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Abstract

Gravity type models are widely used in international economics. In these models the inclusion

of time-fixed regressors like geographical or cultural distance, language and institutional (dummy)

variables is often of vital importance e.g. to analyse the impact of trade costs on internationalization

activity. This paper assesses the problem of parameter inconsistency due to a correlation of the time-

fixed regressors with the combined error term in panel data settings. A common solution is to use

Instrumental-Variable (IV) estimation in the spirit of Hausman-Taylor (1981) since a standard Fixed

Effect Model (FEM) estimation is not applicable. However, some potential shortcomings of the latter

approach recently gave rise to the use of non-IV two-step estimators. Given their growing number

of empirical applications, we aim to compare the performance of IV and non-IV approaches in the

presence of time-fixed variables and right hand side endogeneity using Monte Carlo simulations, where

we explicitly control for the problem of IV selection in the Hausman-Taylor case. The simulation

results show that the Hausman-Taylor model with perfect-knowledge about the underlying data

structure (instrument orthogonality) has on average the smallest bias. However, compared to the

empirically relevant specification with imperfect-knowledge and instruments chosen by statistical

criteria, simple non-IV rival estimators performs equally well or even better. We illustrate these

findings by estimating gravity type models for German regional export activity within the EU. The

results show that the HT specification is likely to overestimate the role of trade costs proxied by

geographical distance.
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1 Motivation

In contemporary panel data analysis researchers are often confronted with the problem

of parameter inconsistency due to the correlation of some of the exogenous variables with

the model’s error term. Assuming that this correlation is typically due to unobservable

individual effects (see e.g. Mundlak, 1978), a consistent approach to deal with such type

of right hand side endogeneity is to apply the standard Fixed Effects Model (FEM), which

uses a within-type data transformation to erase the unobserved individual effects from

the model. However, one drawback of this estimator is that the within transformation

also wipes out all explanatory variables that to not change in the time dimension of the

model. In this case no statistical inference can be made for these variables, if they have

been included in the original untransformed model based on theoretical grounds.

The researcher’s problem is then to find an alternative estimator, which is still capable

of including time-fixed regressors in the estimation setup. A well-known example for the

above sketched etimation setup in empirical work is the gravity model (of trade, capital

or migration flows among other interaction effects), which assigns a prominent role given

to time-fixed variables in the regression model. Taking the gravity model of trade as an

example, the model is a highly used body of analysis for applied econometric work: With

the recent switch from cross-section to panel data specifications, important shortcomings

of earlier gravity model applications have been tackled (see e.g. Matyas, 1997, Breuss &

Egger, 1999, as well as Egger, 2000), however, other methodological aspects such as the

proper functional form of the Gravity equation are still subject to open debate in the

recent literature (see e.g. Baldwin & Taglioni, 2006, and Henderson & Millimet, 2008, for

an overview). Recently, also the time series properties of Gravity models have been more

intensively studied by academic research (see e.g. Fidrmuc, 2008, Zwinkels & Beugelsdijk,

2010).

In this paper we focus on proper estimation strategies for Gravity type and related

models, when some time-varying and -fixed right hand side regressors are correlated with

the unobservable individual effects. Baltagi et al. (2003) have shown, that when there

is endogeneity among the right hand side regressors the OLS and Random Effects esti-

mators are substantially biased and both yield misleading inference. As an alternative

solution the Hausman-Taylor (1981, thereafter HT) approach is typically applied. The

HT estimator allows for a proper handling of data settings, when some of the the regres-

sors are correlated with the individual effects. The estimation strategy is basically based

on Instrumental-Variable (IV) methods, where instruments are derived from internal data

transformations of the variables in the model. One of the advantages of the HT model

is that it avoids the ’all or nothing’ assumption with respect to the correlation between
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right hand side regressors and error components, which is made in the standard FEM and

REM approaches respectively. However, for the HT model to be operable, the researcher

needs to classify variables as being correlated and uncorrelated with the individual effects,

which is often not a trivial task.

As a response of this drawback in empirical application of the HT approach different

estimation strategies have been suggested, which strongly rely on statistical testing to

reveal the underlying correlation of the variables with the model’s residuals: Given the

fact that the HT estimator employs variable information that in between the range of the

FEM and REM, Baltagi et al. (2003) for instance suggest to use a pre-testing strategy

that either converts to a FEM, REM or Hausman-Taylor type model depending on the

underlying characteristics of the variable correlation in focus. The estimation strategy

centers around the standard Hausman (1978) test, which has been evolved as a standard

tool to judge among the use of the REM vs. FEM in panel data settings. Ahn & Low

(1996) additionally propose a reformulation of the Hausman test based on the Sargan

(1958) / Hansen (1982) statistic for overidentifying restrictions. Together with the closely

related C-Statistic derived by Eichenbaum et al. (1998), which allows for testing single

instrument validity rather than full IV-sets, the Hansen-Sargen overidentification test may

thus be seen as a more powerful tool to guide IV selection in the HT approach compared

to the standard Hausman test.

As an alternative to IV estimation different ’two-step’-type estimators have been pro-

posed recently: Plümper & Tröger (2007) for instance set up an augmented FEM model

that also allows for the estimation of time-fixed parameters. Their model - labeled Fixed

Effects Vector Decomposition (FEVD) - may be seen as a rival specification for the HT

approach in estimating the full parameter space in the model including both time-varying

and time-fixed regressors. The idea of the two step estimator is to first run a consistent

FEM model to obtain parameter estimates of the time-varying variables. Using the re-

gression residuals as a proxy for the unobserved individual effects in a second step this

proxy is regressed against the set of time-fixed variables to obtain parameter values for

the latter. Since this second step includes a ’generated regressand’ (Pagan, 1984) the de-

grees of freedom have to be adjusted to avoid an underestimation of standard errors (see

e.g. Atkinson & Cornwell, 2006, for a comparison of different bootstrapping techniques to

correct standard errors in these settings).1 Though it is typically argued that one main

advantage of these non-IV estimators is their freedom of any arbitrary classification of

1In a recent comment Greene (2010) criticises the original approach by Plümper & Troeger (2007) arguing that they use
a wrong variance-covariance matrix resulting in systematically too small standard errors. Thus, bootstrapping these may
be seen as a more appropriate choice.
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hand side regressors as being endogenous or exogenous, as we will show latter on two-step

estimators such as the FEVD also rests upon an implicit choice that may impact upon

estimator consistency and efficiency.

Giving the growing number of empirical applications of the latter non-IV FEVD ap-

proach (see e.g. Akther & Daly, 2009, Belke & Spies, 2008, Caporale et al., 2008, Davies et

al., 2008, Etzo, 2007, and Krogstrup & Wälti, 2008, Mitze et al., 2009 among others),2 a

systematic comparison of the HT instrumental variable approach with the non-IV FEVD

is of great empirical interest regarding their small sample performance. However, there

are relatively few existing studies comparing the two-step estimators with the Hausman-

Taylor IV approach in a Monte-Carlo simulation experiment (in particular Plümper &

Tröger, 2007, as well as Alfaro, 2006). Moreover, in these studies as well as the broa-

der Monte Carlo based evidence on the Hausman-Taylor estimator (see e.g. Ahn & Low,

1996, Baltagi et al., 2003), the empirically unsatisfactory assumption is made that the

true underlying correlation between right hand side variables and error term is known.

Our approach therefore explicitly offsets from earlier simulation studies and allows for the

existence of imperfect knowledge in the HT model estimation with IV selection based on

different model/moment selection criteria (see e.g. Andrews, 1999, Andrews & Lu, 2001).

The latter combines information from the Hansen-Sargan overidentification test and time-

series information-criteria such as AIC/BIC. This allows for an empirical comparison of

the HT and FEVD (two-step) estimators’ performance, which comes much closer to the

true estimation problem researchers face in applied modelling work in terms of ’To IV or

not IV?’.

The remainder of the paper is organized as follows: Section 2 briefly sketches the

Hausman-Taylor and non-IV FEVD alternative. In section 3 we present the results of

our Monte Carlo simulation experiment. Section 4 illustrates the empirical relevance by

adding an empirical application to trade estimates in a gravity model context for German

regions (NUTS1-level) within the EU27. Section 5 concludes.

2Searching for the term ”Fixed Effects Vector Decomposition”(in quotation marks) by now gives almost 2100 entries in
Google.
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2 Panel Data Models with Time-Fixed Regressors

We consider a general static (one-way) panel data model of the form

yit = βXit + γZi + uit with: uit = μi + νit (1)

where i = 1, 2, . . . , N is the cross-section dimension and t = 1, 2, . . . , T the time di-

mension of the panel data. Xit is a vector of time-varying variables, Zi is a vector of

time invariant right hand side variables, β and γ are coefficient vectors. The error term

uit is composed of two error components, where μi is the unobservable individual effect

and νit is the remainder error term. μi and νit are assumed to be iid(0, σμ) and iid(0, σν)

respectively.

Standard estimators for the panel data model in eq.(1), which control for the existence

for individual effects, are the FEM and REM approach. However, choosing among the

FEM and REM estimator rests on an ’all or nothing’ decision with respect to the assumed

correlation of right hand side variables with the error term. In empirical applications, the

truth may often lie in between these two extremes. This ideas motivates the specification

of the Hausman–Taylor (1981) model as a hybrid version of the FEM/REM using IV

techniques. The HT approach therefore simply splits the set of time varying variables

into two subsets Xi,t = [X1i,t, X2i,t], where X1 are supposed to be exogenous w.r.t μi

and νi,t. X2 variables are correlated with μi and thus endogenous w.r.t. the unobserved

individual effects.3 An analogous classification is done for the set of time–fixed variables

Zi = [Z1i, Z2i]. Note that the presence of X2 and Z2 is the cause of bias in the REM

approach. The resulting augmented HT model can be written as:

yi,t = α + β′
1X1i,t + β′

2X2i,t + γ′
1Z1i + γ′

2Z2i + ui,t.

The idea of HT model is to find appropriate internal instruments to estimate all model

parameters. Thereby, deviations from group means of X1, X2 serve as instruments for

X1 and X2 (in the logic of the FEM), Z1 serve as their own instruments and group

means of X1 are used to instrument the time-fixed Z2. The FEM and the REM can be

derived as special versions of the HT model, namely when all regressors are correlated

with the individual effects the model reduces to the FEM. For the case that all variables

are exogenous (in the sense of no correlation with the individual effects) the model takes

3Here we use the terminology of ’endogenous’ and ’exogenous’ to refer to variables that are either correlated with the
unobserved individual effects μi or not. An alternative classification scheme used in the panel data literature classifies
variables as either ’doubly exogenous’ with respect to both error components μi and νi,t or ’singly exogenous’ to only ν.
We use these two definitions interchangeably here.

5



the REM form. In empirical terms the HT model is typically estimated by GLS and

throughout the paper we use a generalized instrumental variable (GIV) approach proposed

byWhite (1984), which applies 2SLS to the GLS filtered model (including the instruments)

as:4

ỹi,t = α̃ + β′
1X̃1i,t + β′

2X̃2i,t + γ′
1Z̃1i + γ′

2Z̃2i + ũi,t, (3)

where ỹi,t denotes GLS transformed variables (for details see e.g. Baltagi, 2008). Finally,

the order condition for the HT estimator to exist is k1 ≥ g2. That is, the total number of

time-varying exogenous variables k1 that serve as instruments has to be at least as large

as the number of time invariant endogenous variables (g2).
5 For the case that (k1 > g2)

the equation is said to be overidentified and the HT estimator obtained from a 2SLS

regression is generally more efficient than the within estimator (see Baltagi, 2008).

In empirical application of the HT approach the main points of critique focus on the

arbitrary IV selection in terms of X1/X2 and Z1/Z2 variable classification as well as

the poor small sample properties of IV–methods when instruments are ’weak’ as well

as similar small sample problems of the GLS estimator. Therefore, recent two-step non-

IV alternatives such as the Fixed Effects Vector Decomposition (FEVD) by Plümper &

Tröger (2007) have been proposed.6 The goal of the model is to run a consistent FEM

model and still get estimates for the time-invariant variables. The intuition behind the

FEVD specification is as follows: Since the unobservable individual effects capture omitted

variables including time-invariant variables, it should therefore be possible to regress a

proxy of the individual effects obtained from a first stage FEM regression on the time-

invariant variables to obtain estimates for these variables in a second step. Finally, the

number of degrees of freedom for the use of a ’generated regressand’ in this second step

has to be corrected (e.g. by bootstrapping methods, see Atkinson & Cornwell, 2006). We

can thus sum up the FEVD estimator as:

• FEVD: 1.) Run a standard FEM to get parameter estimates (β̂FEV D) of the time-

varying variables.

• FEVD: 2.) Use the estimated group residuals as a proxy for the time-fixed individual

effects π̂i obtained from the first step as π̂i = (ȳi− β̂FEMX̄i) to run a OLS regression

of the explanatory time-invariant variables against this vector to obtain parameter

4One also has to note that the HT model can also be estimated based on a slightly different transformation, namely the
filtered instrumental variable (FIV) estimator. The latter transforms the estimation equation by GLS but uses unfiltered
instruments. However, both approaches typically yield similar parameter estimates, see Ahn & Schmidt (1999).

5The total number of IVs in the HT model is 2k1 +k2 + g1 (k1 +k2 from QX1 and QX2, k1 from PX1 and g1 from Z1)
6The FEVD may be seen as an extension to an earlier model in Hsiao (2003). For details see Plümper & Tröger (2007).
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estimates of the time-fixed variables (γ̂FEV D).

The residual term from the 2.step η̂i is composed of η̂i = ζi + X̄i(β̂FEM − β), where

ζi = μi + ν̄i and the over-bar indicates the sample period mean for cross-section i e.g.

X̄i = 1/T
∑T

t=1 Xi,t (for details see Atkinson & Cornwell, 2006). One has to note that

standard errors have to be corrected for γ̂FEV D either asymptotically or by bootstrapping

techniques (see Murphy & Topel, 1985, as well as Atkinson & Cornwell, 2006) to avoid an

overestimation of t-values. To sum up, the FEVD ’decomposes’ the vector of unobservable

individual effects into a part explained by the time invariant variables and an error term.

Since the FEVD is built on the FEM it yields unbiased and consistent estimates of the

time-varying variables. According to Plümper & Tröger one major advantage of the FEVD

compared to the Hausman-Taylor model is that the estimator does not require prior

knowledge of correlation between the explanatory variables and the individual effects.

However, estimates of the time invariant variables are only consistent if either the time

invariant variables fully account for the individual effects or the unexplained part of ηi is

uncorrelated with the time-invariant variables. As Caporale et al. (2008) note, otherwise

the FEVD also suffer from omitted variable bias.7

Thus, though we are not directly confronted with the choice of classifying variables as

endogenous or exogenous, the estimator itself does rely on an implicit choice: In specifying

the time-varying variables the model follows the generality of the FEM approach, which

assumes that these variables are possibly correlated with the unobservable individual

effects (for estimation purposes deviations from group means are taken which wipe out

the individual effects so that no explicit assumption about the underlying correlation

needs to be stated). With respect to the time invariant variables the estimator assumes

in its simple form that no time-fixed variable (Z) is correlated with the the second step

error term, which is composed of the unobservable individual effects. However, if this

implicit (and fixed) choice does not reflect the true correlation between the variables and

the individual effects the estimator may in fact have lower power than the HT approach.

7A modification of the standard FEVD approach also allows for the possibility to estimate the second step as IV regression
and thus account for endogeneity among time invariant variables and ηi. Following Atkinson & Cornwell, 2006, we can define

a standard IV estimator as: γ̂FEV D =
(
S′Z)−1S′π̂ , where S is the instrument set that satisfies the orthogonality condition

E(Sη) = 0. However, this brings back the classification problem of the HT approach, which we aim to avoid here.
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3 Monte Carlo Simulation Results

We run Monte Carlo Simulations in the spirit of Im et al. (1999) and Baltagi et al. (2003)

for the FEVD and Hausman-Taylor estimator using different combinations of the cross-

section (N) and time-series (T ) dimension. Details about the simulation design are given

in the appendix. We use a static one-way model as in eq.(1) including 4 time-varying (X)

and 3 time-fixed (Z) regressors of the form:

yi,t = β11x11,i,t + β12x12,i,t (4)

+β21x21,i,t + β22x22,i,t

+γ11z11,i + γ12z12,i

+γ21z21,i + ui,t,

with: ui,t = μi + νi,t

where x11 and x12 are assumed to be uncorrelated with the error term, while x21 and

x22 are correlated with μi. Analogously, z21 is correlated with the error term. The latter is

composed of the unobserved individual effects (μi) and remainder disturbance (νi,t). Since

we are interested in consistency and efficiency of the respective estimators, we compute

the empirical bias, its standard deviation and the root mean square error (rmse). The

bias is defined as

bias(δ̂) =
M∑

m=1

(δ̂ − δtrue)/M, (5)

where m = (1, 2, . . . ,M) is the number of simulation runs, δ̂ is the estimated coefficient

evaluated w.r.t. to its true value. Next to the standard deviation of the estimated bias we

also calculate the root mean square error, which puts a special weight on outliers, as:

rmse(δ̂) =

√√√√√(
M∑

m=1

(δ̂ − δtrue)/M

)2

. (6)

We first take a closer look at the individual parameter estimates for the parameter

settings N = 1000, T = 5 and ξ = 1, which are typically assumed in the standard Panel

data literature building on the large N , small T data assumption.8. In figure 1 we plot

Kernel density distributions for all regression coefficients for the following three estimators:

i.) the FEVD, ii.) the HT model with perfect knowledge about the underlying variable

8ξ defines the ratio of the variance terms of the error components as ξ = σμ/σν

8



correlation with the error term and iii.) the HT model based on the MSC-BIC algorithm

(in its restricted form). The latter estimator is based on model selection criteria (MSC)

that center around the J-Statistic augmented by a ’bonus’ term rewarding models with

more moment conditions. Since the resulting MSC specifications are closely related to the

standard information criteria AIC, BIC and HQIC we label them MSC-AIC, MSC-BIC

and MSC-HQIC respectively. Additionally we define a C−Statistic based model selection

criteria. All criteria are applied to IV selection in the HT case. We apply both conservative

IV selection rules, where instruments are not allowed to pass certain critical values of the

J− and or C−Statistic respectively in order to be selected, as well as less restrictive

counterparts. Detail are given in the appendix. In the figure we focus on the MSC-BIC

based HT model since it shows on average the best performance among all HT estimators

with imperfect knowledge about the underlying data correlation - closely followed by the

C−Statistic based model selection algorithm.

For the coefficients of the two exogenous time-varying variables β11 and β12 all three

estimators give unbiased results centering around the true parameter value of one. The

standard deviation and rmse are the smallest for the HT model with perfect knowledge

about the underlying data correlation, followed by the MSC algorithm based HT estima-

tors. The FEVD has a slightly higher standard deviation and rmse. For the estimated

coefficients of the endogenous time-varying variables β21 and β22 the HT and FEVD give

virtually identical results, while the HT based MSC-BIC in figure 1 is slightly biased for

β21 but comes closer to the true parameter value for the parameter β22 . To sum up, though

there are some minor differences among the three reported estimators for the time-varying

variables in figure 1, the overall empirical discrepancy is rather marginal.

This picture however radically changes for the Monte Carlo simulation results of the

time-fixed variable coefficients γ12 and γ21 : Here only the HT model with the ex-ante

correctly specified variable correlation gives unbiased results for both the exogenous (γ12)

and endogenous variable (γ21). Both the FEVD and HT model based on the MSC-BIC

have difficulties in calculating these variable coefficients correctly, while the bias of the

FEVD is lower than for the MSC-BIC Hausman-Taylor model in both cases. Especially

for γ21 exclusively all HT based model selection algorithms have a large bias/standard

deviation as well as a high rsme relative to the HT with perfect knowledge about the va-

riable correlation with the error term. The FEVD has a significant bias (approximately 50

percent higher than the standard HT) but compared to the MSC-BIC based specification

a lower bias/standard deviation.

<<< insert Figure 1 about here >>>
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Turning to the small sample properties we reduce the number of cross-sections to

N = 100 and leaving the other parameters unchanged. For the time-fixed variables again

the FEVD and the MSC-BIC based HT model have a significant bias, while the HT model

with perfect knowledge about the underlying variable correlation comes on average much

closer to the true parameter value (in particular for γ12). However, as already observed

in Plümper & Tröger (2007) the standard deviation of the latter estimator is much hig-

her compared to the other two estimators. The results in figure 2 indicate that the HT

instrumental variable approach is inefficient in small sample settings, though the average

bias is small.

<<< insert Figure 2 about here >>>

The specific problem of the MSC-BIC based HT model in small sample settings be-

comes obvious in figure 2. Different from the standard HT and FEVD estimators the

MSC-BIC based HT model shows a clear double peak for most parameters. For the coeffi-

cient of the endogeous time-fixed variable γ̂21 the estimates show one peak around the true

coefficient value of one and a second significantly biased one. This kind of duality problem

with a possibly poor MSC based estimator performance has already been addressed in

Andrews (1999) for those cases where there are typically two or more selection vectors

that yield MSC values close to the minimum and parameter estimates that differ noticea-

bly from each other. As the histogram in figure 3 shows, this is indeed the problem for

the MSC-BIC based HT model: Based on the Monte Carlo simulation runs with 500 reps.

the algorithm tends to pick two dominant IV-sets from which one has the (inconsistent)

REM form with a full instrument list, while only the second one consistently excludes

Z21 from the instrument list. This results may be seen as a first indication that in small

samples J−statistic based IV selection has a low power and yield inconsistent results.

<<< insert Figure 3 about here >>>

Turning from a comparison of single variable coefficients to an analysis of overall mea-

sures of bias and efficiency for an aggregated parameter space, we compute NOMAD and

NORMSQD values, where the NOMAD (normalized mean absolute deviation) computes

the absolute deviation of each parameter estimate from the true parameter, normalizing

it by the true parameter and averaging it over all parameters and replications considered.

The NORMSQD computes the mean square error (mse) for each parameter, normalizing

it by the square of the true parameter, averaging it over all parameters and taking its
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square root (for details see Baltagi & Chang, 2000). Both overall measures are thus ex-

tensions to the single parameter bias and rmse statistics defined above. We compare the

FEVD model with the standard HT model and the algorithm based HT models using

the C-Statistic approach, as well as the MSC-BIC1, MSC-HGIC1, MSC-AIC1 (where the

index 1 denotes that all are based on the restricted specification).

Summary results are reported in table 1, disaggregated surface plots for the time-

varying and time-fixed variable coefficients over all different settings are shown in figure

4 to 7. The table shows that the HT model with perfect knowledge about the underlying

variable correlation has the lowest NOMAD value, with the FEVD having two times and

algorithm based HT specification even three times higher values for the average bias over

all model coefficients. For the latter the C-Statistic based model selection criteria performs

slightly better than the MSC based estimators. Contrary, with respect to the NORMSQD

by far the best model is the non-IV FEVD. The difference between the standard HT

model and the algorithm based specification is rather low. This broad picture indicates

that the HT instrumental variable model is a consistent estimator given perfect knowledge

about the true underlying correlation between the r.h.s. variables and the error term.

However, when one has to rely on statistical criteria to guide moment condition selection

the empirical performance for the specific setup in the Monte Carlo simulation design

is considerably lower. This in turn speaks in favor of using non-IV two step estimators

such as the FEVD, which has the lowest rmse due to its robust OLS estimation approach

compared to the HT estimators.

<<< insert Table 1 >>>

We finally decompose the overall performance for time-varying and time-fixed coeffi-

cients. The choice of disaggregation is motivated by the above findings that the results

significantly differ with respect to time-varying and time-fixed variable coefficients. Figure

4 and figure 5 plot NOMAD and NORMSQD values for the time-varying coefficients β11

to β22 . The figures show that the search algorithm based HT models show a significant

small sample bias, while the NOMAD of the FEVD and standard HT is rather small for

different combinations in the time and cross-section dimension of the data. In terms of the

NORMSQD all estimators show a similar pattern with improving performance for rising

NT . Despite this general trend, figure 4 and 5 both show distinct spikes for low values

for ξ = 0.5, which significantly deteriorate the estimators performance in terms of bias

and rmse. This holds in particular for the search algorithm based HT models and comes

close to findings in Baltagi et al. (2003), who find that for small values of ξ their proposed

pretest estimator wrongly reverts to the REM specification although the underlying data
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structure implies a correlation of r.h.s. variables with the individual effects in the sense

of a HT world.

<<< insert Figure 4 and Figure 5 about here >>>

Turning to the NORMAD and NORMSQD values for the time-fixed regressors, figure 6

and 7 show that average bias and rmse are roughly constant over different combinations in

the time and cross-section dimension of the data, where the smallest bias is obtained from

the standard HT model with perfect knowledge about the underlying variable correlation.

On average the bias of the FEVD is significantly higher than for the standard HT. Also the

performance of the algorithm based HT models is rather poor. In contrast, the NORMSQD

values for the FEVD are rather small in contrast to the HT specifications, especially for

small sample settings. The high NOMRSQD for HT models with imperfect knowledge

about the underlying variable correlation can be explained by the above identified duality

problem of this statistical approach. The standard HT model also shows to suffer from

small sample inefficiencies, but comes close to the FEVD benchmark for a larger sample

sizes.

<<< insert Figure 6 and Figure 7 about here >>>

4 Empirical Illustration: Trade Estimates for German Regions

Given the above findings from our Monte-Carlo simulation experiment in this section we

aim to consider the empirical performance of the FEVD and HT model in an empirical

application estimating gravity type models. We take up the research question in Alecke

et al. (2003, 2010) and specify trade equations for regional units. In particular, we aim

to estimate gravity models for export flows among German states (NUTS1-level) and its

EU27 trading partners using data for the period 1993-2005. We are particularly interes-

ted in quantifying the effects of time-fixed variables including geographical distance as a

general proxy for trading costs as well as a set time-fixed 0/1-dummies for border regions,

the East German states as well as the specific trade pattern with the CEEC countries.9

Earlier evidence in Belke & Spies (2008) for European data has shown that there is a con-

9The CEEC aggregate includes Hungary, Poland, the Czech Republic, Slovakia, Slovenia, Estonia, Latvia, Lithuania,
Romania and Bulgaria.
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siderable degree of heterogeneity for these time-fixed variables among different estimators.

The empirical export model has the following form:10

log(EXijt) = α0 + α1log(GDPit) + α2log(POPit) + α3log(GPDjt) + α4log(POPjt)

+α5log(PRODit) + α6log(DISTij) + α7SIM + α8RLF (7)

+α9EMU + α10EAST + α11BORDER + α12CEEC,

where the index indicates German regional exports from region i to country j for time

period t and imports to German state i from country j respectively. The variables in the

model are defined as follows11:

– EX = Export flows from region i to country j

– GDP = Gross domestic product in i and j respectively

– POP = Population in i and j

– PROD = Labour productivity in i and j

– DIST = Geographical distance between state/national capitals

– SIM = Similarity index defined as: log(1−
(

GDPi,t

GDPi,t+GDPj,t

)2 − (
GDPj,t

GDPi,t+GDPj,t

)2
)

– RLF =Relative factor endowments in i and j defined as: log
∣∣∣(GDPi,t

POPi,t

)
−

(
GDPj,t

POPj,t

)
|

– EMU = EMU membership dummy for i and j

– EAST = East German state dummy for i

– BORDER = Border region dummy between i and j

– CEEC = CEE country dummy for j

The estimation results are shown in table 2. We particularly focus in the FEVD and

HT estimates for the variable log(DISTij) as well as the time-fixed dummies EAST ,

BORDER and CEEC. The HT approach rests on the C-Statistic based downward testing

approach to find a consistent set of moment conditions.

Turning to the results, in line with our Monte Carlo simulations both the FEVD and

HT estimators are very close in quantifying the time-varying variables in the gravity mo-

del for German regional export activity. As expected from its theoretical foundation (see

e.g. Egger, 2000, Feenstra, 2004) both home and foreign country GDP have a positive

and significant influence on German export activity, indicating that trade increases with

10Results for an import equation with qualitatively similar results can be obtained from the author upon request.
11Further details can be found in the data appendix in table A.1.
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absolute higher income levels. Moreover, also home region productivity (defined as GDP

per total employment) is found to be statistically significant and highly positive, which

in turn can be interpreted in line with recent findings based on firm-level data (see e.g.

Helpman et al., 2003, or Arnold & Hussinger, 2006, for the German case) that the de-

gree of internationalization of home firms (both trade and FDI) increases with higher

productivity levels. The interpretation of the population variable in the gravity model

is less clear cut: Both the FEVD and HT estimator find a positive coefficient sign for

foreign population, which can be interpreted in favour of the market potential approach

indicating that German export flows are higher for population intense economies. Also for

the GDP based interaction variable SIM (definition see above) the two estimators show

similar results.

However, as already observed throughout the Monte Carlo simulation experiment for

the time-fixed variables the estimators show a considerable degree of heterogeneity. In

our export model the C-Statistic based HT approach finds a coefficient for the distance

variable (-1,73) that is almost twice as large as the respective coefficient in the in POLS,

REM and FEVD (-0.97) case. A similar difference between FEVD and HT model results

were also found in Belke & Spies (2008) for EU wide data (the authors report coefficients

for the distance variable in the HT case as -1,83 compared to -1,39 in the FEVD case).

Without the additional knowledge from the above Monte Carlo simulation experiment,

we could hardly answer the question whether this discrepancy among estimators either

indicates an upward bias of the HT model given the fact that (for national data) the

parameter estimate for the distance variable typically ranges between -0.9 to -1.3 (see e.g.

Disdier & Head, 2008 as well as Linders, 2005) or whether the use of smaller regional

entities serves as a better proxy for geographical distance thus gives a more accurate

estimate for trade costs (which may be possibly higher).

However, in the light of the Monte Carlo simulation results together the typical range

of national estimates it seems plausible to rely on the FEVD estimation results, although

the HT model passes the Hansen/Sargan overidentification test (treating geographical

distance as correlated with the unobserved individual effeckts). Also for the further time-

fixed dummy variables in the model the FEVD estimates show more reliable coefficient

signs than the HT model: That is, we would expect the border dummy to be positive as e.g.

found in Lafourcade & Paluzie (2005) for European border regions. Also, German-CEEC

trade was persistently found to be above its ’potential’ in a couple of earlier studies (such

as Schumacher & Trübswetter, 2000, Buch & Piazolo, 2000, Jakab et al., 2001, Caetano

et al., 2002 as well as Caetano & Galego, 2003). In both cases the FEVD estimates are

thus more in line with recent empirical findings than the HT IV-estimation.

14



<<< insert Table 2 about here >>>

5 Conclusion

In this paper we have performed a Monte Carlo simulation experiment supported by an

empirical illustration to compare the empirical performance of IV and non-IV estimators

for a regression setup, which includes time-fixed variables as right hand side regressors

and where endogeneity matters. We define the latter as any correlation between the r.h.s.

variables with the model’s error term. In specifying empirical estimators we focus on the

Hausman-Taylor (1981) IV model both with perfect and imperfect knowledge about the

underlying variable correlation with the model’s residuals and non-IV two-step estima-

tors such as the Fixed Effects Vector Decomposition (FEVD) model recently proposed by

Plümper & Tröger (2007). Our results show that the HT (with perfect knowledge) works

better for time-varying, while the FEVD for time-fixed variables. Averaging over all para-

meters we find the the HT model (with perfect knowledge) generally has the smallest bias,

while the FEVD show to have a by far lower root mean square error (rmse) as a general

efficiency measure. Especially in small sample settings our Monte Carlo simulations show

that the IV-based HT model has a large standard deviation around the unbiased point

estimate.

Additionally, relaxing the assumption of perfect knowledge for the HT model, the

empirical performance of the latter significantly worsens. We compute different algorithms

to select consistent IV-sets centering around the Hansen/Sargan overidentification test (J-

Statistic), however all estimates based on these algorithms generally show a much weaker

empirical performance than the non-IV alternative (FEVD). One major drawback of the

HT models with imperfect knowledge is a ’duality’ problem in small sample settings,

where the estimator has difficulties to discriminate between consistent and inconsistent

moment condition vectors. Our Monte Carlo experiment shows that for the HT model one

should have good theoretical arguments for proper instrument choice rather than using

solely statistical criteria for IV selection. An alternative choice for applied researcher are

non-IV two-step estimators such as the FEVD proposed by Plümper & Tröger (2007),

which show an on average acceptable performance in our Monte Carlo simulations and

yield plausible results for the empirical estimation of German regional trade flows using

gravity type models. The choice of an appropriate estimator is highly important for applied

researchers aiming to quantify the effect of policy relevant variables such as trade costs.
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Figure 4: Histogram of selected IV-sets for Monte Carlo simulation results of γ21 with

N = 100, T = 5, ξ = 1
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Table 1: NOMAD and NORMSQD averaged over all MC simulations

Crit. NOMAD NORMSQD

Time-varying FEVD 0.0009 0.0321

HT 0.0029 0.0292

HT-Cstat 0.0030 0.0321

HT-BIC1 0.0086 0.0337

HT-HQIC1 0.0099 0.0346

HT-AIC1 0.0058 0.0329

Time-fixed FEVD 0.4105 0.0672

HT 0.1911 0.1888

HT-Cstat 0.6009 0.2615

HT-BIC1 0.6171 0.1990

HT-HQIC1 0.6238 0.1952

HT-AIC1 0.6231 0.2132

All variables FEVD 0.2057 0.0497

HT 0.0970 0.1090

HT-Cstat 0.3019 0.1468

HT-BIC1 0.3129 0.1164

HT-HQIC1 0.3168 0.1149

HT-AIC1 0.3144 0.1230

Note: For details about the Monte Carlo simulation setup and the definition

of the HT estimators based on model selection criteria see appendix.
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Figure 4: NOMAD surface plot for time-varying variables in MC simulations

(N
=1

00
; T

=5
, x

i=
0.

5)

(N
=1

00
; T

=5
, x

i=
1)

(N
=1

00
; T

=5
, x

i=
2)

(N
=1

00
; T

=1
0,

 x
i=

0.
5)

(N
=1

00
; T

=1
0,

 x
i=

1)

(N
=1

00
; T

=1
0,

 x
i=

2)

(N
=5

00
; T

=5
, x

i=
0.

5)

(N
=5

00
; T

=5
, x

i=
1)

(N
=5

00
; T

=5
, x

i=
2)

(N
=5

00
; 1

0=
5,

 x
i=

0.
5)

(N
=5

00
; T

=1
0,

 x
i=

1)

(N
=5

00
; T

=1
0,

 x
i=

2)

(N
=1

00
0;

 T
=5

, x
i=

0.
5)

(N
=1

00
0;

 T
=5

, x
i=

1)

(N
=1

00
0;

 T
=5

, x
i=

2)

(N
=1

00
0;

 T
=1

0,
 x

i=
0.

5)

(N
=1

00
0;

 T
=1

0,
 x

i=
1)

(N
=1

00
0;

 T
=1

0,
 x

i=
2) FEVD

HT
HT-Cstat

HT-BIC1

HT-HQIC1

HT-AIC1

0

0.05

24



Figure 5: NORMSQD surface plot for time-varying variables in MC simulations

(N
=1

00
; T

=5
, x

i=
0.

5)

(N
=1

00
; T

=5
, x

i=
1)

(N
=1

00
; T

=5
, x

i=
2)

(N
=1

00
; T

=1
0,

 x
i=

0.
5)

(N
=1

00
; T

=1
0,

 x
i=

1)

(N
=1

00
; T

=1
0,

 x
i=

2)

(N
=5

00
; T

=5
, x

i=
0.

5)

(N
=5

00
; T

=5
, x

i=
1)

(N
=5

00
; T

=5
, x

i=
2)

(N
=5

00
; 1

0=
5,

 x
i=

0.
5)

(N
=5

00
; T

=1
0,

 x
i=

1)

(N
=5

00
; T

=1
0,

 x
i=

2)

(N
=1

00
0;

 T
=5

, x
i=

0.
5)

(N
=1

00
0;

 T
=5

, x
i=

1)

(N
=1

00
0;

 T
=5

, x
i=

2)

(N
=1

00
0;

 T
=1

0,
 x

i=
0.

5)

(N
=1

00
0;

 T
=1

0,
 x

i=
1)

(N
=1

00
0;

 T
=1

0,
 x

i=
2) FEVD

HT
HT-Cstat

HT-BIC1

HT-HQIC1

HT-AIC1

0

0.1

25



Figure 6: NOMAD surface plot for time-fixed variables in MC simulations
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Figure 7: NORMSQD surface plot for time-fixed variables in MC simulations
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Table 2: Gravity model for EU wide Export flows for German states (NUTS1 level)

Log(EX) POLS REM FEM FEVD HT$

Log(GDPi) 1,04∗∗∗ 0,35∗ 0,83∗∗ 0,83∗∗∗ 0,87∗∗∗

(0,135) (0,034) (0,273) (0,273)# (0,271)
Log(GDPj) 0,64∗∗∗ 0,31∗∗∗ 0,34∗∗∗ 0,34∗∗ 0,35∗∗∗

(0,026) (0,034) (0,044) (0,044)# (0,043)
Log(POPi) 0,03 0.69∗∗∗ -1,38∗∗∗ -1,38∗∗ 0,18

(0,132) (0,197) (0,398) (0,398)# (0,263)
Log(POPj) 0,19∗∗∗ 0,48∗∗∗ 1,79∗∗∗ 1,79∗∗∗ 0,38∗∗∗

(0,025) (0,041) (0,302) (0,302)# (0,084)
Log(PRODi) -0,15 2,11∗∗∗ 1,48∗∗∗ 1,48∗∗∗ 1,76∗∗∗

(0,241) (0,228) (0,275) (0,275)# (0,268)
Log(DISTij) -0,87∗∗∗ -1,04∗∗∗ (dropped) -0,97∗∗∗ -1,73∗∗∗

(0,021) (0,052) (0,021)# (0,403)
SIM -0,03∗∗∗ -0,17∗∗∗ -0,18∗∗∗ -0,18∗∗∗ -0,29∗∗∗

(0,011) (0,052) (0,062) (0,048)# (0,039)
RLF 0,01 0,03∗∗∗ 0,03∗∗∗ 0,03 0,03∗∗∗

(0,011) (0,008) (0,008) (0,044)# (0,007)
EMU 0,45∗∗∗ 0,36∗∗∗ 0,31∗∗∗ 0,31∗∗∗ 0,34∗∗∗

(0,029) (0,019) (0,021) (0,054)# (0,019)
EAST -0,80∗∗∗ -0,38∗∗∗ (dropped) -1,03∗∗∗ -0,26∗∗

(0,039) (0,075) (0,043)# (0,110)
BORDER 0,28∗∗∗ 0,26∗ (dropped) 0,07∗∗∗ -0,38

(0,050) (0,150) (0,008)# (0,438)
CEEC 0,47∗∗∗ -0,20∗∗ (dropped) 0,93∗∗∗ -0,22∗

(0,055) (0,086) (0,063)# (0,131)

No. of obs. 4784 4784 4784 4784 4784
No. of Groups 368 368 368 368
Time effects yes yes yes yes
Wald test (P-val.) (0.00) (0.00) (0.00) (0.00)
P-value of BP LM
(POLS/REM)

0.00

P-value of F-Test
(POLS/FEM)

0.00

Hausman m-stat. 147.2
(REM/FEM) (0.00)
DWH endogeneity test 25.14
(P-value) (0.00)
Sargan overid. test 6.25
(P-value) (0.05)
C-Statistic for Distij 14.12
(P-value) (0.00)
Pagan-Hall IV het.test 35.9
(P-value) (0.10)

Note: ***, **, * = denote significance levels at the 1%, 5% and 10% level respectively. Standard errors are
robust to heteroskedasticity, # = corrected SEs for the FEVD estimator based on the xtfevd Stata routine
provided by Plümper & Tröger (2007). $ = Using the C-Statistic based downward testing algorithm with group
means of X1 = [GDPj,t, POPi,t, RLFij,t] as IVs for Z2 = [DISTij ].
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A Monte Carlo Simulation Design

Starting point for the Monte Carlo simulation experiment is eq.(4). The time-varying

regressors x11 , x12 , x21 , x22 are generated by the following autoregressive process:

xnm,i,t=1 = 0 with n,m = 1, 2 (8)

x11,i,t = ρ1x1i,t−1 + δi + ξi,t for t = 2, . . . , T (9)

x12,i,t = ρ2x2i,t−1 + ψi + ωi,t for t = 2, . . . , T (10)

x21,i,t = ρ3x3i,t−1 + μi + τi,t for t = 2, . . . , T (11)

x22,i,t = ρ4x4i,t−1 + μi + λi,t for t = 2, . . . , T (12)

For the time-fixed regressors z11 , z12 , z21 we analogously define:

z11,i = 1 (13)

z12,i = g1ψi + g2δi + κi (14)

z21,i = μi + δi + ψi + εi (15)

The variable z11,i simplifies to a constant term, z21,i is the endogenous time-fixed re-

gressor since it contains μi as r.h.s. variable, the weights g1 and g1 in the specification of

z12,i control for the degree of correlation with the time-varying variables x11,i,t and x12,i,t.
12

The remainder innovations in the data generating process are defined as follows:

νi,t ∼ N(0, σ2
ν) (16)

μi ∼ N(0, σ2
μ) (17)

δi ∼ U(−2, 2) (18)

ξi,t ∼ U(−2, 2) (19)

ψi ∼ U(−2, 2) (20)

ωi,t ∼ U(−2, 2) (21)

τi,t ∼ U(−2, 2) (22)

λi,t ∼ U(−2, 2) (23)

εi ∼ U(−2, 2) (24)

κi ∼ U(−2, 2) (25)

12We vary g1 and g2 on the interval [-2,2]. The default is g1 = g2 = 2.
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Except μi and νi,t, which are drawn from a normal distribution with zero mean and

variance σ2
μ and σ2

ν respectively, all innovations are uniform on [-2,2]. For μi, δi, ψi, εi, κi

the first observation is fixed over T . With respect to the main parameter settings in the

Monte Carlo simulation experiment we set:

• β11 = β12 = β21 = β22 = 1

• γ12 = γ21 = 1

• ρ1 = ρ2 = ρ3 = ρ4 = 0.7

All variable coefficients are normalized to one, the specification of ρ < 1 assures that

the time-varying variables are stationary. We also normalize σν equal to one and define

a load factor ξ determining the ratio of the variance terms of the error components as

ξ = σμ/σν . ξ takes values of 2;1 and 0.5. We run simulations with different combinations in

the time and cross-section dimension of the panel as N = (100, 500, 1000) and T = (5, 10).

All Monte Carlo simulations are conducted with 500 replications for each permutation in y

and u. As in Arellano & Bond (1991) we set T = T +10 and cut off first 10 cross-sections,

which gives a total sample size of NT observations.

We apply the FEVD and Hausman-Taylor estimators.13 As outlined above, one draw-

back in earlier Monte Carlo based comparisons between the HT model and rival non-IV

candidates was the strong assumption made for IV selection in the HT case, namely

that true correlation between r.h.s. variables and the error term is known. However, this

may not reflect the identification and estimation problem in applied econometric work

and Alfaro (2006) identifies it as one of the open questions for future investigation in

Monte Carlo simulations. We therefore account for the HT variable classification problem

by implementing algorithms from ’model selection criteria’-literature, which combine in-

formation from Hansen-Sargan overidentification test for moment condition selection as

outlined above and time-series information-criteria. Following Andrews (1999) we define

a general model selection criteria (MSC) based on IV estimation as

MSCn(m) = J(m)− h(c)kn (26)

where n is the sample size, c as number of moment conditions selected by model m

based on the Hansen-Sargan J-Statistic J(m), h(.) is a general function, kn is a constant

13For the FEVD estimator we employ the Stata routine xtfevd written by Plümper & Tröger (2007), the HT model is
implemented using the user written Stata routine ivreg2 by Baum et al. (2003).
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term. As eq.(37) shows, the model selection criteria centers around the J-Statistic.14.

The second part in eq.(37) defines a ’bonus’ term rewarding models with more moment

conditions, where the form of function h(.) and the constants (kn :≥ 1) are specified by the

researcher. For empirical application Andrews (1999) proposes three operationalizations

in analogy to model selection criteria from time series analysis:

• MSC-BIC: J(m)− (k − g)ln n

• MSC-AIC: J(m)− 2(k − g)

• MSC-HQIC: J(m)−Q(k − g)ln ln n with Q = 2.01

where (k − g) is the number of overidentifying restrictions, and depending on the

form of the ’bonus’ term, the MSC may take the BIC (Bayesian), AIC (Akaike) and

HQIC (Hannan Quinn) form. We apply all three information criteria in the Monte Carlo

simulations motivated by the results in Andrews & Lu (2001) and Hong et al. (2003) that

the superiority of one of the criteria over the others in terms of finding consistent moment

conditions may vary with the sample size.15 For each of these MSC criteria we specify the

following algorithms:

1. Unrestricted form: For all possible IV combinations out of the full IV-set S=(QX1,

QX2, PX1, PX2, Z1, Z2), where Q denote deviations from group means and P are

group means. The IV set satisfies the order condition k1 > g2 (giving a total number

of 42 combinations). We calculate the value of the MSC criterion (for the BIC, AIC

and HQIC separately) and choose that model as final HT specification, which has

minimum MSC value over all candidates.

2. Restricted form: This algorithm follows the basic logic from above, but additionally

puts the further restriction that only those models serves as MSC candidates for

which the p-value of the J-Statistic is a above a critical value Ccrit., which we set

to Ccrit. = 0.05 to be sure that the selected moment conditions are true in terms of

statistical pre-testing. The restricted version thus follows the advice of Andrews

(1999) to ensure that the parameter space incorporates only information, which

assumes that certain moment conditions are correct.

We present flow charts of the restricted and unrestricted MSC based search algorithm

in figure A. 1. As Andrews (1999) argues, the above specified model selection criteria is

14A detailed description of different moment selection criteria is given in a longer working paper version of this paper,
see Mitze, 2009

15Generally, the MSC-BIC criterion is found to have the best empirical performance in large samples, while the MSC-AIC
outranks the other criteria in small sample settings, but performs poor otherwise.
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closely related to the C-Statistic approach by Eichenbaum et al. (1988) to test whether a

given subset of moment conditions is correct or not.16

Thus alternatively to the above described algorithms, we specify a downward testing

approach based on the C-Statistic: Here we start from the HT model with with full IV set

in terms of the REM moment conditions as S1 = (QX1, QX2, PX1, PX2, Z1, Z2). We

calculate the value of the J-Statistic for the model with IV-set S1 and compare its p-value

with a predefined critical value Ccrit., which we set in line with the above algorithm as

Ccrit. = 0.05. If PS1 > Ccrit. we take this model as a valid representation in terms of

the underlying moment conditions. If not, we calculate the value of the C-Statistic for

each single instrument in S1 and exclude that instrument from the IV-set that has the

maximum value of the C-statistic.

We then re-estimate the model based on the IV-subset S2 net of the selected instrument

with the highest C-Statistic and again calculate the J-Statistic and its respective p-value.

If PS2 > Ccrit. is true, we take the HT-model with S2 as final specification and otherwise

again calculate the C-Statistic for each instrument to exclude that one with the highest

value. We run this downward testing algorithm for moment conditions until we find a

model that satisfies PS. > Ccrit. or at the most until we reach the IV-sets Sn to Sm,

where the number of overidentifying restrictions (k − g) = 1, since the J-Statistic is not

defined for just identified models. Out of Sn to Sm we then pick the model with the

lowest J-Statistic value. The C-Statistic based model selection algorithms is graphically

summarized in figure A.2.

16The C-Statistic can be derived as the difference of two Hansen-Sargan overidentification tests with C = J − J1 ∼
χ2(M −M1), where M1 is the number of instruments in S1 and M is the total number of IVs
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Figure A.1: MSC based model selection algorithm for HT-approach
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Table A.1: Data description and source for Export model

Variable Description Source

EXijt Export volume, nominal values, in Mio. Statistisches Bundesamt
(German statistical office)

GDPit Gross Domestic Product, nominal values, in Mio. VGR der Länder (Statistical
office of the German states)

GDPjt Gross Domestic Product, nominal values, in Mio. EUROSTAT

POPit Population, in 1000 VGR der Länder (Statistical
office of the German states)

POPjt Population, in 1000 Groningen Growth &
Development center (GGDC)

SIMijt SIM = log

(
1−

(
GDPit

GDPit+GDPjt

)2

−
(

GDPjt

GDPit+GDPjt

)2
)

see above

RLFijt RLF = log
∣∣∣(GDPit

POPit

)
−

(
GDPjt

POPjt

)∣∣∣ see above

EMPit Employment, in 1000 VGR der Länder (Statistical
office of the German states)

EMPjt Employment, in 1000 AMECO database of the
European Commission

PRODit Prodit =
(

GDPit

EMPit

)
see above

PRODjt Prodjt =
(

GDPjt

EMPjt

)
see above

DISTij Distance between state capital for Germany and natio-
nal capital for the EU27 countries, in km

Calculation based on
coordinates, obtained from
www.koordinaten.de

EMU (0,1)-Dummy variable for EMU members since 1999

EAST (0,1)-Dummy variable for the East German states

CEEC (0,1)-Dummy variable for the Central and Eastern Eu-
ropean countries

BORDER (0,1)-Dummy variable for country pairs with a common
border
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