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Abstract

This paper deals with the existence of marginal pricing equilibria
when it is defined by using a new and tighter normal cone introduced
by B. Cornet and M.O. Czarnecki. The main interest of this new defi-
nition of the marginal pricing rule comes from the fact that it is more
precise in the sense that the set of prices satisfying the condition is
smaller than the one given by the Clarke’s normal cone. The counter-
part is that it is not convex valued, which leads to some mathematical
difficulties in the existence proof. The result is obtained through an
approximation argument under the same assumptions as in the previ-
ous existence results.

Keywords: General economic equilibrium , increasing returns, mar-
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1 Introduction

Guesnerie (1975) is the first who studied the second welfare theorem in a
general equilibrium setting with non-convex production sets at the level of
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generality of Debreu (1959). To modelize the marginal cost pricing rule,
he considered the normal cone of Dubovickii and Miljutin, that is, the firm
follows the marginal cost pricing rule at a production y for a price vector p if
p belongs to the normal cone of Dubovickii and Miljutin of the production set
at y. This definition allows to cover several cases: when the production set
is convex, then we recover the standard profit maximizing behavior, when
the production set is smooth, the unique normalized price satisfying the
marginal cost pricing rule is the unique normalized outward normal vector,
and, when the production set is defined by a finite set of smooth inequality
constraints satisfying a qualification condition, the normal cone is generated
by the gradient vectors of the binding constraints.

Later, Cornet (1990) (but the first version was written in 1982) proposes
to use the Clarke’s normal cone (see Clarke (1983)) to represent the marginal
pricing rule for the existence problem. Indeed, this cone exhibits three fun-
damental properties: when the production set is closed and satisfies the
free-disposal assumption, the Clarke’s normal cone is convex, has a closed
graph, and is not reduced to {0} for a weakly efficient production. These
properties were used in Bonnisseau-Cornet (1990) to prove the existence of
marginal pricing equilibria with several producers.

Then, Khan (1999) (but the first version was written in the eighties)
considers the limiting normal cone to extend the second welfare theorem.
This cone is not necessarily convex and may be strictly smaller than the
Clarke’s normal cone. After him, several extensions were made in infinite
dimensional spaces. Nevertheless the example of Beato and Mas-Colell (1983)
shows that an equilibrium may not exists with the proximal normal cone or
with the cone of Dubovickii and Miljutin, although an equilibrium exists with
the Clarke’s nomal cone.

The major drawback of the Clarke’s normal cone is that it is too large
in the sense that it is defined as the convex hull of the limiting normal
cone. So, some vectors belong to the Clarke’s normal cone since they are a
convex combination of normal vectors but they do not satisfy a “normality”
condition. Note also that Jouini (1988) exhibits a production set where
the Clarke’s normal cone is the positive orthant for every weakly efficient
production. So, in that case, the marginal pricing rule puts no restriction on
the firm’s behavior.

In Bonnisseau et al (2005), a tighter definition of the marginal pricing rule
is derived from a new notion of normal cone, called intermediate normal cone,
between the limiting and the Clarke’s normal cones introduced in Cornet-
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Czarnecki (2001). An example given in this paper, shows that it may be
strictly smaller when the production set exhibits some kind of inward kinks.
As for the previous definitions of the marginal pricing rules, the new definition
coincides with the profit maximizing rule when the production set is convex
and with the outward normal vector when the production set is smooth.

The problem raised by this new definition is that it does not lead to a
convex valued pricing rule. In the previous proofs of the existence of equilib-
ria in non-convex economies, the convexity of the set of prices satisfying the
marginal pricing rule at a given production is crucial to apply a fixed-point
theorem. Furthermore, the link between the marginal pricing rule and the
geometry of the production set through the sub-differential of a transforma-
tion function is at the heart of the argument. We loose both with the new
approach.

The purpose of this article is to provide an existence proof of a marginal
pricing equilibrium with this tighter notion under the same assumptions as
in the previous results with the Clarke’s normal cone (see Bonnisseau (1992),
Bonnisseau-Cornet (1990a,1991), Bonnisseau-Jamin (2004)). We overcome
the difficulties mentioned above by considering an approximation argument
and a limit argument. It is based on a result by Cornet and Czarnecki (2001)
about approximation of compact epi-lipschitzian sets. But we also adapt the
usual argument, which is based on a Morse’s Lemma for non-differentiable
mapping (Bonnisseau-Cornet (1990b)).

2 The model and the existence result

We consider an economy with ` commodities, m consumers and n producers.
The commodity space is R` and the commodities are indexed by h = 1, . . . , `.
The consumers are indexed by i = 1, . . . ,m. The consumption set Xi ⊂ R`

is the subset of all possible consumptions for consumer i, given her physical
constraints. The tastes of this consumer are described by a binary preference
relation �i on Xi. The firms are indexed by j = 1, . . . , n. The technological
possibilities of firms j are represented by its production set Yj ⊂ R`. Finally,
ω denotes the initial endowments of the economy.

The wealth of the ith consumer is given by a function ri : R` \ {0} ×∏n
j=1 ∂Yj to R, i.e., given the price vector p ∈ R` \ {0} and the produc-

tions (yj) ∈
∏n

j=1 ∂Yj, the wealth of consumer i is ri(p, (yj)). This abstract
wealth structure clearly encompasses the case of a private ownership econ-
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omy, in which ri(p, (yj)) =
∑n

j=1 θijp · yj + p · ωi, where the θij denote the
consumers’ shares in the production processes and satisfy θij ≥ 0 for all i, j
and

∑m
i=1 θij = 1 for all j, and where the ωi denote the consumers’ initial

individual endowments and satisfy
∑m

i=1 ωi = ω.
We posit the following assumptions on the fundamentals of the economy,

which are maintained throughout the paper. 1 denotes the vector of R`, with
all coordinates equal to 1 and X =

∑m
i=1Xi + R`

+ − {ω}.

Assumption (C) For every i, Xi is a non-empty, closed, convex bounded
below subset of R`, �i is a continuous, convex and non-satiated complete
preorder1 on Xi, and ri is a continuous function on R` \ {0} ×

∏n
j=1 ∂Yj,

satisfying ri(αp, (yj)) = αri(p, (yj)) and
∑m

i=1 ri(p, (yj)) = p · (ω +
∑n

j=1 yj)

for every α > 0 and every (p, (yj)) ∈ R` \ {0} ×
∏n

j=1 ∂Yj.

Assumption (P) For every j, Yj is a nonempty, closed subset of R`, dif-
ferent from R` and Yj − R`

+ = Yj.

Assumption (B) For every t ≥ 0, At = {(yj) ∈
∏n

j=1 ∂Yj |
∑n

j=1 yj + t1 ∈
X} is bounded.

The first assumption is the standard assumption on the preferences and
the revenue functions. In Assumption (P), the production sets are not as-
sumed to be convex but only to satisfy the free-disposal assumption, which
is compatible with fixed cost, increasing returns and other types of non-
convexities. Assumption B means that the feasible productions are bounded
even if one increases the initial endowments.

We now introduce the definition of the marginal pricing rule, which differs
from the standard one. Indeed, instead of considering the Clarke’s normal
cone to the production set as in Cornet (1990) or Bonnisseau-Cornet (1990),
we consider the intermediate normal cone introduced by Cornet-Czarnecki
(2001). It is always contained in the Clarke’s normal cone but it is not
always convex valued. We refer to Bonnisseau et al. (2005) for an example
of a production set satisfying Assumption P and such that the intermediate
normal cone is non-convex. and strictly smaller than the Clarke’s normal
cone at the origin.

1�i is a complete, reflexive, transitive binary relation, and, for every xi ∈ Xi, the
subsets {x ∈ Xi | x �i xi} and {x ∈ Xi | xi �i x} are closed, the subset {x ∈ Xi | xi �i x}
is convex, and, there exists x ∈ Xi such that xi ≺i x.
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To introduce the new notion of normal cone, we consider the distance
function dYj to Yj associated to the usual Euclidean norm in R` and its gener-
alized gradient. We know that dYj is Lipschitz and, thus, from Rademacher’s
Theorem, almost everywhere differentiable. We denote by dom(∇dYj) the
domain on which dYj is differentiable. The Clarke’s generalized gradient
∂dYj(yj) of dYj at yj is defined as:

∂dYj(yj) = co lim sup
y′j∈dom(∇dYj ),y′j→yj

∇dYj(y′j)

For yj ∈ Yj, the intermediate normal cone is defined as follows:

N I
Yj

(yj) = ∪t≥0t lim sup
y′j /∈Yj ,y′j→yj

∂dYj(y
′
j)

We recall the following elementary properties of the intermediate normal
cone. The proof can be found in Cornet-Czarnecki (2001).

Proposition 2.1 Under Assumption P, for every yj ∈ Yj,

a) N I
Yj

(yj) ⊂ R`
+ and {0} 6= N I

Yj
(yj) if yj ∈ ∂Yj;

b) If Yj is convex, N I
Yj

(yj) = {p ∈ R` | p · yj ≥ p · y′j,∀y′j ∈ Yj}.

We can now define the marginal pricing rule.

Definition 2.1 A producer follows the marginal pricing rule at the produc-
tion yj ∈ ∂Yj for the price p ∈ R` \ {0} if p ∈ N I

Yj
(yj).

In the following, the price are normalized in the simplex S of R`,

S = {p ∈ R`
+ |
∑̀
h=1

ph = 1}

Indeed, the free-disposal assumption implies that the equilibrium prices are
nonnegative and the other assumptions implies that the equilibrium prices
can be normalized in the simplex without any loss of generality. We will
consider the marginal pricing rule as a correspondence MPj from ∂Yj to S
defined by MPj(yj) = N I

Yj
(yj) ∩ S.

We now define formally a marginal pricing equilibrium of the economy.
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Definition 2.2 An element ((x∗i ), (y
∗
j ), p

∗) in (R`)m×(R`)n×S is a marginal
pricing equilibrium of the economy E = ((Xi,�i, ri)mi=1, (Yj)

n
j=1, ω) if:

(a) for every i, x∗i is a greater element for �i in Bi(p
∗, (y∗j )) = {xi ∈ Xi |

p∗ · xi ≤ ri(p
∗, (y∗j ))};

(b) for every j, y∗j ∈ ∂Yj and p∗ ∈MPj(y
∗
j );

(c)
∑m

i=1 x
∗
i =

∑n
j=1 y

∗
j + ω.

If we consider only the production sector, we define the set of production
equilibria as

PE = {(p, (yj)) ∈ S ×
n∏
j=1

∂Yj | p ∈MPj(yj)∀j = 1, . . . , n}

We are now able to state the existence result. In the following, d∞X denotes
the distance function to the set X associated to the sup-norm.

Theorem 2.1 An economy E satisfying Assumptions (C), (P) and (B) has
a marginal pricing equilibrium if
Assumption (S) for every (p, (yj)) ∈ PE,

p ·
n∑
j=1

yj > inf p ·X − d∞X (
n∑
j=1

yj)

Assumption (R) for every (p, (yj)) ∈ PE, if (yj) ∈ A0, then ri(p, (yj)) >
inf p ·Xi, for all i = 1, . . . ,m.

The assumptions are actually identical to those of Bonnisseau-Cornet
(1990) but the marginal pricing rule has not the same definition. Since the
intermediate normal cone is smaller than the Clarke’s one, this result is more
precise. Note that an important difference comes from the fact that the
marginal pricing rule is not convex valued whereas all previous existence
results assume that the pricing rules are convex valued.

Note also that our formulation of the survival assumption is not the same.
But it is equivalent since the fact that X + R`

+ = X, implies that for all
x ∈ R`, x + d∞X (x)1 ∈ ∂X and x + d∞X (x)1 is one of the closest point to
x in X. From this remark, since p ∈ S, for all (p, (yj)) ∈ PE, one has
p ·
∑n

j=1 yj ≥ inf p ·X − d∞X (
∑n

j=1 yj). So, Assumption (S) requires that the
inequality is always strict.
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3 Proof of the existence result

The proof is divided in three steps: first, we truncate the production sets and
we approximate the truncated production sets by using the following result
of Cornet-Czarnecki (2001). NC

Y denotes the Clarke’s normal cone.

Theorem 3.1 Let Z be a compact epi-Lipschitizian subset of R`. Z admits
a smooth normal approximation (Zk)k∈N in the sense that:

(i) for every k, Zk is a compact and smooth subset of R`, that is a closed
C∞ submanifold with boundary of R` of full dimension;

(ii) for every k, Zk+1 ⊂ Zk ⊂ {z ∈ R` | dZ(z) < 1} and Z = ∩k∈NZk;

(iii) lim supk→∞G(NC
Zk

) ⊂ G(N I
Z).

Then, using the normal cone to the smooth approximations, we define
continuous functions, which approximates the marginal pricing rules. We
also use a Morse’s Lemma to modify these functions in such a way that the
bounded losses assumption be satisfied by the approximate pricing rule. In
the third step, we use an existence result (Bonnisseau-Jamin (2004)) to get
an approximate equilibrium, and, we end the proof by a limit argument. The
proof of the lemmas are given in Appendix.

3.1 Approximation of the production sets

We first recall some properties of the production sets, which come from
the free disposal assumption. The following Lemma gathers the results
of Lemma 5.1 in Bonnisseau-Cornet (1988) and Lemma 4.2 in Bonnisseau-
Cornet (1990), with a slight generalization from Bonnisseau-Jamin (2004).
Let H be the hyperplane defined by H = {x ∈ R` | x · 1 = 1} and let C be
a pointed closed convex cone such that 1 ∈ intC. We first state a variant of
Assumption (P) in which R`

+ is replaced by C.

Assumption (PC) For every j, Yj is a nonempty closed subset of R` different
from R` and Yj − C = Yj.

Lemma 3.1 Let us assume that Assumption (PC) holds true. Then, for
every j, for every s ∈ 1⊥, there is a unique real number, denoted by λj(s),
such that s−λj(s)1 ∈ ∂Yj. The function λj : 1⊥ → R is Lipschitz continuous,
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and the mapping Λj : s ∈ 1⊥ 7→ s−λj(s)1 ∈ ∂Yj is an homeomorphism. The
inverse of Λj is the restriction of the orthogonal projection on 1⊥ to ∂Yj.

Yj =
{
yj ∈ R` λj(proj1⊥(yj)) + (yj · 1/`) ≤ 0

}
.

The generalized gradient of λj at s ∈ 1⊥ is given by:

∂λj(sj) =
(
NYj(Λj(sj)) ∩H

)
− {(1/`)1},

and the correspondence ∂λj, from 1⊥ into itself, is upper hemi-continuous
with non-empty, convex, compact values.

Note that Y0 = −X satisfies also Assumption (PC) from Assumptions
(C). We denote by λ0 et Λ0 the mappings associated to Y0. We also define
the mapping Λ from (1⊥)n to

∏n
j=1 ∂Yj by Λ(s) = (Λj(sj)).

Let θ be the function defined on (1⊥)n by:

θ(s) =
∑n

j=1 λj(sj) + λ0(−
∑n

j=1 sj) .

SinceX satisfiesX+R`
+ = X, we remark that θ((proj1⊥(yj))) = d∞X (

∑n
j=1 yj)

if
∑n

j=1 yj /∈ X. Indeed,
∑n

j=1 yj + θ(sj)1 =
∑n

j=1 sj + λ0(−
∑n

j=1 sj)1 =
−y0 ∈ ∂X, where sj = proj1⊥(yj). Consequently, the open ball for the sup-

norm of center
∑n

j=1 yj and radius θ((sj)) is included in −y − R`
++, which

does not intersect X.
Note that θ is Lipschitz continuous, and, for every real number t ≥ 0, we

have:
Mt = Λ−1(At) =

{
s ∈

(
1⊥
)n

θ(s) ≤ t
}
,

and
At =

{
(yj) ∈

∏n
j=1 ∂Yj θ[(proj1⊥(yj))] ≤ t

}
.

Note that for all t ≥ 0, At and Mt are bounded and closed and the
correspondence t → Mt is uuper semi-continuous.. Let r1 > 0 such that
M0 ⊂ [B1⊥(0, r1)]n. Let t̄ > sup{θ(s) | s ∈ [B̄1⊥(0, r1)]n}. Note that

[B̄1⊥(0, r1)]n ⊂ intMt̄. Let r2 > r1 such that Mt̄ ⊂ [B1⊥(0, r2)]n. Finally, let

r′2 > r2 and τ > 0 such that for all s ∈ [B̄1⊥(0, r′2)]n, for all j = 1, . . . , n,
Λj(sj)� −τ1.

For all j, let

Zj = [Λj(B̄1⊥(0, r′2))− R`
+] ∩ [{−τ̄1}+ R`

+]
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Lemma 3.2 For all j, Zj is a nonempty compact epilipschitzian subset of
R`. For all sj ∈ B̄1⊥(0, r2), Λj(sj) ∈ ∂Zj and N I

Zj
(Λj(sj)) = N I

Yj
(Λj(sj)).

We now apply Theorem 3.1 to Zj. There exists a sequence (Zk
j )k∈N sat-

isfying:

(i) for every k, Zk
j is a compact and smooth subset of R`, that is a closed

C∞ submanifold with boundary of R` of full dimension;

(ii) for every k, Zk+1
j ⊂ Zk

j ⊂ {y ∈ R` | dZj(y) < 1} and Zj = ∩k∈NZ
k
j ;

(iii) lim supk→∞G(NC
Zkj

) ⊂ G(N I
Zj

).

Let εkj = sup{d∞Zj(zj) | zj ∈ Z
k
j }. We remark that Lemma 3.2 (ii) implies

that the sequence (εkj ) converges to 0 and Zk
j is included in Yj + {εkj1}. We

denote by εk =
∑n

j=1 ε
k
j .

Let τ > τ close enough to τ and η > 0 small enough such that for all
s ∈ [B̄1⊥(0, r2)]n, for all j = 1, . . . , n,

Λj(sj)� −τ1 (1)

and
Mt̄+η ⊂ [B1⊥(0, r2)]n (2)

We now choose a nonempty closed convex cone C included in {0} ∪R`
++

such that 1 ∈ intC. Let XC =
∑m

i=1 Xi + C − ω. Note that −XC satisfies
the Assumptions of Lemma 3.1, so we can define the mappings λC0 and ΛC

0

associated to −XC . Note that λC0 ≥ λ0. We let:

θC(s) =
n∑
j=1

λj(sj) + λC0 (−
n∑
j=1

sj)

For further approximations, we choose C large enough according to the next
lemma where τ and η are defined in .(1) and (2)

Lemma 3.3 There exists a nonempty closed convex cone C included in {0}∪
R`

++ such that 1 ∈ intC and, for all s ∈ B̄1⊥(0, nr2), λC0 (s)− λ0(s) < η.

Note that the negative polar cone of C, C◦, satisfies −R`
+ \ {0} ⊂ intC◦.

We let Y k
j = Zk

j − C.
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Lemma 3.4 There exists an integer k such that for all k ≥ k,

(i) for all zj ∈ ∂Zk
j ∩ ({−τ1}+ R`

+), NC
Zkj

(zj) \ {0} ⊂ −intC◦;

(ii) Assumptions (PC) and (B) are satisfied by (Y k
j );

(iii) For all j, Y k
j ⊂ Yj + {εkj1} and Y k

j ∩ [{−τ1}+ R`
++] = Zk

j .

Using Lemma 3.1, for all k ≥ k, we can define the mappings λkj , Λk
j

associated to Y k
j . Then, we define the mapping θk and the sets Mk

t as follows:

θk(s) =
∑n

j=1 λ
k
j (sj) + λC0 (−

∑n
j=1 sj) .

Mk
t =

{
s ∈

(
1⊥
)n

θk(s) ≤ t
}
,

The following lemma summarizes the link between this mappings and sets
and the original ones.

Lemma 3.5 There exists an integer k̃ ≥ k such that for all k ≥ k̃,

(i) for all j, for all s ∈ 1⊥, λj(s) − εkj ≤ λkj (s) and for all s ∈ B̄1⊥(0, r2),

λkj (s) ≤ λj(s);

(ii) Mk
0 ⊂Mεk ⊂ (B1⊥(0, r1))n;

(iii) sup{θk(s) | s ∈ (B̄1⊥(0, r1))n} < t̄+ η;

(iv) Mk
t̄+η ⊂Mt̄+η+εk ⊂ (B1⊥(0, r2))n;

3.2 Approximation of the marginal pricing rules

For all j, for all sj ∈ B̄1⊥(0, r2), for all k ≥ k̃, Lemma 3.4 (iii) implies

that Λk
j (sj) � −τ1 and Λk

j (sj) ∈ ∂Zk
j . From Lemma 3.4 (i) and (iii),

NC
Y kj

(Λk
j (sj)) = NC

Zkj
(Λk

j (sj)), and, this normal cone is an half line included

in −C◦, since Zk
j is smooth. We denote by gkj (sj) the unique element of

NC
Y kj

(Λk
j (sj)) in the hyperplane H. Note that gkj is a continuous mapping

since Zk
j is a C∞ sub-manifold.

Lemma 3.6 There exists an integer k̂ ≥ k̃ such that for all k ≥ k̂, for all
(p, s) ∈ H × (B̄1⊥(0, r2))n,
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(i) if θC(s) ≥ 0 and p ∈ −NXC (−ΛC
0 (−

∑n
j=1 sj)), then (p − gkj (sj)) 6=

(0, . . . , 0);

(ii) if θC(s) ≤ 0 and p = gkj (sj) for all j, then ri(p, (Λj(sj))) > inf p ·Xi for
all i.

From Clarke (1983) (Propositions 2.3.3 and 2.3.10) and Lemma 3.1, for
every s = (B̄1⊥(0, r2))n, ∂θk(s) ⊂ ∆k(s) where

∆k(s) =

{
(gk1(sj)− p, . . . , gkn(sn)− p) | p ∈ −NXC (−ΛC

0 (−
n∑
j=1

sj)) ∩H

}
,

and, from Clarke’s normal cone properties, ∆ is an upper hemi-continuous
correspondence from (1⊥)n into itself with non-empty, convex, compact val-
ues.

The previous lemma implies the fundamental property of ∂θk.

Lemma 3.7 For all k ≥ k̂, for all s ∈ (B̄1⊥(0, r2))n, if θk(s) ≥ 0, then

0 /∈ ∆k(s).

We can now use the following lemma proved in Bonnisseau-Jamin (2004)
and a similar argument as the one use in this paper to build the approximate
pricing rule. This lemma is actually a corollary of the Morse’s Lemma proved
in Bonnisseau-Cornet (1990b). TM denotes the ordinary tangent cone of the
convex analysis to M.

Lemma 3.8 Let E be a finite-dimensional Euclidean space, let a, b ∈ R such
that a < b, let θ : E → R be a locally Lipschitz continuous function, and let
∆ be a correspondence from E into itself. Suppose that:

(i) the set Mab := {s ∈ E | a ≤ θ(s) ≤ b} is non-empty and compact;

(ii) ∆ is an upper hemi-continuous correspondence with non-empty, convex,
compact values, satisfying ∂θ(s) ⊂ ∆(s) for every s ∈ E;

(iii) 0 /∈ ∆(s) for every s ∈Mab.

If M is a closed, convex, compact subset of E such that Ma ⊂ intM ⊂ Mb,
then there exists a continuous (homotopy) mapping Γ : ∂M× [0, 1]→ E such
that, for every s ∈ ∂M,
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(I) inf{Γ(s, 0) · δ | δ ∈ ∆(s)} > 0;

(II) Γ(s, 1) ∈ −intTM(s);

(III) Γ(s, t) 6= 0 for every t ∈ [0, 1].

For all k ≥ k̂, Lemmas 3.5 and 3.7 show that the Assumption of Lemma
3.8 are satisfied by the mapping θk, a = 0, b = t̄+ η andM = (B̄1⊥(0, r1))n.

Thus, there exists a continuous mapping Γk :M× [0, 1]→ (1⊥)n satisfy-
ing conditions (I), (II), and (III) of Lemma 3.8 for every s ∈ ∂M.

Let r′1 > r1. We define the function σ, from (1⊥)n to [0, 1], by:

σ(s) =


0 if s ∈M

1
r′1−r1

maxj{‖sj‖ − r1} if s ∈ (B̄1⊥(0, r′1))n \M
1 if s 6∈ (B̄1⊥(0, r′1))n

,

Finally, for every (p, s) ∈ H × (1⊥)n,

γk(p, s) =


(gkj (sj)) if s ∈ intM

co
{

(gkj (sj)),
(
(p, . . . , p) + Γk(s, 0)

)}
if s ∈ ∂M{

(p, . . . , p) + Γk(projM(s), σ(s))
}

if s 6∈ M
,

where projM is the projection on M.
We now define the pricing rule ϕk from H ×

∏n
j=1 ∂Yj to Hn as follows:

For all (p, (yj)) ∈ H ×
∏n

j=1 ∂Yj, let ϕk(p, (yj)) = γk(p, (proj1⊥(yj))).

3.3 Existence of an approximate equilibrium

For all k ≥ k̂, we consider the economy Ek = ((Xi,�i, ri)mi=1, (Yj)
n
j=1, ϕ

k, ω)
and we show that it satisfies the necessary conditions for the existence of a
general pricing rule equilibrium given in the following theorem of Bonnisseau-
Jamin (2004). The difference between a marginal pricing equilibrium and
a general pricing rule equilibrium is that we replace in Condition (b) of
Definition 2.2, p∗ ∈MPj(y

∗
j ) by (p∗, . . . , p∗) ∈ ϕk(p∗, (y∗j )).

For the normalization of the prices, we consider the extended simplex
SC = H ∩ (−C◦). In the following for all t ≥ 0, we denote by ACt the set
{(yj) ∈

∏n
j=1 ∂Yj |

∑n
j=1 yj + t1 ∈ XC}

Theorem 3.2 The economy Ek has a general pricing rule equilibrium if it
satisfies Assumption (C), (PC), (B), and,
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Assumption (PR) For all (p, (yj)) ∈ SC ×
∏n

j=1 ∂Yj, ϕ
k has nonempty,

compact, convex values included in H, it is upper hemi-continuous, and,
ϕk(p, (yj)) ⊂ (SC)n for every (p, (yj)) ∈ SC × AC0 ,
Assumption (R’) for every (p, (yj)) ∈ SC ×

∏n
j=1 ∂Yj, if (yj) ∈ AC0 and

(p, . . . , p) ∈ ϕk(p, (yj)), then ri(p, (yj)) > inf p ·Xi.
Assumption (BLS) There exists a real number t0 ≥ 0 such that:

(BS) for every t ∈ [0, t0[ and every (p, (yj)) ∈ SC ×
∏n

j=1 ∂Yj, if (yj) ∈ ACt
and (p, . . . , p) ∈ ϕk(p, (yj)), then p · (

∑n
j=1 yj + t1) > inf p ·XC.

(BL) for every t ≥ t0, every (p, (yj)) ∈ SC ×
∏n

j=1 ∂Yj, and, every (qj) ∈
ϕk(p, (yj)), if p ∈ −NXC (

∑n
j=1 yj + t1), then there exists (ŷj) ∈ ACt0

such that
∑n

j=1(qj − p) · (yj − ŷj) > 0.

To simplify the exposition, we have chosen to state weaker assump-
tions than in Bonnisseau-Jamin (2004). Assumption (C) is stronger since
we assume that Xi is bounded below. Assumption (B) is stronger since
Bonnisseau-Jamin (2004), only assume that ACt0 is bounded for t0 appearing
in Assumption (BLS). Assumption (BLS) is also weaker than the original
one since Part (BL) needs to hold true only on a bounded subset.

We now show that the economy Ek satisfies the assumptions of Theorem
3.2 for all k ≥ k̂. Assumption (PR) is a consequence of the continuity of the
mappings gkj , Γk, σ and the construction of γk.

Assumption (R’) is a direct consequence of Lemma 3.6 (ii). Indeed
(yj) ∈ AC0 implies that θC((proj1⊥yj)) ≤ 0. Then, θ((proj1⊥yj)) ≤ 0 and

(proj1⊥yj) ∈ (B1⊥(0, r1))n. Consequently, ϕk(p, (yj)) = (gkj (proj1⊥yj)).

Let us now consider Assumption (BLS). Let t0 > max{θC(s) | s ∈
(B̄1⊥(0, r′1))n}. For Part (BS), let us consider t ∈ [0, t0[ and (p, (yj)) ∈
SC ×

∏n
j=1 ∂Yj such that (yj) ∈ ACt and (p, . . . , p) ∈ ϕk(p, (yj)). We remark

that the definition of ϕk implies that (p, . . . , p) ∈ ϕk(p, (yj)) is possible only
if s = (sj) = (proj1⊥yj) ∈M since Γk(s, t) 6= 0 for all (s, t) ∈ ∂M × [0, 1].

If s ∈ intM = (B1⊥(0, r1))n, then p = gkj (sj) for all j. If
∑n

j=1 yj +

t1 ∈ intXC , one directly gets that p · (
∑n

j=1 yj + t1) > inf p · XC . If∑n
j=1 yj + t1 ∈ ∂XC , then t = ΘC(s) and Lemma 3.6 (i) implies p /∈

−NXC (−ΛC
0 (−

∑n
j=1 sj)). Consequently, since −ΛC

0 (−
∑n

j=1 sj) =
∑n

j=1 yj +

t1, p · (
∑n

j=1 yj + t1) > inf p ·XC .



14

If s ∈ ∂M, from the definition of ϕk, there exists α ∈ [0, 1] such that
p = αgkj (sj) + (1−α)(p+ Γkj (s, 0)) for all j. If α = 1, the previous argument
holds true again, and, we can conclude that p · (

∑n
j=1 yj + t1) > inf p ·XC .

If α = 0, one gets a contradiction with Γk(s, 0) 6= 0. Let us now consider
the case where α ∈]0, 1[. Then, α(p − gkj (sj)) = (1 − α)Γkj (s, 0) for all
j. If p ∈ −NXC (−ΛC

0 (−
∑n

j=1 sj)), δ = −(p − gkj (sj)) ∈ ∆k(s), and, one

gets a contradiction with Assertion (I) of Lemma 3.8 since δ · Γkj (s, 0) =
−1−α

α

∑n
j=1 ‖Γkj (s, 0)‖2 < 0. Hence p /∈ −NXC (−ΛC

0 (−
∑n

j=1 sj)) and we end

the proof as above to show that p · (
∑n

j=1 yj + t1) > inf p ·XC .
We now consider Part (BL) of Assumption (BLS). Let t ≥ t0, (p, (yj)) ∈

SC ×
∏n

j=1 ∂Yj, and, (qj) ∈ ϕk(p, (yj)) such that p ∈ −NXC (
∑n

j=1 yj + t1).

Since p 6= 0,
∑n

j=1 yj + t1 ∈ ∂XC , which means that θC(s) = t with s =

(sj) = (proj1⊥yj). Since t ≥ t0, this implies that s /∈ (B̄1⊥(0, r′1))n. Hence

qj = p + Γkj (s
′, 1) for all j with s′ = projM(s). Consequently, (qj − p) =

Γk(s′, 1) ∈ −intTM(s′) from Assertion (II) of Lemma 3.8. For α > 0 close
enough to 0, ŝ = s′ − αΓk(s′, 1) ∈ intM. Let (ŷj) = Λ(ŝ). Since ŝ ∈ M,
θC(ŝ) ≤ t0, hence (ŷj) ∈ ACt0 . Since Γk(s′, 1) ∈ (1⊥)n, one obtains:∑n

j=1(qj − p) · (yj − ŷj) =
∑n

j=1 Γkj (s
′, 1) · (sj − ŝj)

=
∑n

j=1 Γkj (s
′, 1) · (sj − s′j + αΓkj (s

′, 1)

= Γk(s′, 1) · (s− s′) + α‖Γk( s′, 1)‖2

Since s′ = projM(s), s − s′ ∈ NM(x′). Since Γk(s′, 1) ∈ −intTM(s′),
one gets Γk(s′, 1) · (s − s′) ≥ 0. Hence, since α‖Γk(s′, 1)‖2 > 0, one finally
obtains

∑n
j=1(qj − p) · (yj − ŷj) > 0. This ends the proof that Ek satisfies the

assumptions of Theorem 3.2.
Then, one deduces that for all k ≥ k̂, there exists a general pricing rule

equilibrium ((xki ), (y
k
j ), pk) in

∏m
i=1 Xi ×

∏n
j=1 ∂Yj × SC such that

(a) for every i, xki is a greater element for �i in Bi(p
k, (ykj ));

(b) (pk, . . . , pk) ∈ ϕk(pk, (ykj ));

(c)
∑m

i=1 x
k
i =

∑n
j=1 y

k
j + ω.

From Condition (c), one deduces that (ykj ) remains in the compact set A0.
Hence, (

∑m
i=1 x

k
i ) is bounded, which implies that the sequence (xki ) is also

bounded since the sets Xi are bounded below. Consequently, the sequence
((xki ), (y

k
j ), pk) is bounded. We assume without any loss of generality that

this sequence converges to ((x∗i ), (y
∗
j ), p

∗) ∈
∏m

i=1Xi ×
∏n

j=1 ∂Yj × SC .
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Condition (c) implies that
∑m

i=1 x
∗
i =

∑n
j=1 y

∗
j + ω and for all k ≥ k̂,

(skj ) = (proj1⊥y
k
j ) ∈ M0 ⊂ [B1⊥(0, r1)]n = intM. From the definition of ϕk

and γk, ϕk((pk, (ykj )) = (gkj (Λk
j (s

k
j ))). From the definition of gkj , gkj (Λk

j (s
k
j )) ∈

NY kj
(Λk

j (s
k
j )). From Lemma 3.4 (iii), since Λk

j (s
k
j ) � −τ1, NY kj

(Λk
j (s

k
j )) =

NZkj
(Λk

j (s
k
j )). From Lemma 3.5, the sequence (Λk

j (s
k
j )) converges to s∗j −

λj(s
∗
j)1 = y∗j . From Assertion (iii) of Theorem 3.1 applied to Zj, p

∗ =
lim gkj (Λk

j (s
k
j )) ∈ N I

Zj
(y∗j ). From Lemma 3.2, N I

Zj
(y∗j ) = N I

Yj
(y∗j ), hence p∗ ∈

N I
Yj

(y∗j ) for all j.

From above, one deduces that ri(p
k, (ykj )) converges to ri(p

∗, (y∗j )) and
ri(p

∗, (y∗j )) > inf p∗ ·Xi from Assumption (R). Thus, one deduces that x∗i is
a greater element for �i in the budget set Bi(p

∗, (y∗j )) since xki is a greater
element for �i in the budget set Bi(p

k, (ykj )). This means that ((x∗i ), (y
∗
j ), p

∗)
is a marginal pricing equilibrium of the economy E .

Appendix

Proof of Lemma 3.2 The definition of Zj implies that it is a closed subset.
It is bounded since −τ̄1 is a lower bound and it is below Λj(B̄1⊥(0, r2)),

which is a compact subset. Let τ > τ such that for all s ∈ [B̄1⊥(0, r2)]n,
for all j = 1, . . . , n, Λj(sj) � −τ1. One easily checks that for all zj ∈ ∂Zj,
−τ1− zj belongs to the interior of the Clarke’s normal cone to Zj at zj. So
Zj is epi-lipschitzian.

For all sj ∈ B̄1⊥(0, r2), there exists ρ > 0 small enough, such that
proj1⊥(B(Λj(sj), ρ) ∩ Yj) ⊂ B1⊥(0, r′2) and B(Λj(sj), ρ) � −τ1. For all
yj ∈ B(Λj(sj), ρ)∩Yj, there exists α ≥ 0 such that yj = Λj(proj1⊥(yj))−α1,
and, yj � −τ1. Since Λj(proj1⊥(yj)) ∈ Zj, one concludes that yj ∈ Zj.
Hence B(Λj(sj), ρ) ∩ Yj ⊂ B(Λj(sj), ρ) ∩ Zj. The converse inclusion is ob-
vious since Zj ⊂ Yj. Consequently, B(Λj(sj), ρ) ∩ Yj = B(Λj(sj), ρ) ∩ Zj,
which implies that Λj(sj) ∈ ∂Zj and N I

Zj
(Λj(sj)) = N I

Yj
(Λj(sj)). �

Proof of Lemma 3.3 For ρ > 1, we define the cone Cρ as follows:

Cρ = {c ∈ R` | ρmin
h
{(proj1⊥c)h}+

c · 1
`
≥ 0}

One easily checks that Cρ is a closed convex cone included in {0}∪R`
++ and

1 ∈ intC. Now, it suffices to choose ρ > 1 close enough to 1 in order to get
the second property.
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Since the set
∑m

i=1Xi−ω is bounded below and −Λ0(B̄e⊥(0, nr2) is closed,
the set K = {u ∈ R`

+ | ∃x ∈
∑m

i=1Xi − ω, x + u ∈ −Λ0(B̄e⊥(0, nr2)} is
bounded. Hence, there exists ρ > 1 close enough to 1 such that for all
u ∈ K, u+ η1 ∈ intCρ.

For all s ∈ B̄1⊥(0, nr2), −s + λ0(s)1 = −Λ0(s) = x − ω + u with u ∈
K and x ∈

∑m
i=1Xi. Consequently, u + η1 ∈ intCρ, which implies that

−s+ (λ0(s) + η)1 ∈ intXC . Hence λC0 (s) < λ0(s) + η. �

Proof of Lemma 3.4 The existence of k is a consequence of the compacity
of Zj, the fact that N I

Zj
(zj) ⊂ R`

+ for all zj ∈ Zj∩({−τ1}+R`
+) and Property

(iii) of the approximation. Indeed, by considering the intersection with the
unit spere S(0, 1), we remark that R`

+ ∩ S(0, 1) ⊂ −intC◦.
Point (ii) is a direct consequence of the definition of Y k

j and the compact-
ness of Zk

j for all j. The first assertion of Point (iii) is a direct consequence
of the definition of Y k

j and of the fact that Zk
j ⊂ Yj + {εkj1}.

Now, let us consider an element yj ∈ Y k
j ∩ [{−τ1} + R`

++]. If yj /∈ Zk
j ,

there exists c ∈ C \ {0} and zj ∈ Zk
j such that yj = zj − c. Clearly, from

the choice of c, c ∈ R`
++. Consequently, since Zj is compact, there exists

ζj ∈ ∂Zk
j ∩ {yj + tc | t ≥ 0}. From Point (i), −c ∈ intTC

Zkj
(ζj). Hence, for

t > 0 small enough, ζj − tc ∈ Zk
j . From this remark and since yj /∈ Zk

j ,

t̃ = inf{t ∈ R+ | ζj − tc /∈ Zj} > 0 and ζj − t̃c ∈ ∂Zk
j . Since −τ1 � yj �

ζj − t̃c, −c ∈ intTZkj (ζj − t̃c). Consequently, for t > t̃, t close enough to t̃,

ζj − tc ∈ Zk
j . This contradicts the fact that t̃ = inf{t ∈ R+ | ζj − tc /∈ Zj}.

Hence yj ∈ Zk
j . �

Proof of Lemma 3.5 (i) λj(s) − εkj ≤ λkj (s) is a direct consequence of
Lemma 3.4 (iii). For all s ∈ B̄1⊥(0, r2), s − λj(s)1 ∈ Zj ⊂ Zk

j ⊂ Y k
j , which

implies the inequality λkj (s) ≤ λj(s).

We now choose k̃ ≥ k in such a way that Mεk ⊂ (B1⊥(0, r1))n and
Mt̄+η+εk ⊂ (B1⊥(0, r2))n. Such a choice is feasible since the set Mt are
compact, t → Mt is upper semi-continuous, r1 and r2 are well chosen and
(εk) converges to 0.

Now, let us prove assertion (ii). If Θk(s) ≤ 0, then the first inequality
above and the fact that λ0 ≤ λC0 imply that θ(s) ≤ εk hence Mk

0 ⊂Mεk . The
second inclusion comes from the choice of k̃.

For Assertion (iii), if s ∈ (B̄1⊥(0, r1))n, then Θk(s) =
∑n

j=1 λ
k
j (sj) +

λC0 (−
∑n

j=1 sj), and from the second inequality in (i) and Lemma 3.3, one
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gets Θk(s) ≤ Θ(s) + η < t̄+ η since −
∑n

j=1 sj ∈ B̄1⊥(0, nr1).
The proof of Assertion (iv) is the same as the one of Assertion (ii). �

Proof of Lemma 3.6 We prove that there exists k̂1 ≥ k̃ such that Assertion
(i) holds true for all k ≥ k̂1 and, then, that there exists k̂2 ≥ k̃ such that
Assertion (ii) holds true for all k ≥ k̂2. Hence, it suffices to take k̂ greater
than k̂1 and k̂2 to get the result.

Let us assume that k̂1 does not exist. Then, there exists a strictly increas-
ing mapping ψ from N to itself such that the sequence (pψ(k), sψ(k)) ∈ H ×
(B̄1⊥(0, r2))n such that θC(sψ(k)) ≥ 0 and pψ(k) ∈ −NXC (−ΛC

0 (−
∑n

j=1 s
ψ(k)
j ))

and pψ(k) = g
ψ(k)
j (s

ψ(k)
j ) for all j. Since the normal cone of XC is included

in C◦ and 1 ∈ intC, the sequence (pψ(k)) remains in a compact subset of
H. Consequently, without any loss of generality, we can assume that the se-
quence (pψ(k), sψ(k)) converges to (p̄, s̄) ∈ H× (B̄1⊥(0, r2))n. Let ȳj = Λj(s̄j).

Note that g
ψ(k)
j (s

ψ(k)
j ) ∈ NC

Y
ψ(k)
j

(Λ
ψ(k)
j (s

ψ(k)
j )), and s

ψ(k)
j ∈ B̄1⊥(0, r2).

Thus, Λ
ψ(k)
j (s

ψ(k)
j ) ≥ Λj(s

ψ(k)
j )� −τ1. From Lemma 3.4 (iii),

N
Y
ψ(k)
j

(Λ
ψ(k)
j (s

ψ(k)
j )) = N

Z
ψ(k)
j

(Λ
ψ(k)
j (s

ψ(k)
j ))

From Lemma 3.5, the sequence (Λ
ψ(k)
j (s

ψ(k)
j )) converges to s̄j − λj(s̄j)1 = ȳj.

From Theorem 3.1 (iii)applied to Zj, p̄ = lim g
ψ(k)
j (Λ

ψ(k)
j (s

ψ(k)
j )) ∈ N I

Zj
(ȳj).

From Lemma 3.2, N I
Zj

(ȳj) = N I
Yj

(ȳj), hence p̄ ∈ N I
Yj

(ȳj) for all j. From

Assumption (P), N I
Yj

(ȳj) ⊂ R`
+, hence p̄ ∈ S.

From the closedness of the correspondence −NXC , one also deduces that
p̄ ∈ −NXC (−ΛC

0 (−
∑n

j=1 s̄j)) and from the continuity of θC , θC(s̄) ≥ 0.
Consequently, there exists x ∈

∑m
i=1Xi and c ∈ C such that

∑n
j=1 ȳj +

θC(s̄)1 = x − ω + c. Furthermore, for all ξ ∈ XC , p̄ · (x − ω + c) ≤ p̄ · ξ. If
c 6= 0, c ∈ R`

++ and p̄ · c > 0. Consequently p̄ · (x−ω) < p̄ · (x−ω+ c), which
is impossible since x − ω ∈ XC . Hence,

∑n
j=1 ȳj + θC(s̄)1 = x − ω ∈ X.

This implies that θC(x̄) ≥ θ(s̄). Furthermore, for all ξ ∈ X, there exists
x′ ∈

∑m
i=1 Xi and u ∈ R`

+ such that ξ = x′ − ω + u. Since p̄ · u ≥ 0
and x′ − ω ∈ XC , one gets p̄ · (x − ω) ≤ p̄ · (x′ − ω + u) = p̄ · ξ. Hence
p̄ ·(
∑n

j=1 ȳj+θ
C(s̄)1) = inf p̄ ·X. This implies p̄ ·

∑n
j=1 ȳj = inf p̄ ·X−θC(s̄) ≤

inf p̄ ·X − θ(s̄), which contradicts Assumption (S) since θ(s̄) = d∞X (
∑n

j=1 yj).

We now come to the second part of the Lemma. If k̂2 does not exist, then,
there exists a strictly increasing mapping ψ from N to itself such that the
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sequence (pψ(k), sψ(k), iψ(k)) ∈ H×(B̄1⊥(0, r2))n×{1, . . . ,m} such that, for all

k, θC(sψ(k)) ≤ 0, pψ(k) = g
ψ(k)
j (s

ψ(k)
j ) for all j, and, riψ(k)(pψ(k), (Λj(s

ψ(k)
j ))) ≤

inf pψ(k) · Xiψ(k) . Using the same arguments as above, without any loss of
generality, we can also assume that the sequence (pψ(k), sψ(k)) converges to
(p̄, s̄) and that iψ(k) is constant equal to i. We also deduces that p̄ ∈ N I

Yj
(ȳj)

for all j with ȳj = Λj(s̄j), and θC(s̄) ≤ 0. Since XC ⊂ X, one has (ȳj) ∈ A0

and (p̄, (ȳj)) ∈ PE. Hence, from Assumption (R), ri(p̄, (ȳj)) > inf p̄ · Xi.
Consequently, there exists xi ∈ Xi such that ri(p̄, (ȳj)) > p̄·xi. The continuity

of ri implies that ri(p
ψ(k), (Λj(s

ψ(k)
j ))) > pψ(k) ·xi for k large enough. But this

contradicts ri(p
ψ(k), (Λj(s

ψ(k)
j ))) ≤ inf pψ(k) ·Xi for all k. �

Proof of Lemma 3.7 This is a direct consequence of the definition of ∆k,
Lemma 3.6 and the fact that θk(s) ≤ θC(s) if s ∈ (B̄1⊥(0, r2))n from Lemma
3.5 (i). �
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Université Paris 1.



19

[6] Bonnisseau, J.M. and A. Jamin, (2004), “Equilibria with In-
creasing Returns : Sufficient Conditions on Bounded Produc-
tion Allocations”, Cahier de la MSE 2004-17, Université Paris
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