
 
 
 
 

 
 

 
 

The University of Adelaide 
School of Economics 

 
 

Research Paper No. 2011-13 
March 2011 

 
 
 

Information, Matching and Outcome Selection 
 

Virginie Masson 
 
 
 
 
 



Information, Matching and Outcome Selection ∗

Virginie Masson †

School of Economics
University of Adelaide

March 7, 2011

Abstract

We consider a finite population of agents who exchange information
and are paired every period to play a game with tension between risk
dominance and Pareto efficiency. Agents sample past plays and corre-
sponding payoffs from their information neighborhood, and choose one
of two possible actions using either best response or imitation. Infor-
mation exchanges and possible matchings each constitutes a network.
We first provide a complete description of the medium run outcomes
and show that in the medium run only information matters. We then
identify the conditions whereby either the risk dominant or the Pareto
efficient convention is stochastically stable, and show how efficiency in
the long run depends on the matching network.
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1 Introduction

A conventional way of representing information exchanges and interactions
is to construct a unique network that accounts for both. The graphs of such
networks require every edge to simultaneously capture information exchange
and interaction. However this is a restrictive representation of reality, as
we will argue later. A few studies on evolutionary games in networks of-
fer some alternatives by modeling distinct information and interaction net-
works. While the information network depicts the exchanges of information
between agents, the interaction network captures who plays with whom. In
these studies however, both networks are assumed to be embedded in one
another. Either interactions always occur between information neighbors, as
in Alós-Ferrer and Weidenholzer [1] and Mengel [9], or information is only
gathered from the interaction neighborhood, as in Durieu and Solal [4]. The
purpose of this paper is to study the potential implications of such embedded
networks. In particular, it provides a better understanding of the role of in-
formation versus interaction in shaping the medium and long run outcomes
of a standard evolutionary game.

To illustrate why embedded networks may be unsuitable, consider a mod-
ified version of the original Stag-Hunt. A group of hunters may consist of
mutual friends and their invited guests. Invited guests are friends with their
hosts but unfamiliar to others. The group of mutual friends know about
each other’s past hunting behaviors from previous conversations, even though
some never hunted together. This illustrates how information can be gath-
ered without interaction. Once the hunt commences, the group dissociates
into pairs. No communication can occur during the hunt to avoid alerting
the animal in pursuit. While some pairs are formed between mutual friends,
others are formed among strangers. In this last instance, interaction occurs
without information exchange.

Our analysis unfolds within a discrete time framework. We consider a
finite population whose agents exchange information. Each period, these
agents interact in pairs to play a 2× 2 coordination game that exhibits some
tension between risk dominance and Pareto efficiency. Agents sample past
plays and corresponding payoffs from their information neighborhood, and
choose one of two possible actions using either best response or imitation.
The details of the information exchanges and the possible matchings each
constitutes a network, illustrated by a graph with agents as the vertices. We
first study the stability of the system in a mistake free environment and then
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extend our analysis to a perturbed version of the process.
Like previous studies by Mengel [9] and Alós-Ferrer and Weidenholzer [1]

we allow information to be sampled outside the interaction neighborhood.
We also allow interactions to occur outside the information neighborhood
like Durieu and Solal [4]. To simultaneously capture both scenarios, we use
a different concept to the interaction network, and consider a matching net-
work. It captures the potential pairings between agents rather than identify-
ing for each agent an unchanging subset of partners with whom each period
the game is played. Although we lose the multiplicity of interactions per pe-
riod, we offer a more flexible environment where rare or unlikely encounters
are accounted for. These infrequent matchings may be more the exception
than the rule, but they play a major role in identifying the conditions by
which an outcome is stochastically stable. Furthermore, by untwining the
two networks, we can show that the matching network plays no role in shap-
ing medium run outcomes.

The first related study was developed by Durieu and Solal [4]. In their
paper, they consider a finite population of n agents placed on a non-oriented
ring. Each agent interacts with 2k < n agents in each period to play a game.
The game is a symmetric coordination game that exhibits tension between
risk dominance and Pareto efficiency. Agents choose their actions according
to a spatial sampling procedure similar to the one introduced by Young [11]
[12]. More precisely, each agent samples the actions played by r < 2k of
their interaction neighbors in the previous period and plays best-response to
the frequency of actions in the sample. Within this framework, Durieu and
Solal [4] show that the risk dominant action prevails in the long-run in most
cases. Our sampling procedure bears some similarity with theirs, the game is
identical and we also consider best reply as a possible decision rule. However,
our paper differs from theirs as we study arbitrary information networks with
possible non-reciprocal information exchanges, and also investigate imitation
as a decision rule.

Mengel [9] also considers agents on a non-oriented ring. Agents choose
their action using either a payoff-biased or a conformist-biased imitation rule.
In her study, she shows that when agents can access information beyond their
interaction neighborhood and use a payoff-biased imitation rule, a unique
stochastic stable outcome is identified where everyone chooses to defect in
a prisoner’s dilemma type game. This contrasts with the results obtained
by Eshel, Samuelson and Shaked [7], who consider identical information and
interaction neighborhoods. However, if agents use a conformist-biased im-
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itation rule with a strong enough bias, full cooperation emerges regardless
of whether agents can access information beyond their interaction neigh-
borhood. Although we also consider imitation, we look at a different rule
whereby agents imitate the most successful action in the sample they draw.
The game we study differs as it contains tension between risk dominance
and Pareto efficiency, and as stated earlier, we look at arbitrary networks
and best-response.

The closest study to our own is the one by Alós-Ferrer and Weidenholzer
[1]. They consider arbitrary information networks and assume that agents in-
teract only with a subset of their information neighbors. Each period, agents
sample information from their information neighbors and choose the most
successful action in the sample as the action to play in the current period.
The authors focus on whether the Pareto efficient action is contagious. The
notion of contagion they use is adopted from Morris [10] whereby an action is
said to be contagious if it spreads to the entire population when it is initially
played by only a finite subset of agents.The combination of local interac-
tions with imitation is what, the authors conclude, leads to the contagion
of the Pareto efficient action. They extend their results to non-reciprocal
information exchanges, however this extension only applies to those neigh-
bors with whom one does not interact. We also consider arbitrary networks
and imitation, and allow for non-reciprocal information exchanges. The way
we introduce asymmetric information differs however due to a different ap-
proach in modeling interactions. In particular, we account for interactions
without imposing reciprocal information exchange. In our modified Stag-
Hunt example, this represents the scenario where, in a pair of hunters, only
one has information about the other ’s past hunting behavior. Furthermore,
we provide a thorough analysis into the role played by information and in-
teractions in both, the medium, or mistake free environment, and the long
run. In particular, we provide a detailed characterization of medium run
outcomes and identify the conditions by which the risk dominant convention
is stochastically stable, even with imitators. This contrasts with Alós-Ferrer
and Weidenholzer [1] whose focus on the contagion of the Pareto efficient
action allows them to bypass the medium run analysis, and neglect the risk
dominant uniform convention as a candidate for stochastic stability.

Our results provide, for any arbitrary network, a complete characteriza-
tion of the medium run outcomes and show that the matching network plays
no role in identifying them, whether agents are best repliers or imitators.
We then identify the characteristics of the information network, matching
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network and sample size under which stochastic stability arises. We show
that the risk dominant uniform convention emerges as stochastically stable
when either the sample size is within some bounds and agents are best repli-
ers, or when agents imitate and both the sample size and the number of
strongly connected components of the information network equal one. Fi-
nally, given some conditions on the sample size relative to the number of
strongly connected components of the information network, we find that the
Pareto efficient uniform convention is stochastically stable when agents im-
itate. However, the conditions required for the sample size are sensitive to
variations of the matching network.

In Section 2, we describe the networks, the game played by the agents
and the decision rules used. Absorbing sets and stochastically stable sets are
presented in Section 3. Section 4 concludes.

2 The model

In what follows, we first introduce the information network and decompose
its graph into strongly connected components. These components play a
major role in describing the absorbing sets of the system. We then describe
the matching network and insure that the pairing of all agents is always
possible. Finally, we explain how agents choose their actions, using either
imitation or best response, when playing the game. This last subsection
ends with an illustration of the different roles played by each of the networks
depending on the decision rule in use.

2.1 Networks

2.1.1 Information Network

We represent the information network as a directed graph over the set of
agents I = {1, 2, ..., 2n} with adjacency matrix G. An element gij of the
adjacency matrix is therefore equal to 1 if there is an information flow from
i to j and 0 otherwise. More precisely, i→ j means that agent j can access
agent i’s information in which case agent i is agent j’s neighbor; the reverse
is however not true, and if gji 6= 1, agent j is not a neighbor of agent i. This
allows us to capture possible non-reciprocal information exchanges.

In the case where agent i accesses information from agent j and provides
it to agent k, we have a flow from agent j to agent k. What matters in
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our framework is who accesses whose information rather than the means by
which the information is accessed. We can differentiate between these cases
by saying that agent j is a direct neighbor of agent i but an indirect neighbor
of agent k. However this distinction will only be used when referring to the
matching network and the possible matchings it accounts for.

For every agent i ∈ I we then define a set of neighborsNi = {j ∈ I, gji = 1}.
We assume that agent i accesses his own information, and hence gii = 1 and
i ∈ Ni. All agents have a finite memory containing their m most recent ac-
tions and associated payoffs. These two elements, actions and corresponding
payoffs, constitute what we refer to as information, and this is what agents
can potentially observed from one another.

Since we consider any possible information network we need to introduce
some ways to decompose the network into tractable objects. In order to do
so, we first introduce the notion of directed path:

Definition 1 A directed path between two vertices i0 and ik denoted Pi0ik

is a non-empty directed graph with distinct vertices {i0, i1, ..., ik} for which
gim−1im = 1 for all im, m = 1, ...k.

A directed path is therefore a sequence of directed links from one agent to
another. It captures how information can potentially be transmitted between
two agents. When Pij exists, it does not guarantee however that agent j
observes agent i’s information. It only captures the potential influence agent
i can exert over agent j through indirect transmission of information.

Consider now a group of agents. If a directed path exists between any
pair of agents within that group, it forms a strongly connected component
(SCC):

Definition 2 A strongly connected component C ⊆ I of an information
network is a maximal set of vertices such that for all (i, j) ∈ C, with i 6= j,
Pij and Pji exist.

As every directed graph is a directed acyclic graph of its strongly con-
nected components it is possible to uniquely decompose an information net-
work into its strongly connected components.1 Furthermore, we can identify
and separate two main types of SCCs: source (no incoming edge) and sink (no
outgoing edge). This allows us to capture the channels by which information
disseminates through the population. More formally,

1See S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani [3]
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Definition 3 A strongly connected component C ⊆ I of an information
network is said to be source if there is no i ∈ I\C and there is no j ∈ C such
that gij = 1

Hence, agents within a source SCC never receive information from agents
outside the SCC. Similarly,

Definition 4 A strongly connected component C ⊆ I of an information
network is said to be sink if there is no i ∈ I\C and there is no j ∈ C such
that gji = 1

The difference between this definition and the previous one resides in the
change from gij = 1 to gji = 1. Therefore, agents in a sink SCC never pro-
vide information to agents outside their SCC. Finally, a SCC whose agents
never provide nor receive information to and from other SCCs is called dis-
connected. Formally,

Definition 5 A strongly connected component C ⊆ I of an information
network is said to be disconnected if it is source and sink.

For the rest of the paper, we denote C = {C1, ..., Ck, ...} the set of all
SCCs of the information network, and S the set of all source SCCs of the
information network.

Example: In order to provide a better understanding of the above-
mentioned definitions, Figure 1 reports an information network featuring
nine SCCS. Figure 1 Panel A illustrates the network at the agent level, while
Figure 1 Panel B exemplifies the decomposition of the network into SCCs.
For clarity purposes, we did not draw edges from an agent to himself and this
convention is adopted throughout the paper. Three of the SCCs are source:
C1, C7 and C9; six of the SCCs are sink : C2, C3, C4, C6, C8, and C9; one is
neither source nor sink: C5; one is identified as being both, source and sink,
and is therefore disconnected: C9.

2.1.2 Matching Network

The matching network over I describes the potential pairings between agents
and is assumed to be distinct from the information network. All possible
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Panel A

C1

C2C3

C4

C5

C6C7

C9

C8

Panel B

Figure 1: Decomposition of an Information Network into the Directed Acyclic
Graph of its Strongly Connected Components

matchings are described by an undirected graph with agents as vertices and
an edge (undirected link) between two agents represents the possibility that
these agents could be paired to play the game. Denote M the adjacency
matrix of the graph. An element mij of M is equal to 1 if there is a positive
probability that agents i and j can be paired, and 0 otherwise. Of course,
mii = 0 and mij = mji for all i ∈ I.

Without further requirements on the matching network, there may be
situations where the pairing of all agents is impossible. To avoid this, we
thus make the following two assumptions.

First, we want to make sure that all agents can be paired every period so
that every agent has someone to play with. This means that we should be
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able to separate the population into two distinct groups, and every agent in
one group could potentially be matched with at least one agent in the other
group. This is captured by Assumption 1.

Assumption 1 There exists a bi-partition of the set of agents I into I1 and
I2 such that the three following conditions are satisfied:

(1) I1 ∩ I2 = ∅

(2) I1 ∪ I2 = I

(3) mij = 1, for all i ∈ I1 and for all j ∈ I2, and 0 otherwise.

Furthermore, if two agents can potentially be matched, i.e. if mij = 1,
then it should be possible to pair the 2n − 2 remaining agents. Otherwise
mij should be 0, as stated in Assumption 2.

Assumption 2 If mij = 1 then there exists a bi-partition of I satisfying
assumption 1.

Example: To illustrate these assumptions and the role they play, we
consider four agents numbered from 1 to 4. Figure 2 illustrates a matching
network where m12 = m13 = m24 = 1 but m14 = m23 = m34 = 0. In this
case, the pairing between agent 1 and agent 2 can never be realized as agents
3 and 4 cannot be paired. Hence, the only matching that can arise consists
in pairing agents 1 and 3 together and agents 2 and 4 together. The role of
our second assumption is therefore to restrict m12 to 0.

1 2

34

Figure 2: Matching network violating assumption 2

By defining the matching network this way we can for example model that
direct neighbors are more likely to be paired; or we can restrict some agents
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from ever being matched with one another. We can further tie the matching
network to the information network and impose that only neighbors can be
paired, and hence interactions only happen when some information exchange
is possible. Or by contrast, we can assume that both networks are completely
independent from one another.

In the next section, we introduce the game played every period and de-
scribe in details the decision rules agents follow.

2.2 Dynamics of the game

We consider a standard game of the literature which normal form is repre-
sented by the following payoff matrix:

1 0
1 a, a b, c
0 c, b d, d

where a > c and d > b so that both, (1, 1) and (0, 0) are strict Nash equilib-
rium.

Let q = d−b
a−b−c+d

be the probability associated with playing action 1 in the
mixed strategy Nash Equilibrium of this game. If q > 1/2, then action 0 is
said to be risk dominant as defined by Harsanyi and Selten [8]. The higher
the value of q, the more risk dominant action 0 is. Furthermore, we assume
that a > d so that the equilibrium (1, 1) is Pareto efficient. We hence refer
to 1 as the Pareto efficient action and to 0 as the risk dominant action.

Agents choose their action relative to the information they sample from
their neighbors and the decision rule they use. We consider two decision rules:
best response (BR) and imitate-the-best (IM). The choice of these two rules is
motivated by the different perspectives they offer. With BR, the frequency
of occurrence of each action matters while payoffs are overlooked. In our
framework, every agent samples s actions from his neighbors and computes
the frequency of occurrence of each action within that sample. When the
frequency of action 1 in the sample is strictly less than q, the agent chooses
action 0; while if it is exactly q, the agent is indifferent and chooses his action
at random.

When agents use IM however, they base their decision on the payoffs
incurred by each action. More precisely, every agent samples s actions and
corresponding payoffs from his neighbors and selects the action that gave the
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highest payoff in that sample. Again, when an agent is indifferent between
the two actions, he picks an action at random.

Contrary to BR, IM is fundamentally shaped by payoffs. Thus, infor-
mation and matchings do matter, while with BR, only information seem to
matter as illustrated by the following example.

Example: Consider a population I = {1, 2, 3, 4} whose agents play the
game presented in Section 2.2. Let a = 6, b = 2, c = 5 and d = 4 and hence
q = 2

3
.

The information network is such that N1 = N2 = {1, 2} and N3 = N4 =
{3, 4}. In other words, agents 1 and 2 share information, and so do agents 3
and 4, but agents 1 and 2 do not share any information with either 3 and/or
4. We represent this population and its information network in Figure 3.
Each plain line with an arrow represents a directed link of the information
network. We have,

Information Network: g12 = g21 = g34 = g43 = 1 and gij = 0 otherwise.

We consider two possible matching networks. The first network, labeled
Network A, assumes that agent 1 can only be matched with agent 3 and agent
2 can only be matched with agent 4. The second network, labeled Network
B, assumes that agent 1 can only be paired with agent 2, and agent 3 can
only be paired with agent 4. Network A and Network B are represented by
the dashed lines in panel (a) and panel (b) of Figure 3 respectively. This
therefore amounts to assume the following:

Matching Network A: m13 = m24 = 1 and mij = 0 otherwise.
Matching Network B: m12 = m34 = 1 and mij = 0 otherwise.

We assume that every agent remembers their most recent action and
corresponding payoff (m = 1) and samples two observations (s = 2). In this
example, it means that agent 1 (resp. 2) always samples from himself and
agent 2 (resp. 1), and that agent 3 (resp. 4) always samples from himself and
agent 4 (resp. 3). We also assume that, in period t, agents 1 and 3 played
action 1, while agents 2 and 4 played action 0. Hence, in period t + 1, the
memory of all agents for each of the interaction networks is therefore:

Agents’ memories with Network A: ((1, 6), (0, 4), (1, 6), (0, 4))
Agents’ memories with Network B: ((1, 2), (0, 5), (1, 2), (0, 5))
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Figure 3: Varying Matching Networks

1 2

3 4

(a) Matching Network A

1 2

3 4

(b) Matching Network B

where the first element represents the memory of agent 1, the second
element represents the memory of agent 2 and so on. Let us now consider,
for each of the matching networks and each decision rule, the agents’ actions
next periods .

Consider first the case where agents use BR. Recall that in this case,
agents base their decision on the relative frequency of each action in the
sample they drew from their neighbors. Since the relative frequency of action
1 in all samples is 1/2, which is less than 2/3, all agents will choose action 0
next period. Consequently, when agents use BR, they will all play action 0
in period t+ 1, and any period thereafter, independently of which matching
network is in place.

This is not however the case when agents use IM. In that case, if matchings
are characterized by Matching Network A, all agents will choose action 1 next
period, as all agents will sample the most successful action-payoff pair, that
is (1, 6). On the other hand, if matchings are captured by Matching Network
B, all agents will choose action 0 next period as, in all samples, action 0
provided a payoff of 5 which is higher than the payoff of 2 obtained by action
1. Hence, when agents use IM, the matching network plays a major role in
shaping agents’ decisions.

This example illustrates the respective roles of the information and match-
ing networks. We now investigate in what follows this issue more thoroughly.
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3 Stability of the system

3.1 Absorbing sets of the Process

Define Θ, the state of the system at a given period, as the collection of the
m most recent actions of every agent. The dynamics described above define
a finite Markov process over the state space for which standard techniques
apply.

We first want to characterize the absorbing sets of the process. An ab-
sorbing set is defined as a minimal set of states that has positive probability
to be reached but cannot be left. A singleton absorbing set is referred to
as an absorbing state. These sets capture the stability of the system when
agents make no mistakes, i.e. when agents choose their action according to
one of the decision rules described above. Furthermore, these sets are also
the only candidates for stochastic stability, which we will study later.

The characterization of all absorbing sets necessitate that we introduce a
number of concepts, the first of which is the notion of local state. Similarly
to Θ, denote θCk

, the local state within Ck ∈ C, as the ordered collection of
the m most recent actions of every agent i in Ck. If all agents within Ck have
the same m most recent actions, then θCk

is called a local convention. It is
denoted θp, where p = 1 [resp. 0 ] if all agents in Ck played action 1 [resp.
0] for the last m periods. Furthermore, denote LCk

, the set of source SCCs
which provide some information to Ck. Formally,

LCk
= {Cl ∈ S s.t ∃ i ∈ Cl and ∃ j ∈ Ck for which Pij exists }.

We can now state Proposition 1.

Proposition 1 Consider an arbitrary information network and a matching
network satisfying Assumptions 1 and 2. All agents play IM or BR. If s ≤
m/2, a set of states is absorbing if and only if both conditions are satisfied:

(1) ∀Ck ∈ S, either θCk
= θ1 or θCk

= θ0

(2) ∀Ck ∈ C \ S, θCk
= θp if ∀Cl ∈ Lk, θCl

= θp, with p either 0 or 1.

Proof: See Appendix.

As stated in Proposition 1, absorbing states are characterized entirely
by the structure of the information network. They are independent of the
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matching network or the decision rule. This is because, when looking at
absorbing sets, we are only interested in finding the conditions for which
agents maintain their action choice. Therefore, if all the information available
to an agent comprises only one action, then this agent will choose this action
independently of the payoff generated by the action and the decision rule
in place. This in turns means that only the samples drawn, and hence the
information network, matter.

Intuitively, source SCCs play a regulatory role in the stability of the
system as their agents never receive information from outside agents. If a
source SCC follows a local convention, i.e. all agents within the SCC played
the same action for the last m periods, it will never leave it. This is captured
by the first condition of Proposition 1.

For non-source SCCs however, the origin of the information sampled by
their agents matters. To understand further the role played by Lk, consider
the following. If all source SCCs within Lk follow the same local convention,
then it has to be that all the SCCs from which agents in Ck can poten-
tially receive information also follow the same local convention. Hence, if Ck

follows the same local convention as all the source SCCs in LCk
, then the

local convention within Ck will not change as no information related to the
other action can be sampled. This is captured by the second condition of
Proposition 1. However, when SCCs in Lk do not all follow the same local
convention, Ck may never settle in a local convention: the samples drawn by
the agents in Ck potentially contain attractive information for both actions.
This can trigger changes in the choice of actions of some agents. Although
this situation cannot be found in an absorbing state, it can be part of an
absorbing set.

The following example is an illustration of Proposition 1.

Example: Consider the information network presented in Figure 1. We
identify Lk for each of the nine SCCs: LC2 = LC3 = LC4 = LC5 = {C1},
LC6 = {C1, C7} and LC8 = {C7}. Note that by definition, LC1 = LC7 =
LC9 = ∅.

Given the structure of the information network considered, there are eight
possible absorbing sets: the two uniform conventions, and the 6 absorbing
sets described in Table 1 below.

In Table 1, each column represents the local state within each of the
SCCs. More precisely, the first column represents the local state within C1,
the second column represents the local state within C2 and so on. This leads
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to each line characterizing an absorbing set. The notation θ stands for any
local state within the SCC, including θ1 and θ0.

Table 1: Characterization of absorbing sets

C1 C2 C3 C4 C5 C6 C7 C8 C9

Abs set # 1 θ1 θ1 θ1 θ1 θ1 θ1 θ1 θ1 θ0

Abs set # 2 θ1 θ1 θ1 θ1 θ1 θ θ0 θ0 θ0

Abs set # 3 θ1 θ1 θ1 θ1 θ1 θ θ0 θ0 θ1

Abs set # 4 θ0 θ0 θ0 θ0 θ0 θ0 θ0 θ0 θ1

Abs set # 5 θ0 θ0 θ0 θ0 θ0 θ θ1 θ1 θ0

Abs set # 6 θ0 θ0 θ0 θ0 θ0 θ θ1 θ1 θ1

To relate our results to the literature, we look at the case where infor-
mation links are double-sided (symmetric information) and matchings only
occur between neighbors. Both assumptions are formalized below. First,
information is symmetric:

Assumption 3 For any i, j ∈ I, gij = gji

Then, matchings occur only between neighbors:

Assumption 4 For any i, j ∈ I, mij = 1 only if gij = 1

One of the consequences of Assumption 3 is that the information network
presents only disconnected SCCs. Furthermore, it is worth noting that as-
sumptions 1, 2 and 4 eradicate the possibility of neighborless agent. Indeed,
Assumptions 1 and 2 insure that the pairing of all agents is always possible,
while Assumption 4 restricts matchings to occur only between neighbors.

As suggested by Proposition 1, the role played by the matching network
in determining the absorbing sets of the system is irrelevant. Hence results
presented in the following Corollary hold with or without Assumption 4:

Corollary 1 Consider an arbitrary information network satisfying Assump-
tion 3 and a matching network satisfying Assumptions 1, 2 and 4. All agents
play IM or BR. A set of sets is absorbing if and only if s ≤ m/2 and θCk

= θp

where p = 1 or 0 for all Ck ∈ S.
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Proof: An information network satisfying Assumption 3 only possesses
disconnected SCCs. Hence, all SCCs are source SCCs and all follow a local
convention if and only if the system is in an absorbing set. End of Proof

In other words, when information is symmetric, the system presents only
absorbing states, where each of the SCCs follows a local convention. Our next
step consists in perturbing the system so as to study its stochastic stability.

3.2 Stochastic stability

We consider a perturbed version of the Markov process described above and
study the stochastic stability of the system. The perturbed dynamics are
generated by assuming that each player independently and with probability
ε > 0 in each period picks a strategy at random from a uniform distribu-
tion. Using Ellison’s method of radius-coradius [6], we then determine which
absorbing sets are sochastically stable. Although we are fully aware of the
criticism by Bergin and Lipman [2] regarding the uniformity of the pertur-
bations, we avoid addressing this issue here and keep our focus on the role
played by each network in characterizing long-run outcomes.

The radius-coradius method requires first the definitions of the following
concepts. Denote B(Θ) the basin of attraction of an absorbing set Θ. The
basin of attraction of Θ is the set of initial states from which the unperturbed
Markov process converges to Θ with probability one. The radius of the
basin of attraction of Θ, denoted R(Θ), is the mimimal number of mistakes
needed to leave B(Θ) when play begins in Θ. The coradius of B(Θ), denoted
CR(Θ), is the maximum over all other states of the minimum number of
mitakes needed to reach B(Θ). A state Θ is said to be stochastically stable
if R(Θ) > CR(Θ).

In what follows, we start by explaining in more details the concepts of
radius and coradius. We then look at the stochastic stability of the system
depending on the decision rule in place.

3.2.1 Radius and Coradius

The Radius-Coradius method requires the computation of the number of
mistakes needed to leave or enter an absorbing set’s basin of attraction. In
our framework, it relies on the understanding of the importance played by
source SCCs in determining absorbing sets.
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Consider an absorbing set Θ and Ck a source SCC. If Ck leaves the local
convention it follows under Θ for a local state that could lead it to switch
convention, then we have left the basin of attraction of Θ. The number of
mistakes needed to achieve such result is the Radius of Θ.

For the computation of the coradius of Θ, we first need to introduce Θ,
the furthest possible state from Θ. Formally, consider Ck ∈ S and let θΘ

Ck
be

the local state of Ck in state Θ. Then define Θ such that for all Ck ∈ S :

θΘ
Ck

=

{
θ1 if θΘ

Ck
= θ0;

θ0 if θΘ
Ck

= θ1.

The state Θ is the mirror image of Θ. It requires that all source SCCs
switch away from the local convention they follow under Θ. This incurs
the largest number of changes in local conventions. The Coradius of Θ is
therefore the minimum number of mistakes needed to go from Θ to B(Θ).

In the next sections, we study the stochastic stability of the system first
with BR, and then with IM. The reason for such split resides in the role,
or absence of role, played by the matching network in computing radius and
coradius.

3.2.2 BR and Stochastic Stability: The Non Role of the Matching
Network

Since BR depends only on frequency of plays and ignores payoffs, the match-
ing network is irrelevant in determining stochastic stability. Hence, under
BR, the stochastic stability of the system is relatively straightforward and
entirely deducted from the properties of the information network. Denote
dxe the value of x if x is an integer, or the integer part of x+ 1 if x is not an
integer.

Proposition 2 Consider an arbitrary information network and a matching
network satisfying Assumptions 1 and 2. All agents play BR. Denote K the
number of source SCCs which follow θ1 under Θ. We have,

R(Θ) =

{
d(1− q)se if Θ 6= Θ0;
dqse if Θ = Θ0.

and

CR(Θ) = K dqse+ (Card(S)−K) d(1− q)se
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Thus, if s ≤ m/2 and Card(S) < dqse
d(1−q)se the uniform convention Θ0 is

stochastically stable.

Proof: See Appendix.

Proposition 2 states that given some restrictions on the sample size with
respect to the risk dominant coefficient, the memory size of the agents and the
number of SCCs, we find that when agents use best reply, the risk dominant
uniform convention is stochastically stable. In particular, when Card(S) = 1,
i.e. when the information network contains only one strongly connected
component, the expression Card(S) < dqse

d(1−q)se is always true. Hence, when
looking at connected undirected information graphs, such a rings, if agents
use best reply, the risk dominant uniform convention prevails in the long run.
This corroborates results by Ellison [5] and Durieu and Solal [4].

Furthermore, since the matching network plays no role in determining
stochastic stability with BR, whether or not matchings occur only between
neighbors is irrelevant. Hence, with BR, we can have a complete indepen-
dence of the two networks and still draw some conclusion regarding the
stochastic stability of the system. This is not however the case with IM.

3.2.3 IM and Stochastic Stability: The Interdependence of the
Networks

When all agents play IM, some assumptions tying up the two networks are
more often than not required to get analytical results. One possibility, as
seen earlier, is to restrict matchings to occur only between neighbors, but
this would curtail our analysis. Another option is therefore to relax slightly
this assumption to accommodate an environment with asymmetric informa-
tion. In this case, matchings would only occur between agents who exchange
some information, i.e. they do not have to both considered each other as
neighbors. But this would still impose quite a strong dependence between
the two networks and we would rather try keeping this dependence at a
minimum.

In order to achieve this, we introduce the notion of information hub. The
information hub of a given source SCC, say Ck, is the set of SCCs, including
Ck, whose agents can be reached through a directed path from some agents
in Ck. Define PCk

the set of such SCCs, excluding Ck. Formally,

PCk
= {Cl ∈ C \ Ck s.t ∃ i ∈ Ck and ∃ j ∈ Cl for which Pij exists}.
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The information hub of Ck is therefore defined as:

HCk
= PCk

∪ Ck

In the example presented in Figure 1 Panel B, there are three information
hubs: HC1 = {C1, C2, C3, C4, C5, C6}, HC7 = {C6, C7, C8} and HC9 = {C9}.
In what follows, we use this example to illustrate how the existence or nonex-
istence of matchings between agents from different information hubs can af-
fect the computation of radii.

Suppose that the system presented in Figure 1 Panel B is in an absorbing
state Θ∗ where C9 follows θ0 while all other SCCs follow θ1. This is absorbing
set # 1 in Table 1. To leave B(Θ∗), some mistakes from agents in either C1,
C7 or C9 are required, so that one of these three SCCs can depart from its
current local convention and possibly never return to it.

We first consider C9. The number of mistakes needed from some agents
in C9 to leave B(Θ∗) depends on the matchings that can be realised. If
agents from C9 cannot be paired with agents from other hubs, then two
simultaneous mistakes made by two paired agents in C9 are necessary. This
allows the highest payoff to be sampled, and hence, makes it possible for the
system to leave B(Θ∗). If however an agent from C9 can be matched with an
agent outside C9 and makes the mistake of playing action 1, one mistake is
enough. This agent from C9 then gets the highest possible payoff, which can
then be sampled by other agents in C9 and prompt them to switch action,
thus allowing the system to depart from B(Θ∗).

Another possibility for the system to depart from B(Θ∗) is to consider
agents in either C1 or C7. Consider C1. For C1 to possibly lead the system
out of B(Θ∗), it requires s mistakes from one of its agents. Agents within C1

can then draw samples which only contain action 0 and thus switch to action
0. This is enough for the system to depart from B(Θ∗). It is worth noting
that in this last case the number of mistakes is independent of the matching
network. This is because the payoffs generated by action 0 cannot surpass
those from action 1.

From our example, it is clear that R(Θ∗) is contingent upon two things:
the sample size, and the ties existing between the information network and
the matching network. If s = 1, then R(Θ∗) = 1, no matter the ties between
the matching network and the information network. If s > 1 however, R(Θ∗)
is either 1 or 2, depending on whether agents from distinct information hubs
can be matched.
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We therefore consider two possible scenarios: one that allows matchings
within and between information hubs and one that restricts matchings within
information hubs. These two scenarios are formally captured by the following
two assumptions.

In Assumption 5, agents from different information hubs can be paired;
however, these kind of matchings can remain sparse and infrequent.

Assumption 5 For any HCk
and HCl

, there exist agent i ∈ Ck and agent
j ∈ HCl

such that mij = 1

With Assumption 5, the propagation of mistakes is made easier, as il-
lustrated earlier when agents from C9 could be matched with agents from
other information hubs. The radius of absorbing sets computed under this
assumption are therefore expected to be lower than those computed under
the next assumption.

Assumption 6 captures the possibility that some segregation exists be-
tween information hubs, as exemplified earlier when agents from C8 could
only be paired with themselves. Agents from different information hubs can-
not be paired. Furthermore, if two information hubs happen to have common
SCCs, then agents within these SCCs can only be matched with themselves.
This makes it harder for a source SCC to leave its current local convention,
and hence makes it harder for the system to leave the basin of attraction of
its current absorbing set.

Assumption 6 For any HCk
and HCl

, if HCk
∩ HCl

= ∅, there is no agent
i ∈ HCk

and no agent j ∈ HCl
such that mij = 1. Furthermore, if HCk

∩
HCl

6= ∅ then for any agent i ∈ {HCk
∩HCl

}, mij = 1 only if agent j ∈
{HCk

∩HCl
}.

We are now in a position to compute the radius of every absorbing set, and
we start by computing the radius of both uniform conventions. The reason
for the separation between these two states and other absorbing sets is based
on the fact that when the system follows a uniform convention, the matching
network is irrelevant when computing the radius of either convention.

Lemma 1 Consider an arbitrary information network and a matching net-
work satisfying Assumptions 1 and 2. All agents use IM. Then, R(Θ0) = 2
and R(Θ1) = s.

20



Proof: Consider Θ0 and Ck ∈ S. We have θCk
= θ0. If agent i ∈ Ck,

and the agent is paired with simultaneously make the mistake of playing ac-
tion 1, then agent i’s memory contains the highest possible payoff. Agent i’s
neighbors can then sample this payoff and thus choose action 1. This also
applies to the neighbors of agent i’s neighbors and so on. This is enough to
leave B(Θ0). Hence, R(Θ0) = 2.
Similarly, we compute the radius of Θ1. Consider Ck ∈ S which follows a
local convention θ1. The system can leave B(Θ1), if one agent in Ck makes s
successive mistakes of playing action 0 rather than action 1. This is because
the neighbors of this agent can then draw samples uniquely composed of ac-
tion 0 thus choosing action 0 themselves. Applying this reasoning recursively
to the neighbors of these agents, and then the neighbors of the neighbors of
these agents and so on, we have left B(Θ1). Hence, R(Θ1) = s.
End of Proof.

We now compute, under Assumption 5, the radius of absorbing sets that
are distinct from uniform conventions:

Lemma 2 Consider an arbitrary information network and a matching net-
work satisfying Assumptions 1, 2 and 5. All agents use IM. Then, R(Θ) = 1
for any absorbing set Θ 6= Θ0,Θ1.

Proof: Since Θ 6= Θ1,Θ0, there exist Ck ∈ S and Cl ∈ S such that
θCk

= θ0 and θCl
= θ1. Also, from Assumption 5, there exist i ∈ Ck and

j ∈ Cl such that mij = 1. Hence, there is a positive probability that agents i
and j are paired and that agent i mistakenly chooses action 1, thus recording
the highest possible payoff in his memory. Applying a similar reasoning to
the one developed in the proof of Lemma 1, we have left B(Θ) . Hence,
R(Θ) = 1.
End of Proof.

Then, under Assumption 6:

Lemma 3 Consider an arbitrary information network and a matching net-
work satisfying Assumptions 1, 2 and 6. All agents use IM. Then, for any
absorbing set Θ 6= Θ0,Θ1

R(Θ) =

{
2 if s ≥ 2;
1 if s = 1.
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Proof: Since Θ 6= Θ1,Θ0, there exist Ck ∈ S and Cl ∈ S such that
θCk

= θ0 and θCl
= θ1. From Assumption 6, agents in Ck [resp. Cl] cannot

be matched with agents from a SCC which follows θ1 [resp. θ0]. To leave
B(Θ), one agent from Ck and the agent is matched with can make two
simultaneous mistakes. Or, an agent in Cl can make s successive mistakes.
Using the arguments presented in the proof of Lemma 1, we can see that the
value of the radius of Θ depends then on the sample size. It is 2 if s ≥ 2, 1
otherwise.
End of Proof.

A couple of remarks regarding the possible candidates for stochastic sta-
bility are in order. From Lemma 1, we can see that if s = 1, the unit value
of R(Θ1) makes it impossible for Θ1 to satisfy the condition R(Θ) > CR(Θ).
Under Assumption 5, the same conclusion arises from Lemma 2 for any s
and any Θ 6= Θ0,Θ1. Finally, Lemma 3 shows that if s = 1, no stochastically
stable sets can be identified under Assumption 6.

Although we could have narrowed down our focus to a reduced number
of candidates for stochastic stability, we chose to present here the general
results for the computation of coradii.

Denote by Card(S) the total number of source SCCs and by 0 ≤ K ≤
Card(S) the number of source SCCs which follow θ1 under Θ. By definition,
K is also the number of source SCCs which follow θ0 under Θ.

Lemma 4 Consider an arbitrary information network and a matching net-
work satisfying Assumptions 1 and 2. All agents use IM. Then, for any
absorbing set Θ

CR(Θ) =

{
sCard(S) +K(1− s) if Assumption 5 is satisfied;
sCard(S) +K(2− s) if Assumption 6 is satisfied.

Proof: Consider Θ and denote K the number of source SCCs which follow
θ1 under Θ. The number of source SCCs which follow the local convention θ0

under Θ is therefore equal to Card(S)−K. We need to compute the umber
of mistakes needed to go from Θ to Θ. This means that Card(S)−K source
SCCs need to switch convention from θ1 to θ0, and K source SCC should go
from θ1 to θ0.

When Assumption 5 is satisfied, only one mistake per source SCC follow-
ing Θ0 is needed to switch local convention, and s mistakes are needed per
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source SCCs following Θ1 to have them also switch their local convention.
Hence, CR(Θ) = s(Card(S)−K)+K = sCard(S)+K(1−s) if Assumption
6 is satisfied.

With Assumption 6, since source SCCs following θ0 cannot be matched
with SCCs where agents play action 1. Hence, each of these SCCs will require
two mistakes to switch local convention. Furthermore, s mistakes per source
SCC following θ1 is needed. This number is independent of the possible
matchings. Therefore, CR(Θ) = s(Card(S)−K)+2K = sCard(S)+K(2−s)
if Assumption 6 is satisfied.
End of Proof.

Note that in particular, the computation of CR(Θ0) is invariant to match-
ing changes.

The following result is probably our most general result, in terms of net-
works, as it does not require further assumptions than Assumption 1 and 2.
It states that when the sample size is exactly 1, and the information network
presents only one SCC, the risk dominant convention is stochastically stable.

Proposition 3 Consider an arbitrary information network and a matching
network satisfying Assumptions 1 and 2. All agents use IM. If Card(S) =
s = 1 and s ≤ m/2, then Θ0 is stochastically stable.

Proof: From Lemma 1, R(Θ0) = 2 . Furthermore, If Card(S) = 1 and
s = 1 then CR(Θ0) = 1, thus R(Θ0) > CR(Θ0).
End of Proof.

Proposition 3 corroborates the statement made by Alós-Ferrer and Wei-
denholzer [1] who acknowledge that their efficiency result relies heavily on
the fact that agents always observe the information of agents they interact
with.

As the coradius of any absorbing set other than Θ0 depends on the match-
ing network, we now consider the stochastic stability of the system under
Assumption 5 and Assumption 6 respectively. First, with Assumption 5, we
already noted that the only absorbing set worth looking at, other than Θ0,
is Θ1. This is because the radius of any absorbing set other than the two
uniform conventions is equal to one. Hence the value of their coradius can-
not be lower. Given some conditions on the sample size, it turns out that Θ1

is stochastic stable when matchings between agents from different hubs are
allowed.
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Proposition 4 Consider an arbitrary information network and a matching
network satisfying Assumptions 1, 2 and 5. All agents use IM. If Card(S) <
s < m/2, then Θ1 is stochastically stable.

Proof: From Lemma 1, R(Θ1) = s. Furthermore, from Lemma 4, un-
der Assumption 5, CR(Θ1) = Card(S). Hence, if s > Card(S) = 1 then
R(Θ1) > CR(Θ1).
End of Proof.

In Proposition 4, the matching between agents from different informa-
tion hubs makes it easier for SCCs to switch local conventions. This leads
to a decrease in coradius, but it also leads to a decrease in the radii of ab-
sorbing sets that are not uniform conventions, thus precluding them from
being stochastically stable. The stochastic stability of the uniform efficient
convention is confirmed when Assumption 5 is replaced with Assumption 6.
However, the requirements regarding the sample size differ and the allowed
range becomes narrower in most cases.

Proposition 5 Consider an information network and a matching network
satisfying Assumptions 1, 2 and 6. All agents use IM. If 2Card(S) < s <
m/2, then Θ1 is stochastically stable.

Proof: From Lemma 1, R(Θ1) = s. Furthermore, from lemma 4, under
Assumption 6, CR(Θ1) = 2Card(S). Hence, if s > 2Card(S) = 1 then
R(Θ1) > CR(Θ1).
End of Proof.

When agents imitate, and given some conditions on the sample size, the
Pareto efficient convention is stochastically stable, whether matchings be-
tween information hubs are allowed or not, as shown in Proposition 5. Al-
though these results tend to confirm the conclusions made by Alós-Ferrer
and Weidenholzer [1], they also show the sensitivity of the requirements re-
garding the sample size to the matching network. Broader matchings, i.e
matchings between agents who belong to different information hubs, widen
the sample size’s possible range, thus making the stochastic stability of the
efficient uniform convention more likely.
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4 Conclusion

This paper models information exchanges and possible matchings between a
finite number of agents using two distinct networks. We fully characterize
medium run outcomes for arbitrary networks, and show that these results
are independent of the matching network and the decision rule used by the
agents. In other words, for medium run predictions, only information mat-
ters.

In the long run, we show that the risk dominant uniform convention pre-
vails when agents are best repliers, and that it may also arise when agents
imitate. The first case, illustrated by Proposition 2, requires the sample size
to be within some bounds characterized by the memory of the agents, the
coefficient of risk dominance and the number of strongly connected compo-
nents. The latter case, as shown by Proposition 3, requires a sample size
equal to one and an information network containing only one strongly con-
nected component. These results are insensitive to variations of the matching
network.

Finally, the uniform efficient convention is proven to be stochastically
stable when agents imitate and the sample size belongs to some range which
depends once again on the memory of the agents as well as the number of
strongly connected components of the information network. The long run
efficiency however, as stated in Proposition 4 and Proposition 5, is sensitive
to the matching network. Broader matching opportunities seem to promote
efficiency by expanding the range of values the sample size can take.
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5 Appendix

5.1 Proof Proposition 1

We define Rk, the set of SCCs containing agents who are neighbors to some
agents in Ck, as follows:

Rk = {Cl ∈ C \ Ck s.t ∃ i ∈ Cl and ∃ j ∈ Ck with gij = 1}.

Without loss of generality, let all source SCCs be of order 1. Denote OCk

the order of Ck ∈ C and define it as:

OCk
= maxCl∈Rk

OCl
+ 1

This creates a partial order on the SCCs of the information network.
This partial order is used to describe how a given action propagates from
one SCC to another. In what follows, we first show that the states described
in Proposition 1 are either absorbing or part of an absorbing set. We then
demonstrate that these absorbing states are reached with positive probability
from any arbitrary state.

First, consider Ck ∈ S. By definition, @ i ∈ Ck and @ j ∈ I \Ck such that
gji = 1. Hence if θCk

= θp with p either 0 or 1, then agents in Ck can only
sample action p, thus maintaining the status quo. Therefore, when a source
SCC follows a local convention, it never leaves it.

Consider now Ck ∈ C, with OCk
= 2. By definition, ∃ i ∈ Rk and ∃ j ∈ Ck

such that gij = 1. This means that some agents in Ck can sample the
actions of some agents in Rk. If θCl

= θp for all Cl ∈ Rk, then agents in
Ck can only sample action p outside of Ck. Since θCk

= θp as per condition
2 of Proposition 1, no agents in Ck can sample an action different from p
and hence, agents keep playing the same action. Applying this reasoning
recursively to all SCCs of order greater than 2, one can see that if condition
2 is satisfied, then no agents will change their action.

Therefore, when both conditions are satisfied, the system is in an ab-
sorbing state or set. Note that nothing is mentioned in Proposition 1 when
∃ Cl ∈ Rk and ∃ Cm ∈ Rk such that θCl

6= θCm . In this case, agents in Ck

may sample different actions outside of Ck and hence Ck may not follow a
local convention. This can happen in an absorbing set.

The reasoning presented above holds whether all agents play BR or IM.
We now need to show that these absorbing sets can be reached with positive
probability from any arbitrary state.
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Consider an arbitrary state Θ and without loss of generality let C1 ∈ S.
Pick agent i in C1. With positive probability, since s ≤ m/2, agent i can
sample the same set of actions for s periods. Agent i thus plays a unique
strategy p∗ for his s most recent plays. From here, it is possible that agent
i has a memory uniquely composed of p∗, as he can sample from himself. If
agent i is the only agent in C1, then C1 follows a local convention.

If card(C1) > 1, let Ai = {j ∈ C1 s.t gij = 1}. We apply the same rea-
soning as the one presented above to all agents in Ai ∪ C1. We then do so
recursively to all agents whose neighbors belong to Ai ∪C1 and so on. Thus,
C1 can follow a local convention. Whether θC1 = θ1 or θC1 = θ0 depends on
agent i’s initial sample.

By applying a similar argument to all Ck ∈ S, we show that there is a
positive probability that from any arbitrary local state, all source SCCs can
follow a local convention. Once this is the case, we know that the local state
within each of the source SCCs will not change.

Consider now Ck ∈ C\S, with OCk
= 2. By definition, ∃ i ∈ Ck and ∃ j ∈

Lk such that agent i can sample the same action p form periods from an agent
in one of the source SCCs. In which case, the memory of this agent in Ck

who samples information from outside Ck contains only action p. Following
the reasoning described above, all agents in Ck can then have a memory
containing only action p. Furthermore, if all Cl ∈ LCk

follow the same local
convention θp, then θCk

= θp for all periods after that.
To complete the proof, the steps described above are repeated to SCCs

of order 3, then to SCCs of order 4, and so on. This shows that the only
absorbing sets are those described in Proposition 1.

5.2 Proof Proposition 2

Consider Ck ∈ S with θCk
= θ1. With positive probability, one agent within

Ck, agent i, can make d(1− q)se successive mistakes. All agents in Ni ∩ Ck

can then sample the string of mistakes and play 0 for s periods. This is
enough to create a memory containing only action 0 for all agents in Ni∩Ck.
The same reasoning can be applied to the neighbors of these agents, and the
neighbors of the neighbors of these agents within Ck until θCk

= θ0.
A similar argument applies to Ck ∈ S with θCk

= θ0. In this case, dqse
mistakes are needed to switch from θ0 to θ1.

Since we consider games where q ≥ 1/2, we have dqse ≥ d(1− q)se.
Hence,

28



R(Θ) =

{
d(1− q)se if Θ 6= Θ0;
dqse if Θ = Θ0.

Consider Θ and denote K the number of source SCCs which follow θ1

under Θ. The number of source SCCs which follow the local convention θ0

is therefore equal to Card(S) − K. Thus, under Θ, K source SCCs follow
θ0, and Card(S) − K source SCCs follow Θ1. Using the above arguments,
we find that:

CR(Θ) = K dqse+ (Card(S)−K) d(1− q)se

Finally, the condition R(Θ) > CR(Θ) is satisfied when d(1− q)se >
K dqse + (Card(S) − K) d(1− q)se for Θ 6= Θ0, and dqse > K dqse +
(Card(S)−K) d(1− q)se for Θ = Θ0.

But since dqse
d(1−q)se > 1 and k+1−Card(S)

k
≤ 1, no state Θ 6= Θ0 satisfies the

condition R(Θ) > CR(Θ). However, when Θ = Θ0 and hence K = 0, the

condition becomes Card(S) < dqse
d(1−q)se and can be satisfied for some s and

Card(S).
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