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Abstract

Many universities in the US o¤er on-campus housing opportunities to incoming as well as

already enrolled students. Recent research has theoretically as well as experimentally shown

that the most common student assignment mechanism used in the US is subject to serious

e¢ ciency losses. In this paper we �rst show that a particular mechanism which is currently

in use at the MIT for about two decades is in fact equivalent to a natural adaptation of

the well-known Gale-Shapley mechanism of two-sided matching theory. Motivated from the

increasing popularity and success of the Gale-Shapley mechanism in a number of markets,

we next experimentally compare the performances of the MIT mechanism with that of the

leading theory mechanism Top Trading Cycles. Contrary to theory, the MIT mechanism

performs better in terms of e¢ ciency and participation rates, while we observe no signi�cant

di¤erence between the two mechanisms in terms of truth-telling rates.
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1 Introduction

Since the seminal work of Gale and Shapley (1962), matching markets have been the focus of a

growing theoretical and experimental mechanism design literature. The design of the National

Resident Matching Program (cf Roth, 1984; and Roth and Peranson, 1999), the design of cen-

tral student placement mechanisms for US public schools (cf Abdulkadiroglu and Sönmez, 2003;

Abdulkadiro¼glu, Pathak, Roth, and Sönmez, 2005; and Erdil and Ergin, 2007), the design of cen-

tral kidney exchange clearing-houses for kidney patients (cf Roth, Sönmez, and Ünver, 2004 &

2007), and studies on unraveling in a number of matching markets (cf Roth and Xing, 1994; and

Frechette, Roth, and Ünver, 2008) are some popular examples of the recent literature.

The subject of the present paper is another common matching application observed in real-

life. A house allocation problem consists of a set of agents and a set of indivisible objects (e.g.,

houses) that needs to be allocated among agents. Typical examples are assignment of tasks to

workers, o¢ ces to professors, parking spaces to commuters, houses to prospective tenants, etc. A

commonly observed example of this problem in the universities in the US is the assignment of

housing units (or, dormitory rooms) to students. Speci�c to this application, not all participants

have equal rights over each housing unit prior to the central assignment procedure. There may,

for example, be existing tenants, who may already be occupying a house, and yet seeking a

better one. This variation of the problem is known as the house allocation problem with existing

tenants (Abdulkadiroglu and Sönmez, 1999). The present paper takes a theoretical as well as an

experimental approach to this problem.

A house allocation problem with existing tenants consists of two pieces of information: (1) a

priority ordering over all agents, determined by the assignment policies of the particular university

based on seniority, GPA, result of a lottery draw etc.; (2) a list of preferences of each agent

over housing types, typically a rank-ordered-list of housing types which each agent decides upon

comparing di¤erent housing types available. An assignment mechanism is a systematic procedure

that chooses an assignment of agents to available housing units based on the aforementioned two

pieces of information.
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The performance of a mechanism is basically evaluated on four merits: (1) individual rationality

(i.e., an existing tenant should be encouraged to participate by giving the guarantee of a house that

is no worse than her current house); (2) e¢ ciency (i.e., resources should be optimally allocated

according to the likings of agents); (3) fairness (i.e., the assignment should respect the priority

order), and (4) incentive compatibility (i.e., each agent should be induced to act straightforwardly,

and reveal her true preferences). Abdulkadiroglu and Sönmez (1998) examine some of the real-

life mechanisms used in universities in the US, and show that most mechanisms currently in

use lack either e¢ ciency or individual rationality. They show that, quite surprisingly, the most

common mechanism in the US, the random serial dictatorship with squatting rights (RSDwSR)1

lacks both of these properties, mainly because it discourages existing tenants from participating

in the assignment procedure, and consequently results in loss of potentially large gains from trade.

They propose an alternative mechanism called the top trading cycles (TTC)2 mechanism. TTC

fully achieves the �rst three properties. It achieves fairness in a weak3 sense. Chen and Sönmez

(2002, 2004) experimentally compare the performances of TTC and RSDwSR, and �nd TTC to

be signi�cantly more e¢ cient than the popular real-life mechanism RSDwSR.

The school choice problem is an important extension of the present problem. Di¤erently

than house allocation problems, in a school choice problem each school has a multiple capacity

of students it can admit, and typically a distinct priority ordering (which, for each school, is

determined according to speci�c policies of school districts). After being advocated as a promising

school choice mechanism by the pioneers of school choice, the well-known Gale-Shapley mechanism

of two-sided matching theory has gained increasing popularity among school districts in the US

and replaced two de�cient mechanisms in the New York City (Abdulkadiro¼glu, Pathak, and Roth,

2005) and Boston (Abdulkadiro¼glu, Pathak, Roth, and Sönmez, 2005).

1RSDwSR works as follows: Given a priority ordering over participants, the �rst agent is assigned her top choice,
the next agent is assigned her top choice among the remaining houses and so on.

2Top trading cycles based mechanisms have been extensively studied in recent inidivisible goods allocation
problems. Two such problems that attracted much attention are the school choice problem and the kidney exchange
problem.

3Precisely speaking, in the following sense: Given a priority ordering of agents, under TTC it is possible that
an agent may get a house worse for him than the house an agent with lower priority gets. In fact, when this is the
case, the lower priority agent is an existing tenant.
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Motivated by the success of the Gale-Shapley mechanism in school choice as well as in two-

sided matching markets (such as the National Resident Match; Roth and Peranson, 1997), we

o¤er a natural and intuitive adaptation of the Gale-Shapley mechanism to the present context.

In terms of our desidereta, this adaptation achieves individual rationality, incentive compatibility,

and fairness.

First we show that this adaptation of the Gale-Shapley mechanism is in fact equivalent to

a mechanism, namely the NH4 mechanism, that has already been in use at the MIT for about

two decades (Theorem 1). To the best of our knowledge, so far there have been two similar

reports on the coincidence of a real-life mechanism with a Gale-Shapley mechanism. The �rst

such report is due to Roth (1984) who showed that the mechanism used by the National Resident

Matching Program in the US since 1951 till the last decade of the last century to assign medical

interns to hospital positions is actually an exact equivalent of the hospital-proposing Gale-Shapley

mechanism. Later Balinski and Sönmez (1999) showed that the multi-category serial dictatorship,

a mechanism used in student placement in colleges in Turkey, is also equivalent to the college-

proposing Gale-Shapley mechanism. However, di¤erently than these two equivalences, ours is an

equivalence of the student-proposing Gale-Shapley mechanism. This result in turn implies that the

NH4 mechanism is indeed Pareto superior to any individually rational mechanism that respects

the given priority ordering of agents (Corollary 1).

There exists a tradition of using laboratory experiments in order to test matching problems

related to di¤erent real-world applications: Olson and Porter (1994), Nalbantian and Schotter

(1995), Harrison and McCabe (1996) and, Kagel and Roth (2000) among them. We conducted

a laboratory experiment in order to compare the performances of NH4 with TTC, the leading

theory mechanism, when participants are not fully rational. Notice that ours is also a �eld

experiment: our US college student subject pool very much coincides with the population likely

to participate in college housing schemes. We �nd that the NH4 mechanism performs better in

terms of participation rates, and it is at least as good as TTC in terms of e¢ ciency. We do not

observe any signi�cant di¤erence between the two mechanisms in terms of truth-telling rates.
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2 The Model

Prior to the centralized assignment procedure each existing tenant chooses whether to participate

in the procedure or not. Then a house allocation problem with existing tenants (Abdulkadiroglu

and Sönmez, 1999), or a problem for short, is given by4

� a �nite set of existing tenants IE+ who have chosen to participate,

� a �nite set of existing tenants IE� who have chosen not to participate,

� a �nite set of new applicants IN ;

� a �nite set of occupied houses HO = fhigi2IE+[IE� ;

� a �nite set of vacant houses HV ;

� an ordering f over all agents but the non-participating existing tenants, and

� a list of strict preference relations P = (Pi)IE+[IN of all agents but the non-participating

existing tenants.

Often times we will suppress the �rst six components assuming that they are exogenously given

and �xed. We denote an agent�s outside option by the null house h0: Let I = IE+ [ IE� [ IN

denote the set of all agents, and H = HO [HV [ fh0g denote the set of all houses plus the null

house. Every existing tenant i 2 IE is endowed with (i.e., currently lives in) an occupied house

hi 2 HO: For expositional simplicity, we assume that the null house is the last option for each

agent.

An allocation � is a list of assignments such that (1) every agent is assigned one house; (2) no

house other than the null house is assigned to more than one agent; and (3) every non-participating

existing tenant is assigned her own house. Let �(i) denote the assignment of agent i under �:

A mechanism ' is a systematic procedure that chooses an allocation for each problem. Let

'(P ) denote the allocation chosen by ' for the problem P:

4Since our focus will be on individually rational mechanisms, we use a simpler version of the model proposed
in Abdulkadiroglu and Sönmez (1998) to facilitate exposition. In particular, our analysis neglects the e¤ect of the
choice of the assignment mechanism on the formation of the set of non-participating existing tenants.
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2.1 Properties of mechanisms

We next de�ne four desirable properties of mechanisms:

Individual rationality: No participating existing tenant ever gets a house that is worse than

her endowment. (i.e., for every i 2 IE+ and every problem P; 'i(P ) Ri hi.)

Pareto e¢ ciency: The outcome cannot be Pareto improved, i.e., there is no allocation at which

all agents are at least as well o¤ and at least one agent is strictly better o¤. (i.e., for every problem

P; there is no � such that �(i) Ri 'i(P ) for all i 2 I and �(j) Pj 'j(P ) for some j 2 I:)

Fairness: Among all the agents but the non-participating existing tenants, if an agent ever prefers

another agent�s assignment, then either (1) the other agent has higher priority (according to the

priority ordering); or (2) the other agent is an existing tenant who is assigned her own house.

(i.e., for every problem P and every i; j 2 IE+ [ IN ; if 'j(P ) Pi 'i(P ); then either f(j) < f(i) or,

'j(P ) = hj:)

Incentive compatibility (strategy-proofness): Among all the agents but the non-participating

existing tenants, it is a dominant strategy for each agent to truthfully report her preferences. (i.e.,

for every problem P; every i 2 IE+ [ IN ; and every P 0i ; 'i(P ) Ri 'i(P 0i ; P�i):)

We start with a negative result. It turns out any three of the above four properties are com-

patible except for the �rst three:

Proposition 1: No mechanism is individually rational, Pareto e¢ cient, and fair.

Proposition 1 is in the same spirit as the classical impossibility between stability and Pareto

e¢ ciency in two-sided matching due to Roth (1982). Other similar results were also given in

Balinski and Sönmez (1999) and Ergin (2002).
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3 Two mechanisms

3.1 Top Trading Cycles

Abdulkadiroglu and Sönmez (1998) propose the top trading cycles (TTC) mechanism which is

based on Gale�s top trading cycles idea (Shapley and Scarf, 1974). Mechanisms based on this idea

have been proposed and extensively studied in the recent literature mainly for two other important

problems: the school choice problem (Abdulkadiroglu and Sönmez, 2003) and the kidney exchange

problem (Roth, Sönmez, and Ünver, 2004).

TTC works as follows: Consider a given house allocation problem with a given priority ordering

f of agents. Assign the �rst agent (according to f) his top choice, the second agent his top choice

among the remaining houses, and so on, until someone demands the house of an existing tenant.

If at that point the existing tenant whose house is demanded is already assigned a house, then

do not disturb the procedure. Otherwise modify the remainder of the ordering by inserting him

to the top and proceed. Similarly, insert any existing tenant who is not already served at the

top of the line once his or her house is demanded. If at any point, a loop forms, it is formed by

exclusively existing tenants and each of them demands the house of the tenant next in the loop.

(A loop is an ordered list of agents (i1; i2; : : : ; ik) where agent i1 demands the house of agent i2;

agent i2 demands the house of agent i3; : : : ; agent ik demands the house of agent i1:) In such cases

remove all agents in the loop by assigning them the houses they demand and proceed.

TTC is Pareto e¢ cient, individually rational, and incentive compatible. Chen and Sönmez

(2002) report that TTC is signi�cantly more e¢ cient than popular real-life mechanism RSDwSR.
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3.2 MIT-NH4 Mechanism

The following mechanism is in use at residence NH4 of MIT. Consider a given house allocation

problem with a given priority ordering f of agents:

1. The �rst agent (according to f) is tentatively assigned his top choice among all houses, the

next agent is tentatively assigned his top choice among the remaining houses, and so on, until a

squatting con�ict occurs.

2. A squatting con�ict occurs if it is the turn of an existing tenant but every remaining house

is worse than his current house. That means someone else, the con�icting agent, is tentatively

assigned the existing tenant�s current house. When this happens

(a) the existing tenant is assigned his current house and removed from the process, and

(b) all tentative assignments starting with the con�icting agent and up to the existing tenant

are erased.

At this point the squatting con�ict is resolved and the process starts over with the con�icting

agent. Every squatting con�ict that occurs afterwards is resolved in a similar way.

3. The process is over when there are no houses or agents left. At this point all tentative

assignments are �nalized.

It is not very di¢ cult to show that the NH4 mechanism achieves all the desirable properties

except Pareto e¢ ciency.
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4 A modi�ed Gale-Shapley mechanism & an equivalence

The Gale-Shapley mechanism has long dominated two-sided matching theory5 due to its attractive

stability6 and incentive features (Dubins and Freedman, 1981 and Roth, 1982). It has also been

adopted by a number of real-life matching markets (see Roth and Rothblum, 1999 for an extensive

list of these markets) as a much more satisfactory alternative to the de�cient mechanisms it

replaced. The most recent success of the Gale-Shapley mechanism has been in school choice

problems. Shortly after its proposal for school choice by Abdulkadiroglu and Sönmez (2003),

the Gale-Shapley mechanism has attracted the attention of education authorities in NYC and

Boston, and replaced two controversial school choice mechanisms in these places. Even though

school choice and the present problem are mathematically similar,7 no counterpart of the popular

Gale-Shapley mechanism has so far been considered for house allocation.

We �rst transform the present problem into a school choice problem, and next propose a direct

adaptation of the Gale-Shapley mechanism. In a school choice problem, for each school there is

a (possibly di¤erent) priority ordering determined based on speci�c criteria of school districts.

Using the given priority ordering f of agents, �rst construct a priority ordering for each house as

follows:

(1) if it is a vacant house, then the corresponding ordering for this house is also f ,

(2) if it is an occupied house, then assign the highest priority for this house to the corresponding

existing tenant, and assign the remaining priorities without changing the relative ordering of the

remaining agents.

Given the constructed priority ordering for each house, the outcome of the modi�ed Gale-

Shapley mechanism is computed by applying the following deferred acceptance algorithm (Gale

and Shapley, 1962):

5See Roth and Sotomayor (1990) for a comprehensive survey on two-sided matching.
6In two-sided matching a matching is stable if no two partcipants from the two sides of the market would refuse

their current matches and rather form a blocking coalition with each other. Also see Kelso and Crawford (1982)
and Hat�eld and Milgrom (2005) for more on stability.

7The di¤erences between the two are: (1) in school choice, for each school there is a separate (often di¤erent)
priority ordering of students, and (2) in school choice, individual rationality is irrelevant since there is no counterpart
of existing tenants.
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Step 1: Each agent applies to his top choice house. For each house, consider its applicants.

The agent with the highest priority according to the priority ordering for that house is tentatively

placed. The rest are rejected.

In general;

Step k: Each rejected agent applies to his next top choice house. For each house, consider its

applicants at this step together with the agent (if any) who is currently tentatively placed to it.

Among these, the agent with the highest priority according to the priority ordering for that house

is tentatively placed. The rest are rejected.

The process is over when no agent is rejected any more.8

Much to our surprise the above natural modi�cation of the Gale-Shapley deferred acceptance

procedure in fact yields the same outcome as the NH4 mechanism.

Theorem 1: The NH4 mechanism and the modi�ed Gale-Shapley mechanism are equivalent.

Theorem 1, to the best of our knowledge, is the third reported coincidence of the Gale-Shapley

deferred acceptance procedure with a real-life mechanism. Interestingly, the NH4 mechanism is

an agent-proposing deferred acceptance procedure as opposed to the previously reported ones.

The equivalence in Theorem 1 allows NH4 to claim all the attractive properties of Gale-Shapley

mechanism. By Balinski and Sönmez (1999) the following corollary is now immediate.

Corollary 1: The NH4 mechanism (as well as the modi�ed Gale-Shapley mechanism) Pareto

dominates any other fair and idividually rational mechanism.

The leading theory mechanism for house allocation TTC and mechanism NH4 of the MIT both

satisfy three of the four properties in our desiderata. Theory suggests that TTC has the edge in

terms of e¢ ciency and NH4 in terms of fairness. Our next goal will be to experimentally contrast

the two mechanisms. This is the subject of the next section.
8Note that since the capacity for the null house is unlimited, any agent who applies to it, is assigned this house.
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5 Experimental Design

Our design compares the performance of NH4 and TTC in terms of e¢ ciency, participation of

existing tenants and truthful preference revelation. We implemented two treatments which di¤er

only in the house allocation mechanism. We tried to keep our design as close as possible to the

one in Chen and Sönmez (2002).

We ran �ve replications, or �ve independent groups, for each treatment. Each replica was run

in a separate session at the CLER experimental lab, Harvard Business School during Spring and

early Summer 2006. We used Urs Fischbacher�s z-Tree package [Fischbacher (2007)]. Each group

consists of 12 participants. Participants #1 to #8 are existing tenants. Participants #9 to #12

are newcomers. There are also 12 houses of 8 di¤erent types to be allocated. House types go from

A to H. Participants #1 to #12 are existing tenants, each living in a house type A to H. There

are four additional vacant houses of types A, B, C and D. Table 1 shows the payment for each

participant as a result of the house type she gets at the end of the experiment. A square bracket,

[ ], shows that the participant is an existing tenant of a house of the speci�ed type. For instance,

participant #2 lives in a type B house. She gets $10 at the end of the experiment if she ends up in

the same house. Note that our payments are a scaled-up version of the Chen and Sönmez (2002)

setup as we added $5 on top of each payment in their design. This was done in order to meet the

payment criteria of the CLER laboratory. Our payo¤ parameters have the following implications:

1. There are nine Pareto-e¢ cient house allocations. The aggregate payo¤ adds up to 231 for

each Pareto-e¢ cient allocation.

2. Existing tenants� houses range from their second to the seventh choice. Otherwise the

decision to participate becomes trivial.

3. There is a monetary salient di¤erence of $14 between the top and the last choice.

Both treatments, NH4 and TTC, are implemented as one shot games of incomplete information.

Each participant knew her own payo¤ table but not the others�payo¤ tables. Participants did

know the number of existing tenants and newcomers and that payo¤ tables may di¤er. In both
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treatments existing tenants are given an option to keep their houses and then not participate in

the assignment mechanism.

The experiment was conducted as follows. Once each participant was assigned to a computer

the experimenter read the instructions aloud and questions were answered. Then, participants

saw their own payo¤ table in the computer screen. Participants had 10 minutes to go over the

instructions and make decisions. Existing tenants had the option to keep their current house (by

choosing �out�) or to participate in the mechanism (by choosing �in�). Existing tenants who chose

�in�and newcomers submitted their list of preferences. Their ID numbers were introduced in a

bowl by the experimenter, and one randomly chosen participant drew them one by one in order

to generate the initial priority order. At this point the assignment of the houses was computed

manually. At the end of the experiment participants were informed about the resulting assignment

and were paid accordingly.

Table 1. Payoff Table for All Agents

Types of Houses A B C D E F G H

Existing Tenants #1 [11] 8 13 14 20 10 6 17

#2 11 [10] 14 13 8 17 20 6

#3 6 8 [14] 20 10 11 17 13

#4 10 14 20 [17] 8 11 13 6

#5 10 6 17 14 [8] 20 13 11

#6 20 11 14 13 6 [17] 8 10

#7 8 10 11 17 6 13 [14] 20

#8 14 20 10 17 11 8 6 [13]

Newcomers #9 6 10 17 14 11 20 13 8

#10 11 6 17 14 10 20 8 13

#11 20 10 14 6 17 11 13 8

#12 13 20 8 10 11 14 17 6
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6 Experimental Results

To evaluate the aggregate performance of NH4 vs. TTC, we compare the e¢ ciency rates generated

by each mechanism. We look at three di¤erent e¢ ciency measures - observed e¢ ciency, expected

e¢ ciency and the recombinant estimation of mean e¢ ciency. Observed e¢ ciency is calculated by

taking the ratio of the sum of actual earnings of all subjects in a session and the Pareto optimal

earnings of the group. The unique Pareto optimal group earning is 231. Column 3 in Table 2

shows the observed e¢ ciency for each group in the two treatments.

Table 2. Efficiency (Standard Errors in Brackets)

Mechanisms Group Observed e¢ ciency Expected e¢ ciency Recombinant estimation

of mean e¢ ciency

NH4 NH4-1 1 1 (0)

NH4-2 :8701299 :8738139 (0:025) b� = 0:893 (0:0923)
NH4-3 :9047619 :8874434 (0:028) �2 = 0:0045

NH4-4 :8528138 :8445917 (0:028) ' = 0:0036

NH4-5 :8138528 :8050089 (0:033)

TTC TTC-1 :8095238 :8166418 (0:025) b� = 0:813 (0:0545)
TTC-2 :8398268 :8742235 (0:017) �2 = 0:0018

TTC-3 :7705628 :7692916 (0:022) ' = 0:0012

TTC-4 :8354979 :8287112 (0:021)

TTC-5 :7532467 :7902112 (0:020)

Result 1 (Observed E¢ ciency): A permutation test shows that the observed e¢ ciency of NH4

is signi�cantly higher than that of TTC: p = 0:0167 (one-tailed) for the original treatment.

Observed e¢ ciency only takes into account the particular priority order randomly determined

in the experimental lab. In order to obtain a measure as independent as possible of a particular
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priority order we calculate the expected e¢ ciency for each of the �ve groups in our two treat-

ments. Expected e¢ ciency is computed by randomly generating one million priority orders for

each group. Hence each priority order results in one allocation. For each allocation the ratio of the

sum of total earnings is calculated. Finally, the expected e¢ ciency for each group is the average

calculated over the one million ratios. Column 4 in Table 2 summarizes expected e¢ ciency for

each group.

Result 2 (Expected E¢ ciency): A permutation test shows that the expected e¢ ciency of NH4

is signi�cantly higher than that of TTC: p = 0:0498 (one-tailed) for the original treatment.

The truly one-shot nature of the experimental design allows for the use of the recombinant test

techniques described in Mullin and Reiley (2006). The basis of this method is to recombine the

strategies of di¤erent players in order to obtain the result if the grouping had been di¤erent. We

randomly generated two million groups for each treatment and one priority order for each group.

Then we estimated the mean, variance and covariance (see column 5 in Table 2) of the data in

order to compute the recombinant z-value.

Result 3 (Mean E¢ ciency): A recombinant test shows how the mean e¢ ciency of NH4 does

not signi�cantly di¤er from that of TTC. The recombinant estimation of mean e¢ ciency is 89.3%

for NH4 and 81.3% for TTC. Estimated variance is 0.0045 for NH4 and 0.0018 for TTC. The es-

timated covariances are 0.0036 and 0.0012 for NH4 and TTC respectively. Thus, the recombinant

z-test yields z = 0:21 and p = 0:42.

We also tested whether participation and truthful revelation rates di¤er between NH4 and

TTC.

Result 4 (Participation): Existing tenants under NH4 are signi�cantly more likely to partici-

pate than those under TTC. The existing tenants�overall participation rate is 77.5% under NH4,

but only 47.5% under TTC.
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A T-test of proportions show that the participation rate of existing tenants under NH4 is

signi�cantly higher than that of TTC: z = 2:7713 (p = 0:0028).

Table 3. Participation and Truthful Preference Revelation

Mechanisms Group Participation rate Proportion of truth

NH4 NH4-1 8=8 10=12

NH4-2 5=8 8=9

NH4-3 6=8 7=10

NH4-4 6=8 9=10

NH4-5 6=8 7=10

TTC TTC-1 4=8 6=8

TTC-2 5=8 6=9

TTC-3 3=8 5=7

TTC-4 4=8 6=8

TTC-5 3=8 4=7

Table 3 shows participation rates in column 3 and proportions of truthful preference revelation

for each group in column 4.

Result 5 (Truthful Preference Revelation): The overall proportion of truthful preference

revelation is 80.4% under NH4, and 69.0% under TTC. The di¤erences in proportions of truthful

preference revelation under NH4 and TTC are not statistically signi�cant.

T-tests of proportions show that the proportion of truthful preference revelation under NH4

is not signi�cantly di¤erent from that of TTC: z = 1:2250 (p = 0:1103).

Results 1 to 3 show e¢ ciency is at least not lower in NH4 than in TTC. Since we do not �nd

signi�cant di¤erences in truthful preference revelation (Result 5), we can conclude that partic-
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ipation is the key to understand why NH4 is outperforming TTC even though theory does not

support this result.

7 Conclusion

In this paper we looked at the problem of �nding the �right� house allocation mechanism to

allocate students to on-campus housing units from a market design perspective. Chen and Sönmez

(2002, 2004) proposed the prominent theory mechanism TTC as a serious candidate to replace the

popular real-life mechanism RSDwSR. TTC is Pareto e¢ cient, individually rational and incentive

compatible, but not fair. We analyzed the MIT house allocation mechanism known as NH4. In

theory NH4 is individually rational, incentive compatible and fair, but not Pareto e¢ cient. By

Theorem 1, NH4 is, however, the most e¢ cient of all mechanisms that are individually rational

and fair.

We designed an experiment in which NH4 and TTC go head to head in terms of comparing

e¢ ciency. Notwithstanding the theoretical advantage of TTC, NH4 turns out to be no worse than

TTC in terms of e¢ ciency. Part of this can be explained by the higher participation rate we �nd

in NH4. This, we believe, might be because boundedly rational individuals may �nd NH4 much

easier to understand than TTC causing them to feel more reluctant to participate under TTC.

Our result is also consistent with that of Chen and Sönmez (2006) whose experiments showed that

for school choice applications (again, contrary to theory) the Gale-Shapley mechanism performs

better in terms of e¢ ciency than TTC.

A second reason to be optimistic about the e¢ ciency performance of NH4 comes from a result

due to Ergin (2002): Loosely speaking, Ergin (2002) shows that the Gale-Shapley mechanism

tends to be more e¢ cient as priority orderings for each school tend to be more �correlated.� One

feature of the modi�ed Gale-Shapley mechanism that might contribute to this possibility is that

all the priority orderings for the modi�ed Gale-Shapley mechanism (the equivalent of NH4) are,

by construction, generated from the same ordering.
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8 Appendix

Proof of Proposition 1: Suppose IN = f1; 2g; IE+ = f3g; HV = fa; bg; and HO = fh3g:

Suppose the priority ordering f is 1-2-3. Agents�preferences are as follows:

R1 R2 R3

h3 a a

a h3 h3

b b b

Any Pareto e¢ cient mechanism has to assign either agent 2 or agent 3 to house a for otherwise

agent 1 gets house a; and is made better o¤ when she swaps it with the agent that gets house h3

(who is also made better o¤ by this swap). Then since agent 2 has higher priority, by fairness

she should be assigned house a. This means, by individual rationality agent 3 should be assigned

house h3. Then agent 1 is assigned house b: But this clearly violates fairness. Q.E.D.

Proof of Theorem 1: It is easy to show that for a given house allocation problem an allocation

is individually rational, fair, and non-wasteful9 if and only if it is stable for the corresponding

marriage problem where house preferences are constructed from the priority ordering in the way

described previously. The modi�ed Gale-Shapley mechanism is stable, and therefore individually

rational, fair, and non-wasteful. It is well-known that the outcome of the Gale-Shapley mechanism

is preferred by each agent to any other stable allocation. Hence, it Pareto dominates any other

stable mechanism.

We give a direct proof of Theorem 1. We show that for any given house allocation problem the

set of existing tenants who are allocated their own house are the same under the two mechanisms.

Then since both algorithms�outcomes are fair and non-wasteful, they have to choose the same

allocation.

McVitie and Wilson (1970) show that under the DA algorithm, the ordering according to

which agents make proposals to the participants on the other side of the market has no e¤ect

9An allocation is non-wasteful if no agent (other than a non-participating existing tenant) prefers an unassigned
house to her current assignment.
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on the outcome, and provide an equivalent version of the DA algorithm, where agents make

their proposals according to any given ordering. Take any house allocation problem with a given

ordering f of agents. To prove Theorem 1 we use the McVitie-Wilson version of the DA algorithm

in which agents propose in turn according to the ordering f and where the priority order for each

house is constructed as described in the text.

First consider the NH4 algorithm applied to the given problem. Consider the tentative (and

partial) assignment that is obtained at the end of the �rst squatting con�ict. Suppose it is the

turn of existing tenant i1 with house hi1 ; and all available houses are worse for him than hi1 :

Since both algorithms are fair and non-wasteful, at this point the tentative assignment of each

agent under the NH4 algorithm who has higher priority than agent i1 is the same as her tentative

assignment under the DA algorithm right before agent i1 starts to make proposals (*).

For the NH4 algorithm suppose it is some agent j 6= i1 who is currently assigned hi1 : Then

agent i1 is permanently assigned house hi1 and removed from the process, all tentative assignments

starting with agent j and up to agent i1 are erased, and the process starts over with agent j. Note

that this is the same as removing agent i1 (with his house hi1), without changing the relative

ordering of the remaining agents under f; and starting the NH4 algorithm all over from the

beginning.

By (*), under the DA algorithm when it is the turn of agent i1 to move, he starts his proposals

with his top choice house, and in turn gets rejected from every house that she prefers to hi1

(because each such house is now tentatively assigned to some agent who has higher priority for it

than i1). Then she proposes to hi1 : Since she has the highest priority for hi1 ; she is permanently

assigned to hi1 ; and from this point on any agent who proposes to hi1 is rejected. Since the

ordering of agents�moves under the DA algorithm has no e¤ect on the outcome, the outcome does

not change if we start the algorithm over, and apply it to the reduced problem which is obtained

by removing agent i1 (with her house hi1) without changing the relative ordering of the remaining

agents under f:

We next apply the NH4 algorithm to the reduced problem and identify the �rst squatting

con�ict. Using the above argument once again we show that the existing tenant that participates

18



in this con�ict is permanently assigned his house under both algorithms, and remove him from

the problem. Applying this argument repeatedly we conclude that the set of existing tenants who

are allocated their own house must be the same under the two algorithms. Q.E.D.
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