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Abstract
In the context of regression-based (quarterly) seasonal unit root tests, we

examine the impact of initial conditions (one for each quarter) of the process on
test power. We investigate the behaviour of the OLS detrended HEGY seasonal
unit root tests of Hylleberg et al. (1990) and the corresponding quasi-differenced
(QD) detrended tests of Rodrigues and Taylor (2007), when the initial conditions
are not asymptotically negligible. We show that the asymptotic local power of
a test at a given frequency depends on the value of particular linear (frequency-
specific) combinations of the initial conditions. Consistent with previous findings
in the non-seasonal case (see, inter alia, Harvey et al., 2008, Elliott and Müller,
2006), the QD detrended test at a given spectral frequency dominates on power
for relatively small values of this combination, while the OLS detrended test
dominates for larger values. Since, in practice, the seasonal initial conditions
are not observed, in order to maintain good power across both small and large
initial conditions, we extend the idea of Harvey et al. (2008) to the seasonal case,
forming tests based on a union of rejections decision rule; rejecting the unit root
null at a given frequency (or group of frequencies) if either of the relevant QD
and OLS detrended HEGY tests rejects. This procedure is shown to perform
well in practice, simultaneously exploiting the superior power of the QD (OLS)
detrended HEGY test for small (large) combinations of the initial conditions.
Moreover, our procedure is particularly adept in the seasonal context since, by
design, it exploits the power advantage of the QD (OLS) detrended HEGY tests
at a particular frequency when the relevant initial condition is small (large)
without imposing that same method of detrending on tests at other frequencies.
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1 Introduction

The role of the initial condition (defined as the the deviation of the first observation
from its deterministic component) on standard (zero frequency) unit root tests has
attracted considerable attention in recent years. While unit root tests which include
a constant in their detrending procedure are exact similar with respect to the initial
condition, their local power functions depend crucially on the magnitude of the initial
condition, even asymptotically; see, inter alia, Elliott et al. (1996), Elliott (1999),
Müller and Elliott (2003), Elliott and Müller (2006), Harvey and Leybourne (2005,
2006), and Harvey et al. (2008).

As discussed in Elliott and Müller (2006,pp.286-90), while there may be situations
in which one would not necessarily expect the initial condition to be unusually large or,
indeed, unusually small, relative to the other data points, equally the initial condition
might be relatively large in other situations. The former case occurs, for example,
where the first observation in the sample is dated quite some time after the inception
of a mean-reverting process, while the latter can happen if the sample data happen
to be chosen to start after a break (perceived or otherwise) in the series or where the
beginning of the sample coincides with the start of the process. This latter example can
also allow for the case where an unusually small (even zero) initial condition occurs. In
practice it is therefore hard to rule out small or large initial conditions, a priori. This
is problematic, given the substantial impact of the magnitude of the initial condition
on the power properties of standard unit root tests.

In the seasonal unit root testing context we have not one initial condition but S
(seasonal) initial conditions, one for each of the S seasons. It therefore seems worth-
while and of practical relevance to investigate the role played by the magnitude of
the initial conditions in determining the power properties of seasonal unit root tests.
Working with a rather general formulation for the seasonal initial conditions (which
includes seasonal extensions of the non-seasonal set-ups of Elliott, 1999, Müller and
Elliott, 2003, and Elliott and Müller, 2006, as special cases), we find that for a test at
a given frequency it is the magnitude of a specific linear combination of the seasonal
initial conditions that matters, rather than the initial conditions themselves. For ex-
ample, in the case of the zero frequency it is the sum of the initial conditions for each
season that turns out to be the important quantity. We term these quantities spectral
initial conditions. Where the spectral initial condition for a test at a given frequency
is not asymptotically negligible, the quasi-differenced (QD) detrended Hylleberg et al.
(1992) [HEGY]-type tests of Rodrigues and Taylor (2007) can perform very badly in-
deed, with their power against a given alternative rapidly decreasing towards zero as
the magnitude of the spectral initial condition is increased. In sharp contrast, the OLS
detrended HEGY tests show an increase in power, other things equal, as the mag-
nitude of the spectral initial condition increases, albeit their powers are considerably
lower than those of corresponding QD detrended tests when the initial condition is
small. Powers of joint frequency unit root tests of the type proposed in Ghysels et al.
(1994) [GLN] are also shown to depend on the method of detrending and relevant set
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of spectral initial conditions.
Our findings are made relevant because in practice the seasonal initial conditions

are neither known nor are they amenable to estimation. Consequently, uncertainty sur-
rounds the appropriate choice of detrending method. In the non-seasonal setting, such
considerations led Harvey et al. (2008) to investigate whether it is possible in practice
to construct unit root test strategies that maintain good power properties across both
large and small initial conditions. They showed that a union of rejections decision rule
between the QD- and OLS-based ADF tests (whereby the unit root null is rejected if
either of the QD detrended ADF and OLS detrended ADF tests rejects) works well.
This approach exploits the superior power properties of the QD (OLS) detrended tests
when the initial condition is small (large) and is capable of outperforming the more
sophisticated testing procedures proposed in Elliott and Müller (2006) and Harvey and
Leybourne (2005, 2006). Our findings on the relative power behaviour of the QD and
OLS detrended HEGY tests indicates that a union of rejections decision rule between
the QD and OLS detrended HEGY tests, either at a given frequency or set of frequen-
cies, can also be fruitfully employed in a seasonal context. We provide asymptotic and
finite sample evidence to suggest that this procedure is again highly effective, despite
its relative simplicity.

The plan of the remainder of the paper is as follows. In section 2 we outline our
reference seasonal unit root testing model and detail the unit root tests on which
we focus our attention. These are the OLS detrended seasonal unit root tests of
HEGY and the corresponding QD detrended HEGY-type tests of Rodrigues and Taylor
(2007). Although we restrict our analysis to the case of quarterly (S = 4) data,
generalisations to an arbitrary seasonal aspect follow quite straightforwardly. The
limiting distributions of these statistics are derived under near-seasonal integration in
section 3. This enables us to show, and to illustrate numerically, the precise nature
of the dependence of the asymptotic local power functions of these tests on the initial
conditions of the process. In section 4 we detail our union of rejections testing strategy
and compare its large sample performance with that of the corresponding OLS and
QD detrended HEGY tests. Section 5 reports corresponding finite sample results. We
offer some conclusions in section 6. Proofs of the main technical results in this paper
are given in an Appendix.

Throughout the paper we use the following notation: ‘x := y’ to indicate that x is

defined by y; b·c to denote the integer part of the argument; ‘
p→’ and ‘

d→’ denote con-
vergence in probability and weak convergence, respectively, as the sample size diverges,
and I(·) to denote the indicator function.
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2 The Seasonal Unit Root Framework

2.1 The Seasonal Model

Consider the case where we have T := 4N observations on the quarterly time series
process {x4t+s}, where N denotes the span in years of the sample data, generated
according to the model

x4t+s = µ4t+s + v4t+s, s = −3, ..., 0, t = 1, 2, . . . , N, (1)

a(L)v4t+s = u4n+s, s = −3, ..., 0, t = 2, ..., N, (2)

vi = ξi, i = 1, ..., 4, (3)

where a(L) := 1 −
∑4

j=1 ajL
j is a fourth order AR polynomial in the lag operator

L, L4j+kx4t+s := x4(t−j)+s−k, and the deterministic component µ4t+s = γs + δ(4t + s);
that is, seasonal intercepts and a (non-seasonal) time trend.1 The shocks, {u4t+s}, are
assumed to follow a stationary AR(p), 0 ≤ p <∞, process, viz.,

φ(L)u4t+s = ε4t+s, (4)

where φ(z) := 1−
∑p

i=1 φiz
i, the roots of φ(z) = 0 all lie outside the unit circle, |z| = 1,

and the error process, {ε4t+s}, is a martingale difference sequence with constant condi-
tional variance, σ2; see Fuller (1996, Theorem 5.3.5,pp.236-37) for precise assumptions
on {ε4t+s}. We denote the long run variance of ut by ω2

u := σ2ψ(1)2, where ψ(z) de-
notes the (unique) inverse of φ(z). The initial conditions of the process are given by
ξ1, ..., ξ4 in (3), so that ξ1 is the initial condition associated with the first quarter, ξ2
the second quarter, and so on. Precise assumptions on the initial conditions will be
detailed and discussed in section 2.3 below.

2.2 The Seasonal Unit Root Hypotheses

In this paper we are concerned with the behaviour of tests for seasonal unit roots in
the AR(S) polynomial, α(L), against near seasonally integrated alternatives; that is,
the null hypothesis of interest is

H0 : a(L) = 1− L4 =: ∆4, (5)

while, following Tanaka (1996,pp.355-356), Rodrigues (2001), Taylor (2002) and Ro-
drigues and Taylor (2004b), inter alia, the near seasonally integrated alternative takes

1For expositional purposes we have chosen to focus our attention on the case of most practical
relevance where the deterministic component consists of seasonal intercepts and a (non-seasonal)
trend. Other choices of the deterministic component are possible; see, in particular, the typology of
cases in Smith and Taylor, 1998. However, Smith and Taylor (1998) show that allowing for seasonal
intercepts ensures that the resulting seasonal unit root tests will be exact similar with respect to
the initial conditions, which is especially important given our focus in this paper. If the drift should
appear seasonal, then µ4t+s could be augmented with seasonal time trends, as in Smith and Taylor
(1998), while if no drift was apparent the linear trend could be omitted from µ4t+s.
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the form,

Hc : a(L) =
[
1−

(
1 +

c

N

)
L4

]
, c ≤ 0. (6)

Notice that Hc of (6) reduces to H0 of (5) for c = 0.
Under H0 of (5) the DGP (1)-(2) of {x4t+s} is that of a quarterly random walk pro-

cess with (non-seasonal) drift δ, admitting unit roots at each of the zero frequency,
ω0 = 0, the Nyquist (or biannual) frequency, ω2 = π and the annual frequency
ω1 = π/2. Under Hc of (6) the process {x4t+s} is locally stationary. Rodrigues and
Taylor (2004b) demonstrate that Hc of (6) can be partitioned into Hc ≡ ∩2

k=0Hc,k,
where the hypotheses Hc,0 and Hc,2 correspond to a local to unit root at the zero and
biannual frequencies respectively, while Hc,1 yields a pair of complex conjugate local
to unit roots at the annual frequency. The null hypothesis of unit roots at the zero,
biannual and annual frequencies are therefore individually denoted as H0,0, H0,2 and
H0,1, respectively.

2.3 The Initial Conditions

As discussed in the introduction, a number of recent papers have highlighted the strong
dependence of the power functions of non-seasonal unit root tests on the deviation of
the initial observation of the series from its underlying deterministic component (see,
inter alia, Elliott, 1999, Müller and Elliott, 2003, Elliott and Müller, 2006, and Harvey
and Leybourne, 2005, 2006). The following assumption provides a generalisation of the
conditions discussed by these authors to the seasonal case, and contains as special cases
the assumptions made by previous authors in the seasonal case.

Assumption 1 Under Hc of (6) with c < 0, the initial conditions in (3) are generated
according to

ξi = αi

√
ω2

u/(1− ρ2
N), i = 1, ..., 4, (7)

where ρN := 1 + c
N

, and where αi ∼ IN(µα,iI(σ2
α = 0), σ2

α), i = 1, ..., 4, independently
of u4t+s, s = −3, ..., 0, t = 2, ..., N . For c = 0, that is under H0 of (5), we may set
ξi = 0, i = 1, .., 4, without loss of generality, due to the exact similarity of the seasonal
unit root tests considered in this paper to the initial conditions; see Smith and Taylor
(1998) and Rodrigues and Taylor (2007).

In Assumption 1, αi controls the magnitude of the initial condition in season i, ξi,
relative to the magnitude of the standard deviation of a stationary seasonal AR(1)
process with parameter ρN and innovation long-run variance ω2

u. The form given for
the ξi allow the initial conditions to be either random and of Op(N

1/2), or fixed and
of O(N1/2). If σ2

α > 0, then the initial conditions are random; σ2
α = 1 yields the so-

called unconditional case considered in the non-seasonal case by Elliott (1999) and in
the seasonal case by Rodrigues and Taylor (2004b), inter alia. If, on the other hand,
σ2

α = 0 then the ξi are non-random and of the form given in Müller and Elliott (2003),
Elliott and Müller (2006). By considering both the random and fixed scenarios in this
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way, we try to allow for some flexibility in how the initial conditions may be generated.
Notice finally that Rodrigues and Taylor (2007) assume that the initial conditions are

asymptotically vanishing, such that N−1/2ξi
p→ 0, i = 1, ..., 4, which is equivalent to

setting αi = 0, i = 1, ..., 4, in (7).

2.4 Regression-Based Seasonal Unit Root Tests

Following HEGY, Smith and Taylor (1998) and Rodrigues and Taylor (2007), inter
alia, the regression-based approach to testing for seasonal unit roots in α(L) consists
of two stages. In the first stage one detrends the data in order to achieve (exact)
invariance to the seasonal intercept and linear trend parameters, γs, s = −3, ..., 0
and δ of (1). In the case of the OLS detrending approach of HEGY and Smith and

Taylor (1998), the detrended series is given by x̂4t+s := x4t+s − β̂
′
z4t+s, where z4t+s :=

(D1,4t+s, ..., D4,4t+s, (4t + s))′ where Dj,4t+s := I(j = s), j = −3, ..., 0, and β̂ is the
OLS estimator of β := (γ−3, ..., γ0, δ)

′, obtained from regressing x4t+s onto z4t+s along
4t+ s = 1, ..., T . Under the QD detrending approach of Rodrigues and Taylor (2007),

x̂4t+s := x4t+s − β̃
′
z4t+s, where β̃ is the QD estimator of β obtained from the OLS

regression of xc on Zc, where

xc := (x1, x2 − αc
1x1, x3 − αc

1x2 − αc
2x1, x4 − αc

1x3 − · · · − αc
4x1,∆cx5, ...∆cxT )′

Zc := (z1, z2 − αc
1z1, z3 − αc

1z2 − αc
2z1, z4 − αc

1z3 − · · · − αc
4z1,∆cz5, ...,∆czT )′

and

∆c :=
(
1−

(
1 +

c̄1
T

)
L

) (
1 +

(
1 +

c̄2
T

)
L

) (
1 +

(
1 +

c̄3
T

)2

L2

)
=: 1−

4∑
j=1

αc
jL

j

where for tests run at the 5% level,2 c̄1 = −13.5, c̄2 = −7 and c̄3 = −3.75.
In the second stage, using the Proposition in HEGY (pp.221-222), we expand a(L)

of (1) around the seasonal unit roots ±1,±i, i :=
√

(−1), to obtain the auxiliary
regression equation

∆4x̂4t+s =
4∑

j=1

πj x̂j,4t+s−1 +

p∑
j=1

φ∗j ∆4x̂4t+s−j + û4t+s (8)

where ∆4x̂4t+s := x̂4t+s − x̂4(t−1)+s and, corresponding to the zero and biannual fre-
quencies

x̂1,4t+s := a1(L)x̂4t+s, a1(L) :=
(
1 + L+ L2 + L3

)
(9)

and
x̂2,4t+s := −a2(L)x̂4t+s, a2(L) :=

(
1− L+ L2 − L3

)
(10)

2If, as discussed in footnote 1, the linear trend variable is omitted from z4t+s, then c̄1 should be
changed to −7, while if seasonal trends are also included in z4t+s, c̄2 and c̄3 should be changed to
−13.5 and −8.65, respectively.
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respectively, and corresponding to the annual frequency,

x̂3,4t+s := −a3(L)x̂4t+s, a3(L) : = L(1− L2)

x̂4,4t+s := −a4(L)x̂4t+s, a4(L) : = (1− L2) (11)

cf. HEGY and Smith and Taylor (1998).
The parameters πj, j = 1, ..., 4, of (8) are of focal interest. As demonstrated in

HEGY, a unit root occurs at the zero and biannual frequencies when π1 = 0 and
π2 = 0 respectively, while a pair of complex conjugate unit roots occur at the annual
frequency when π3 = π4 = 0. In order to test H0 of (5) against the alternative of
stationarity at at least one of the zero, biannual and harmonic seasonal frequencies,
HEGY therefore propose using the following regression statistics in (8): t1 (left-sided)
for the exclusion of x̂1,4t+s−1; t2 (left-sided) for the exclusion of x̂2,4t+s−1, and F34 for the
exclusion of x̂3,4t+s−1 and x̂3,4t+s−1.

3 GLN also propose the joint frequency F -statistics,
F234, for the exclusion of x̂2,4t+s−1, x̂3,4t+s−1 and x̂4,4t+s−1, and F1234, for the exclusion
of all of x̂1,4t+s−1, x̂2,4t+s−1, x̂3,4t+s−1 and x̂4,4t+s−1. The former tests the null hypothesis
of unit roots at all of the seasonal frequencies, while the latter tests the null hypothesis,
H0 of (5).

In what follows, we use a superscript OLS (QD) on these tests to denote that OLS
(QD) detrending has been performed in the first stage, so that for example tQD

2 denotes
the QD detrended biannual frequency test of Rodrigues and Taylor (2007), while tOLS

2

denotes the corresponding OLS detrended test of HEGY. Where no superscript is
present, reference to the test is understood to be made in a generic sense. Finite sample
and asymptotic null critical values for these tests are provided in Table 1, Panels A
and B. The finite sample critical values were obtained via Monte Carlo simulation,
setting p = 0 in the fitted regression (8) with φ(z) = 1 and γ−3 = · · · γ0 = δ = 0
in (1) and generating {ε4t+s} as an NIID(0, 1) sequence. Here and throughout the
paper, simulations were programmed in Gauss 7.0 using 50,000 replications. See the
discussion following Remark 4 below, regarding computation of the asymptotic critical
values.

3 Asymptotic Representations

For the set of OLS and QD detrended seasonal unit root tests considered in section 2,
the following lemma details their asymptotic behaviour.

Lemma 1 Let {x4t+s} be generated according to (1)-(3) and let Assumption 1 hold.

3In their original article HEGY also suggest a testing procedure for the annual frequency pair of
unit roots based on the pair of regression statistics t3 for the exclusion of x̂3,4t+s−1 and t4 for the
exclusion of x̂4,4t+s−1. However, these statistics have subsequently been shown to have non-pivotal
asymptotic limiting null distributions when p > 0 in (4), rendering them unusable in practice; see, for
example, Smith et al. (2007) and Burridge and Taylor (2001).
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For i = 1, 2, 3, 4, let

Kic(r) :=

{
Wi(r) c = 0
ᾱi(e

rc − 1)(−2c)−1/2 +Wic(r) c < 0

where Wi(r), i = 1, ..., 4, are independent standard Brownian motion processes, Wic(r),
i = 1, ..., 4, are independent standard Ornstein-Uhlenbeck processes, and the spectral
magnitudes are defined as,

ᾱ1 := (α1 + α2 + α3 + α4)/2

ᾱ2 := (−α1 + α2 − α3 + α4)/2

ᾱ3 := (α4 − α2)/
√

2

ᾱ4 := (α3 − α1)/
√

2.

Also define

Kµ
ic(r) := Kic(r)−

∫ 1

0

Kic(s)ds i = 1, 2, 3, 4.

Then under Hc of (6), the asymptotic distributions of the OLS and QD detrended t1
and t2 statistics from (8) are given by

tji
d→ Kj

ic(1)2 −Kj
ic(0)

2 − 1

2
√∫ 1

0
Kj

ic(r)
2dr

=: τ j
i i = 1, 2; j = OLS, QD

where

KOLS
1c (r) := Kµ

1c(r)− 12

(
r − 1

2

) ∫ 1

0

(
s− 1

2

)
K1c(s)ds

KOLS
2c (r) := Kµ

2c(r)

KQD
1c (r) := K1c(r)− c̄∗1rK1c(1)− 3(1− c̄∗1)r

∫ 1

0

sK1c(s)ds

KQD
2c (r) := K2c(r).

with c̄∗1 := (1 − c̄1)(1 − c̄1 + c̄21/3). Moreover, the asymptotic distributions of the F34,
F234 and F1234 statistics from (8) under Hc are given by

F j
34

d→ 1

2

[
(Aj)2 + (Bj)2

]
=: τ j

34, j = OLS, QD

F j
234

d→ 1

3

[
(τ j

2 )2 + (Aj)2 + (Bj)2
]

=: τ j
234, j = OLS, QD

F j
1234

d→ 1

4

[
(τ j

1 )2 + (τ j
2 )2 + (Aj)2 + (Bj)2

]
=: τ j

1234, j = OLS, QD
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where

AOLS := c

√∫ 1

0

Kµ
3c(r)

2dr +

∫ 1

0

Kµ
4c(r)

2dr +

∫ 1

0
Kµ

3c(r)dW3(r) +
∫ 1

0
Kµ

4c(r)dW4(r)√∫ 1

0
Kµ

3c(r)
2dr +

∫ 1

0
Kµ

4c(r)
2dr

AQD := c

√∫ 1

0

K3c(r)2dr +

∫ 1

0

K4c(r)2dr

+
ᾱ3c(−2c)−1/2

∫ 1

0
K3c(r)dr + ᾱ4c(−2c)−1/2

∫ 1

0
K4c(r)dr√∫ 1

0
K3c(r)2dr +

∫ 1

0
K4c(r)2dr

+

∫ 1

0
K3c(r)dW3(r) +

∫ 1

0
K4c(r)dW4(r)√∫ 1

0
K3c(r)2dr +

∫ 1

0
K4c(r)2dr

BOLS :=

∫ 1

0
Kµ

3c(r)dW4(r)−
∫ 1

0
Kµ

4c(r)dW3(r)√∫ 1

0
Kµ

3c(r)
2dr +

∫ 1

0
Kµ

4c(r)
2dr

BQD :=
ᾱ4c(−2c)−1/2

∫ 1

0
K3c(r)dr − ᾱ3c(−2c)−1/2

∫ 1

0
K4c(r)dr√∫ 1

0
K3c(r)2dr +

∫ 1

0
K4c(r)2dr

+

∫ 1

0
K3c(r)dW4(r)−

∫ 1

0
K4c(r)dW3(r)√∫ 1

0
K3c(r)2dr +

∫ 1

0
K4c(r)2dr

.

Remark 1. Under the null hypothesis H0 of (5) the test statistics do not depend on
the initial conditions {ξj}4

j=1 (see footnote 1), so they play no role in their asymptotic
null distributions. It is under the alternative hypothesis, Hc of (6) with c < 0, that the
initial conditions have an effect. For a given statistic, setting the relevant value(s) of
the {ᾱi}4

i=1 to zero, the limiting representation given in Lemma 1 reduces to the corre-
sponding representation for the statistic when the initial conditions are asymptotically
negligible, as given in, inter alia, Rodrigues and Taylor (2004b, 2007).

Remark 2. Observe that the limiting distributions of the OLS and QD detrended
HEGY tests from (8) do not depend on the magnitudes, αi, of the initial conditions,
ξi, i = 1, ..., 4, of (7) directly. Rather, they depend on the magnitude of frequency
specific linear combinations of these initial conditions, what we will term spectral initial
conditions. The zero frequency initial condition is given by ξ̄1 := ξ1 + ξ2 + ξ3 + ξ4, that
for the biannual frequency by ξ̄2 := −ξ1+ξ2−ξ3+ξ4, and those for the annual frequency
by ξ̄3 := ξ4−ξ2 and ξ̄4 := ξ3−ξ1. Notice from (7) that the spectral magnitudes therefore
satisfy ᾱi ∼ IN(µ̄iI(σ2

α = 0), σ2
α), i = 1, ..., 4, with µ̄1 := (µα,1 + µα,2 + µα,3 + µα,4)/2,

µ̄2 := (−µα,1 +µα,2−µα,3 +µα,4)/2, µ̄3 := (µα,4−µα,2)/
√

2 and µ̄4 := (µα,3−µα,1)/
√

2.
Consequently if, for example, the magnitude of the initial conditions from each of
the seasons happened to sum to zero (which would imply that ᾱ1 = 0), then the
asymptotic local power functions of the tOLS

1 and tQD
1 tests would be the same as
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if these initial conditions were asymptotically vanishing. Notice that the asymptotic
local power function of the joint frequency F234 test depends on the spectral initial
conditions relating to both the biannual and annual frequencies, while that for the
F1234 test additionally depends on the zero frequency initial condition.

Remark 3. From Lemma 1, the limiting distributions of the tQD
1 , tQD

2 and FQD
34 statis-

tics are mutually independent under Hc, as are the limiting distributions of the tOLS
1 ,

tOLS
2 and FOLS

34 statistics. Moreover, the limiting distributions of the tQD
1 and FQD

234 and
tOLS
1 and FOLS

1234 statistics are also mutually independent. In each case this follows from
the independence of the Kic(r), i = 1, ..., 4, limiting processes. Indeed, this implies
more generally that the limiting distributions of different frequency statistics will be
mutually independent regardless of whether they be based on OLS or QD detrended
data, so that, for example, the tQD

2 and FOLS
34 statistics also have independent limiting

distributions. However, it should be noted that, for example, the tOLS
1 and tQD

1 statis-
tics will not have independent limiting distributions owing to the fact that they are
both functionals of K1c(r).

Remark 4. If, as discussed in footnote 1, the linear trend variable is omitted from z4t+s,
then the representation given in Lemma 1 for tOLS

1 would hold on re-defining KOLS
1c :=

Kµ
1c(r), and for tQD

1 by re-defining KOLS
1c := K1c(r). In this case the stated representa-

tions given for both the OLS and QD detrended versions of the t2, F34 and F234 statistics
would be unchanged, while those for the OLS and QD detrended F1234 statistics would
still be of the form given in Lemma 1, noting the change in τOLS

1 and τQD
1 from above.

Should seasonal trends be included in z4t+s, then while the limiting distributions of tOLS
1

and tQD
1 would remain unchanged, the limiting distributions for tOLS

2 and tGLS
2 would

obtain on re-defining KOLS
2c := Kµ

2c(r) − 12
(
r − 1

2

) ∫ 1

0

(
s− 1

2

)
K2c(s)ds and KQD

2c :=

K2c(r)− c̄∗2rK2c(1)− 3(1− c̄∗2)r
∫ 1

0
sK2c(s)ds, where c̄∗2 := (1− c̄2)(1− c̄2 + c̄22/3). Simi-

larly, in this case the representations for the FQD
34 and FOLS

34 statistics would hold (and,
hence, together with the changes for tQD

2 and tOLS
2 , for the FQD

1234, F
OLS
1234 , FQD

234 and FOLS
234

statistics) on replacing Kjc(r) by KQD
jc := Kjc(r)− c̄∗3rKjc(1)−3(1− c̄∗3)r

∫ 1

0
sKjc(s)ds,

where c̄∗3 := (1− c̄3)(1− c̄3+ c̄23/3), for j = 3, 4 in the expressions for AQD and BQD, and

replacing Kµ
jc(r) with KOLS

jc := Kµ
jc(r)− 12

(
r − 1

2

) ∫ 1

0

(
s− 1

2

)
Kjc(s)ds, for j = 3, 4 in

the expressions for AOLS and BOLS. �

In Figures 1-6 we graph the asymptotic local powers of the OLS and corresponding
QD detrended HEGY tests from (8) run at the nominal 0.05 level, of each of the tests
from Lemma 1 for c = −5,−7.5, −10. The results reported in Figures 1 (c = −5), 2
(c = −7.5) and 3 (c = −10) pertain to the fixed initial conditions case, while Figures 4
(c = −5), 5 (c = −7.5) and 6 (c = −10) are for the case of random initial conditions. In
the case of the tQD

1 and FQD
1234 statistics, whose limiting distribution depends on the QD

parameter c̄1, the reported results pertain to c̄1 = −13.5. The null critical values and
local powers were obtained by direct simulation of the limiting functionals in Lemma 1
approximating the Wiener processes using NIID(0, 1) random variates, and with the
integrals approximated by normalized sums of 1000 steps.
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For the results in Figures 1-3 we report in parts (a), (b) and (c) for the pairs
of tests, (tOLS

1 , tQD
1 ), (tOLS

2 , tQD
2 ) and (FOLS

34 , FQD
34 ), respectively, the local powers as

functions of the absolute values4 of the relevant magnitude parameters µ̄1, µ̄2 and
µ̄3 = µ̄4, respectively, for |µ̄i| = |µ̄| = {0.0, 0.1, 0.2, ..., 6.0}, i = 1, ..., 4. For the joint
frequency (FOLS

234 , FQD
234 ) pair of tests we report in parts (d), (e) and (f) of Figures 1-3

the local powers as functions of: |µ̄2| = |µ̄| = {0.0, 0.1, 0.2, ..., 6.0} with µ̄3 = µ̄4 = 0;
|µ̄3| = |µ̄4| = |µ̄| = {0.0, 0.1, 0.2, ..., 6.0} with µ̄2 = 0, and |µ̄2| = |µ̄3| = |µ̄4| = |µ̄| =
{0.0, 0.1, 0.2, ..., 6.0}, respectively. Parts (g), (h) and (i) of Figures 1-3 report local
powers of the (FOLS

1234 , F
QD
1234) pair of tests as functions of |µ̄1| = |µ̄| = {0.0, 0.1, 0.2, ..., 6.0}

with µ̄2 = µ̄3 = µ̄4 = 0; |µ̄3| = |µ̄4| = |µ̄| = {0.0, 0.1, 0.2, ..., 6.0} with µ̄1 = µ̄2 = 0,
and |µ̄1| = |µ̄2| = |µ̄3| = |µ̄4| = |µ̄| = {0.0, 0.1, 0.2, ..., 6.0}, respectively. Corresponding
results for the case of random starting values are reported in Figures 4-6 as functions
of σα = {0.0, 0.1, 0.2, ..., 6.0}.

Consider first the results for the t1, t2 and F34 tests.5 We immediately see from
these results that with either random or fixed initial conditions, the power curves of the
QD detrended HEGY tests in each case exhibit monotonic decrease in σα or |µ̄i|, whilst
the power of the OLS detrended HEGY tests increase monotonically. In the fixed case,
the tOLS

1 test is seen to have higher power than the tQD
1 test when (approximately)

|µ̄1| = 1.5, 1.4, 1.3 for c = −5,−7.5 and −10, respectively. For the tOLS
2 and tQD

2 tests
these crossing points all occur at about |µ̄2| = 1.0, while for the FOLS

34 and FQD
34 tests

these occur at about |µ̄3| = |µ̄4| = 0.9. A key feature here is the drastic speed with
which the power of the QD detrended version of the tests approaches zero with |µ̄|:
the tQD

1 test has power which is effectively zero for |µ̄1| ≥ 4, while for tQD
2 and FQD

34

power is effectively zero even by |µ̄2| ≥ 2 and |µ̄3| = |µ̄4| ≥ 2, respectively. For the
random case the crossing points for tOLS

1 and tQD
1 occur at about σα = 1.8, 1.7, 1.6 for

c = −5,−7.5,−10, respectively. For tOLS
2 and tQD

2 they occur at about 1.6, 1.5 and
1.4, respectively, while for the FOLS

34 and FQD
34 tests these occur at about 1.1, 1.0 and

0.9, respectively. For each of these pairs of tests, the extent of the power dominance
of the QD detrended variant over the OLS detrended variant increases as σα shrinks
towards zero.

Now consider the results for the joint frequency F234 and F1234 tests. As with the
results for the single frequency tests discussed above, we see that in both the fixed
and random cases the QD detrended HEGY tests dominate the corresponding OLS
detrended tests on power for small initial conditions with the pattern reversing for large
initial conditions. In the case of the fixed initial conditions, the limiting distributions
of the joint tests now depend on more than one spectral initial condition (precisely,

4It should be clear from the representations given in Lemma 1 that the asymptotic local power
functions of the tests do not depend on the signs of the ᾱi, i = 1, ..., 4.

5Notice that the powers of the tQD
1 and tOLS

1 tests are in general rather lower than the power
functions of the corresponding tests at other frequencies. This is because of the presence of a non-
seasonal linear trend in the detrending routine. It is well known that this causes a significant reduction
in available power; cf. Elliott et al. (1996), Harvey et al. (2008) and Rodrigues and Taylor (2004,
2007).
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the F234 tests depends on ξ̄2, ξ̄3 and ξ̄4, while the F1234 test additionally depends on ξ̄1)
so that the relationship between the power properties of the QD and OLS detrended
variants of the test and the underlying initial conditions is more complex than for the
single frequency tests.

In the fixed case, the crossing points of the power functions of a given joint frequency
tests are consequently related to the magnitude of all of the spectral intercepts which
feature in the statistic’s limiting distribution. As can clearly be seen by comparing,
for example, parts (g) and (i) of Figure 1, the crossing point for the F1234 tests when
c = −5 is at about |µ̄1| = 4.4 when µ̄2 = µ̄3 = µ̄4 = 0, but is at about |µ̄| = 0.8 when
|µ̄1| = |µ̄2| = |µ̄3| = |µ̄4| = |µ̄|, indicating that, as might be expected, the point at
which the QD version of the joint frequency tests becomes inferior on power to the OLS
version occurs for smaller magnitudes of the spectral initial conditions the more of these
there are that are non-zero. Moreover, as can be seen by comparing, for example, (d)
and (e) with (f), and (g) and (h) with (i) in Figure 1 it is only when all of the spectral
initial values relevant to a particular test are non-zero that the power of the QD test
collapses to zero as the magnitude of the initial conditions increases. To explain this
phenomenon, consider, for example, the FQD

1234 statistic. Now, asymptotically, this is
equal to the average of the squared tQD

j , j = 1, ..., 4, statistics. Consider then part

(g) of Figures 1-3. Here while the power of the tQD
1 statistic (and, hence, also the

power of the (tQD
1 )2 statistic), collapses to zero as |µ̄1| increases, the spectral intercepts

relating to the tQD
2 and FQD

34 statistics are all zero and so these tests maintain power,
such that the power of the FQD

1234 test will not drop to zero. This also explains why the
crossing point for the joint tests moves to the left, other things equal, as the number
of non-zero spectral intercepts which affect the statistic increases. In the random case,
similar patterns are seen in the joint frequency F1234 and F234 tests as for the t1, t2
and F34 tests, with the crossing points occurring at about 1.0 for each of the tests for
c = −5,−7.5, and at about 0.9 for c = −10.

An interesting implication of the findings above is that, depending on the magni-
tudes of the individual spectral initial conditions it is possible that at one frequency,
due to a large spectral initial condition at that frequency, the OLS detrended variant
of the HEGY test could dominate the corresponding QD detrended test on power, but
that if the initial conditions at the other spectral frequencies were small, here the QD
variants of the tests would dominate on power. Consequently, while constructing the
HEGY regression from QD detrended data would be appropriate for tests at those fre-
quencies where small spectral initial conditions pertained, it would be a very inefficient
thing to do for any frequencies where the initial condition was large, and vice versa.

4 A Union of Rejections Testing Strategy

Given the clear results of Figures 1-6, it seems sensible to consider whether it is possible
to devise a testing strategy which, for small values of σα in the random case or the
relevant |µi|, i = 1, ..., 4, magnitudes in the fixed case, captures the power advantages
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of the QD detrended HEGY tests over the corresponding OLS detrended tests and, at
the same time, exploits the reverse relationship that exists between the tests’ power
when σα or |µi|, i = 1, ..., 4, is large.

As noted in the introduction, in the context of initial condition uncertainty in the
non-seasonal case, Harvey et al. (2008) suggest a simple union of rejections decision
rule between the QD- and OLS-based ADF tests; the unit root null being rejected if
either of the QD detrended ADF and OLS detrended ADF tests rejects. This approach
effectively combines the superior power properties of the QD detrended ADF test when
the initial condition is small with those of the OLS detrended ADF when the initial
condition is large and, as such, represents a near admissible procedure; see Müller
(2008). Compared with other more involved procedures, such as those of Elliott and
Müller (2006) and Harvey and Leybourne (2005, 2006), it is extremely competitive in
terms of power. Whilst is is not immediately clear how these competing procedures
might be extended to the current seasonal case, extension of the union of rejections
approach is quite straightforward. We simply take the union of rejections of the QD
and OLS detrended versions of each of the t1, t2, F34, F234 and F1234 statistics.

Let cvQD
ζ and cvOLS

ζ be used generically to denote the asymptotic ζ significance
level critical values of the QD and OLS detrended HEGY tests for some sample size
T . Then:

(i) For the zero frequency, the relevant union of rejections procedure is given by

tUR
1 (ζ) := tQD

1 I(tQD
1 < cvQD

ζ ) + tOLS
1 I(tQD

1 ≥ cvQD
ζ )

where if tUR
1 (ζ) = tQD

1 , a rejection of H0,0 is recorded if tUR
1 (γ) < cvQD

ζ ; otherwise

if tUR
1 (ζ) = tOLS

1 , a rejection is recorded if tUR
1 (ζ) < cvOLS

ζ . In the limit, using the
relevant expressions from Lemma 1

tUR
1 (ζ)

d→ τQD
1 I(τQD

1 < cvQD
ζ ) + τOLS

1 I(τQD
1 ≥ cvQD

ζ )

where, for example, for tests run at the asymptotic 0.05 level, cvQD
ζ = −2.85 and

cvOLS
ζ = −3.42; cf. Table 1, Panels A and B.

(ii) For the biannual frequency, the union of rejections is given by

tUR
2 (ζ) := tQD

2 I(tQD
2 < cvQD

ζ ) + tOLS
2 I(tQD

2 ≥ cvQD
ζ )

where if tUR
2 (ζ) = tQD

2 , a rejection of H0,2 is recorded if tUR
2 (ζ) < cvQD

ζ ; otherwise if

tUR
2 (ζ) = tOLS

2 , a rejection is recorded if tUR
2 (ζ) < cvOLS

ζ . In the limit, from Lemma 1

tUR
2 (ζ)

d→ τQD
2 I(τQD

2 < cvQD
ζ ) + τOLS

2 I(τQD
2 ≥ cvQD

ζ )

and at the asymptotic 0.05 level, cvQD
ζ = −1.94 and cvOLS

ζ = −2.86.
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(iii) For the annual frequency, the union of rejections is

FUR
34 (ζ) := FQD

34 I(FQD
34 > cvQD

ζ ) + FOLS
34 I(FQD

34 ≤ cvQD
ζ )

where if FUR
34 (ζ) = FQD

34 , a rejection of H0,1 is recorded if FUR
34 (ζ) > cvQD

ζ ; otherwise if

FUR
34 (ζ) = FOLS

34 , a rejection is recorded if FUR
34 (ζ) > cvOLS

ζ . From Lemma 1, we have
that

FUR
34 (ζ)

d→ τQD
34 I(τQD

34 > cvQD
ζ ) + τOLS

34 I(τQD
34 ≤ cvQD

ζ ).

For tests run at the asymptotic 0.05 level, cvQD
ζ = 3.07 and cvOLS

ζ = 6.62.

(iv) For testing the joint null hypothesis of unit roots at the biannual and annual
frequencies, the union of rejections is

FUR
234 (ζ) := FQD

234 I(F
QD
234 > cvQD

ζ ) + FOLS
234 I(FQD

234 ≤ cvQD
ζ )

where if FUR
234 (ζ) = FQD

234 , a rejection of H0,1 ∩ H0,2 is recorded if FUR
234 (ζ) > cvQD

ζ ;

otherwise if FUR
234 (ζ) = FOLS

234 , a rejection is recorded if FUR
234 (ζ) > cvOLS

ζ . Again using
Lemma 1, we have that

FUR
234 (ζ)

d→ τQD
234 I(τ

QD
234 > cvQD

ζ ) + τOLS
234 I(τQD

234 ≤ cvQD
ζ ).

For tests run at the asymptotic 0.05 level, cvQD
ζ = 2.74 and cvOLS

ζ = 5.87.

(iv) For testing the joint null hypothesis of unit roots at the zero, biannual and annual
frequencies, the union of rejections is

FUR
1234(ζ) := FQD

1234I(F
QD
1234 > cvQD

ζ ) + FOLS
1234 I(F

QD
1234 ≤ cvQD

ζ )

where if FUR
1234(ζ) = FQD

1234, a rejection of H0 is recorded if FUR
1234(ζ) > cvQD

ζ ; otherwise if

FUR
1234(ζ) = FOLS

1234 , a rejection is recorded if FUR
1234(ζ) > cvOLS

ζ . Using Lemma 1 we have
that

FUR
1234(ζ)

d→ τQD
1234I(τ

QD
1234 > cvQD

ζ ) + τOLS
1234 I(τ

QD
1234 ≤ cvQD

ζ ).

For tests run at the asymptotic 0.05 level, cvQD
ζ = 3.32 and cvOLS

ζ = 6.19.

Observe that while these procedures share the same asymptotic independence prop-
erties as were detailed in Remark 2 (so that, for example, tUR

1 (ζ) is asymptotically
independent of tUR

2 (ζ)), it should also be clear (using Bonferroni’s inequality) that
none of these individual strategies are size controlled for c = 0, being oversized even
asymptotically. For significance levels γ = 0.10, 0.05 and 0.01 the asymptotic sizes of
tUR
1 (ζ), tUR

2 (ζ), FUR
34 (ζ), FUR

234 (ζ) and FUR
1234(ζ) are given in Table 1, Panel C.

However, we can correct these sizes quite easily in the limit. Taking the zero
frequency tUR

1 (ζ) test to illustrate the principle, we simply need to determine a scaling
constant, λζ , say, that is applied to the critical values cvQD

ζ and cvOLS
ζ , such that

tUR ∗
1 (ζ) := tQD

1 I(tQD
1 < λζcv

QD
ζ ) + tOLS

1 I(tQD
1 ≥ λζcv

QD
ζ )
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which records a rejection of H0,0 if tUR ∗
1 (ζ) = tQD

1 and tUR ∗
1 (ζ) < λζcv

QD
ζ or if tUR ∗

1 (ζ) =

tOLS
1 and tUR ∗

1 (ζ) < λζcv
OLS
ζ , has an asymptotic size of ζ. In order to determine λζ

in a computationally efficient way, we recognise that the decision rule associated with
tUR
1 (ζ) can also be written as

Reject H0,0 if min

{
tQD
1 ,

(
cvQD

ζ

cvOLS
ζ

)
tOLS
1

}
< cvQD

ζ . (12)

The representation in (12) makes it very straightforward to calculate λζ . Specifically,
setting c = 0 we find the limit distribution of the min function in (12) using the (joint)
limit distributions of tQD

1 and tOLS
1 , then obtain an asymptotic ζ-level critical value

from this empirical cdf, say cvUR
ζ . Then λζ is given by λζ := cvUR

ζ /cvQD
ζ .

The asymptotic size-corrected variants of the remaining union of rejections tests can
be obtained in the same way, and we label these tUR ∗

2 , FUR ∗
34 , FUR ∗

234 and FUR ∗
1234 . Notice,

however, for the latter three tests, that the decision rule analogous to (12) involves the
maximum rather than minimum function, so that, for example, the decision rule of
FUR

34 (ζ) can also be written as

Reject H0,1 if max

{
FQD

34 ,

(
cvQD

ζ

cvOLS
ζ

)
FOLS

34

}
> cvQD

ζ .

The scaling constants required for all the tests are reported in Table 1, Panel D for
ζ = 0.10, 0.05 and 0.01. Notice that this yields testing strategies which are correctly
sized in the limit, regardless of the value of σα or the µα,i, i = 1, ..., 4, since the (exact)
null distributions of the tests involved do not depend on these parameters.

The asymptotic power curves for the union of rejections tests are shown in Figures
1-6. Both the raw and size-corrected variants of each of the tests are given. As we
would conjecture, the power curves of the basic tUR

1 , tUR
2 , FUR

34 , FUR
234 and FUR

1234 tests
tend to mimic (lie slightly above due to the oversizing phenomenon noted above) those
of tQD

1 , tQD
2 , FQD

34 , FQD
234 and FQD

1234, respectively, for small magnitudes of the relevant
spectral initial conditions, then mimic those of tOLS

1 , tOLS
2 , FOLS

34 , FOLS
234 and FOLS

1234 ,
respectively, for large initial conditions. Thus, the union of rejections tests capture the
power advantage of the QD detrended tests relative to the OLS detrended tests when
the magnitude of the relevant spectral initial conditions is small, whilst avoiding the
severe power losses that the QD detrended tests frequently exhibit relative to the OLS
detrended tests when the converse is true. The size-corrected tests tUR ∗

1 , tUR ∗
2 , FUR ∗

34 ,
FUR ∗

234 and FUR ∗
1234 obviously have lower power across the board than their uncorrected

counterparts, but the qualitative picture here is similar; for the smaller initial conditions
the size corrected tests pick up a good deal of the extra power available to the QD
detrended tests over OLS detrended variants, while for the larger initial conditions
they avoid the dramatic power losses often associated with QD detrended tests and
follow, with only a modest loss in power, the (typically rising) power profile of the OLS
detrended tests. It is interesting to observe, also, that when the initial conditions are
fixed, there is an almost exact common point of intersection for the QD detrended,
OLS detrended and size-corrected union of rejections tests.
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5 Finite Sample Comparisons

In this section we investigate the finite sample size and power properties of the QD and
OLS detrended HEGY-type tests of section 2.4 together with the corresponding raw
and size-corrected union of rejections tests from section 4. Our simulations are based
on the DGP (1)-(3) under Hc of (6). Results are reported for samples of size T = 152
and T = 300. Without loss of generality, we set γ−3 = · · · = γ0 = δ = 0 in (1).

Throughout these simulations, we select p in the fitted regression (8) using down-
ward testing at the 0.10 level from a maximum lag length set at pmax = b12(T/100)1/4c.
Finite sample critical values for the tests are taken from Table 1, Panels A and B. The
scaling constants applied to size-corrected union of rejections tests are the asymptoti-
cally valid ones given in Table 1, Panel D.

In Table 2 we first report the empirical sizes of the various tests for the case where
c = 0 and where the innovation process u4t+s is assumed to follow an ARMA(1,4)
process of the form (1−φL)u4t+s = (1−θL4)ε4t+s for φ ∈ {0.0, 0.3, 0.6}, θ ∈ {±0.4, 0.0}
and ε4t+s ∼ NIID(0, 1), with u1 = ε1 and εs = 0, s = −3, ..., 0. For the size results
all initial conditions ξi, i = 1, ..., 4, are set to zero with no loss of generality. The
sizes of the QD and OLS detrended tests are fairly similar throughout Table 2 and
are generally free from significant size distortion (outside of a negative moving averge
component), particularly for the larger sample size. If anything, the QD detrended
tests display slightly less upward size distortion than the corresponding OLS detrended
tests. For any given combination of φ and θ, the (asymptotically) size-corrected union
of rejections tests tend to have sizes similar to the larger of the QD and OLS detrended
tests individual sizes. This occurs since the union essentially selects whichever of the
QD and OLS detrended tests is least favourable to the null. Obviously, compared to
the other tests, the raw union of rejections always have the highest sizes. Overall,
then, the results of Table 2 indicate that the (asymptotically) size-corrected union of
rejections tests display pretty decent size control.

Finite sample powers are given in Figures 7-12. Here we set φ = θ = 0 in the
generating process to abstract from any counfonding effects that may arise from size
distortions. For brevity we report results for the random initial conditions case only,
using the same sets of values for σα and c that underlie Figures 4-6. An issue of
note here is that all the tests tend to display lower powers than in the asymptotic
case, most noticeably when T = 152. We expect that this is partly explained by the
lag selection process which is still in place. Otherwise, the finite sample relationships
between the QD detrended, OLS detrended, and corresponding raw and size-corrected
union of rejections tests across σα and c qualitatively resemble those of their asymptotic
counterparts when T = 152. For T = 300, the resemblance is much closer in general.

On the basis of this finite sample evidence, it appears then that a size-corrected
union of rejections approach can provide a very decent practical strategy for seasonal
unit root testing in the context of uncertainty about the initial conditions and, conse-
quently, equal uncertainty over whether it is best to employ QD or OLS detrending.
This is a particularly pertinent issue in the seasonal case considered here, because in
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employing QD detrending, while this might constitute the best approach at one fre-
quency, it may also be totally unsuitable for a different frequency, depending on the
values of the spectral initial conditions. Taking unions of rejections at each frequency
essentially ensures that we employ the most appropriate method of detrending at any
particular frequency.

6 Conclusions

In this paper we have investigated the impact that the magnitude of the spectral initial
condition has on the power of commonly used seasonal unit root tests. For a given
frequency we have shown that when the relevant spectral initial condition of the pro-
cess is not asymptotically negligible, QD detrended implementation of a HEGY-type
seasonal unit root test, as developed by Rodrigues and Taylor (2007), can lead to tests
that have very low power against a given alternative, typically decreasing towards zero
as the magnitude of the relevant spectral initial condition(s) increase. In contrast, we
showed that corresponding OLS detrended HEGY tests display increasing power, other
things equal, as the magnitude of the spectral initial condition(s) increase. At the same
time, the power of such tests can lie well below that of their QD detrended counterparts
for small (or asymptotically negligible) values of the initial condition. The relevance
of these results lies in the fact that the magnitude of the initial condition is unknown
in practice and therefore uncertainty surrounds the best choice of detrending method,
which can therefore also differ across frequencies. Given these considerations, we fol-
lowed a strategy shown to work well in the non-seasonal case by Harvey et al. (2008)
and proposed a union of rejections decision rule, whereby the relevant null hypothesis
was rejected if either of the QD and OLS detrended variants rejected. Asymptotic and
finite sample evidence suggested that, despite its simplicity, this procedure is highly
effective.

Appendix

Proof of Lemma 1

Consider first the tQD
2 statistic. When the initial conditions are asymptotically negli-

gible, it follows from Rodrigues and Taylor (2004a, 2004b, 2007) that under the stated
conditions the limit distribution of the statistic can be written as

tQD
2

d→ c

√∫ 1

0

W2c(r)2dr +

∫ 1

0
W2c(r)dW20(r)√∫ 1

0
W2c(r)2dr

where
W2c(r) :=

{
−W ∗

−3,c(r) +W ∗
−2,c(r)−W ∗

−1,c(r) +W ∗
0,c(r)

}
/2
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is a standard Ornstein-Uhlenbeck [OU] process, formed from the independent standard
OU processes, W ∗

s,c(r), s = −3, ..., 0. Noting that dW2c(r) = cW2c(r)dr + dW20(r), we
can equivalently write

tQD
2

d→
∫ 1

0
W2c(r)dW2c(r)√∫ 1

0
W2c(r)2dr

=
W2c(1)

2 −W2c(0)
2 − 1

2
√∫ 1

0
W2c(r)2dr

(13)

using the Itô integral. When the initial conditions are as defined in Assumption 1,
the analyis of Müller and Elliott (2003) implies that we need to replace W ∗

s,c(r) with

K∗
s,c(r) := αs+4(e

rc − 1)(−2c)−1/2 +W ∗
s,c(r) for s = −3, ..., 0. Consequently, W2c(r) in

(13) is replaced with

K2c(r) =
{
−K∗

−3,c(r) +K∗
−2,c(r)−K∗

−1,c(r) +K∗
0,c(r)

}
/2

= {(−α1 + α2 − α3 + α4)/2}(erc − 1)(−2c)−1/2 +W2c(r)

= ᾱ2(e
rc − 1)(−2c)−1/2 +W2c(r)

which completes the proof of the stated result for tQD
2 in Lemma 1.

The result for the tOLS
2 statistic follows in exactly the same way as for tQD

2 , replacing

W ∗
s,c(r) with W ∗µ

s,c (r) := W ∗
s,c(r) −

∫ 1

0
W ∗

s,c(t)dt, s = −3, ..., 0, and, hence, K∗
s,c(r) with

K∗µ
s,c (r) := K∗

s,c(r) −
∫ 1

0
K∗

s,c(t)dt, s = −3, ..., 0. The limit of tOLS
2 then has the same

form as that for tQD
2 but with K2c(r) now replaced by Kµ

2c(r) := K2c(r)−
∫ 1

0
K2c(s)ds.

Next consider the tOLS
1 statistic. When the initial conditions are asymptotically negli-

gible, the limit distribution can be written as

tOLS
1

d→ W τ
1c(1)

2 −W τ
1c(0)

2 − 1

2
√∫ 1

0
W τ

1c(r)
2dr

(14)

where
W τ

1c(r) :=
{
W ∗ τ

−3,c(r) +W ∗ τ
−2,c(r) +W ∗ τ

−1,c(r) +W ∗ τ
0,c (r)

}
/2

is a demeaned and detrended standard OU process, formed from the independent
demeaned and detrended standard OU processes

W ∗ τ
s,c (r) := W ∗

s,c(r)−
∫ 1

0

W ∗
s,c(t)dt− 12

(
r − 1

2

) ∫ 1

0

(
t− 1

2

)
W ∗

s,c(t)dt, s = −3, ..., 0.

When the initial conditions are governed by Assumption 1, as before we replace W ∗
s,c(r)

with K∗
s,c(r) := αs+4(e

rc − 1)(−2c)−1/2 +W ∗
s,c(r) for s = −3, ..., 0, thus W τ

1c(r) in (14)
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is replaced with

KOLS
1c (r) =

0∑
s=−3

{
K∗

s,c(r)−
∫ 1

0

K∗
s,c(t)dt− 12

(
r − 1

2

) ∫ 1

0

(
t− 1

2

)
K∗

s,c(t)dt

}
/2

= ᾱ1

{
(erc − 1)(−2c)−1/2 −

∫ 1

0

(esc − 1)(−2c)−1/2ds

−12

(
r − 1

2

) ∫ 1

0

(
s− 1

2

)
(esc − 1)(−2c)−1/2ds

}
+W τ

1c(r)

= Kµ
1c(r)− 12

(
r − 1

2

) ∫ 1

0

(
s− 1

2

)
K1c(s)ds

which completes the proof of the result for tOLS
1 in Lemma 1.

The result for the tQD
1 statistic follows in exactly the same way as for tOLS

1 , replacing

W ∗ τ
s,c (r) with W ∗ τ,c̄1

s,c (r) := W ∗
s,c(r)− c̄∗1rW

∗
s,c(1)− 3(1− c̄∗1)r

∫ 1

0
tW ∗

s,c(t)dt, s = −3, ..., 0,

where c̄∗1 is as defined in Lemma 1. The limit of tQD
1 then has the same form as that

for tOLS
1 but with KOLS

1c (r) now replaced by KQD
1c (r) := K1c(r) − c̄∗1rK1c(1) − 3(1 −

c̄∗1)r
∫ 1

0
sK1c(s)ds.

Consider next the result for the FQD
34 statistic. Drawing again on results established in

Rodrigues and Taylor (2004a, 2004b, 2007), we can write the limit distribution in the
asymptotically negligible initial conditions case as

FQD
34

d→ 1

2

[
(A∗)2 + (B∗)2

]
where

A∗ := c

√∫ 1

0

W3c(r)2dr +

∫ 1

0

W4c(r)2dr +

∫ 1

0
W3c(r)dW30(r) +

∫ 1

0
W4c(r)dW40(r)√∫ 1

0
W3c(r)2dr +

∫ 1

0
W4c(r)2dr

B∗ :=

∫ 1

0
W3c(r)dW40(r)−

∫ 1

0
W4c(r)dW30(r)√∫ 1

0
W3c(r)2dr +

∫ 1

0
W4c(r)2dr

with
W3c(r) :=

{
−W ∗

−2,c(r) +W ∗
0,c(r)

}
/
√

2

and
W4c(r) :=

{
−W ∗

−3,c(r) +W ∗
−1,c(r)

}
/
√

2

constituting a pair of mutually independent standard OU processes defined via the
independent standard OU processes W ∗

s,c(r), s = −3, ..., 0. Now since dWic(r) =
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cWic(r)dr + dWi0(r), i = 3, 4, we can alternatively write

A∗ =

∫ 1

0
W3c(r)dW3c(r) +

∫ 1

0
W4c(r)dW4c(r)√∫ 1

0
W3c(r)2dr +

∫ 1

0
W4c(r)2dr

B∗ =

∫ 1

0
W3c(r)dW4c(r)−

∫ 1

0
W4c(r)dW3c(r)√∫ 1

0
W3c(r)2dr +

∫ 1

0
W4c(r)2dr

.

Introducing initial conditions of the form given in Assumption 1, we again need to
replace W ∗

s,c(r) with K∗
s,c(r), s = −3, ..., 0. The limit processes W3c(r) and W4c(r) are

then correspondingly replaced with

K3c(r) =
{
−K∗

−2,c(r) +K∗
0,c(r)

}
/
√

2

= {(−α2 + α4)/
√

2}(erc − 1)(−2c)−1/2 +W3c(r)

= ᾱ3(e
rc − 1)(−2c)−1/2 +W3c(r)

and

K4c(r) =
{
−K∗

−3,c(r) +K∗
−1,c(r)

}
/
√

2

= {(−α1 + α3)/
√

2}(erc − 1)(−2c)−1/2 +W4c(r)

= ᾱ4(e
rc − 1)(−2c)−1/2 +W4c(r)

respectively. Consequently,

FQD
34

d→ 1

2

[
(AQD)2 + (BQD)2

]
where

AQD =

∫ 1

0
K3c(r)dK3c(r) +

∫ 1

0
K4c(r)dK4c(r)√∫ 1

0
K3c(r)2dr +

∫ 1

0
K4c(r)2dr

BQD =

∫ 1

0
K3c(r)dK4c(r)−

∫ 1

0
K4c(r)dK3c(r)√∫ 1

0
K3c(r)2dr +

∫ 1

0
K4c(r)2dr

.

Now, it is straightforward to show that

dKic(r) = cKic(r)dr + ᾱic(−2c)−1/2dr + dWi(r), i = 3, 4
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and so we obtain on substitution that

AQD = c

√∫ 1

0

K3c(r)2dr +

∫ 1

0

K4c(r)2dr

+
ᾱ3c(−2c)−1/2

∫ 1

0
K3c(r)dr + ᾱ4c(−2c)−1/2

∫ 1

0
K4c(r)dr√∫ 1

0
K3c(r)2dr +

∫ 1

0
K4c(r)2dr

+

∫ 1

0
K3c(r)dW3(r) +

∫ 1

0
K4c(r)dW4(r)√∫ 1

0
K3c(r)2dr +

∫ 1

0
K4c(r)2dr

BQD =
ᾱ4c(−2c)−1/2

∫ 1

0
K3c(r)dr − ᾱ3c(−2c)−1/2

∫ 1

0
K4c(r)dr√∫ 1

0
K3c(r)2dr +

∫ 1

0
K4c(r)2dr

+

∫ 1

0
K3c(r)dW4(r)−

∫ 1

0
K4c(r)dW3(r)√∫ 1

0
K3c(r)2dr +

∫ 1

0
K4c(r)2dr

which completes the result.

The result for FOLS
34 again follows in exactly the same way as for FQD

34 , replacing
W ∗

s,c(r) with W ∗µ
s,c (r), s = −3, ..., 0, and K∗

s,c(r) with K∗µ
s,c (r), s = −3, ..., 0. The

limit of FOLS
34 is then obtained as that for FQD

34 above, but with Kic(r) replaced by

Kµ
ic(r) := Kic(r) −

∫ 1

0
Kic(s)ds, i = 3, 4. Note that

∫ 1

0
Kµ

ic(r)dr = 0, i = 3, 4, so that
the expression simplifies to the form given in Lemma 1.

The stated representations for the FOLS
234 , FQD

234 , FOLS
1234 and FQD

1234 statistics then follow
immediately from the representations given above, noting the asymptotic orthogonality
of the HEGY regressors x̂1,4t+s−1, x̂2,4t+s−1, x̂3,4t+s−1 and x̂4,4t+s−1 from (8) under Hc

of (6) for both OLS and QD detrended data; see, Rodrigues and Taylor (2004b,2007).
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Table 1. Critical values, asymptotic UR sizes, and λζ values for ζ-level seasonal unit root tests.

t1 t2 F34 F234 F1234

T ζ = 0.10 ζ = 0.05 ζ = 0.01 ζ = 0.10 ζ = 0.05 ζ = 0.01 ζ = 0.10 ζ = 0.05 ζ = 0.01 ζ = 0.10 ζ = 0.05 ζ = 0.01 ζ = 0.10 ζ = 0.05 ζ = 0.01

Panel A. Critical values for OLS detrended tests

52 −3.18 −3.49 −4.12 −2.63 −2.96 −3.62 6.01 7.23 9.97 5.75 6.79 9.12 6.41 7.40 9.61

100 −3.15 −3.45 −4.04 −2.61 −2.92 −3.53 5.82 6.92 9.33 5.42 6.33 8.30 5.95 6.77 8.54

152 −3.15 −3.44 −4.00 −2.59 −2.90 −3.52 5.71 6.73 8.97 5.30 6.14 7.90 5.80 6.53 8.18

300 −3.14 −3.43 −3.99 −2.58 −2.87 −3.48 5.68 6.71 9.00 5.22 6.04 7.84 5.68 6.41 7.90

∞ −3.13 −3.42 −3.96 −2.57 −2.86 −3.44 5.62 6.62 8.78 5.13 5.87 7.52 5.52 6.19 7.61

Panel B. Critical values for QD detrended tests

52 −3.07 −3.37 −4.00 −2.34 −2.64 −3.27 3.69 4.53 6.50 3.84 4.57 6.23 4.79 5.51 7.21

100 −2.91 −3.19 −3.75 −2.13 −2.41 −3.02 3.14 3.92 5.72 3.14 3.77 5.24 3.96 4.56 5.92

152 −2.83 −3.11 −3.67 −2.01 −2.31 −2.90 2.91 3.66 5.38 2.82 3.42 4.75 3.62 4.18 5.38

300 −2.72 −3.01 −3.59 −1.86 −2.16 −2.75 2.66 3.38 5.07 2.50 3.08 4.34 3.25 3.77 4.91

∞ −2.56 −2.85 −3.41 −1.62 −1.94 −2.56 2.39 3.07 4.70 2.20 2.74 3.89 2.81 3.32 4.35

Panel C. Sizes of UR tests

∞ 0.155 0.080 0.017 0.173 0.089 0.018 0.178 0.092 0.019 0.177 0.091 0.019 0.170 0.088 0.019

Panel D. λζ values for UR* tests

∞ 1.070 1.058 1.043 1.126 1.095 1.065 1.197 1.163 1.118 1.163 1.131 1.101 1.118 1.100 1.075

T
.1



Table 2. Empirical sizes of nominal 0.05-level seasonal unit root tests.

t
j
1

t
j
2

F
j
34

F
j
234

F
j
1234

T φ θ j: OLS GLS UR UR∗ OLS GLS UR UR∗ OLS GLS UR UR* OLS GLS UR UR* OLS GLS UR UR*

152 0.0 −0.4 0.126 0.110 0.159 0.118 0.093 0.090 0.135 0.090 0.100 0.073 0.144 0.092 0.117 0.093 0.166 0.115 0.152 0.123 0.204 0.150

0.0 0.060 0.066 0.087 0.057 0.049 0.053 0.080 0.046 0.054 0.056 0.097 0.054 0.052 0.057 0.092 0.054 0.056 0.063 0.097 0.057

0.4 0.065 0.071 0.092 0.061 0.052 0.057 0.084 0.050 0.053 0.057 0.095 0.053 0.054 0.059 0.095 0.056 0.061 0.068 0.103 0.063

0.3 −0.4 0.112 0.102 0.145 0.107 0.102 0.100 0.147 0.099 0.105 0.078 0.151 0.096 0.127 0.103 0.179 0.125 0.155 0.125 0.207 0.154

0.0 0.058 0.063 0.084 0.054 0.050 0.051 0.079 0.045 0.053 0.057 0.096 0.053 0.052 0.057 0.092 0.054 0.057 0.062 0.096 0.056

0.4 0.075 0.082 0.106 0.072 0.047 0.052 0.076 0.045 0.052 0.057 0.094 0.053 0.050 0.057 0.091 0.052 0.064 0.073 0.108 0.067

0.6 −0.4 0.092 0.090 0.125 0.088 0.102 0.097 0.145 0.099 0.107 0.078 0.152 0.100 0.134 0.104 0.183 0.130 0.155 0.122 0.205 0.151

0.0 0.058 0.064 0.085 0.055 0.047 0.050 0.076 0.043 0.052 0.056 0.094 0.053 0.050 0.055 0.089 0.053 0.055 0.061 0.094 0.056

0.4 0.063 0.070 0.090 0.061 0.047 0.054 0.077 0.045 0.051 0.055 0.092 0.052 0.050 0.056 0.090 0.051 0.057 0.066 0.098 0.061

300 0.0 −0.4 0.090 0.086 0.124 0.085 0.070 0.073 0.113 0.070 0.067 0.059 0.110 0.062 0.076 0.068 0.121 0.074 0.097 0.090 0.147 0.097

0.0 0.057 0.060 0.084 0.056 0.049 0.053 0.084 0.049 0.051 0.055 0.095 0.053 0.050 0.053 0.091 0.052 0.053 0.059 0.093 0.056

0.4 0.056 0.060 0.083 0.054 0.049 0.053 0.084 0.048 0.049 0.055 0.093 0.051 0.050 0.052 0.090 0.051 0.054 0.060 0.094 0.056

0.3 −0.4 0.080 0.079 0.112 0.076 0.076 0.078 0.120 0.076 0.070 0.060 0.113 0.065 0.083 0.073 0.130 0.081 0.097 0.089 0.147 0.097

0.0 0.057 0.059 0.084 0.054 0.048 0.051 0.082 0.048 0.050 0.054 0.094 0.052 0.049 0.052 0.089 0.051 0.053 0.059 0.093 0.055

0.4 0.058 0.061 0.084 0.056 0.049 0.052 0.083 0.048 0.050 0.054 0.093 0.051 0.049 0.052 0.089 0.051 0.054 0.060 0.095 0.058

0.6 −0.4 0.071 0.073 0.102 0.070 0.074 0.078 0.119 0.076 0.069 0.060 0.112 0.066 0.082 0.071 0.128 0.081 0.093 0.085 0.141 0.094

0.0 0.056 0.060 0.084 0.055 0.048 0.051 0.081 0.048 0.050 0.054 0.093 0.051 0.049 0.052 0.089 0.051 0.052 0.059 0.092 0.055

0.4 0.052 0.056 0.078 0.051 0.049 0.054 0.084 0.049 0.049 0.055 0.093 0.051 0.049 0.053 0.089 0.051 0.051 0.057 0.091 0.053

T
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Figure 1. Asymptotic local power: c = −5; j = OLS : - - - , j = GLS : – – , j = UR: · · · , j = UR*:
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j
234
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Figure 2. Asymptotic local power: c = −7.5; j = OLS : - - - , j = GLS : – – , j = UR: · · · , j = UR*:
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: ᾱ1 = ᾱ2 = ᾱ3 = ᾱ4 = |µ|

Figure 3. Asymptotic local power: c = −10; j = OLS : - - - , j = GLS : – – , j = UR: · · · , j = UR*:
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Figure 4. Asymptotic local power: c = −5, αi ∼ N(0, σ2
α), i = 1, 2, 3, 4;

j = OLS : - - - , j = GLS : – – , j = UR: · · · , j = UR*:
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Figure 5. Asymptotic local power: c = −7.5, αi ∼ N(0, σ2
α), i = 1, 2, 3, 4;

j = OLS : - - - , j = GLS : – – , j = UR: · · · , j = UR*:
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Figure 6. Asymptotic local power: c = −10, αi ∼ N(0, σ2
α), i = 1, 2, 3, 4;

j = OLS : - - - , j = GLS : – – , j = UR: · · · , j = UR*:
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Figure 7. Finite sample power: T = 152, c = −5, αi ∼ N(0, σ2
α), i = 1, 2, 3, 4;

j = OLS : - - - , j = GLS : – – , j = UR: · · · , j = UR*:
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Figure 8. Finite sample power: T = 152, c = −7.5, αi ∼ N(0, σ2
α), i = 1, 2, 3, 4;

j = OLS : - - - , j = GLS : – – , j = UR: · · · , j = UR*:
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Figure 9. Finite sample power: T = 152, c = −10, αi ∼ N(0, σ2
α), i = 1, 2, 3, 4;

j = OLS : - - - , j = GLS : – – , j = UR: · · · , j = UR*:
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Figure 10. Finite sample power: T = 300, c = −5, αi ∼ N(0, σ2
α), i = 1, 2, 3, 4;

j = OLS : - - - , j = GLS : – – , j = UR: · · · , j = UR*:
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Figure 11. Finite sample power: T = 300, c = −7.5, αi ∼ N(0, σ2
α), i = 1, 2, 3, 4;

j = OLS : - - - , j = GLS : – – , j = UR: · · · , j = UR*:
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Figure 12. Finite sample power: T = 300, c = −10, αi ∼ N(0, σ2
α), i = 1, 2, 3, 4;

j = OLS : - - - , j = GLS : – – , j = UR: · · · , j = UR*:
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