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Abstract

We propose a new small area estimation approach that
combines small area random effects with a smooth,
nonparametrically specified trend. By using penal-
ized splines as the representation for the nonparamet-
ric trend, it is possible to express the small area es-
timation problem as a mixed effect regression model.
We show how this model can be fitted using existing
model fitting approaches such as restricted maximum
likelihood, and illustrate its applicability on a survey
of lakes in the Northeastern US.
Key Words: mixed model, survey estimation.

1 Introduction

In many surveys, it is of interest to provide esti-
mates for small domains within the overall popula-
tion of interest. Depending on the overall survey sam-
ple size, design-based inference methods might not be
appropriate for all or some of these small domains,
so that survey practitioners have often resorted to
model-based estimators in this case. The term “small
area estimation” is often used to denote this kind of
estimation setting. Ghosh and Rao (1994) give an
overview of the most commonly used types of estima-
tors used by survey statisticians, including synthetic
and composite estimators, mixed model prediction,
and Bayesian approaches. To date, all the approaches
in use by survey statisticians have relied on paramet-
ric, most often linear, modelling techniques. In this
article, we propose a new type of small area estimator
that relies on a nonparametric model formulation.
In principle, a nonparametric model might have sig-
nificant advantages compared to current fully para-
metric approaches when the functional form of the
relationship between the variable of interest and the
covariates cannot be specified a priori, since erroneous
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specification of the model can result in biased estima-
tors. Even when a specific functional form appears
reasonable, the nonparametric model provides a more
robust model alternative that can be useful in the pro-
cess of model checking and validation. Despite these
possible advantages, nonparametric approaches have
not made any inroads in small area estimation, due
in large part to the difficulty in incorporating existing
smoothing techniques into the estimation tools cur-
rent used by survey statisticians.
Penalized spline regression, often referred to as P-
splines, is a nonparametric method recently popular-
ized by Eilers and Marx (1996). P-splines are rapidly
gaining in popularity in the statistics community, be-
cause of their flexibility and ability to incorporate
them into a large range of modelling contexts. We
refer to Ruppert, Wand, and Carroll (2003) for an
overview of applications of P-splines to different set-
tings. Because of their close connections with linear
mixed models discussed in Wand (2003), P-splines are
also a “natural” candidate for constructing nonpara-
metric small area estimators, as we will show in the
current article. In doing so, we will extend the mixed
model small area estimation approach described in
Battese, Harter, and Fuller (1988) to the setting in
which the mean function can be nonparametrically
(or semiparametrically) specified.
The ability to combine nonparametric regression and
mixed model regression with P-splines has recently
been used in other contexts. Parise et al. (2001),
Coull, Ruppert, and Wand (2001), Coull, Schwartz,
and Wand (2001) and Liang (2003) all provide ex-
amples of using penalized splines in the construction
of mixed effect regression models for the analysis of
data containing random effects. In the survey con-
text, Zheng and Little (2003) propose a model-based
estimator for cluster sampling, in which the regression
model combines a spline model with a random effect
for the clusters. Our approach will be conceptually
similar to that of these other authors, but targeted
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Figure 1: Locations of sampled lakes in Northeastern
U.S.

specifically to small area estimation.
We illustrate the applicability of the nonparametric
small area estimation approach on a survey of lakes
in the Northeastern states of the U.S (Figure 1). In
that survey, 334 lakes were sampled from a population
of 21,026 lakes. We will use small area estimation to
produce estimates of mean acid neutralizing capacity
(ANC) for each of 113 8-digit Hydrologic Unit Codes
(HUC) in the region. In this application, we will show
how the inclusion of a spatial spline can improve the fit
relative to a model which only uses a random effect for
the small areas, as would be done in traditional small
area estimation. We will also argue that the model
that includes both the spatial spline and a HUC effect
will perform better than a model that only includes a
spline, at least in the small area estimation context.

2 Description of Methodology

We begin by describing the spline-based nonparamet-
ric regression model and estimator outside of the small
area context. We will closely follow the description in
Ruppert, Wand, and Carroll (2003). Consider first
the simple model

yi = mo(xi) + εi,

where the εi are independent random variables with
mean zero and variance σ2

ε . The function mo(·) is
unknown, but if this function is to be estimated us-
ing P-splines, we assume that it can be approximated

sufficiently well by

m(x;β,γ) = β0 + β1x + . . . + βpx
p +

K∑
k=1

γk(x− κk)p
+.

(1)
Here p is the degree of the spline, (x)p

+ denotes the
function xpI{x>0}, κ1 < . . . < κK is a set of fixed
knots and β = (β0, . . . , βp)′,γ = (γ1, . . . , γK)′ the co-
efficient vectors for the “parametric” and the “spline”
portions of the model. If K is sufficiently large (guide-
lines are given below), the class of functions m(x;β,γ)
is very large and can approximate most smooth func-
tions mo(·) with a very high degree of accuracy, even
for p small (say, between 1 and 3). As is commonly
done in the P-spline context, we will assume that the
lack-of-fit error mo(·)−m(·;β,γ) is negligible relative
to the estimation error m(·;β,γ)−m(·; β̂, γ̂).
The spline function (1) uses the truncated polynomial
spline basis {1, x, . . . , xp, (x−κ1)

p
+, . . . , (x−κK)p

+} to
approximate the function m0. Other bases are also
possible and, especially when x is multivariate, might
be preferable to the truncated polynomials. Regard-
less of the choice of basis, the spline function can be
expressed as a linear combination of basis functions.
In Section 4, we introduce the radial basis functions
for use in the spatial context.
In P-spline regression, K is typically taken to be large
relative to the size of the dataset, with 1 knot ev-
ery 4 or 5 observations, say. Hence, the model (1) is
potentially over-parameterized. This issue is avoided
by putting a penalty on the magnitude of the spline
parameters γ. For a given dataset {(xi, yi) : i =
1, . . . , n}, this is done by defining the regression es-
timators as the minimizers over β and γ of

n∑
i=1

(yi −m(xi;β,γ))2 + λγγ′γ.

where λγ is a fixed penalty parameter. However, dif-
ferent values of λγ will result in different estimators
of β and γ, so that it is of interest to treat λγ as an
unknown parameter as well. As discussed in Ruppert,
Wand, and Carroll (2003), this can be conveniently
done by treating the γ as a random effect in a lin-
ear mixed model specification, which will allow joint
estimation of λγ , β and γ by maximum likelihood
methods.
In small area estimation, a commonly used approach
is to express the relationship between the variable of
interest and any auxiliary variables as a linear model
supplemented by a random effect for the small areas
(e.g. Battese, Harter, and Fuller, 1988). Since both
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the P-spline and the small area estimation models can
be viewed as random effects models, it is natural to
try to combine both into a nonparametric small area
estimation framework based on linear mixed model
regression.
Specifically, suppose there are T small areas,
U1, . . . , UT , for which estimates are to be constructed.
Define dit = I{i∈Ut}, and for each observations i, let
di = (di1, . . . , diT ). Let Y = (y1, . . . , yn)′,

X =

 1 x1 · · · xp
1

...
...

1 xn · · · xp
n

 ,

Z =

 (x1 − κ1)
p
+ · · · (x1 − κK)p

+
...

...
(xn − κ1)

p
+ · · · (xn − κK)p

+


and D = (d′1, . . . ,d

′
n)′. If other variables are available

that need to be included in the model as parametric
terms, they can be added into the X fixed effect ma-
trix. We assume that the data follow the model

Y = Xβ + Zγ + Du + ε (2)

where

γ ∼ (0,Σγ) with Σγ ≡ σ2
γ IK

u ∼ (0,Σu) with Σu ≡ σ2
u IT (3)

ε ∼ (0,Σε) with Σε ≡ σ2
ε In

and each of the random components is assumed inde-
pendent of the others.
The model (2) includes both the spline function, which
can be thought of as a nonparametric mean func-
tion specification and includes Xβ + Zγ, and the
small area random effects Du. For the purpose of
fitting this model and using the appropriate amount
of smoothing for the spline, it is convenient to con-
tinue to treat Zγ as a random effect term, so that
Var(Y ) ≡ V = ZΣγZ ′ + DΣuD′ + Σε.
If the variances of the random components are known,
standard results from BLUP theory (e.g. McCulloch
and Searle, 2001, chapter 9) guarantee that, given the
model specifications (2) and (3), the GLS estimator

β̂ = (X ′V −1X)−1X ′V −1Y (4)

and the predictors

γ̂ = ΣγZ ′V −1(Y −Xβ̂)

û = ΣuD′V −1(Y −Xβ̂) (5)

are optimal among all linear estimators/predictors.
For a given small area Ut, we will assume that we are
interested in predicting

ȳt = x̄tβ + z̄tγ + ut, (6)

where x̄t, z̄t are the true means of the powers of xi

(up to p) and of the spline basis functions over the
small area, and ut is the small area effect. Note that
ȳt is not generally equal to the true mean of the yi

in small area Ut, because it ignores the mean of the
errors εt. The difference between both quantities is
usually ignored in practice, and we will do the same
here.
Clearly, ut = d̄tu = etu, where et is a vector with
1 in the tth position and 0s everywhere else. As a
predictor of ȳt, we therefore use

ŷt = x̄tβ̂ + z̄tγ̂ + etû, (7)

which is a linear combination of the GLS estimator
(4) and the BLUPs in (5), so that ŷt is itself BLUP
for ȳt.
If the variances are unknown, EBLUP versions of (4),
(5) and (7) are constructed by replacing σ2

γ , σ2
u, σ2

ε by
estimators. Estimated parameters (4) and predictions
(5) can be obtained by Restricted Maximum Likeli-
hood (REML) minimization or related methods (Pat-
terson and Thompson, 1971), which are implemented
in PROC MIXED in SAS and lme() in S-Plus and R,
among others.

3 Theoretical Properties

3.1 Consistency and Mean Squared Error

We consider the prediction error ŷt − ȳt. To simplify
the expressions, we let W = [ZD], ω = (γ′,u′)′,
w̄t = (z̄t, et) and

Σw =
[

Σγ 0
0 Σu

]
.

Then,

ŷt−ȳt = ct

(
β̂ − β

)
+w̄t

(
ΣwW ′V −1(Y −Xβ)− ω

)
(8)

with ct = x̄t − w̄tΣwW ′V −1X. This expression can
be used to derive the properties of the small area pre-
dictors under different frameworks.
If both the spline coefficients and the small areas are
treated as true random effects in the underlying model
(2), the mean prediction error is 0 and the covariance
between the two terms in (8) is also 0, so that mean
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squared error (MSE) of the prediction errors is readily
calculated to be

E(ŷt − ȳt)2 = ct(X ′V −1X)−1c′t (9)
+w̄tΣw

(
I −W ′V −1WΣw

)
w̄′

t.

This expression corresponds to equation (3.6) in Bat-
tese, Harter, and Fuller (1988).
If the variances of the random effects are estimated
from the data and an EBLUP is constructed, expres-
sion (9) is no longer equal to the MSE of the prediction
errors. Using the results of Jiang (1998) on consis-
tency of the REML parameter estimators, it can be
shown that, as long as the distribution functions of the
errors and the random effects are symmetric and the
derivatives of β and V −1 with respect to the variance
parameters exist and are bounded, (9) is the variance
of the asymptotic distribution of ŷt− ȳt. Under those
same conditions, this asymptotic prediction MSE is
consistently estimated by replacing all unknown quan-
tities in (9) by their REML estimators, for instance
those obtained by REML (Patterson and Thompson,
1971).

3.2 Testing for small area effects and non-
linearities

In the model, there are two main sources of vari-
ability (not counting the error terms): (i) the small
area effects, and (ii) the deviation from the paramet-
ric pth degree polynomial model, as accounted for by
the spline functions. Since both of these features are
modeled via random effects in a mixed linear model,
the absence of one of the effects is characterized by the
zero-ness of the corresponding variance component. A
likelihood ratio test (or restricted likelihood ratio test)
for testing the presence of small area effects is readily
constructed. To test the hypothesis H0,u : σ2

u = 0
versus the one-sided alternative Ha,u : σ2

u > 0 we
fit the model twice, once without the small area ran-
dom effects, resulting in the likelihood (or restricted
likelihood) value L0, and once with these random ef-
fects included, giving L1. The test statistic equals
Lu = 2{L1 − L0}. Similarly, a (restricted) likelihood
ratio statistic to test for the presence of any struc-
ture more complicated than a pth degree polynomial,
H0,γ : σ2

γ = 0 versus Ha,γ : σ2
γ > 0 is denoted by

Lγ . It is also possible to test for both effects simul-
taneously, more precisely, H0 : σ2

u = 0, σ2
γ = 0 versus

Ha : σ2
u > 0 or σ2

γ > 0.
Define λ = (λγ , λu), λ0 its value under the null
hypothesis for any of the three hypotheses, the
rescaled variance matrix V λ = V /σ2

ε and the pro-
jection matrix Q(λ) = In−X(XtV −1

λ X)−1XtV −1
λ .

Denote Z1 = Z and Z2 = D. Define fur-
ther the 2 × 2 matrix Gn with entries Gn,k` =
tr{ZkZt

kV −1
λ0

Q(λ0)Z`Z
t
kV −1

λ0
Q(λ0)}.

Theorem 3.1 Assume that the number of small ar-
eas T = Tn → ∞, and the number of knots
K = Kn → ∞ such that Tn = o(n) and
Kn = o(n). Assume, too, that for j = 1, 2,
tr{(Zt

jV
−1
λ0

Q(λ0)Zj)2} → ∞, and that

tr{(Zt
jV

−1
λ0

Q(λ0)Zj)4}
/
tr{(Zt

jV
−1
λ0

Q(λ0)Zj)2}2 → 0.

Then, with λ0 = (λγ,0, 0) to test H0,u (resp. λ0 =
(0, λu,0) to test H0,γ), the (restricted) likelihood ratio
statistic Lu (resp. Lγ) has an asymptotic distribution
which is an equal mixture of a point mass at zero and a
chi-squared with one degree of freedom, denoted 1

2χ2
0 +

1
2χ2

1.
To test H0 that both variance components are zero,
λ0 = (0, 0) and the (restricted) likelihood ratio
statistic has asymptotically the mixture distribution
(0, N2

1 , (N1 − sN2)2/(1 + s2), N2
1 + N2

2 ) with probabil-
ities (1/2 − r, 1/4, 1/4, r) where (N1, N2) ∼ N(0, I2),
and s = limn→∞ sn, r = limn→∞ rn with sn =
Gn,12

/√
|Gn| and rn = cos−1

(
sn/

√
1 + s2

n

)
/(2π).

Proof. To prove the first part of the theorem, we fol-
low the same line of arguments as to prove Theorem 2
of Claeskens (2004), with the difference that only one
variance component is set to zero. The simplification
V λ0 = I only occurs in the proof of the last part,
which follows immediately from that Theorem 2. As
in standard testing problems without boundary para-
maters (see Ferguson, 1996, Chapter 22) the asymp-
totic distribution is the same as if there were no nui-
sance parameters.

To obtain better finite sample results, a bootstrap pro-
cedure, or finite sample corrections to the mixing pro-
portions, might be used instead of the limiting dis-
tributions. This will be explored in a forthcoming
article.

4 Application

Between 1991 and 1996, the Environmental Monitor-
ing and Assessment Program (EMAP) of the U.S. En-
vironmental Protection Agency conducted a survey of
lakes in the Northeastern states of the U.S. The survey
is based on a population of 21,026 lakes from which
334 lakes were surveyed, some of which were visited
several times during the study period. The total num-
ber of measurements is 551. Figure 1 shows the region
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300.1 − 600.0

600.1 − 900.0

900.1 − 1200.0

7 − 300.0

1200.1 − 3174.3

Figure 2: Hydrologic Unit Code (HUC) small areas
within Northeastern U.S. region, with average ANC
computed in all small areas containing sample obser-
vations.

of interest and the locations of the sampled lakes. We
refer to Messer, Linthurst, and Overton (1991) and
Larsen et al. (2001) for a description of the EMAP
program and the Northeastern Lakes survey.
In this article, we consider the estimation of the
mean acid neutralizing capacity (ANC) for each of 113
small areas defined by 8-digit Hydrologic Unit Codes
(HUC) within the region of interest. ANC, also called
acid binding capacity or total alkalinity, measures the
buffering capacity of water against negative changes
in pH (Wetzel, 1975, p. 172), and is often used as an
indicator of the acidification risk of water bodies in
water resource surveys. Figure 2 displays a map of
the HUCs in the region of interest, with the average
ANC computed for all HUCs in which sample observa-
tions were located. The map also shows the locations
of the 27 HUCs in which no sample observations are
available.
The variables that can be used in the construction
of a small area estimation model are the geographi-
cal coordinates (in the UTM coordinate system) and
elevation. After trying different combinations of para-
metric and nonparametric specifications for these vari-
ables, it was determined that a bivariate spline on the
UTM coordinates and a linear term for elevation, pro-
vided the best model fit. We will therefore describe
the construction of the small area estimator for this
combination of terms.
In principle, the spline function (1) could be extended
to the bivariate case by taking tensor products of ba-

utmx

ut
m

y

20 40 60 80 100

44
0

46
0

48
0

50
0

52
0

Figure 3: Location of knots for the bivariate radial
spline function on the UTM coordinates.

sis functions in the North/South and East/West di-
rections. However, this leads to very large numbers of
basis functions and numerical instability in the fitting
algorithm. Instead, we will follow Ruppert, Wand,
and Carroll (2003, p.253) in using a transformed ra-
dial basis, defined as

Z = [C(xi − κk)] 1≤i≤n
1≤k≤K

[C(κk − κk′)]
−1/2
1≤k,k′≤K ,

(10)
where C(r) = ||r||2 log ||r||, xi = (x1i, x2i) denotes
the geographical coordinates for observation i and
κk, k = 1, . . . ,K are spline knots. The multiplica-
tion by [C(κk − κk′)]

−1/2 is necessary in order to al-
low the coefficients of the basis functions to be spec-
ified in the model as being independent and identi-
cally distributed random effects. The location of the
80 knots are selected by the space-filling algorithm
implemented in the cover.design() function in the
FUNFITS package for S-plus (Nychka et al. 1998).
Figure 3 shows the location of the knots selected by
this approach.
The ANC small area model can now be written as
in (2) with variance components (3). That model
includes Y for the ANC observations, X a matrix
containing an intercept and the linear elevation term,
Z as in (10) for the spatial locations, and D a ma-
trix of indicators for the HUCs. The model is fit-
ted using REML as implemented in lme() in S-plus.
The parameter estimates obtained are shown in Table
1. As noted above, other mean model specifications
were also evaluated, including the addition of linear
terms for the North/South and East/West spatial co-
ordinates and a quadratic term for elevation. None
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a) Fixed effects
Parameter β̂ P-value
Intercept 228.6 0.96
Elevation -0.814 < .0001

b) Random effects
Parameter σ̂
Spline 71.2
HUC 365.7
Errors 179.5

Table 1: Parameter estimates for penalized spline
small area estimation model for Northeastern Lakes
data.

300.1 - 600.0

600.1 - 900.0

900.1 - 1200.0

-37.6 - 300.0

1200.1 - 2628.9

Figure 4: Map of model predicted mean ANC for all
HUCs.

of those terms were statistically significant as deter-
mined by the lme() procedure. The coefficient for the
intercept in Table 1 is also not statistically significant,
but it was not removed from the model as it was signif-
icant in some of the fits with different random effects
specifications (see below). Note that no significance
levels are provided for the random effect parameters,
as those cannot be computed based on the lme() out-
put. The correlation between the observations yi and
the model predictions xiβ̂ + ziγ̂ + diû was 0.96. For
those HUCs containing observations, the correlation
between the averages of the sample observations in
the HUCs (shown in Figure 2) and the small area pre-
dictions ŷt defined in (7) was 0.98. Figure 4 shows a
map with the small area predictions ŷt for all HUCs.
Compared to the map in Figure 2, the small area esti-
mation map in Figure 4 is smoother and also contains

HUC
yes no

Spline yes 0.98 / 7755 0.88 / 7894
no 0.99 / 7968 0.02 / 8497

Table 2: Comparison of correlation / AIC values be-
tween HUC model predictions and averages of the
sample observations in the HUCs for inclusion and
exclusion of random effect terms in model.

values in all HUCs, offsetting some of the limitations
of the original data. One noticeable difference between
the HUC mean map and the small area map is that
the smallest value in the latter is negative. ANC val-
ues can indeed be negative, and the dataset contains
39 negative observations (out of 551), with a smallest
observation of -72.2. Hence, while the small area pre-
dicted value of -37.6 indeed falls outside of the range of
the HUC means, it is within the range of the observed
data.
An important question about the nonparametric small
area estimation approach for these data is whether
both the HUC and spline random effects are useful in
improving the model predictions. Table 2 shows the
correlations between the ŷt and averages of the sample
observations in the HUCs for four cases, depending on
whether each of the two random effects is included in
the model or not, as well as the corresponding AIC val-
ues. The highest correlation is achieved by the model
with a HUC random effect but no spline random ef-
fect, while the smallest AIC is attained by the model
with both random effect. The model with a spline ran-
dom effect but no HUC random effect also achieves an
AIC that is lower than that of the model with both
random effects reversed, even though its correlation is
slightly lower. All three models with random effects
outperform the model with only fixed effects.
Judging by these criteria, the models with either
the HUC or the spline random effect, but not both,
achieve fits that are roughly as good as the model with
both random effects. Such model fitting criteria only
provide a partial view of the usefulness of the model,
however. In Figures 5 and 6, we plot the HUC pre-
dictions obtained by the full model against those for
the models with single random effects for a further
comparison.
Figure 5 shows that the HUC-only model and the
model with both random effects result in similar pre-
dictions for HUCs containing sample observations, but
dramatically different predictions for the HUCs with-
out observations. Relative to the HUC-only model,
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Figure 5: Comparison of HUC predictions for model
with both random effects and model with HUC ran-
dom effect only (solid line is 45-degree line).

the addition of the spatial spline term appears to im-
prove model predictions for these “empty” HUCs, by
borrowing strength from neighboring observations lo-
cated in different HUCs. In contrast, a HUC-only
model predicts a HUC effect of 0 in those empty
HUCs, so that only the fixed linear part of the model is
used in prediction. This likely improvement in model
fit is not captured by either AIC or correlation, so that
it is not fully reflected in summary statistics such as
those in Table 1.

In Figure 6, differences between the spline-only model
and that with both random effects are not as clear,
but some large deviations from the 45-degree line are
still present. Differences between both fits can be ex-
plained by the fact that both models attempt to fit dif-
ferent “targets”: whereas the spline-only model pre-
dicts a smooth spatial trend for the region of interest,
the model with both effects predicts small area HUC
means of the form (6), which include both a smooth
and a HUC-specific effect. Since the goal of small area
estimation is to capture features that might be unique
to lakes in particular HUCs, a small area estimation
model that makes it possible to do so when sufficient
HUC-specific data are available is clearly preferred. In
Figure 6, this is illustrated by the fact that the pre-
dictions for “empty” HUCs tend to be closer to the
45-degree line than the predictions for the remaining
HUCs.
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Figure 6: Comparison of HUC predictions for model
with both random effects and model with spline ran-
dom effect only (solid line is 45-degree line).

5 Conclusion

In this article, we have introduced a nonparametric
small area estimation method, by taking advantage
of the fact that both the spline-based mean function
and the small area effects can be modelled by ran-
dom effects. The linear mixed model prediction im-
plied by this approach was described, and some of the
theoretical properties of the estimator were provided.
Currently, the authors are developing a bootstrap ap-
proach for performing inference for the random effects
parameters, and for estimating the prediction Mean
Squared Error of the small area estimates. The ap-
plicability of the method was demonstrated on data
from a survey of lakes in the Northeastern U.S.
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