible solution. Hence, (37)

is primal strongly feasible. Theorem 7 is therefore applicable, and it yields

inffksk� j s 2 FD; b
Ts � g = � inffcTx+ xn+1 j x 2 xn+1b+A; dist(x;K)� 1; xn+1 � 0g:

2

Suppose that x 2 b + A. If x 2 K, then d� � �cTx, as we already knew from (19). If

dist(x;K) > 0, then x is an approximate solution, and we obtain from Theorem 11 that

inffksk� j s 2 FD; b
Ts � g � �cTx� 

dist(x;K):

Remark that Theorem 10 follows from Theorem 11 by letting  !1. Theorem 6 can also be seen

as an application of Theorem 11 (the converse is true as well, as has just been demonstrated).

10 Conclusion

We have treated conic convex programming duality in a uni�ed fashion. Special attention has been

given to conic convex programs that do not satisfy constraint quali�cations. It has also been shown

how recent duality approaches of [9, 10, 46, 34, 37] �t into the framework. Elaborating on the

results of [42], we have also discussed the value of approximate dual solutions.

We believe that duality results under no constraint quali�cations have not received enough

attention in the past. It is our hope that this paper will help popularize these results in future. In

[29], we show that this type of duality relation can be used fruitfully in the design of algorithms

whose convergence is guaranteed even in the absence of constraint quali�cations.

Our survey is restricted to conic convex programming in �nite dimensional real linear spaces. As

such, it includes conic convex programming with complex numbers, if a real inner product is used.

For instance, we can treat Cn (the space of complex n-tuples) as a 2n-dimensional real linear space

by using the real valued inner product Re sHx. However, due to the lack of ordering of complex

numbers, there is no obvious way to generalize duality results to complex linear spaces (ordering is
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crucial in the de�nition of convex cones, among others). Duality results for convex programming

in in�nite dimensional real linear spaces have not been discussed in this paper. The strong duality

result of Theorem 6 can be generalized to semi{in�nite linear and convex programming, see the

collective work of [7, 8, 15, 23, 24, 25, 46]. Results for conic convex programming with in�nitely

many variables and a bounded feasible set are given in [13]; see also the books [3, 19].

Acknowledgement. We are grateful to Prof. H. Wolkowicz, who gave some comments concerning

the duality treatment in our technical report [29].
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