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Abstract

The estimation of a spatial autoregressive (SAR) model depends on the spatial corre-
lation parameter ρ in a highly non-linear way, and the least squares (LS) estimators
for ρ cannot be computed in closed form. In this paper, we propose two simple LS
estimators and we compare them by distance and covariance properties in order to
study the local sensitivity behavior of these estimators. Using matrix derivatives
we calculate the Taylor approximation of the least squares estimator in the spatial
auto-regression (SAR) model up to the second order. In a next step we compare
the covariance structure of the two estimators by Kantorovich inequalities and we
derive efficiency comparisons by upper bounds. Finally, we explore the quality of
our new approximations by a Monte Carlo simulation study. The simulation results
show significant computation time reductions and a good approximation behavior
of the SAR LS estimator in the neighborhood of ρ = 0, when using a non-spatial LS
estimator. The results are encouraging and can be used for further developments,
like quick diagnostic tools to explore the sensitivity of spatial estimators w.r.t. the
size of the spatial correlation.
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1 Introduction

Spatial auto-regression (SAR) models for the error covariance structure have
been studied and applied to a wide range of areas in e.g. economics, de-
mography, geography, biology, epidemiology, statistics and scientific modeling.
See e.g. Anselin (1988, 1999), LeSage (1997), LeSage and Pace (2004, 2009),
and LeSage and Polasek (2008). In recent years, sensitivity analysis for least-
squares (LS) estimators have been developed for several models. One of the
approaches to get such results is to use Taylor series to approximate the pro-
posed estimator, as used e.g. in a repeated multivariate sampling model by
Wang et al. (1994). To our knowledge, however, a sensitivity analysis for LS
estimators in spatial models has not been reported.

In recent years, spatial models have become popular in applications, but little
is known as how computations should be done. Classical estimators even for a
simple SAR model can suffer from numerical computation problems, especially
for large dimensional problems. For large cross sections the introduction of a
spatial lag requires the inversion of the large spread matrix R = In− ρW (see
below), which is of the dimension n, the number of observations. Thus it would
be desirable to explore if simple approximations of spatial estimators can be
found without inverting the spread matrix. Furthermore, such approximations
can be useful for a Bayesian estimation with MCMC , like if we need a proposal
density for a Metropolis step.

Popular estimators for the SAR model, that are available in the literature,
are the maximum likelihood, the ordinary LS and the two-stage LS (2SLS)
estimators. It was shown that the LS estimator is asymptotically consistent
and efficient for row-normalized dense spatial matrices. The two-stage LS es-
timator proposed by Kelejian and Prucha (1998) is asymptotically consistent
and computationally simple. LeSage and Pace (2009) give a good review on
recent advances in the computation of spatial estimators, like the maximum
likelihood and Bayesian estimators.

In this paper, we consider estimators for the SAR(1) model, i.e. a spatial model
of order 1 and we are interested in the sensitivity analysis of the LS estimators
in this model. The idea is to use a Taylor approximation with respect to the
spatial correlation parameter ρ, similar to the approach of the repeated sam-
pling model with unequal sample size that was studied by Wang et al. (1994).
The variance matrix of the LS estimator of the SAR model is a non-linear
function of the spatial autocorrelation parameter ρ. In this respect the SAR
models are different from the repeated sampling model, where the LS estima-
tor is a linear function of the correlation parameter. A numerical draw-back in
the estimation of SAR models is that the spread matrix R (which is a function
of the large spatial neighborhood matrix W ) depends on ρ and needs to be

1



inverted, which can be computationally challenging and time consuming. The
question is if the matrix inversion can be avoided and do good approximations
exist, and if so, what type of estimators and what approaches should be used?

First we propose the ’pseudo’ LS estimator and we show that be expanded in a
Taylor series around the non-spatial LS estimator of a linear regression model.
Then we discuss how to measure the distance between the LS estimator and the
first or second order Taylor approximation of the pseudo LS estimator. Finally,
we show how the covariance matrix of these estimators can be evaluated by
the Kantorovich inequality.

The structure of the paper is as follows. In section 2 we introduce the SAR
model and the possible estimators. We continue with making sensitivity anal-
ysis and efficiency comparisons in section 3. The Taylor approximations of the
estimators are established in section 4. The results are illustrated by a Monte
Carlo simulation study in section 5. Finally we make some concluding remarks
in section 6.

2 LS estimators in the SAR model

Let us consider here the following notation for SAR models, i.e. for the n× 1
cross-sectional observations y of the form

y = ρWy +Xβ + u, u ∼ N [0, σ2In], (1)

where ρ is the spatial autocorrelation parameter (a scalar), W is a n×n spatial
weight matrix normalized with row sums 1, β is a n× 1 parameter vector, In
is a n×n identity matrix, u is a n×1 error vector and follows a normal distri-
bution with a n×1 mean vector centered at 0 and a n×n variance matrix σ2In.

The SAR model (1) can be written for known spatial autocorrelation ρ in the
spatial filter (SF) form

Ry = Xβ + u, u ∼ N(0, σ2In). (2)

By inversion of the spread matrix R = In−ρW we get the reduced form (RF)
of the SAR model

y=R−1Xβ +R−1u = Zβ + v, v ∼ N [0, σ2Σ(ρ) = σ2(R′R)−1], (3)
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where the reduced form (RF) can be also written by the following transformed
variables of the SAR model:

Z = R−1X, v = R−1u. (4)

The RF implies a heteroskedastic model with covariance matrix Cov(y) =
Cov(v) = σ2Σ(ρ) = σ2(R′R)−1. Obviously, the variance matrix of the reduced
form Σ = Σ(ρ) is a non-linear function of the spatial correlation parameter ρ.
In the following we list the LS estimators for the β coefficients in the SAR
models, which follow from the different ways of looking at the SAR model.

1. First, there is the ordinary LS (OLS) estimator of β if we set ρ = 0 in the
SAR model (1). Thus, a SAR(ρ = 0) model with no correlation is just the
linear regression model y = Xβ + u and is given by

b0 = (X ′X)−1X ′y. (5)

The covariance matrix of this LS estimate is the same as in the ordinary
regression model.

Cov(b0) =Cov[(X ′X)−1X ′y]

=σ2(X ′X)−1X ′Cov(y)X(X ′X)−1

=σ2(X ′X)−1. (6)

2. Second, conditionally on a known ρ ∈ (−1, 1) and for row-normalized W ,
we find the spatial filter (SF) form (2) also known as the SF model Ry ∼
N [Xβ, σ2In] and we obtain the LS estimator br for β or in brief the SF-LS
estimator

br = (X ′X)−1X ′Ry. (7)

This estimator br differs from the OLS estimator b0 only by the spatial filter
transformation Ry, which replaces the dependent variable y. The covariance
matrix of this estimator is

Cov(br) =Cov[(X ′X)−1X ′Ry]

= (X ′X)−1X ′Cov(Ry)X(X ′X)−1

=σ2(X ′X)−1X ′RR′X(X ′X)−1 (8)

Note that br = br(ρ) also reduces to the OLS estimator b0 = br(0) for ρ = 0,
because R = In.

3. Third, we consider a ’pseudo’ LS estimator bz of β for the reduced form
model (3). We estimate the model by LS but we ignore the covariance structure

bz = (Z ′Z)−1Z ′y = H−1h (9)
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with the transformed (spatially filtered) regressors Z = R−1X (but untrans-
formed y) and we define the two components

H = Z ′Z = X ′(RR′)−1X, h = Z ′y = X ′R′−1y. (10)

The covariance matrix of this ’pseudo’ LS estimator is

Cov(bz) =Cov[(Z ′Z)−1Z ′y]

= (Z ′Z)−1Z ′Cov(y)Z(Z ′Z)−1

=σ2(Z ′Z)−1Z ′ΣZ(Z ′Z)−1, (11)

where we have used the correct covariance Cov(y) = σ2Σ. In case of Σ = In
we have the result

Cov(bz) = σ2(Z ′Z)−1.

Note that bz = bz(ρ) also reduces to b0 for ρ = 0.

In addition, for the reduced form (RF) model (3) the correct GLS estimator
bGLS of β is given by

bGLS = (Z ′Σ−1Z)−1Z ′Σ−1y = [Z ′(R′R)Z]−1Z ′(R′R)y

= (X ′X)−1X ′Ry

= br, (12)

which is the same as the LS of the SF model in (7). The covariance matrix of
the GLS estimator is therefore

Cov(bGLS) =Cov(br) = σ2(X ′X)−1

=σ2(Z ′Σ−1Z)−1. (13)

Thus, it follows that ρ plays an important role for spatial modeling and esti-
mation. The behavior of the estimators when the value of ρ changes around
zero or the relationship between the estimators should be important informa-
tion for spatial models. Therefore the sensitivity of the estimators with respect
to ρ is studied in the next section.

3 Local SAR sensitivity analysis

For the local sensitivity analysis for the SAR models we will use the following
estimators, which we summarize with their corresponding regression models:
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• b0 = bOLS is the LS estimator in the model y = Xβ + u, u ∼ N [0, σ2In].
The covariance matrix is Cov(b0) = σ2(X ′X)−1.
• b1 is the LS estimator in the spatial lag-1 model Wy = Xβ + u, u ∼
N [0, σ2In], the basic linear regression model explaining the spatial lag Wy.
The covariance matrix is the same as before: Cov(b1) = σ2(X ′X)−1.
• br is the LS (or SF-LS) estimator in the spatial filter (SF) model Ry =
Xβ + u, u ∼ N [0, σ2In], the linear regression model explaining the spatial
filter Ry, where y is ’filtered’ by the spread matrix R = In − ρW . The
covariance matrix is Cov(br) = σ2(X ′X)−1.
• bz is the ’pseudo’ LS estimator in the reduced form (RF) model y = Zβ+ v

with Z = R−1X and instead of v ∼ N [0, σ2Σ] we impose the uncorrelated
error matrix Σ = In. The covariance matrix of the pseudo LS estimator is
Cov(bz) = σ2(Z ′Z)−1Z ′ΣZ(Z ′Z)−1 = σ2(Z ′Z)−1.

3.1 Sensitivity analysis for the spatial filter estimator br

For the spatial filter (SF-LS) estimator br we find a simple linear relationship,
which shows the difference to the LS estimator b0.

Theorem 1 (The SF-LS estimator br) The spatial filter (SF) estimator
in the SAR model (conditional on ρ) is a linear combination of two simpler
LS estimators

br = b0 − ρ(X ′X)−1X ′Wy = b0 − ρb1, (14)

and therefore the squared distance of SF estimator br to the LS estimator b0
is given by

||br − b0||2 = ρ2b′1b1 = ρ2y′W ′X(X ′X)−2X ′Wy. (15)

Proof 1 For the estimator br we can make the following substitutions

br = (X ′X)−1X ′Ry

= (X ′X)−1X ′(In − ρW )y

= (X ′X)−1X ′y − ρ(X ′X)−1X ′Wy

= b0 − ρ(X ′X)−1X ′Wy = b0 − ρb1.

We see that the difference between the OLS and the SF-LS estimator b0−br =
ρb1 is proportional to the spatial parameter ρ and the 1st order spatial lag-1
LS estimator b1. Next, we want to find the derivative of br with respect to
ρ, which measures actually the sensitivity of br upon a small change of ρ.
For analytical and mathematical convenience, we use the differential notation
which is mathematically equivalent to the derivative. The notation of the
matrix calculus follows Magnus and Neudecker (1988/1999).
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Theorem 2 (The derivative of the SF estimator br) The derivative of the
spatial filter br in (7) with respect to ρ is the negative LS estimator in the linear
model for explaining the first order spatial lag:

∂br/∂ρ = −(X ′X)−1X ′Wy = −b1. (16)

Proof 2 Using the result br = b0 − ρb1 in (14), we get the differential of the
br estimator with respect to ρ:

dbr =−b1dρ = −(X ′X)−1X ′Wydρ.

By rearranging terms, we establish the derivative.

We can interpret this remarkable result that the direction of the first order
correction is the OLS estimator with respect to the spatial neighbors. This
results follows from the presence of the spread matrix R in the br estimator.
The spread matrix can be interpreted as a correction of the identity matrix
with respect to the neighborhood structure W of the cross section model. It
is the direction of this ’covariance correction’ that we get as the result of the
differencing operation. Thus, a spatial lag-1 model explains the direction of
the correction in a SAR model and is estimated by b1. The spatial ρ is just
the length of this direction.

For the pseudo LS estimator bz we cannot get results that can be presented
in a similar simple way. However, we will use the matrix differential technique
and the Taylor approximation to get a similar result, as it is shown in the next
subsection.

3.2 First order sensitivity analysis for the estimator bz

This section gives the sensitivity of the pseudo LS estimator of the reduced
form of the SAR model (3).

Theorem 3 (Sensitivity analysis of the pseudo LS estimator bz) The deriva-
tive of bz with respect to ρ takes into account the transformed variables of the
estimator

∂bz/∂ρ=H−1[∂h/∂ρ− (∂H/∂ρ)bz)]

=H−1[X ′R′−1W ′R′−1y − (X ′R′−1(W ′R′−1 +R−1W )R−1X)bz]

=H−1[hr −Hrbz]

=P (17)

with H given in (10) and we define the two auxiliary quantities
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hr =X ′R′−1W ′R′−1y and

Hr =X ′R′−1(W ′R′−1 +R−1W )R−1X.

Proof 3 For the sensitivity analysis of bz = H−1h, we need the differential of
bz with respect to ρ:

d bz = (d H−1)h+H−1(d h)

=−H−1(d H)H−1h+H−1d h

=H−1[d h−H−1(dH)H−1h] (18)

where we used differentials and partial derivatives that are given by

dR=−Wdρ

dR−1 =R−1WR−1dρ

dR′−1 =R′−1W ′R′−1dρ

dH = d(X ′R′−1R−1X) = X ′(dR′−1)R−1X +X ′R′−1(dR−1)X

=X ′R′−1(W ′R′−1 +R−1W )R−1Xdρ

∂H/∂ρ=X ′R′−1(W ′R′−1 +R−1W )R−1X

dh=X ′R′−1W ′R′−1ydρ

∂h/∂ρ=X ′R′−1W ′R′−1y (19)

with the spread matrix R = In − ρW .

Next we evaluate the derivatives at ρ = 0. Because the spread matrix R(ρ =
0) = In reduces to the identity matrix, we get H(ρ = 0) = X ′X and

hr(ρ = 0) =X ′R′−1W ′R′−1y = X ′W ′y = hr0
Hr(ρ = 0) =X ′R′−1(W ′R′−1 +R−1W )R−1X = X ′(W ′ +W )X = Hr

0 .

Note that W ′ +W is symmetric and takes the role of a precision matrix.

Corollary 1 For ρ = 0 we get the derivative for the uncorrelated case, de-
noted by P (ρ = 0) = P0, which leads to the following expression:

P0 =H−1[hr −Hrbz]

= (X ′X)−1[X ′W ′y −X ′(W ′ +W )Xb0]. (20)

Theorem 4 (Distance between the pseudo LS bz and b0 estimator)
The distance between the pseudo LS estimator bz and the OLS estimator b0 is
given by

||bz − b0||2 = y′V y, (21)
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where we have used the estimators bz = Z+y, b0 = X+y, and the matrices V =
Z ′+Z++X ′+X+−Z ′+X+−X ′+Z+, Z+ = (Z ′Z)−1Z ′, and X+ = (X ′X)−1X ′.

Proof 4 This follows by simplifications using the definitions of the estimators
bz in (9) and b0.

3.3 Second order sensitivity analysis for bz

The second order local sensitivity derivative of the pseudo LS estimator (9) of
the reduced form of the SAR model (3) is given in the next theorem.

Theorem 5 (The 2nd order sensitivity of the pseudo LS estimator
bz) For the pseudo LS estimator bz = H−1h in the reduced form model (3) we
find

Q= ∂2bz/∂ρ
2

=−H−1(∂H/∂ρ)H−1[∂h/∂ρ− (∂H/∂ρ)bz]

+H−1[(∂2h/∂ρ2)− (∂2H/∂ρ2)bz − (∂H/∂ρ)(∂bz/∂ρ)]

=−H−1(∂H/∂ρ)H−1[∂h/∂ρ− (∂H/∂ρ)bz]

+H−1[(∂2h/∂ρ2)− (∂2H/∂ρ2)bz]

+H−1(∂H/∂ρ)H−1[(∂H/∂ρ)bz − ∂h/∂ρ]

=−H−1HrH
−1[hr −Hrbz]

+H−1[hrr −Hrrbz]

+H−1HrH
−1[Hrbz − hr] (22)

with the second order derivatives hrr = ∂2h/∂ρ2 and Hrr = ∂2H/∂ρ2.

Proof 5 We compute the first differential dbz (of the pseudo LS estimator
bz = H−1h) in (9) of Theorem 3 and get

d2bz =−H−1(dH)H−1[(dh)− (dH)H−1h]

+H−1[(d2h)− (d2H)H−1h− (dH)dbz]

=−H−1(dH)H−1[(dh)− (dH)bz]

+H−1[(d2h)− (d2H)bz]

+H−1(dH)H−1[(dH)bz − (dh)]. (23)

From the differentials in (23), dh, dH and db, we establish the derivative
results using hr = ∂h/∂ρ and Hr = ∂H/∂ρ as given above. Now we find
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∂2h/∂ρ2 = 2X ′W ′2R′−2y

=hrr,

∂2H/∂ρ2 = 2X ′[W ′2R′−3R−1 +W ′R′−2R−2W +R′−1R−3W 2]X

=Hrr, (24)

where the last two equalities are obtained by using the differentials dh and dH,
which are given in (19) above.

A simpler version of the second derivative for the case ρ = 0 is found in the
following way: We compute the simplified second derivatives in (24) by

hrr(ρ = 0) = 2X ′W ′2y

Hrr(ρ = 0) = 2X ′[W ′2 +W ′W +W 2]X

= 2X ′W⊕X (25)

with the extended ’second order’ weight matrix W⊕ = W ′2 + W ′W + W 2,
which is symmetric.

Corollary 2 With the simplified first order derivatives in (20) we get

Q0 =Q(ρ = 0)

=−H−1HrH
−1[hr −Hrbz]

+H−1[hrr −Hrrbz]

+H−1HrH
−1[Hrbz − hr]

=H−1[hrr −Hrrbz]

+H−1HrH
−1[−hr +Hrbz +Hrbz − hr]

=H−1[hrr −Hrrbz]

+2H−1HrH
−1[Hrbz − hr]

= (X ′X)−1[hrr −Hrrb0]

+2(X ′X)−1Hr(X
′X)−1[Hrb0 − hr]

= 2(X ′X)−1[X ′W ′2y −X ′W⊕Xb0]

+2(X ′X)−1X ′(W ′ +W )X(X ′X)−1[X ′(W ′ +W )Xb0 −X ′W ′y].(26)

3.4 Efficiency comparisons

The results of the next theorem allow to obtain the main result for the com-
parison between the estimators bz and br.

Theorem 6 (Kantorovich inequality for the bz and br estimators) The
covariance matrices of the pseudo LS estimator bz in (9) and the SF estima-
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tor br in (8) can be compared and establish the efficiency of bz in terms of
the covariance matrix of the br estimator: The difference-type bounds for the
covariance matrices of the pseudo LS and the SF-LS estimators can be found
for the following comparisons:

(1) For bounding the covariance matrix of the pseudo LS estimator bz we find

Cov(br) ≤ Cov(bz)≤ k1Cov(br),

k1 =
(λ1 + λn)2

4λ1λn
; (27)

(2) For bounding the difference of covariance matrices of the pseudo LS es-
timator bz and the SF-LS estimator br we find

ΣD = Cov(bz)− Cov(br)≤ k2σ2(Z ′Z)−1,

k2 = (
√
λ1 −

√
λn)2; (28)

(3) For the determinant of the ’ratio of the covariance matrices:

|Cov(bz)[Cov(br)]
−1| ≤ k3,

k3 =
n∏
j=1

(λj + λn−j+1)
2

4λjλn−j+1

; (29)

(4) For the trace of the ’ratio’ of the covariance matrices:

tr Cov(bz)[Cov(br)]
−1≤ k4,

k4 =
n∑
j=1

(λj + λn−j+1)
2

4λjλn−j+1

, (30)

where λ1 ≥ ... ≥ λn > 0 are the eigenvalues of the covariance matrix R′R.

k1 is the covariance bound of the pseudo LS estimator, while k2 is a ”difference
inefficiency” bound for the pseudo LS estimator. Alternatively, the constant
k1 can be interpreted as the least squares inefficiency bound, since it compares
the reduced form estimator with the SAR spatial filter model, and k2 is the
upper bound for the difference between the two covariance matrices of bz and
br.
The constant k3 is the determinant-ratio constant as it is the upper bound for
the ratio of determinants, while k4 is a trace-ratio constant since it is a bound
for the trace of the ’ratio’ of covariance matrices.

Proof 6 The covariance matrices of the two estimators are given by Cov(bz) =
σ2(Z ′Z)−1Z ′ΣZ(Z ′Z)−1 as in (11) and Cov(br) = σ2(Z ′Σ−1Z)−1 as in (8),
where the transformed variables of the reduced form are given in (3). Compar-
ing them we find Cov(br) ≤ Cov(bz) due to the Cauchy-Schwarz inequality

(Z ′Σ−1Z)−1 ≤ (Z ′Z)−1Z ′ΣZ(Z ′Z)−1,

10



and Cov(bz) ≤ k1Cov(br) due to the Kantorovich inequality

(Z ′Z)−1Z ′ΣZ(Z ′Z)−1 ≤ k1(Z
′Σ−1Z)−1,

where the constant k1 is given in (27). This constant k1 was derived by using
V = Z(Z ′Z)−1/2 and V ′ΣV ≤ k1(V

′Σ−1V )−1, for V ′V = I; see e.g. Proposi-
tion 1 of Liu (1995, p. 48).

Cov(bz)− Cov(br) = σ2(Z ′Z)−1Z ′ΣZ(Z ′Z)−1 − σ2(Z ′Σ−1Z)−1

= σ2(Z ′Z)−1/2[(Z ′Z)−1/2Z ′ΣZ(Z ′Z)−1/2

−((Z ′Z)−1/2Z ′Σ−1Z(Z ′Z)−1/2)−1](Z ′Z)−1/2

≤M = k2σ
2(Z ′Z)−1

and the constant k2 is obtained from V ′ΣV − (V ′Σ−1V )−1 ≤ k2I, because
V ′V = I with V = Z(Z ′Z)−1/2, see Liu and Neudecker (1994). Note that the
difference is non-negative definite and the upper bound comes with k2.
The 2 ’ratio’-constants k3 and k4 are obtained in the following way:

Cov(bz)[Cov(br)]
−1 = (Z ′Z)−1Z ′ΣZ(Z ′Z)−1Z ′Σ−1Z,

|Cov(bz)[Cov(br)]
−1|= |(Z ′Z)−1Z ′ΣZ(Z ′Z)−1Z ′Σ−1Z|

= |(Z ′Z)−1/2Z ′ΣZ(Z ′Z)−1Z ′Σ−1Z(Z ′Z)−1/2|
≤ k3, (31)

trCov(bz)[Cov(br)]
−1 = tr(Z ′Z)−1Z ′ΣZ(Z ′Z)−1Z ′Σ−1Z

= tr(Z ′Z)−1/2Z ′ΣZ(Z ′Z)−1Z ′Σ−1Z(Z ′Z)−1/2

≤ k4. (32)

The results of the inequalities (31) and (32) rely on the following inequalities
|V ′ΣV V ′Σ−1V | ≤ k3 and tr(V ′ΣV V ′Σ−1V ) ≤ k4, for V ′V = I, and these
inequalities were shown e.g. in Theorem 1 in Liu (2000).

Furthermore, we can derive an inequality for the difference of the covariance
matrices for the point predictions of the pseudo LS and ordinary LS estimator,
i.e. yz = Zbz and yr = Zbr:

Cov(Zbz)− Cov(Zbr) ≤ k2σ
2Z(Z ′Z)−1Z ′ ≤ k2σ

2In.

Interestingly, k2 is the same constant as given above and Z(Z ′Z)−1Z ′ ≤ I
is known from linear regression theory. Thus, the increase in uncertainty or
efficiency loss also turns over to the same type of efficiency loss if it comes
to predictions with the pseudo LS or the SF estimator that are based on the
SAR model.
Note that the constants k1 and k2 depend on the minimum and maximum
eigenvalues of R′R, and therefore on the spread matrix R, which implies on ρ
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and the neighborhood matrix W . The dependence on W increases if the eigen-
values of W start dominating the size of ρ. In fact, the constant k1 depends
on (c+ 1)2/4c, where c = λ1/λn is the condition number of R′R.

Therefore any R′R matrix that increases the condition number will increase
the constant k1. We see that the covariance matrix of the pseudo bz estimator
can be almost as good as the one of br (and therefore bz can be ’almost as
good’ as br) if k1 is close enough to one. In particular, the variances on the
main diagonal of Cov(bz) have upper bounds by k1 times the variances on the
main diagonal of Cov(br):

V ar(bz(i)) ≤ k1V ar(br(i)) for i = 1, ..., k, (33)

where bz(i) and br(i) are the elements of the vectors bz and br.

Furthermore, we conclude that the covariance matrix of the pseudo LS es-
timator bz can be almost as good as the br SF-LS estimator if the constant
k2 is close enough to zero. In particular, the differences of the variances on
the main diagonal of Cov(bz) and Cov(br) are upper bounded by k2 times the
main diagonal of (Z ′Z)−1 (apart from σ2). Equivalently, the main diagonal of
the difference of Cov(Zbz) and Cov(Zbr) is upper bounded by k2, apart from
σ2. In other words, the efficiency loss of the point predictors is measured by
the covariance matrices of the predictors and is at most k2. Thus, k2 can be
interpreted as ’predictive efficiency loss’ constant.

Since the difference is positive for all type of comparisons we conclude that
the pseudo LS estimator comes (necessarily) with more uncertainty than the
SF-LS estimator in the spatial filter model. Knowing that ρ can reduce the
uncertainty of all the estimated regression coefficients, the result is indepen-
dent of the way efficiency comparison is made. The unknown ρ blows up the
correlation structure of the residuals, and this property creates additional het-
eroskedasticity and does not reduce the uncertainty in the covariance matrix.

We are interested how the above findings of the approximate SAR estimators
can translate into the questions as how good are predictions that are made
by approximate SAR estimators. Let z be a vector of known regressor values
where we make the prediction with the estimator b of β by ŷ = z′b then we
have V ar(ŷ) = V ar(z′b) = z′Cov(b)z, and we look at the difference of the
covariance matrices of the predictions made by bz and br

Cov(z′bz)− Cov(z′br) = z′Cov(bz)z − z′Cov(br)z

= z′[Cov(bz)− Cov(br)]z

≤ z′Mz, (34)
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where M = k2σ
2(Z ′Z)−1 is the upper bound matrix of the difference ΣD =

Cov(bz)− Cov(br).

3.5 SAR-IV: LS estimation with instrumental variables

The instrumental variables (IV) estimator of the SAR model is based on the
idea of a two stage least squares (2SLS) estimation of the rho parameter
in a SAR based on the instrumental variables matrix V = [Wû,W 2û] with
û = y − ȳ. The motivation for the instruments come from the Taylor series
expansion for R:

R−1 = In + ρW + ρ2W 2 + ....

Using the IV projector PV = V (V ′V )−1V ′ we can define the SAR-IV estimator
as the LS estimator of ρW in the auxiliary model

y = ρPVWy + u, u ∼ N [0, σ2In] (35)

leading to the estimator

ρIV = (Z ′Z)−1Z ′y with Z = [1n, PVWy]. (36)

A further alternative is to use a biased estimate ρ̂ = y′W ′PV y/y
′W ′PVWy

with û = y − α̂ − ρ̂PVWy or to use the implied ρ estimate of Moran’s I. A
spatial autocorrelation coefficient was defined as ρCO by Cliff and Ord (1981),
while the OLS estimator ρOLS and Moran’s I : ρI are defined as

ρCO = (u′Wu)/((u′u) ∗ (u′W ′Wu))1/2 − (u′Wu)/(u′W ′Wu), (37)

ρI = (u′Wu)/(u′u), (38)

ρOLS = (u′Wu)/(u′W ′Wu), (39)

while the ML is adjusted by the Jacobian.

4 Taylor approximation for the SAR estimator

This section develops a Taylor approximation for the SAR estimator. Based
on the first and second order derivative results for the pseudo LS estimator bz
of the SAR model from the previous section we develop the Taylor expansion
of the pseudo LS estimator around the OLS location b0 = bz(ρ = 0) by the
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mean value theorem of calculus (see Magnus and Neudecker 1988/1999, p.
113). The twice differentiable function is given by

φ(c+ u) = φ(c) + dφ(c;u) + d2φ(c+ θu;u)/2 for 0 < θ < 1,

where the first order differential is given by dφ(c;u) = (dbz)ρ and the second
order differential is d2φ(c + θu;u) = (d2bz)ρ

2. In our case c in the φ function
denotes the point of the OLS location (ρ = 0) and u denotes the value of the
ρ parameter, evaluated around 0.

bz(ρ) = b0 + (dbz/dρ)ρ+ (d2bz/dρ)ρ2θ/2, for 0 < θ < 1, (40)

and the first and second order differentials, dbz and d2bz, are given in Theorems
3 and 5, respectively.

4.1 First and second order Taylor approximation for SAR models

This section develops the Taylor approximation for the SAR model.

Theorem 7 (First and second order Taylor approximation for bz) The
first order Taylor approximation of the pseudo LS estimator bz(ρ) around the
OLS location b0 = β̂ is:

bz(ρ) = b0 + P0ρ+O(ρ2) (41)

with P0 given in (20). The 2nd order Taylor approximation for the SF-LS
estimator bz around the OLS location b0 = β̂ is given by

bz(ρ) = b0 + P0ρ+Q0ρ
2/2 +O(ρ3), (42)

where the vectors P0 and Q0 are as given in (20) and (26), respectively. They
are the first and second order derivatives (obtained in Theorems 3 and 5),
evaluated at the uncorrelated case ρ = 0.

Proof 7 : The result is obtained by plugging (17) and (22) into (40).

5 Monte Carlo Results

In this section we demonstrate the sensitivity analysis of the spatial filter LS
estimator (SF-LS) br and the pseudo LS estimator (PLS) bz in a Monte Carlo
study. As these estimators involve the a priori unknown parameter ρ, we use
the Moran’s I related estimate of this parameter given in equation (38). First,
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we compare the two introduced estimators to the existing 2SLS estimator
of Kelejian and Prucha (1998) and a maximum likelihood estimator using
sparse matrix algorithms programmed by LeSage and Pace (2009) in terms
of computational time. In a second step, we analyze the distances, derivatives
and Kantovorich inequality measures.

For the Monte Carlo experiment, we generated SAR data according to

y = ρWy + βX + u, u ∼ N [0, σ2In], (43)

with In being a n×n identity matrix, and the matrix of explanatory variables
X of dimension n× 2 is given by

X = (In − φW )−1u2,

with u2 being a n × 2 matrix of uniformly distributed random numbers in
U [0, 1]. We fix the coefficients at β = (1, 2) for each run and we draw u2 once
for all replications for a given φ value and a fixed W matrix. The correlation
between the regressors is set to φ = 0.33 and the R2 to 0.05. The dependent
variable is constructed by

y = (In − ρW )−1(Xβ + u1
√
s)),

where u1 is a n× 1 uniformly distributed random variable, and S is

S = (1−R2)/R2 ∗ V ar(In − ρW )−1Xβ)−1/V ar((In − ρW )−1u).

We compare the computation time between the SF-LS, pseudo LS, ML and
2SLS estimators for sample sizes n = [50, 250, 750, 1500, 3000]. As a spatial
weight matrix W11 we use a simple one forward, one behind based neigh-
borhood scheme that has well known properties. The computation time for
different sample size n is displayed (in seconds) in Table 1. The computational
experiment was done without Monte Carlo runs, so the values in the Table
indicate the seconds of an estimation run 1 . In terms of computation time,
the spatial filter least squares (SF-LS) estimator performs best followed by
the pseudo least squares (PLS) estimator. Comparing the IV estimator to the
SF-LS for a sample size of 3,000, the SF-LS only takes only a fraction of 1/500
the time of the IV estimator.

1 An Intel(R) Core(TM) i5-2410M CPU with 2.30 GHz and 4 GB of RAM was
used for computation with Matlab 7.10.
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Table 1
Computational time of estimators by sample size (n)

n IV ML pseudo LS SF-LS

50 0.0780 0.0150 0.0001 0.0001

250 0.0780 0.0150 0.0002 0.0001

750 0.0940 0.0310 0.0003 0.0002

1,500 0.1250 0.0470 0.0008 0.0004

3,000 0.2500 0.0780 0.0009 0.0005

Legend: n denotes the sample size e.g. the number of regions, W = W11, ρ = 0.3.

Table 2
Computational time of estimators by sparseness, n = 3, 000

sparseness IV ML pseudo LS SF-LS

0.99 0.2500 0.0780 0.0009 0.0005

0.98 1.8090 0.5000 0.0826 0.0048

0.90 8.1430 2.0600 0.3577 0.0209

0.80 16.5360 3.9310 1.3782 0.0424

Legend: Sparseness is the number of zero entries in W , ρ = 0.3.

Table 1 shows the computational time for n = 3, 000 samples for different
degrees of sparseness of W , i.e. the number of zero entries in W . For the most
dense spatial neighborhood we find a fraction of the computational time of the
SF-LS estimator compared to the IV of 1/390. The sparse matrix algorithm
using ML estimator takes up 92 times the computational time of the SF-LS.

To simulate the distances in (7) and (9) for the estimators, the Kantorovich
measures in (27) to (30) and the derivatives of the estimator bz given in (17),
(20), (22) and (26), we varied ρ through an interval of [−0.3, 0.3] in steps of
0.05.

First, we compare the distances of the two estimators in (7) and (9) to the
ML and 2SLS estimators, respectively. For this simulation we used the one
forward, one behind neighborhood structure (in matrix W11) for a sample of
n = 250 regions. For each ρ we ran 1,000 replications, took the averages of the
beta estimates and computed the distances according to (15) and (21). As can
be seen in Figure 1 (right), the bias with respect to the OLS beta estimate
increases in ρ and has a asymmetric shape around the origin. The reason for
this result is that the spatial dependence in the spread matrix can be expanded
in a Neumann series (In− ρW )−1 =

∑∞
i=0 ρ

iW , where even powers of negative
ρ’s cancel out and creat the bias towards the OLS estimate. The proof for this
asymmetric property is given in the Appendix.
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Fig. 1. Distances: (left) ML, IV, SF-LS, PLS to βOLS ; (right) PLS, 1st and 2nd

Taylor

Legend: Mean of 1,000 Monte Carlo trials with W =W11.

Figure 1(right) shows the distance between the pseudo LS estimator and the
first and second order Taylor approximation given in (41) and (42). The PLS
estimator and the Taylor series approximations show good approximations to
the βOLS estimate in terms of distances. Again, we see the asymmetric shape
around the origin.

In a next step, we compare the distances of the bz and br estimators between
different degrees of sparseness of the spatial weight matrix. For this exercise,
we constructed 4 spatial weight matrices based on the nearest neighborhood
(matrices denoted by Wnn) concept. For a fixed sample size of n = 250 re-
gions, a higher number of neighbors is associated with a denser (and thus less
sparse) matrix. We decided for nn = [10, 15, 20, 25] neighbors, corresponding
to a share of zeros of 0.96, 0.94, 0.92, 0.90, respectively. To construct the near-
est neighbors based on Euclidian distances, we took geographical coordinates
of the Pace and Barry (1997) data set on presidential election in 3,107 US
counties. The results are shown in Figure 2. It can clearly be seen that the
denser a matrix the lesser the distance of both the SF-LS and the PLS beta
estimator to the OLS beta estimate, a result that is in line with Lee (2002).

Next, we analyze the derivatives of the estimator bz given in (17), (20), (22)
and (26). The results of the Monte Carlo experiment with 1, 000 replications
is shown in Figures 3 (left) and (right). In Figure 3, the first order derivative,
denoted by P , declines as ρ increases. For the case β2 = 2, the double value
of β1 = 1, we see a much steeper decline. The first order derivative evaluated
at ρ = 0 is shown in Figure 3(right). Again we find a declining pattern as
ρ increases. Figures 4 (left) and (right) show the second order derivatives of
bz denoted by Q and Q0 for the case ρ = 0. For the second derivative given
in Figure 4, β2 has an inverse U-shaped pattern as ρ increases. Evaluated at
ρ = 0 the second order derivative shows a flat decline in increasing ρ.

Finally, we examine the the Kantorovich inequality measures for ρ’s around
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Fig. 2. Pseudo LS and SF-LS distance to βOLS by sparseness
(Wnn, nn = [10, 15, 20, 25])

Legend:
Mean of 1,000 Monte Carlo trials.

Fig. 3. (left) P0 : 1st order derivative bz; (right) P0 : 1st order derivative bz, ρ = 0

Legend: Mean of 1,000 Monte Carlo trials with W =W11.

zero. As these measures solely depend on the eigenvalues of the covariance
matrix R′R, no Monte Carlo (MC) trials are needed. The results are given in
Figures (5) to (6). All figures show a symmetric U-shaped pattern, centered
around the origin of ρ = 0, where the estimators collapse to the OLS estimator.
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Fig. 4. (left): Q (2nd derivative) of bz; (right): Q0 (2nd derivative) of bz, ρ = 0

Legend: Mean of 1,000 Monte Carlo trials with W =W11.

Fig. 5. (left): k1-bounds of bz and br; (right): k2 diff-bounds of bz and br

Remarks: W =W11.

Fig. 6. (left): k3 diff-bounds of bz and br; (right): k4 cov-trace of bz and br

6 Conclusions

In this paper we have derived several results for the sensitivity analysis of
the LS estimators for the spatial autoregressive (SAR) model. We used new
results on the Kantorovich inequality to establish the quality of the approx-
imation with respect to the difference of the covariance matrices. The main
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goal was to find the Taylor approximation with respect to ρ in the SAR model,
and to measure the difference of the ordinary LS estimator to the pseudo LS
estimator, which is non-linear function in ρ.

In a simulation analysis we have shown that: the Taylor approximation of the
LS estimator of the SAR model gives a good approximation results for small
ρ’s up to ±0.3. The efficiency loss according to the Kantorovich inequality
is about 50%, if ρ approaches the range ±0.3. These values were found in
Monte Carlo simulation study for n = 250 and a one forward, one behind
neighborhood scheme.

There is an interesting result that needs further research: The approximation
results are encouraging since they allow good first step approximations for non-
linear LS methods or can be used as a proposal densities in the Metropolis step
of a MCMC algorithm. An open question is if other or better approximations
can be found for medium or large ρ values.

Acknowledgements

The research was conducted when Wolfgang Polasek visited Shuangzhe Liu
at University of Canberra and when Shuangzhe Liu took his OSP leave. The
authors are grateful to Matthias Koch, the Editor and the referees for their
constructive remarks and suggestions on an early version of the paper.

References

[1] Anselin, L. (1988). Spatial Econometrics: Methods and Models. Dordrecht:
Kluwer Academic Publishers.

[2] Anselin, L. (1999). Spatial Econometrics. Working Paper, Bruton Center,
School of Social Science, University of Texas, Dallas.

[3] Cliff, Andrew and Ord, J. Keith (1981). Spatial Processes: Models and
Applications. Pion, London.

[4] Kelejian, H.H. and Prucha, I.R. (1998). Generalized Spatial Two Stages
Least Square Procedure for Estimating a Spatial Autoregressive Model with
Autoregressive Disturbances. Journal of Real Estate Finance and Economics,
17(1): 99-121.

[5] Lee, L.F. (2002). Consistency and Efficiency of Least Squares Estimation for
Mixed Regressive, Spatial Autoregressive Models. Econometric Theory, 18: 252-
277.

20



[6] LeSage, J. P. (1997). Bayesian estimation of spatial autoregressive models.
International Regional Science Review, 20: 113-129.

[7] LeSage, J. P. and Pace, R. K. (2004). Models for spatially dependent missing
data. Journal of Real Estate Finance and Economics, 29: 233-254.

[8] LeSage, J. P. and Pace, R. K. (2009). Introduction to Spatial Econometrics.
New York: CRC Press.

[9] LeSage, J. P. and Polasek, W. (2008). Incorporating transportation network
structure in spatial econometric models of commodity flows. Spatial Economic
Analysis, 3(2): 225-245.

[10] Liu, S. (1995). Contributions to Matrix Calculus and Applications in
Econometrics. Amsterdam: Thesis Publishers.

[11] Liu, S. (2000). On matrix trace Kantorovich-type inequalities. In: R.D.H.
Heijmans, D.S.G. Pollock and A. Satorra (eds.) Innovations in Multivariate
Statistical Analysis - A Festschrift for Heinz Neudecker, Dordrecht: Kluwer
Academic Publishers; 39-50.

[12] Liu, S. and Neudecker, H. (1994). Several matrix Kantorovich-type inequalities.
J. Math. Anal. Appl.

[13] Magnus, J. R. and Neudecker, H. (1988/1999). Matrix Differential Calculus
with Applications in Statistics and Econometrics, revised edition, Chichester:
John Wiley and Sons.

[14] Pace, R. K. and Barry, R. (1997). Quick computation of spatial autoregressive
estimators. Geographical Analysis 29: 232-246.

[15] Wang, S. G., Chow, S-C. and Tse, S-K. (1994). On ordinary least-squares
methods for sample surveys. Statistics & Probablity Letters 20: 173-182.

APPENDIX: On the asymmetric behavior of the approximation

Let the data generating process defined by

Y = ρ0WY +Xβ0 + ε,

with ρ0 and β0 being the true values. The OLS estimate of β is

β̂OLS = (X ′X)−1X ′y

and the expectation of β̂OLS is

E[β̂OLS] = β0 + E[ρ0(X
′X)−1X ′WY ]

= β0 + ρ0(X
′X)−1X ′W (I − ρ0W )−1Xβ0.
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The difference between β0 and β̂OLS is

bias(ρ0) := (β0 − β̂OLS)

= ρ0(X
′X)−1X ′W (I − ρ0W )−1Xβ0

= ρ0(X
′X)−1X ′W

∞∑
k=0

ρk0W
kXβ0,

where a symmetric bias around zero would satisfy

|bias(ρ1)− bias(−ρ1)| = 0.

However, the symmetry of the bias is given by

|bias(ρ1)− bias(−ρ1)|= |ρ1(X ′X)−1X ′W
∞∑
k=0

ρk1W
kXβ0

−ρ2(X ′X)−1X ′W
∞∑
k=0

ρk2W
kXβ0|

= |ρ1(X ′X)−1X ′W
∞∑
k=0

ρk1W
kXβ0

+ρ1(X
′X)−1X ′W

∞∑
k=0

(−ρ1)kW kXβ0|

= |ρ1(X ′X)−1X ′W
∞∑
k=0

(ρk1 + (−ρ1)k)W kXβ0|

= |ρ1||
∞∑
k=0

(ρk1 + (−ρ1)k)(X ′X)−1X ′WW kXβ0|

= |ρ1||
∞∑
k=0

(ρk1 + (−ρ1)k)xk|,

with xk = (X ′X)−1X ′W k+1Xβ0. If X = ιn and W ist row-normalized, then
xk = β0 and
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|bias(ρ1)− bias(−ρ1)|= |ρ1β0||
∞∑
k=0

(ρk1 + (−ρ1)k)|

= |ρ1β0||1 + 1 + ρ1 − ρ1 + ρ21 + ρ21 + ρ31 − ρ31 + ...|

= 2|ρ1β0||
∞∑
k=0

ρ2k1 |

= 2|ρ1β0||
∞∑
k=0

ρ2k1 | =
2|ρ1β0|
1− |ρ21|

.

Thus, the difference between the bias of a ρ and a −ρ is expected to increase
by approximately 2|ρ1|

1−|ρ21|
with increasing |ρ|.

23


