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Abstract

This study presents a first comparative analysis of Lasso-type (Lasso,
adaptive Lasso, elastic net) and heuristic subset selection methods.
Although the Lasso has shown success in many situations, it has some
limitations. In particular, inconsistent results are obtained for pairwise
strongly correlated predictors. An alternative to the Lasso is consti-
tuted by model selection based on information criteria (IC), which
remains consistent in the situation mentioned. However, these crite-
ria are hard to optimize due to a discrete search space. To overcome
this problem, an optimization heuristic (Genetic Algorithm) is ap-
plied. Monte-Carlo simulation results are reported to illustrate the
performance of the methods.
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1 Introduction

The model selection process is crucial for the further analysis of any multiple
regression model. Picking up too many regressors increases the variance of
the constructed model, and taking fewer regressors than needed results in
inconsistent estimates. In the last years the least absolute shrinkage and se-
lection operator (Lasso) (Tibshirani 1996) has become a very popular method
for simultaneous model selection and parameter estimation.

Among the Lasso’s main advantages are the combination of prediction
accuracy and the parsimony of models built. The Lasso-type estimator out-
performs simple application of parameter estimation methods (as, e.g., or-
dinary least squares or method of moments) since it shrinks the coefficients
of insignificant regressors towards zero. Hence, the resulting models concen-
trate on the strongest effects and the total accuracy of the model forecast
is increased. In addition, the Lasso solutions are more stable than other
subset selection techniques based on the information criteria (IC) and step-
wise strategies as, e.g., the general-to-specific approach (PcGets) discussed
by Hendry and Krolzig (2005) and its bottom-up alternative (RETINA) an-
alyzed by Perez-Amaral et al. (2003).

Another important advantage of the Lasso is its computational feasibil-
ity. Since its computational cost hardly exceeds the complexity of one linear
regression (Efron et al. 2004), it is more attractive in comparison to classical
model selection strategies that involve more intensive combinatorial search.
However, the Lasso-estimator has some limitations. In particular, inconsis-
tent results are obtained for highly correlated regressors (see Section 2).

In the last five years many studies have been devoted to methods revising
and improving the initial Lasso concept. Since it is infeasible to describe
them all in detail in this short introduction, I name only the most important
ones from my perspective: the elastic net (EN) (Zou and Hastie 2005) and
the adaptive Lasso (aLasso) (Zou 2006). A special case of the Lasso-type
technique with the penalty term’s exponent less than one is analyzed by
Knight and Fu (2000).

This study compares the Lasso-type model selection strategies with one
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based on IC. In opposition to the Lasso, IC remain consistent even for data
sets with correlated regressors. The IC’s main constraint is the computa-
tional burden associated with the search for the optimum solution even for a
moderate number of regressors. However, as is shown, e.g., by Maringer and
Winker (2009), thanks to recent advances in heuristic optimization methods
mimicking natural evolution processes, there are efficient algorithms able to
select a model with at least a good approximation to the IC’s global opti-
mum. To the best of my knowledge, this article is the first that compares the
Lasso-type and the heuristic model selection methods. An important contri-
bution of this study is the demonstration that in certain situations (e.g., if
the portion of relevant predictors in a given data set is large) subset selection
methods via heuristic algorithms can outperform the Lasso-type solutions.

The remainder of the paper proceeds as follows. Section 2 introduces
both the Lasso-type methods and the heuristic model selection technique.
Section 3 provides the results of our Monte-Carlo analysis and Section 4
illustrates an application to a cross-country growth model. Finally, Section 5
concludes.

2 Model selection strategies

2.1 Least absolute shrinkage and selection operator

The least absolute shrinkage and selection operator (Lasso) was introduced
by Tibshirani (1996). Initially suggested as a constrained version of the ordi-
nary least squares estimator, Lasso can be applied to a variety of estimation
methods including, e.g., VAR-models (Hsu et al. 2007) and GMM-estimators
(Caner 2009). Numerous applications of this technique can be found in
medicine, economics and other scientific fields (Foster et al. 2008, Hastie
et al. 2009).

Let us consider the basic approach to the model selection problem for the
following regression function:

y = � +Xopt� + ", (1)
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where � is an n-vector with all elements equal, X is an n × k matrix of k
regressors and their values for n observations, � is a k × 1 vector of their
coefficients and " is an n× 1 vector of residuals.

In (1) Xopt refers to the subset of all regressors one seeks to identify.
This might be the ‘true’ model in a Monte-Carlo simulation set-up or an
optimal approximation to the unknown real data generating process. Let us
assume that the predictors have been standardized to have mean zero and
unit length, and that the response has mean zero:

n∑
i=1

yi = 0,
n∑
i=1

xij = 0,
n∑
i=1

x2ij = 1, i = 1, ..., n, j = 1, ..., k. (2)

Hence, one can omit � without loss of generality. Then, the Lasso objec-
tive function can be presented as follows:

�̂Lasso = arg min
�

[
∥y −X�̂ ∥22 +� ∥ �̂ ∥1

]
. (3)

While the first term in the right part of equation (3) is just the residual
sum of squares (RSS), the second term with � > 0 is the amount of shrinkage
the Lasso applies to the sum of the absolute values of the coefficients.1 Hence,
the Lasso can be referred to as a special case of the Bridge regression approach
(Frank and Friedman 1993) imposing an upper bound on the Lq-norm of the
parameters (0 < q <∞) with q = 1:

∥ �̂ ∥q=

[
k∑
j=1

∣�j∣q
]1/q

. (4)

Equivalently to (3), the Lasso chooses �̂ by minimizing RSS subject to a
bound t on the L1-norm of the parameters:

�̂Lasso = arg min
�

∥y −X�̂ ∥22 subject to ∥ �̂ ∥1≤ t (5)

1� is a tuning parameter that can be defined using a data-driven method as, e.g.,
cross-validation.

4



with t being inversely proportional to �.
In the following the intuition behind the Lasso algorithm (a modification

of the LARS algorithm) is briefly described.2 One starts with an empty
model (all coefficients are set to zero) and identifies the predictor x� out of
the full set of k regressors (ℐ) most correlated with the response y:

�̂ = arg max
�

∣ĉ� ∣, where ĉ� = X ′ℐ(y − �̂0) (6)

with �̂ = XA�̂ being a prediction vector of regressors included in the model
(respectively, one starts with �̂0 = 0).

Transferring the �-regressor to the ’solution path’ (A) one needs to ensure
that the next predictor x& to be included in A (x& is the most correlated
covariate with the current residual) has as much correlation with y2 − �̂1 as
x� . In other words, y2 − �̂1 has to ’bisect’ the angle between x� and x& , so
that c�(�̂1) = c&(�̂1). To this end, one increases �̂0 in the direction of x� :

�̂1 = �̂0 + ̂�x� . (7)

In the LARS algorithm ̂� is taken as the smallest positive value, so that
another regressor can be included in the solution path fulfilling the condi-
tion of ’equally correlated regressors’. Starting from the third predictor one
employs an ’equiangular vector’ (uA) in (7) instead of the previous included
regressor (x�). The ’equiangular vector’ is a unit vector constructed based
on all covariates already transferred to A (XA) generating equal angles with
the regressors.

In addition, the algorithm enforces that in each step  = 1, 2, ...,Ψ (when
a new regressor is included in A) the sign of all predictors’ estimates (sA)
in the Lasso solution �̂ must agree with the sign of the current correlation3

ĉ ,A = X ′(y − �̂ −1):

sA = sign(ĉA) = sign(�̂A). (8)
2For a detailed (technical) explanation of all steps see Efron et al. (2004).
3Ψ is an additional stopping criteria limiting the maximum number of steps. In the

LARS algorithm Ψ = 8k that is usually enough for all k to be included in A.
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If the restriction (8) is violated, the corresponding regressor x� is removed
from A and, therefore, is removed from the calculation of the next equiangu-
lar direction (uA). However, later x� can be re-included in A, but the order
of predictors in the solution path will be already different. This process con-
tinues until all k regressors are transferred to A, thus, ensuring that at each
step  only one regressor can be included or excluded from A, max( ) ≥ k.

As a result, one obtains a piecewise-linear solution path in the tuning
parameter � ∈ [0,∞) with all �̂’s set to zero at � =∞ and equal to the OLS
estimate at � = 0 (all k covariates included).

Then, in order to select a single Lasso-solution out of A, tenfold cross-
validation minimizing the prediction error (PE) of �̂ is applied:

PE = E
(
y −X�̂

)2
. (9)

In (9) the original sample is randomly partitioned into ten subsamples,
whereas nine subsamples are used as training data to obtain �̂ and a single
subsample is retained as validation data for testing the model. The process
is repeated ten times and the results from the folds are averaged. Alterna-
tively, bootstrap resampling or the Stein’s unbiased estimate of risk can be
used (Tibshirani 1996).

The pseudocode of the procedure described is stated in Algorithm 1.

Algorithm 1 Pseudocode for the Lasso.
1: Generate an empty solution �0, initialize k, Ψ, A and ℐ
2: while ℐ ∕= ∅ and  ≤ Ψ do
3: Select max∣ĉ� ∣, transfer x� from ℐ into A
4: Identify �̂ that c�(�̂) = c&(�̂)
5: for x� ⊂ A do
6: Estimate (ĉA) and (�̂A)
7: if sign(ĉA) ∕= sign(�̂A) then
8: Transfer x� from A into ℐ
9: end if
10: end for
11: end while
12: Identify �̂Lasso with min(PE)

Thanks to the shrinkage parameter, the Lasso solution has a parsimony
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property, i.e., only a subset of resulting predictors in (3) has non-zero coef-
ficients. This feature of the Lasso technique increases the total accuracy of
the model forecast and makes the selected model more interpretable.

However, the Lasso-estimator has substantial limitations. First, the Lasso
is inconsistent when k ≫ n (overdetermined linear system). In this case, the
Lasso algorithm can identify not more than n− 1 (standardized) predictors
(Efron et al. 2004). Second, it is also not able to identify all ’true’ predictors
in a data set with pairwise highly correlated regressors (Zou and Hastie 2005).
The latter limitations can be referred to as the ’irrepresentable condition’
stated by Zhao and Yu (2006, p. 2544). As a result of the two constraints,
the Lasso estimations can be biased.

Let us assume that in the ’true’ model �true = {�1, ..., �r, �r+1, ..., �k} all
non-zero coefficients are located between 1 and r. Then the matrix C =
1
n
X
′
nXn can be expressed in a block-wise form:

C =

(
C11 C12

C21 C22

)
(10)

with C11 being an r × r matrix.
For the Lasso to be consistent, it is essential that

∣C21C
−1
11 s∣ < 1 (11)

with s = (sign(�1), .., sign(�r))
′
and 1 is a (k − r)× 1 vector of ones so that

the inequality (11) holds element-wise.
In other words, none of the irrelevant regressors (the amount of its co-

variate) can be represented by the covariates of ’true’ predictors. Otherwise
the Lq-norm constraint on the regression coefficients has to be smaller than
1 (q < 1).

The condition (11) is known as the (weak) irrepresentable condition. It is
always satisfied, e.g., for k = 2 or for the orthogonal design (uncorrelated re-
gressors). For more details on situations where the irrepresentable condition
holds, see Zhao and Yu (2006, p. 2548).
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2.2 Lasso modifications

In the last five years a large amount of studies has been devoted to methods
revising and improving the initial Lasso concept:

- the elastic net (EN) that uses a combination of the Lasso and ridge
regression penalty (Zou and Hastie 2005);

- the adaptive Lasso (aLasso) applying different amounts of shrinkage for
each regression coefficient (Zou 2006);

- the generalized Lq-norm (Bridge) regression approach with 0 < q < 1

(fulfilling the condition (11)) analyzed by Knight and Fu (2000).
In the following I concentrate on two main extensions of the Lasso: EN

and aLasso. The reason for this choice is twofold. First, the selected ex-
tensions are particularly designed to deal with the Lasso limitations stated
above. Second, in contrast to the Bridge approach, the two methods operate
in a continuous space and, therefore, are computationally more efficient.

2.2.1 Elastic net

In many fields of application it is still common that only a small number
of reliable observations (historical data) exists for a large series of potential
predictors (k ≫ n). Numerous examples of this problem can be found in
genetic engineering (e.g., gene expression data) or in chemometrics (e.g.,
fluorescence spectra) (Frank and Friedman 1993). In addition to the lack of
degree of freedom, these models include a set of highly correlated predictors.
The latter problem can be encountered even for independent regressors Xk

as long as k ≫ n (see Fan and Lv (2008, p. 852)).
In this case the standard Lasso-algorithm is not the first choice (see Sec-

tion 2.1 ). In order to overcome the problems described, EN includes an ad-
ditional L2-norm (ridge) shrinkage parameter into the objective function (3):

�̂ = arg min
�

[
∥y −X�̂ ∥22 +�1 ∥ �̂ ∥1 +�2 ∥ �̂ ∥22

]
. (12)

Thanks to the added parameter in (12) with �2 > 0, the total EN penalty
is strictly convex and, therefore, EN regression coefficients tend to be equal

8



for highly correlated predictors, whereas the Lasso assigns two different (bi-
ased) coefficients (Zou and Hastie 2005).

To solve problem (12), one increases the original data set (y,X):

y∗ =

(
y

0

)
, X∗ = (1 + �2)

− 1
2

(
X√
�2I

)
. (13)

Due to the transformation in (13), the new data set (y∗, X∗) has the sample
size k + n. Hence, EN can potentially select all k regressors.

Then the EN solution has the following form:

�̂EN =
√

1 + �2�̂
∗, (14)

where:

�̂∗ = arg min
�∗

[
∥y∗ −X∗�̂∗ ∥22 +

�1√
1 + �2

∥ �̂∗ ∥1
]
. (15)

Thereafter, one takes a grid of values for �2 = {0, 0.01, 0.1, 1, 10, 100} and
perform the LARS-EN algorithm (as it is recommended in Zou and Hastie
(2005)) for each of the values, selecting the one with the smallest PE.

2.2.2 Adaptive Lasso

Another approach ’correcting’ the Lasso was introduced by Zou (2006) dif-
ferentiating the amount of shrinkage for the coefficients. For this a vector of
weights (!̂) is included in (3):

�̂aLasso = arg min
�

[
∥y −X�̂ ∥22 +�

k∑
j=1

!̂j∣�j∣

]
, (16)

where the weights can be determined either by the OLS regression, !̂j =

∣�̂OLS∣−� (if no collinearity is assumed), or by the ridge regression, !̂j =

∣�̂ridge∣−� with � > 0. In the following only the ’ridge-weights’ are used since
they are more stable in the case of correlated predictors. As recommended
by Zou (2006), � > 0 can be selected from the grid of values {0.5, 1, 2} using
two-dimensional cross-validation (the second tuning parameter is �).
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The objective function in (16) can be easily integrated in the LARS al-
gorithm by defining X∗∗ = X/!̂ and �aLasso = �̂∗∗/!̂ (Zou 2006):

�̂∗∗ = arg min
�

[
∥y −X∗∗�̂ ∥22 +�

k∑
j=1

∣�j∣

]
. (17)

For n → ∞, !̂j’s of ’false’-predictors grow to infinity applying an addi-
tional shrinkage for respective coefficients and, therefore, fulfilling the con-
sistency condition (11).

However, similarly to Lasso, aLasso is not consistent for overdetermined
linear systems. In addition, for moderate sample sizes (n) aLasso may not be
dealing efficiently with correlated predictors. To the best of my knowledge,
there is a lack of numerical studies on the performance of aLasso under these
circumstances (the only exception I am aware of is presented by Zou and
Zhang (2009)).

2.3 Heuristic optimization methods

As an alternative to the Lasso technique the information criteria (IC) are
taken in this study. IC ranks different models according to their fitness, while
taking into account a penalty for model complexity. Over the last years IC
has become a standard instrument in model selection problems ranging from
lag order selection in multivariate linear (VAR and VEC) and nonlinear (MS-
VAR) autoregression models to selection between rival nonnested models
(Winker 1995).

Consider a vector � of the length k with ones and zeros corresponding
to selected and not selected regressors. To rank these vectors the Bayesian
IC (BIC) and the Hannan-Quinn IC (HQIC) are implemented in this study.
Both these criteria have a similar structure:

IC = ln(∥y −X�̂ ∥22) + f(ℎ, n), (18)

where the second term in the right part is a penalty dependent on the num-
ber of parameters included (ℎ) and on the sample size (n). In particular,
ℎ ln(n)/n and 2ℎ ln(ln(n))/n are the BIC and HQIC penalties.
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Imposing some weak assumptions on the model space (xi and "i) accord-
ing to the results of Sin and White (1996), it can be shown that the vector � i

that minimizes the IC converges to � true with probability close to 1 as n→∞.
But for this to be true, it is essential that the penalty term f(ℎ, n)→∞ and
f(ℎ, n)/n→ 0 as n→∞. In this sense, BIC and HQIC are consistent.

In general, the IC in (18) can be described as a L0-constraint penalizing
not the coefficients’ values, but only their number:

�̂IC = arg min
�

[
∥y −X�̂ ∥22 +� ∥ �̂ ∥0

]
. (19)

As noted by Zhao and Yu (2006, p. 2553), the solution of (19) remains
consistent even for data sets with correlated regressors since it fulfills the
condition (11).

However, since the search space of candidate models in (19) is discrete,
the objective function is not necessarily ’well-behaved’ enough to guarantee
a global optimal solution using standard gradient methods, as the Newton or
quadratic hill-climbing techniques. In fact, Breiman (2001) demonstrates the
so called ’Rashomon Effect’, where different model specifications with very
similar IC values provide different conclusions. Hence, quality and precision
of econometric estimation is crucially dependent on detecting the global op-
timum of (18). The full enumeration of all possible solutions is only feasible
for a small k. In the following Monte-Carlo setup (see Section 3 below) the
selection is made out of 50 and 100 variables. Since a full enumeration of
solutions results in 2k potential sub-models, the full enumeration is infeasible
even using efficient algorithms.

In the last two decades, new nature-inspired optimization methods have
become available. These methods are called ’heuristic’ because of their
stochastic nature. However, thanks to the recent advances in heuristic opti-
mization methods, there are efficient algorithms able to select a model with
at least a good approximation to the IC optimum. A formal study on the con-
vergence of heuristic algorithms can be found in Maringer and Winker (2009).
For an overview of these optimization techniques, see Gilli andWinker (2009).
In Savin and Winker (2010) a similar subset selection problem was handled
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by two heuristic algorithms: Threshold Accepting and Genetic Algorithms.
Since Genetic Algorithms (GA) provided some better results in terms of both
CPU time and solution quality, only GA are considered in the following.

GA are population-based heuristic methods that operate on a set of solu-
tions (population). Thus, GA investigate the search space in many directions
simultaneously, so that the probability of getting stuck into a local optimum
is reduced.

The members in the GA population (chromosomes) are represented as
bit strings, in which each position (gene) has two possible values: 1 and 0.
In each generation GA replace parts of a population with new chromosomes
(children) aimed to represent better solutions for a given problem. For opti-
mal model selection, the GA pseudocode described in Algorithm 2 is used.

Algorithm 2 Pseudocode for Genetic Algorithms.
1: Generate initial population K of solutions, initialize G and C
2: for g = 1 to G do
3: Sort chromosomes in K
4: Select K ′ ⊂ K (parents), select K∗ ⊂ K (elitist)
5: initialize K ′′ = ∅ (set of children)
6: for c = 1 to C do
7: Select individuals xparent1 and xparent2 at random from K

′

8: Apply cross-over to xparent1 and xparent2 to produce xcℎild

9: K
′′

= K
′′ ∪ xcℎild

10: end for
11: K = (K

′
,K

′′
)

12: Mutate K ∖ K∗ at 5 random points
13: end for

K is a matrix of p = 500 initial solutions generated by random distri-
bution of zeros and ones.4 Thereafter, the population is sorted according
to (18). Then, the 50% of the chromosomes with the best target values
(parents, K ′) are transferred to the new population and new chromosomes
(children, K ′′) are constructed by crossing them over. Generating children
one allows parents with superior objective values to be selected more often
(see Savin and Winker (2010)). In this implementation the uniform crossover

4This number is considered to be large enough to screen the search space and to allow
for effective selection of the best solutions.
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mechanism is used. Hence, parents may be split not only at one particular
gene, but at each gene. Evidence on advantages of the uniform crossover
technique can be found in Fogel (2006) and Savin and Winker (2010).

After a new population is formed, mutation is applied at five random
genes with a probability of 50%. All chromosomes in K excepting the ten
best (elitist) solutions and the 10 children generated from the elitist solutions
by mutation (K∗) are mutated. This procedure is repeated for a given number
of generations G = 2000 (computational resources).

An illustration on the distribution of resulting IC values for 100 Monte-
Carlo restarts (n = 400, k = 50 with only five of them actually involved
in generating an artificial response variable) can be found in Figure 1. In-
creasing G the distribution shifts left and becomes less dispersed (see also
Gilli and Winker (2009, page 98)). Since GA are a stochastic method, the
algorithm is restarted ten times and the solution with the best IC value is
selected.

Figure 1: Empirical distribution of IC for different values of G.
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3 Monte-Carlo study

In this Section the performance of the Lasso-type methods (Lasso, aLasso,
EN) and the one of the subset-selection technique via GA (BIC, HQIC)
are compared. The goal of this comparison is to determine how stable the
methods are: in what Monte-Carlo set-ups each of them provides superior
results (in terms of correctly identified subsets and estimation accuracy) and
what is the corresponding CPU time needed.

The Monte-Carlo set-ups below have certain parallels with the scenarios
tested in Frank and Friedman (1993), Zou (2006) and Zou and Zhang (2009),
making potential comparison of the results possible. However, there are also
significant distinctions in the DGP (e.g., amount of noise, portion of relevant
regressors) and in the scope of the methods tested (including both the Lasso-
type and the heuristic model selection methods).

3.1 Data generating process

In order to compare the performance of the Lasso-type techniques with the
GA algorithm implemented, various artificial data sets are generated. These
set-ups are tested using different numbers of regressors in a data set and
different numbers of observations per regressor (k = 50 and n = 400, k =

50 and n = 100 or k = 100 and n = 60). In the latter case the situation
where k ≫ n is analyzed.

The covariance matrix Σ is set either Σi,j = 0.5∣i−j∣ or 0.75∣i−j∣ with
1 ≤ i, j ≤ k. In the former case, all off-diagonal elements do not exceed 0.5
(’low correlation’); in the latter one, pairwise highly correlated regressors are
generated (’high correlation’). The ’true’ regression coefficient vector (�mc)
contains either a small or a large portion of non-zero coefficients (ktrue =

5 or 25, respectively), which are either equal (�mcj = 1) or unequal (�mcj = j2).
In the latter case �mcj = (1, 4, 9, 16, ...).

For each set-up, 50 restarts of the following procedure are performed.
First, a set of regressors (Xmc) with a joint Gaussian distribution and a
specified Σ is randomly generated. Then, using �mc and adding an i.i.d.
error term, the response variable (ymc) is generated as follows:
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ymc = Xmc�mc + ", " ∼ n(0, �2
"), (20)

where �2
" is the variance of the residuals.

In (20) one chooses � such that the corresponding signal-to-noise ratio
(SNR) is either 5 (’low noise’) or 0.5 (’high noise’), where the SNR is given
by:

SNR =
(var(Xmc�mc))1/2

�
. (21)

3.2 Simulation results

The simulation results are compared using the True Positive Rate (TPR)
and the False Negative Rate (FNR)5 as estimations of a correctly identified
model. The mean-squared error (MSE = E[(�̂ − �mc)′Σ(�̂ − �mc)]) with
standard deviations computed over 50 replications given in parentheses are
used as a measure of the estimation accuracy. In addition, the CPU time
corresponding to a single restart using Matlab 7.7 on a Pentium IV 2.67 GHz
is reported.6

As one can see in Table 1, Lasso-type solutions perform well identifying
the correct subset structure in the scenario with low level of noise7 (at most,
only one false regressor included). It is also clear that in the case of high
correlation and low noise level, EN outperforms other Lasso-type methods.

However, in the scenario with high amount of noise, all Lasso-type meth-
ods tend to exclude two or three ’true’ regressors from the solution identified
(FNR≈4-6%). In this case aLasso performs the best out of the other Lasso-
type techniques.8 If the regressors in the ’true’ subset are also correlated,
some false regressors are selected by all of the Lasso-type estimators. This

5TPR is the percentage of ’true’ regressors from all variables selected and FNR is the
portion of rejected ’true’ regressors among correctly selected and correctly rejected ones.

6For each of the methods, the averaged results over 50 replications of the procedure
are reported.

7This corresponds to the situation when a data set includes the majority of significant
predictors which explain y.

8This fact is supported in other simulation studies (see, e.g., Johnson (2009, page 496)).

15



Table 1: Simulation results for n = 400, k = 50, ktrue = 5 and �mcj = 1.

Lasso EN aLasso BIC HQIC Lasso EN aLasso BIC HQIC
Low correlation High correlation

Low noise
TPR 98% 98% 81% 88% 65% 86% 90% 84% 85% 67%
FNR 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
MSE .065 .056 .227 .006 .011 .066 .059 .795 .007 .011

(.025) (.021) (.390) (.004) (.006) (.028) (.021) (1.181) (.005) (.007)
CPU .6s 3.7s 3.5s 245s 263s .6s 3.8s 3.6s 246s 263s

High noise
TPR 100% 100% 97% 86% 65% 92% 92% 90% 79% 56%
FNR 4.9% 4.9% 4.8% .4% .2% 5.7% 5.5% 4.4% 1% .85%
MSE 4.29 4.25 3.30 .77 1.17 5.37 5.30 3.93 .97 1.36

(1.31) (1.30) (1.28) (.62) (.57) (.96) (.94) (1.55) (.71) (.73)
CPU .6s 4.1s 4.4s 218s 239s .6s 4.2s 5.4s 216s 238s

results in a large estimation bias.
In contrast, the results of the heuristic method are not influenced as

strongly by the amount of noise in the simulated data sets. In terms of the
estimation bias IC via heuristics outperform all Lasso-type solutions in both
set-ups with low and high SNR. This is most obvious with the Bayesian IC
that provides sparser models in comparison to HQIC. To this end, for small
SNR IC via heuristics are better off identifying the ’true’ subset (on average,
BIC includes or excludes not more than one variable incorrectly).

In terms of the CPU time, the Lasso-type methods have a significant
advantage over the heuristic approach. As an example, one Lasso simulation
does not last longer than 1s. Since EN and aLasso require a two-dimensional
cross-validation, they need 3-5s on average. IC via GA need about 250s per
restart for n = 400. Reducing n results in a corresponding decline in the
CPU time.

In Table 1 the high variance in the estimated bias for aLasso (especially, in
the situation with low noise level) is remarkable. In an additional experiment
the described set-up is simulated 100 times for SNR ∈ (0.3, 10) and the coef-
ficient of variation for all three Lasso-type solutions is measured (Figure 2).
Obviously, for SNR > 0.5 the variation in results for aLasso is much higher
than for other Lasso-type methods. Similar results can be obtained for both

16



ridge- and OLS-weighths and are present in all our simulation studies.9

Figure 2: Coefficients of variation for Lasso-type estimators.

In the following one or two characteristics in the simulation set-up pre-
sented in Table 1 are changed and only major differences in results are re-
ported. Thus, considering different regression coefficients (Table 2), one can
see that the relative supremacy of the heuristic approach has remained. All
methods tested under this scenario exclude more correct regressors, which
results in a higher MSE.

Increasing the portion of ’true’ regressors (ktrue = 25), one finds that
for high SNR heuristics outperform the Lasso-type methods in identifying
the correct subset structure (Table 3). There can be two reasons for this.
First, due to the stronger parsimony property of the Lasso methods (aLasso
excludes correct variables even with the small portion of noise). Second,
due to the larger proportion of relevant predictors, the problem of correlated
predictors is more challenging. This is evident when one compares the left
and the right panels of Table 3. Reducing the SNR leads to a much larger
proportion of mistakes in model selection for all methods. Nevertheless, the

9This is mainly due to the asymptotic property of the aLasso-weights (!̂j) adding some
instability in the model estimation. For SNR > 0.5 and, respectively, smaller MSE values
this instability becomes more evident.
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Table 2: Simulation results for n = 400, k = 50, ktrue = 5 and �mcj = j2.

Lasso EN aLasso BIC HQIC Lasso EN aLasso BIC HQIC
Low correlation High correlation

Low noise
TPR 98% 100% 89% 90% 69% 88% 90% 84% 90% 68%
FNR 1.5% 1.5% 1.5% .4% .2% 1.6% 1.6% 1.5% .6% .4%
MSE 15.9 15.5 16.9 1.2 2.1 16.4 16.0 17.1 1.1 2.0

(4.7) (4.7) (21.5) (.7) (.9) (4.6) (4.7) (24.5) (.8) (.9)
CPU .6s 3.5s 3.4s 232s 249s .6s 3.9s 3.7s 235s 249s

High noise
TPR 100% 100% 97% 83% 66% 95% 100% 95% 78% 60%
FNR 6.7% 6.7% 6.4% 4.2% 3.9% 6.9% 6.8% 6.4% 4.4% 4.2%
MSE 933 925 632 132 199 989 979 670 133 168

(102) (112) (286) (79) (86) (165) (172) (285) (89) (87)
CPU .7s 4.3s 4.0s 202s 222s .6s 4.3s 4.1s 202s 217s

heuristic approach still results in a lower MSE.10

Table 3: Simulation results for n = 400, k = 50, ktrue = 25 and �mcj = 1.

Lasso EN aLasso BIC HQIC Lasso EN aLasso BIC HQIC
Low correlation High correlation

Low noise
TPR 83% 84% 98% 98% 92% 76% 77% 98% 97% 90%
FNR 0% 0% .9% 0% 0% 0% 0% 2.3% 0% 0%
MSE .58 .57 3.34 .11 .15 .65 .64 5.26 .14 .19

(.09) (.08) (5.61) (.04) (.03) (.16) (.15) (10.3) (.04) (.03)
CPU .5s 2.9s 2.5s 428s 452s .5s 3.3s 2.5s 434s 464s

High noise
TPR 91% 91% 87% 83% 75% 71% 71% 72% 72% 70%
FNR 24% 24% 23% 21% 19% 21% 21% 24% 22% 21%
MSE 41.3 41.2 37.9 28.3 25.2 45.0 44.7 58.7 26.9 24.1

(2.4) (2.4) (2.9) (2.4) (2.9) (6.7) (6.7) (7.0) (6.2) (3.9)
CPU .6s 4.1s 3.7s 244s 284s .7s 4.1s 4.4s 246s 275s

If one reduces the sample size (n = 100), the Lasso-type methods (except
aLasso) are less affected by the asymptotic property than IC via heuristics
(Table 4). In the case of low level of noise, heuristics are still better off
in terms of MSE, although they accept significantly more false regressors.
But for high noise level Lasso-type methods surpass IC via GA in terms of
the estimation bias.11 In general, this is good evidence that Lasso are more

10Due to the higher ktrue, the heuristic requires more CPU time (approximately 450s)
identifying all ’true’ predictors under low noise and estimating their regression coefficients.

11An exception is constituted for the case with correlated predictors: since the Lasso
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suitable for small n (see also Hsu et al. (2007, page 3649)).

Table 4: Simulation results for n = 100, k = 50, ktrue = 5 and �mcj = 1.

Lasso EN aLasso BIC HQIC Lasso EN aLasso BIC HQIC
Low correlation High correlation

Low noise
TPR 91% 91% 99% 77% 51% 78% 81% 88% 78% 50%
FNR 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
MSE .23 .21 .42 .04 .08 .24 .23 .69 .04 .09

(.08) (.07) (.48) (.02) (.06) (.09) (.09) (.61) (.03) (.05)
CPU .6s 3.9s 3.6s 107s 120s .6s 3.9s 3.9s 109s 121s

High noise
TPR 65% 65% 45% 49% 30% 60% 60% 27% 41% 27%
FNR 7.3% 7.3% 7.4% 5.5% 5.2% 7.2% 7.2% 7.6% 5.9% 6.1%
MSE 5.31 5.19 5.15 5.61 9.95 6.05 5.57 5.47 4.89 9.43

(.61) (.81) (.93) (1.66) (2.62) (.79) (.77) (1.03) (2.53) (5.91)
CPU .7s 3.9s 4.5s 97s 111s .7s 4.3s 4.4s 96s 111s

Finally, considering an overdetermined linear system one finds that the
performance of all methods dramatically decreases (Table 5). This is more
evident for the heuristic approach. The case with k ≫ n can result in
extremely small RSS values if a large number of available regressors (k ∼ n) is
included. As the IC’s natural logarithm goes to minus infinity, the penalty on
model complexity remains in the same (former) order of magnitude. Hence,
the resulting difference in IC ’compensates’ incorrect variables to be included
by GA.12 An illustration of this effect is presented in Figure 3. In the left
plot with n = 400, GA identifies a smaller IC value (dashed line) than the
one attributed to the ’true’ subset structure (’IC-true’). The smaller the n,
the larger the difference between the two values. In the extreme case with
k ≫ n (right plot) this difference becomes much more apparent.

Consequently, the real limitation of the heuristic approach is the objective
function (18) that is not suitable for k ≫ n, while GA algorithm performs
well in both set-ups (for more discussion on this see Appendix). In the
set-up with k ≫ n, Lasso-type methods (in particular, Lasso and EN) are
superior model selection strategies in terms of both correctly identified subset
structures and estimated bias.13

methods are inconsistent here, BIC via GA provides a smaller MSE.
12A similar finding is also made for the Akaike information criterion.
13Note that in contrast to Zou and Hastie (2005) and Zou and Zhang (2009), no pre-
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Figure 3: IC values for different sample sizes.

Table 5: Simulation results for n = 60, k = 100, ktrue = 5 and �mcj = 1.

Lasso EN aLasso BIC HQIC Lasso EN aLasso BIC HQIC
Low correlation High correlation

Low noise
TPR 61% 75% 49% 8% 8% 43% 54% 46% 8% 8%
FNR 0% 0% 0.1% 0% 0% 0% 0% 0.1% 0% 0%
MSE .18 .16 .25 1.41 1.81 .16 .15 0.13 1.75 2.11

(.10) (.09) (.87) (.49) (.86) (.09) (.08) (0.51) (1.10) (1.68)
CPU 0.7s 5.2s 5.4s 914s 964s 0.7s 5.3s 5.7s 917s 967s

High noise
TPR 38% 38% 19% 6% 5% 32% 32% 13% 4% 5%
FNR 4.2% 4.2% 3.7% 3% 4% 4.2% 4.2% 3.9% 5% 4%
MSE 4.99 5.04 13.03 73.08 73.39 5.15 5.15 23.32 79.82 83.88

(.28) (.51) (9.4) (14.05) (16.45) (.25) (.36) (28.78) (17.42) (24.85)
CPU .7s 4.8s 4.5s 916s 925s .8s 4.9s 5.4s 1339s 1091s

4 Application on a cross-country growth model

To illustrate the model selection techniques, let us apply them to an actual
empirical problem, using the real per capita GDP growth rate over 1960-1992
and a series of country’s characteristics evaluated for 1960.14 The data set
was first tested and described in detail by Sala-i-Martin (1997). Due to a large
number of missing observations, Fernandez et al. (2001) reduce the original

screening that reduces the dimensionality of the problem is employed in this study (as
e.g., Sure Independent Screening). Thus, only the methods described in Section 2 are
considered.

14A set of characteristics is selected that best explains the GDP growth rate within a
standard linear regression model.
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Table 6: Summary results for the cross-country growth model.

BIC BIC(adj.) Lasso EN aLasso
Constant 0.0797 0.0419 0.0206 0.0399 0.0998
Primary school enrollment 0.0249 - - - -
Life expectancy 0.0009 0.0010 0.0010 0.0009 0.0011
Log of per capita GDP −0.0188 −0.0130 −0.0111 −0.0126 −0.0177
Fraction of confucius 0.0759 0.0577 0.0423 0.0460 -
Fraction of muslim 0.0078 0.0118 0.0052 0.0038 -
Sub-Saharan dummy −0.0218 - −0.0091 −0.0131 −0.0209
Rule of law 0.0131 - 0.0103 0.0108 0.0096
Equipment investment 0.1511 0.2181 - 0.0036 -
... ... ... ... ... ...

ℎ=22 ℎ=7 ℎ=32 ℎ=34 ℎ=10
R2(adjusted) 92% 79% 78% 81% 67%

data set from 134 countries and 62 regressors to 72 and 42, respectively.
The data was used in a series of studies applying different model selection

strategies. The most interesting for us (for comparative reasons) are the ap-
plication of genetic algorithms by Acosta-Gonzalez and Fernandez-Rodriguez
(2007) and adaptive Lasso by Schneider and Wagner (2009).

A brief summary of the results for the data set with a total number of
regressors included (ℎ) by each strategy is presented in Table 6 (see Table 8
in Appendix for a complete version of the results). As one can see, BIC
via GA, Lasso and EN include more than half of the available regressors in
the final solution. Comparing their model fits, the IC has the highest R2

adjusted with the smaller subset of predictors.15 This can be due to a larger
number of incorrect variables included by the Lasso-type methods (see results
in Table 3). Based on this and together with our Monte-Carlo simulations,
the model estimation obtained via GA is considered as the most accurate
one in this particular example. Due to a potentially large portion of relevant
regressors and high pairwise correlation between certain variables (e.g., for
equipment investment and life expectancy it is above 0.64), EN is seen to
outperform the other Lasso-type methods.16

15In contrast, aLasso rather excludes some relevant regressors, which results in the
smaller goodness-of-fit.

16In our application partly different results are obtained in comparison to the ones in
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Acosta-Gonzalez and Fernandez-Rodriguez (2007) try to avoid over-para-
metrization with an adjusted BIC (18) by doubling its penalty on model
complexity. They come up with a smaller model subset (see BIC(adj.)). By
employing Algorithm 2 for GA, the same model as in Acosta-Gonzalez and
Fernandez-Rodriguez (2007) is identified.

In Table 8 two out of three regressors always included by Sala-i-Martin
(1997) are also selected by all the model selection strategies: life expectancy
and GDP per capita. In contrast, there is less evidence for primary school
enrollment to be retained in the model. This finding is also supported by
Fernandez et al. (2001).

5 Conclusions and outlook

The model specification step has a vital role for the further regression anal-
ysis, since any ad-hoc or intuitive decisions can reduce the estimation accu-
racy or introduce an estimation bias. In this study the Lasso-type (Lasso,
adaptive Lasso, elastic net) and a heuristic model selection strategy are com-
pared. First, one describes the implementation of all methods underlining
their strengths and weaknesses. Second, an illustration of their performances
based on several Monte-Carlo experiments is provided. Finally, the methods
are implemented on real empirical data and their results are contrasted.

One finds that an application of the Lasso modifications has some influ-
ence on its resulting performance in terms of both subset selection correctness
and estimation bias. However, this influence is rather marginal in comparison
to other model selection methods, in particular, heuristic optimization.

In general, the Lasso-type techniques provide sparser solutions than the
heuristic approach. They can better identify irrelevant predictors in a final
subset, but exclude more relevant ones. As a result, in most of the simulated
set-ups the Lasso methods exhibit a larger estimation bias. If the portion of
relevant regressors in a given data set is large or available regressors can ex-
plain the indicator of interest to a large extent (’small noise’), the supremacy

Schneider and Wagner (2009). This is due to another choice of tuning parameters made.
In particular, Schneider and Wagner (2009) employ OLS-weights and set � equal to one.
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of the heuristics becomes more apparent.
Based on the simulated experiments, one can consider the Lasso methods

more suitable for data sets with small sample sizes. In contrast, application
of heuristics in this case is constrained by the asymptotic property of IC.

The Lasso methods have a significant advantage over heuristic methods
in terms of the CPU time required. Although, as it is demonstrated in
this study, nowadays IC via heuristics can be optimized using reasonable
computational time.

In the future one can compare the methods discussed with the adaptive
elastic net (Zou and Zhang 2009) that combines strengths of the elastic net
and the adaptive lasso, or with the adaptive ridge selector (Armagan and
Zaretzki forthcoming) that differentiates amounts of shrinkage according to
t-statistics. An alternative is to test an application of heuristic methods on
the generalized Lq-norm approach with 0 < q < 1.
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6 Appendix

Extensively simulating with different forms of IC (with absolute values of
the logarithm and the use of RSS’s absolute value instead of its logarithm in
conjunction with a re-scaled penalty for model complexity) one can find an
’adjusted’ IC form suitable for the k ≫ n case. For example, one can take
RSS absolute value and adjust the penalty term via a data-driven multipli-
cator � set equal to 20 or 1600 (depending on the SNR):

IC =∥y −X�̂ ∥22 +�ℎln(n)/n, (22)

In the result, one can obtain much better results for the IC via GA (Ta-
ble 7). However, this form of the IC is no longer ’universal’ and has to be
calibrated for each particular data set.

Table 7: Simulation results for n = 60, k = 100, ktrue = 5 and �mcj = 1.

Lasso EN aLasso BIC HQIC Lasso EN aLasso BIC HQIC
Low correlation High correlation

Low noise
TPR 61% 75% 49% 90% 62% 43% 54% 46% 93% 75%
FNR 0% 0% 0.1% 0% 0% 0% 0% 0.1% 0% 0%
MSE .18 .16 .25 .05 .15 .16 .15 0.13 .04 .07

(.10) (.09) (.87) (.04) (.10) (.09) (.08) (0.51) (.03) (.04)
CPU 0.7s 5.2s 5.4s 174s 189s 0.7s 5.3s 5.7s 168s 187s

High noise
TPR 38% 38% 19% 40% 24% 32% 32% 13% 26% 14%
FNR 4.2% 4.2% 3.7% 3.9% 3.9% 4.2% 4.2% 3.9% 4.1% 4.1%
MSE 4.99 5.04 13.03 8.31 13.79 5.15 5.15 23.32 10.16 17.17

(.28) (.51) (9.4) (3.40) (7.51) (.25) (.36) (28.78) (4.51) (10.39)
CPU .7s 4.8s 4.5s 70s 75s .8s 4.9s 5.4s 70s 76s
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Table 8: Results for the cross-country growth model.

BIC BIC(adj.) Lasso EN aLasso
Constant 0.0797 0.0419 0.0206 0.0399 0.0998
Primary school enrollment 0.0249 - - - -
Life expectancy 0.0009 0.0010 0.0010 0.0009 0.0011
Log of per capita GDP -0.0188 -0.0130 -0.0111 -0.0126 -0.0177
Fraction of GDP in mining 0.0328 - 0.0337 0.0370 -
Degree of capitalism - - 0.0023 0.0022 -
Number of years open economy - 0.0176 0.0056 0.0036 -
Fraction speaking English -0.0078 - -0.0058 -0.0064 -
Fraction speaking foreign language - - -0.0008 -0.0006 -
Exchange rate distortions - - 3.3× 10−6 2.4× 10−6 -
Equipment investment 0.1511 0.2181 - 0.0036 -
Non-equipment investment 0.0295 - 0.0108 0.0256 -
Std dev of black market premium - - −2.4× 10−6 −1.8× 10−6 -
Outward orientation -0.0035 - -0.0021 -0.0023 -
Black market premium -0.0055 - -0.0037 -0.0041 -
Total area of the country - - −2.5× 10−8 −3.3× 10−8 6.1× 10−10

Latin American dummy -0.0127 - -0.0050 -0.0055 -0.0118
Sub-Saharan dummy -0.0218 - -0.0091 -0.0131 -0.0209
Higher education enrollment -0.1213 - - - -
Public education share - - - - -
Revolutions and coups - - 0.0012 0.0012 -
War dummy - - -0.0024 -0.0033 -
Political rights - - -0.0016 -0.0019 -
Civil liberties -0.0028 - 0.0019 0.0017 -0.0016
Absolute latitude - - −3.6× 10−7 −1.6× 10−6 −4.4× 10−6

Average age of the population - - −5.0× 10−6 −4.5× 10−6 -
British colony dummy 0.0079 - 0.0011 0.0015 -
Fraction of buddhist - - 0.0140 0.0121 -
Fraction of catholic - - -0.0014 -0.0024 -
Fraction of confucius 0.0759 0.0577 0.0423 0.0460 -
Ethnolinguistic fractionalization 0.0165 - - 0.0019 -
French colony dummy 0.0110 - - - -
Fraction of hindu -0.1108 - -0.0051 -0.0263 -0.0017
Fraction of jewish - - - - -
Fraction of muslim 0.0078 0.0118 0.0052 0.0038 -
Primary exports - - -0.0039 -0.0040 -
Fraction of protestant - -0.0136 -0.0108 -0.0111 -
Rule of law 0.0131 - 0.0103 0.0108 0.0096
Spanish colony dummy 0.0140 - - - -
Growth rate of population - - - - -
Ratio workers to population - - -0.0126 -0.0113 -
Labor force −3.8× 10−8 - 2.6× 10−9 7.9× 10−9 −4.9× 10−9

R2 95% 81% 88% 91% 72%
R2(adjusted) 92% 79% 78% 81% 67%
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