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Abstract

This paper studies the hedging problem of life insurance policies,
when the mortality and interest rates are stochastic. We focus primar-
ily on stochastic mortality. We represent death arrival as the first jump
time of a doubly stochastic process, i.e. a jump process with stochastic
intensity. We propose a Delta-Gamma Hedging technique for mortal-
ity risk in this context. The risk factor against which to hedge is the
difference between the actual mortality intensity in the future and its
”forecast” today, the instantaneous forward intensity. We specialize
the hedging technique first to the case in which survival intensities
are affine, then to Ornstein-Uhlenbeck and Feller processes, providing
actuarial justifications for this restriction. We show that, without im-
posing no arbitrage, we can get equivalent probability measures under
which the HJM condition for no arbitrage is satisfied. Last, we ex-
tend our results to the presence of both interest rate and mortality
risk, when the forward interest rate follows a constant-parameter Hull
and White process. We provide a UK calibrated example of Delta and
Gamma Hedging of both mortality and interest rate risk.

1 Introduction

This paper studies the hedging problem of life insurance policies, when the
mortality rate is stochastic. In recent years, the literature has focused on
the stochastic modeling of mortality rates, in order to deal with unexpected
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changes in the longevity of the sample of policyholders of insurance com-
panies. This kind of risk, due to the stochastic nature of death intensities,
is referred to as systematic mortality risk1. In the present paper we deal
with this, as well as with two other sources of risk life policies are subject
to: financial risk and non-systematic mortality risk. The former originates
from the stochastic nature of interest rates. The latter is connected to the
randomness in the occurrence of death in the sample of insured people and
disappears in well diversified portfolios.
The problem of hedging life insurance liabilities in the presence of system-
atic mortality risk has attracted much attention in recent years. It has been
addressed either via risk-minimizing and mean-variance indifference hedging
strategies, or through the creation of mortality-linked derivatives and secu-
ritization. The first approach has been taken by Dahl and Møller (2006)
and Barbarin (2008). The second approach was discussed by Dahl (2004)
and Cairns, Blake, Dowd, and MacMinn (2006) and has witnessed a lively
debate and a number of recent improvements, see f.i. Blake, De Waegenaere,
MacMinn, and Nijman (2010) and references therein.
We study Delta and Gamma hedging. This requires choosing a specific
change of measure, but has two main advantages with respect to
risk-minimizing and mean-variance indifference strategies. On the one side
it represents systematic mortality risk in a very intuitive way, namely as
the difference between the actual mortality intensity in the future and its
“forecast” today. On the other side, Delta and Gamma hedging is easily
implementable and adaptable to self-financing constraints. It indeed ends up
in solving a linear system of equations. The comparison with securitization
works as follows. The Delta and Gamma hedging complements the securiti-
zation approach strongly supported by most academics and industry leaders,
in two senses. On the one hand, as is known, the change of measure issue on
which hedging relies will not be such an issue any more once the insurance
market, thanks to securitization and derivatives, becomes liquid. On the
other hand, securitization aims at one-to-one hedging or replication, while
we push hedging one step further, through local, but less costly, coverage.
Following a well established stream of actuarial literature, we adapt the set-
ting of risk-neutral interest rate modelling to represent stochastic mortality.
We represent death arrival as the first jump time of a doubly stochastic pro-
cess. To enhance analytical tractability, we assume a pure diffusion of the
affine type for the spot mortality intensity. Namely, the process has linear
affine drift and instantaneous variance-covariance matrix linear in the inten-
sity itself.

1In this paper we do not distinguish between mortality and longevity risk.
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In this setting, Cairns, Blake, and Dowd (2006) point out that the HJM
no arbitrage condition typical of the financial market can be translated into
an equivalent HJM-like condition for forward death intensities. Usually, the
respect of the HJM condition on the insurance market is imposed a priori.
We show that, for two non-mean reverting processes for the spot intensity,
whose appropriateness will be discussed below, there exists an infinity of
probability measures – equivalent to the historical one – in which forward
death intensities satisfy an HJM condition. No arbitrage holds under any
of these measures, even though it is not imposed a priori. These processes
belong to the Ornstein Uhlenbeck and the Feller class.
As a consequence, we start by introducing the spot mortality intensities, dis-
cuss their soundness as descriptors of the actual – or historical – mortality
dynamics, derive the corresponding forward death intensities and tackle the
change of measure issue. Among the possible changes, we select the minimal
one – which permits to remain in the Ornstein-Uhlenbeck and Feller class –
and parameterize it by assuming that the risk premium for mortality risk is
constant. By so doing, we can avoid using risk minimizing or mean-variance
indifference strategies. We can instead focus on Delta and Gamma hedging.
For the sake of simplicity we assume that the market of interest rate bonds is
not only arbitrage-free but also complete. First, we consider a pure endow-
ment hedge in the presence of systematic mortality risk only. Then, under
independence of mortality and financial risks, we provide an extension of the
hedging strategy to both these risks.
To keep the treatment simple, we build Delta and Gamma coverage on pure
endowments, using as hedging tools either pure endowments or zero-coupon
survival bonds for mortality risk and zero-coupon-bonds for interest rate
risk. Since all these assets can be understood as Arrow-Debreu securities –
or building blocks – in the insurance and fixed income market, the Delta and
Gamma hedge could be extended to more complex and realistic insurance
and finance contracts.
In spite of our restriction to pure endowments, the final calibration of the
strategies – which uses UK mortality rates for the male generation born in
1945 and the Hull-White interest rates on the UK market – shows that

1. the unhedged effect of a sudden change on mortality rate is remarkable,
especially for long time horizons;

2. the corresponding Deltas and Gammas are quite different if one takes
into consideration or ignores the stochastic nature of the death inten-
sity:

3. the hedging strategies are easy to implement and customize to self-

3



financing constraints;

4. Delta and Gamma are bigger for mortality than for financial risk.

The paper is structured as follows: Section 2 recalls the doubly stochastic
approach to mortality modelling and introduces the two intensity processese
considered in the paper. Section 3 presents the notion of forward death inten-
sity. Section 4 describes the standard financial assumptions on the market for
interest rates. Section 5 derives the dynamics of forward intensities and sur-
vival probabilities, after the appropriate change of measure. Section 6 shows
that the HJM restriction is satisfied without imposing no arbitrage a priori.
In Section 7 we discuss the hedging technique for mortality risk. Section 8
addresses mortality and financial risk. Section 9 presents the application to
a UK population sample. Section 10 summarizes and concludes.

2 Cox modelling of mortality risk

This Section introduces mortality modelling by specifying the so-called spot
mortality intensity (mortality intensity for short). Section 2.1 describes the
general framework, while Section 2.2 studies two specific processes which will
be considered troughout the paper.

2.1 Instantaneous death intensity

Mortality in the actuarial literature has been recently described by means of
Cox or doubly stochastic counting processes, as studied by Brémaud (1981).
The modelling technique has been drawn from the financial domain and in
particular from the reduced form models of the credit risk literature, where
the time to default is described as the first stopping time of a Cox process 2.
In the actuarial literature, mortality modelling via Cox processes has been
introduced by Milevsky and Promislow (2001) and Dahl (2004). Intuitively,
the time to death - analogously to the time to default in finance - is supposed
to be a Poisson process with stochastic intensity. The intensity process may
be either a pure diffusion or may present jumps. If in addition it is an affine
process, then the survival function can be derived in closed form.
Let us introduce a filtered probability space (Ω,F,P), equipped with a filtra-
tion {Ft : 0 ≤ t ≤ T} which satisfies the usual properties of right-continuity
and completeness. On this space, let us consider a non negative, predictable
process λx, which represents the mortality intensity of an individual or head
belonging to generation x at (calendar) time t. We introduce the following

2See the seminal paper Lando (1998).
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Assumption 1 The mortality intensity λx follows a process of the type:

dλx(t) = a(t, λx(t))dt+ σ(t, λx(t))dWx(t) + dJx(t) (1)

where J is a pure jump process, Wx is a standard one-dimensional
Brownian motion3 and the regularity properties for ensuring the ex-
istence of a strong solution of equation (1) are satisfied for any given
initial condition λx(0) = λ0 > 0.

The existence of a stochastic mortality intensity generates systematic
mortality risk. Given this assumption on the dynamics of the death intensity,
let τ be the time to death of an individual of generation x. We define the
survival probability from t to T > t, Sx(t, T ), as the survival function of the
time to death τ under the probability measure P, conditional on the survival
up to time t:

Sx(t, T ) := P (τ > T | τ > t)

It is known since Brémaud (1981) that - under the previous assumption - the
survival probability Sx(t, T ) can be represented as

Sx(t, T ) = E
[
exp

(
−
∫ T

t

λx(s)ds

)
| Ft
]

(2)

where the expectation is computed under P and is evidently conditional on
Ft. When the evaluation date is zero (t = 0), we simply write Sx(T ) instead
of Sx(0, T ).

In this paper, we suppose in addition that

Assumption 2 the drift a(t, λ(t)), the instantaneous variance-covariance
coefficient σ2(t, λ(t)) and the jump measure η associated with J , which
takes values in R+, have affine dependence on λ(t).

Hence, we assume that these coefficients are of the form:

a(t, λ(t)) = b+ cλ(t)

σ2(t, λ(t)) = d · λ(t)

η(t, λ(t)) = l0 + l1λ(t)

where b, c, d, l0, l1 ∈ R . Under this assumption standard results on func-
tionals of affine processes allow us to state that

Sx(t, T ) = eα(T−t)+β(T−t)λx(t)

3The extension of the mortality intensity definition to a multidimensional Brownian
motion is straightforward.
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where α and β solve the following Riccati differential equations (see for in-
stance Duffie and K.Singleton (2000)):

β′(t) = β(t)c+
1

2
β(t)2d2 + l1

[∫
R
eβ(t)zdν(z)− 1

]
α′(t) = β(t)b+ l0

[∫
R
eβ(t)zdν(z)− 1

]
where ν is the distribution function of the jumps of J . The boundary condi-
tions are α(0) = 0 and β(0) = 0.

2.2 Ornstein-Uhlenbeck and Feller processes

In this paper we focus on two intensity processes, which belong to the affine
class and are purely diffusive. These processes, together with the solutions
α and β of the associated Riccati ODEs, are:

— Ornstein-Uhlenbeck (OU) process without mean reversion:

dλx(t) = aλx(t)dt+ σdWx(t) (3)

α(t) =
σ2

2a2
t− σ2

a3
eat +

σ2

4a3
e2at +

3σ2

4a3
(4)

β(t) =
1

a
(1− eat) (5)

— Feller Process (FEL) without mean reversion:

dλx(t) = aλx(t)dt+ σ
√
λx(t)dWx(t) (6)

α(t) = 0 (7)

β(t) =
1− ebt

c+ debt
(8)

with b = −
√
a2 + 2σ2, c = b+a

2
, d = b−a

2
. Here, we assume a > 0, σ ≥ 0.

A process, in order to describe human survivorship realistically, has to
be ”biologically reasonable”, i.e. it has to satisfy two technical features:
the intensity must never be negative and the survival function has to be
decreasing in time T .
In the OU case, λ can indeed turn negative, with positive probability:

u = P(λ(t) 6 0) = φ

− λ(0)eat

σ
√

e2at−1
2a
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where φ is the distribution function of the standard normal. The survival
function is always decreasing when time T is below a certain level T ∗:

T < T ∗ =
1

a
ln

[
1 +

a2λ(0)

σ2

(
1 +

√
1 +

2σ2

a2λ(0)

)]
(9)

In practical applications (section 9) we verify that the probability u is
negligible and that the length of the time horizon we consider (the duration
of a human life) never exceeds T ∗.
For the FEL process, instead, the intensity can never turn negative and
the survival function is guaranteed to be decreasing in T if and only if the
following condition holds:

ebt(σ2 + 2d2) > σ2 − 2dc. (10)

We verify this condition, which is satisfied whenever σ2−2dc < 0, for our
calibrated parameters (see section 9).

In spite of the technical restrictions, Luciano and Vigna (2008) and Lu-
ciano, Spreeuw, and Vigna (2008) suggest the appropriateness of these pro-
cesses for describing the intensity of human mortality. In fact, they show
that these models meet all but one of the criteria - motivated by Cairns,
Blake, and Dowd (2006) - that a good mortality model should meet:

1. the model should be consistent with historical data: the calibrations of
Luciano and Vigna (2008) show that the models meet this criterium;

2. the force of mortality should keep positive: the first model does not
meet this criterium; however, the probability of negative values of the
intensity is shown to be negligible for practical applications;

3. long-term future dynamics of the model should be biologically reason-
able: the models meet this criterium, as the calibrated parameters
satisfy conditions (9) and (10) above;

4. long-term deviations in mortality improvements should not be mean-
reverting to a pre-determined target, even if the target is time-dependent:
the models meet this criterium by construction;

5. the model should be comprehensive enough to deal appropriately with
pricing valuation and hedging problem: these models meet this cri-
terium, since it is straightforward to extend them in order to deal with
pricing, valuation and hedging problems; this is indeed the scope of the
present paper;
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6. it should be possible to value mortality linked derivatives using an-
alytical methods or fast numerical methods: these models meet this
criterium, as they produce survival probabilities in closed form and
with a very small number of parameters.

Cairns, Blake, and Dowd (2006) add that no one of the previous criteria
dominates the others. Consistently with their view, we claim the validity
of the proposed models, which meet five criteria out of six. The violation
of the second criterium above in the OU case is the price paid in order to
have a simple and parsimonious model. Notice though that this is only a
theoretical limit of the model, as a negative force of mortality has a negli-
gible probability of occurring in practical applications. In addition, the fact
that survival functions are given in closed form and depend on a very small
number of parameters simplifies the calibration procedure enormously. Last
but not least, these two processes are natural stochastic generalizations of
the Gompertz model for the force of mortality and, thus, they are easy to
interpret in the light of the traditional actuarial practice.
These processes (and especially the first one, the OU) turn out to be signif-
icantly suitable for the points 5 and 6 above. In fact, in Sections 6, 7 and
8 we will show that the Delta and Gamma OU-coefficients can be expressed
in a very simple closed form. Thus, the Delta-Gamma Hedging technique –
widely used in the financial context to hedge purely financial assets – turns
out to be remarkably easy to apply. This feature renders quite applicable
this hedging technique also in the actuarial-financial context. The Delta and
Gamma FEL coefficients are more complicated to find, but the technique is
still applicable.

3 Forward death intensities

This Section aims at shifting from mortality intensities to their forward coun-
terparts, both for the general affine case and for the OU and FEL processes.
The notion of forward instantaneous intensity for counting processes repre-
senting firm defaults has been introduced by Duffie (1998) and Duffie and
Singleton (1999), following a discrete-time definition in Litterman and Iben
(1991). Stochastic modelling of this quantity has been extensively studied in
the financial domain. In the credit risk domain indeed the notion of forward
intensity is very helpful, since it allows to determine the change of measure
or the intensity dynamics useful for pricing and hedging defaultable bonds
(the characterization is obtained under a no arbitrage assumption for the
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financial market and is unique when the market is also complete).
Suppose that arbitrages are ruled out, that the recovery rate is null and
λx(t) in (1) represents the default intensity of a firm whose debt is traded
in a complete market. Then, we would have the following HJM restriction
under the (unique) risk-neutral measure corresponding to P :

a(t, λx(t)) = σ(t, λx(t))

∫ t

0

σ(u, λx(u))du (11)

In the actuarial domain, forward death intensities have already been intro-
duced by Dahl (2004) and Cairns, Blake, and Dowd (2006), paralleling the
financial definition. In section 5 we prove that, even though the restriction
(11) can be violated by death intensities in general, it holds true for the OU
and FEL intensity processes, even without imposing no arbitrage, but sim-
ply restricting the measure change so that the intensity remains OU or FEL
under the new measures.

Let us start from the forward death rate over the period (t, t+∆t), evaluated
at time zero, as the ratio between the conditional probability of death be-
tween t and t+ ∆t and the time span ∆t, for a head belonging to generation
x, conditional on the event of survival until time t:

1

∆t

(
Sx(t)− Sx(t+ ∆t)

Sx(t)

)
Let us consider its instantaneous version, which we denote as fx(0, t). We
refer to it as to forward death intensity. It is evident from its definition that
- if it exists - the forward death intensity is the logarithmic derivative of the
(unconditional) survival probability, as implied by the process λ:

fx(0, t) := lim
∆t→0

1

∆t

(
1− Sx(t+ ∆t)

Sx(t)

)
= − ∂

∂t
ln (Sx(t))

The similarity of this definition with the force of mortality is quite strong.4

Similarly, one can define the forward death intensity for the tenor T , as
evaluated at time t < T , starting from the survival probability Sx(t, T ):

fx(t, T ) = − ∂

∂T
ln (Sx(t, T )) (12)

The forward death intensity fx(t, T ) represents the intensity of mortality
which will apply instantaneously at time T > t, implied by the knowledge

4The two concepts coincide when the diffusion coefficient of the intensity process is
null.
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of the process λ up to t (or under the filtration Ft). This explains the
dependence of fx on the current date t as well as on the future one, T . It can
be interpreted as the ”best forecast” of the actual mortality intensity, since
it coincides with the latter when T = t :

fx(t, t) = λx(t)

Please notice also that the forward death intensity definition, and conse-
quently its expression for the affine case, is analogous to the one of forward
instantaneous interest rates, the latter being defined starting from discount
factors rather than survival probabilities. As in the case of forward instan-
taneous interest rates, it can be shown that forward intensities, for given t,
can be increasing, decreasing or humped functions of the application date T .
It follows from the above definition that the survival probabilities from t to
T > t can be written as integrals of (deterministic) forward death probabili-
ties:

Sx(t, T ) = exp

(
−
∫ T

t

fx(t, s)ds

)
(13)

and not only as expectations wrt the intensity process λ , as in (2) above.5

Let us turn now to the affine case. As it can be easily shown from (13), when
λ is an affine process the initial forward intensity depends on the functions
α and β:

fx(0, t) = −α′(t)− β′(t)λx(0) = −α′(t)− β′(t)fx(0, 0) (14)

and at any time t ≥ T ≥ 0:

fx(t, T ) = −α′(T − t)− β′(T − t)λx(t) = −α′(T − t)− β′(T − t)fx(t, t)

For the processes defined by equations (3) and (6), the instantaneous
forward intensities can be computed as:

OU fx(t, T ) = λx(t)e
a(T−t) − σ2

2a2
(ea(T−t) − 1)2 (15)

5Notice that, at any initial time t, forward death intensities can be interpreted as the
(inhomogeneous) Poisson arrival rates implied in the current Cox process. Indeed, it is
quite natural, especially if one wants a description of survivorship without the mathemat-
ical complexity of Cox processes, to try to describe mortality via the equivalent survival
probability in a simpler (inhomogeneous) Poisson model. Once a λ process has been fixed,
and therefore survival probabilities have been computed, according to (2), one can won-
der: what would be the intensity of an inhomogeneous Poisson death arrival process, that
would produce the same survival probabilities? Recalling that in the Poisson case survival
probabilities are of the type (13), one can interpret – and use – f(t, T ) exactly as the
survival intensity of an (inhomogeneous) Poisson model equivalent to the given, Cox one.
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FEL fx(t, T ) =
4λx(t)b

2eb(T−t)

[(a+ b) + (b− a)eb(T−t)]2

4 Financial risk

In order to introduce a valuation framework for insurance policies, we need
to provide provide a description of the financial environment. In addition to
mortality risk, we assume the existence of a financial risk, in the sense that
the interest rate is described by a stochastic process. While in the mortality
domain we started from (spot) intensities – for which we were able to motivate
specific modelling choices – and then we went to their forward counterpart,
here we follow a well established bulk of literature – starting from Heath,
Jarrow, and Morton (1992) – and model directly the instantaneous forward
rate F (t, T ), i.e. the date-t rate which applies instantaneously at T .

Assumption 3 The process for the forward interest rate F (t, T ), defined on
the probability space (Ω,F,P), is:

dF (t, T ) = A(t, T )dt+ Σ(t, T )dWF (t) (16)

where the real functions A(t, T ) and Σ(t, T ) satisfy the usual assump-
tions for the existence of a strong solution to (16), and WF is a uni-
variate Brownian motion6 independent of Wx for all x.

The independence between the Brownian motions means, loosely speak-
ing, independence between mortality and financial risk.7

Let us also denote as {Ht : 0 ≤ t ≤ T} the filtration generated by the inter-
est rate process. As a particular subcase of the forward rate, obtained when
t = T , one obtains the short rate process, which we will denote as r(t):

F (t, t) := r(t) (17)

It is known that, when the market is assumed to admit no arbitrages and
be complete, there is a unique martingale measure Q equivalent to P - which
we will characterize in the next section - under which the zero-coupon-bond
price for the maturity T , evaluated at time t, B(t, T ), is

B(t, T ) = exp

(
−
∫ T

t

F (t, u)du

)
= EQ

[
exp

(
−
∫ T

t

r(u)du

)]
(18)

6We assume a single Brownian motion for the forward rate dynamics, since we reduced
the discussion of mortality risk to a single risk source too: however, the extension to a
multidimensional Brownian motion is immediate.

7This assumption is common in the literature and seems to be intuitively appropriate.
See Miltersen and Persson (2006) for a setting in which mortality and financial risks can
be correlated.
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We will provide a specific choice for the forward interest rate only at a
later stage. We will have no need to motivate it, since it corresponds to
a very popular model in Finance, the one-factor Hull and White (Hull and
White (1990)).

5 Change of measure and insurance valua-

tions

This section discusses the change of measure that allows us to compute the
prices of policies subject to mortality risk in a fashion analogous to (18).
First, we define the process of death occurrence inside the sample of insured
people of interest. As in Dahl and Møller (2006), we represent it as follows.
Let τ1, τ2, ....τN be the lifetimes of the N insured in the cohort x, assumed
to be i.i.d. with distribution function Sx(t, T ) in (2). Let M(x, t) be the
(pure jump) process which counts the number of deaths in such an insurance
portfolio:

M(x, t) :=
N∑
i=1

1{τi≤t}

where 1 is the indicator function. We define a filtration on (Ω,F,P) whose
σ -algebras {Gt : 0 ≤ t ≤ T} are generated by Ft and {M(x, s) : 0 ≤ s ≤ t}.
This filtration intuitively collects the information on both the past mortality
intensity and on actual death occurrence in the portfolio. Let us consider, on
the probability space (Ω,F,P), the sigma algebras It := Gt ∨ Ht generated
by unions of the type Gt ∪ Ht, where the σ-algebra Gt collects information
on the mortality intensity and actual death process, while Ht, which is in-
dependent of Gt, reflects information on the financial market, namely on the
forward rate process The filtration {It : 0 ≤ t ≤ T} therefore represents all
the available information on both financial and mortality risk. In order to
perform insurance policies evaluations in (Ω,F,P), equipped with such a fil-
tration, we need to characterize at least one equivalent measure. This can
be done using a version of Girsanov’s theorem, as in Jacod and Shiryaev
(1987)8:

Theorem 5.1 Let the bi-dimensional process θ(t) := [θx(t) θF (t)] and the

8See also Dahl and Møller (2006) for an application to a similar actuarial setting.
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univariate, positive one ϕ(t) be predictable, with∫ T

0

θ2
x(t)dt < ∞,∫ T

0

θ2
F (t)dt < ∞,∫ T

0

|ϕ(t)|λx(t)dt < ∞

Define the likelihood process L(t) by{
L(0) = 1

dL(t)
L(t−)

= θx(t)dWx(t) + θF (t)dWF (t) + (ϕ(t)− 1) dM(x, t)

and assume EP [L(t)] = 1, t ≤ T. Then there exists a probability measure Q
equivalent to P, such that the restrictions of P and Q to It, Pt := P | It,
Qt := Q | It, have Radon-Nykodim derivative L(t) :

dQ
dP

= L(t)

The mortality indicator process has intensity ϕ(t)λx(t) under Q and

dW ′
x : = dWx − θx(t)dt

dW ′
F : = dWF − θF (t)dt

define Q−Brownian motions. All the probability measures equivalent to P
can be characterized this way.

Actually, the previous theorem characterizes an infinity of equivalent mea-
sures, depending on the choices of the processes θx(t), θF (t) and ϕ(t). These
processes represent the prices - or premia - given to the three different sources
of risk we model.

The first source of risk, the systematic mortality one, is represented by θx(t).
This source of risk is not diversifiable, since it originates from the random-
ness of death intensity. We have no standard choices to apply in the choice
of θx(t), see for instance the extensive discussion in Biffis (2005) and Cairns,
Blake, Dowd, and MacMinn (2006). For the sake of analytical tractability, as
in Dahl and Møller (2006), we restrict it so that the risk-neutral intensity is
still affine. Therefore, we substitute Assumptions 1 and 2 with the following
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Assumption 4 The intensity process under P is purely diffusive and affine.
The systematic mortality risk premium is such as to leave it affine under
Q:

θx(t) :=
p(t) + q(t)λx(t)

σ(t, λx(t))

with p(t) and q(t) continuous functions of time.

Indeed, with such a risk premium, the intensity process under Q is

dλx(t) = [a(t, λx(t)) + p(t) + q(t)λx(t)] dt+ σ(t, λx(t))dW
′
x. (19)

which is still affine. This choice boils down to selecting the so-called minimal
martingale measure. It can be questioned – as any other choice – but proves
to be very helpful for hedging.9 For the OU and FEL processes we choose
the functions p = 0 and q constant, so that we have the same type of process
under P and Q, with the coefficient a in equations (3) and (6) replaced by
a′ := a+ q.

The second source of risk, the financial one, originates from the stochastic
nature of interest rates. The process θF (t) represents the so called premium
for financial risk. Assume that the financial market is complete. The only
choice consistent with no arbitrage is

θF (t) := −A(t, T )Σ−1(t, T ) +

∫ T

t

Σ(t, u)du

Under this premium indeed the drift coefficient of the forward dynamics
A′(t, T ) is tied to the diffusion by an HJM relationship:

A′(t, T ) = Σ(t, T )

∫ T

t

Σ(t, u)du (20)

It follows that, under the measure Q,

dF (t, T ) =

[
Σ(t, T )

∫ T

t

Σ(t, u)du

]
dt+ Σ(t, T )dW ′

F (t) (21)

The time-t values of the forward and short rate are respectively (see f.i.
Shreve (2004)):

F (t, T ) = F (0, T ) +

∫ t

0

Σ(s, T )

∫ T

s

Σ(s,m)dmds+

∫ t

0

Σ(u, T )dW ′
F (u) (22)

9Its calibration will be straightforward, as soon as the market for mortality derivatives
becomes liquid enough.
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r(t) = F (0, t) +

∫ t

0

Σ(s, T )

∫ t

s

Σ(s,m)dmds+

∫ t

0

Σ(u, t)dW ′
F (u)

where

dW ′
F = dWF − θF (t)dt and

θF (t) = −A(t, T )Σ−1(t, T ) +

∫ T

t

Σ(t, u)du.

The third source of risk is the non systematic mortality one, arising from the
randomness of death occurrence inside the portfolio of insured people. In
the presence of well diversified insurance portfolios, insurance companies are
uninterested in hedging this idiosyncratic component of mortality risk, since
the law of large numbers is expected to apply. Hence, we assume that the
market gives no value to it and we make the following assumption for ϕ(t),
which represents the premium for idiosyncratic mortality risk:

Assumption 5 ϕ(t) = 0 for every t

The fair premium and the reserves of life insurance policies can be com-
puted as expected values under the measure Q.
Consider the case of a pure endowment contract10 starting at time 0 and
paying one unit of account if the head x is alive at time T . The fair premium
or price of such an insurance policy, given the independence between the
financial and the actuarial risk, is:

P (0, T ) = Sx(T )B(0, T ) = eα(T )+β(T )λx(0)EQ

[
− exp

(∫ T

0

r(u)du

)]
The value of the same policy at any future date t is:

P (t, T ) = Sx(t, T )B(t, T )

= EQ

[
exp

(
−
∫ T

t

λ(s)ds

)]
EQ

[
− exp

(∫ T

0

r(u)du

)]
(23)

Hence, we can define a ”term structure of pure endowment contracts”. The
last expression, net of the initial premium, is also the time t reserve for the
policy, which the insurance company will be interested in hedging. Notice
that we did not impose no arbitrage on the market for these instruments.
Once the change of measure has been performed, we can write P (0, T ) in

10We do this recognizing that more complex policies or annuities can be decomposed
into these basic contracts.
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terms of the instantaneous forward probability and interest rate (f and F
respectively):

P (t, T ) = exp

(
−
∫ T

t

[fx(t, u) + F (t, u)] du

)

6 HJM restriction on forward death intensi-

ties

In this section we show that, if the risk premium for mortality is constant,
then the OU and FEL processes for mortality intensity satisfy an HJM-like
restriction on the drift and diffusion. This is important, since proving that
the HJM condition holds is equivalent to showing that no arbitrage holds,
without having assumed it to start with. We keep the head x fixed, and in
the notation we drop the dependence on x.

Forward death intensities, being defined as log derivatives of survival prob-
abilities, follow a stochastic process. This process can be derived starting
from the one of the survival probabilities themselves, recalling that the pro-
cess λ is given by (19). Under Assumption 4, Ito’s lemma implies that the
functional S follows the process:

dS(t, T ) = S(t, T )m(t, T )dt+ S(t, T )n(t, T )dW ′(t)

where

m(t, T ) =
1

S

[
∂S

∂t
+
∂S

∂λ
[a(t, λ) + p(t) + q(t)λ(t)] +

1

2

∂2S

∂λ2
σ2(t, λ)

]
n(t, T ) =

1

S

∂S

∂λ
σ(t, λ)

The forward death intensity f(t, T ), defined as the logarithmic derivative of
S(t, T ), can be shown to follow the dynamics:

df(t, T ) = v(t, T )dt+ w(t, T )dW ′(t) (24)

where the drift and diffusion coefficients are:

v(t, T ) =
∂n(t, T )

∂T
n(t, T )− ∂m(t, T )

∂T
(25)

w(t, T ) = −∂n(t, T )

∂T
(26)
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Since – according to the Assumption 4 – the intensity process is of the affine
class, the drift and diffusion of the survival probabilities are

m(t, T ) = −α′(T − t)− β′(T − t)λ(t) +

+ [a(t, λ) + p(t) + q(t)λ(t)] β(T − t) +
1

2
σ2(t, λ)β2(T − t)

n(t, T ) = σ(t, λ)β(T − t)

Given that, one can easily derive the forward intensity process coefficients:

v(t, T ) = α′′(T − t) + β′′(T − t)λ(t)− [a(t, λ) + p(t) + q(t)λ] β′(T − t)
w(t, T ) = −σ(t, λ)β′(T − t)

In general, the forward dynamics then depends on the drift and diffusion
coefficients of the mortality intensity and on the properties of the solutions
of the Riccati equations. One can wonder whether - starting from a mortal-
ity intensity process - an HJM-like condition, which works on the forward
survival intensities,

v(t, T ) = w(t, T )

∫ T

t

w(t, s)ds (27)

is satisfied. We provide the following:

Theorem 6.1 Let λ be a purely diffusive process which satisfies Assumption
4. Then, the HJM condition (27) is satisfied if and only if:

∂m(t, T )

∂T
= n(t, t)

∂n(t, T )

∂T
.

In particular, this condition is satisfied in the cases of the Ornstein-Uhlenbeck
process (3) and of the Feller process (6) with p = 0 and q constant.

Proof.
Using (26), we get the r.h.s. of the HJM condition (27):

w(t, T )

∫ T

t

w(t, s)ds =
∂n(t, T )

∂T
(n(t, T )− n(t, t)).

Hence, plugging (25) into the HJM condition (27) we get 11:

∂m(t, T )

∂T
= n(t, t)

∂n(t, T )

∂T
.

11Notice that a similar condition on the drift and diffusion of spot interest rates is in
Shreve (2004).
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As for the second part, if the intensity follows an OU process, the forward
probability f satisfies the HJM condition (27). This result is a straightfor-
ward consequence of the fact that – with p = 0 and q constant – the functions
α and β of the OU process satisfy the system of ODEs’:{

β′(t) = −1 + a′β(t)
α′(t) = 1

2
σ2β2(t)

(28)

with the boundary conditions α(0) = 0 and β(0)=0. In fact,

v(t, T ) = α′′(T − t) + β′′(T − t)λ(t)− β′(T − t)a′λ(t)

= σ2β(T − t)β′(T − t)
w(t, T ) = −σβ′(T − t).

and property (27) is satisfied.
Consider now the Feller process (6) and its well-known solution to the

Riccati ODE: {
α′(t) = 0
β′(t) = −1 + a′β(t) + 1

2
σ2β2(t)

(29)

Again, we can easily show that condition (27) is satisfied, since

v(t, T ) = β′′(T − t)λ(t)− a′λ(t)β′(T − t) = σ2β(T − t)β′(T − t)λ(t)

w(t, T ) = −σ(t, λ)β′(T − t) = −σ
√
λ(t)β′(T − t).

The HJM condition is a characterizing feature of some models for inter-
est rates such as the Vasicek (1977), Hull and White (1990), the CIR (Cox,
Ingersoll Jr, and Ross (1985)). It is well known that the HJM condition (27),
applied to the coefficients of the interest rate process, as in (20), is equivalent
to the absence of arbitrage. In our case, since we showed that - under As-
sumption 4 - the OU and FEL processes satisfy the HJM condition, arbitrage
is ruled out without being imposed. Please notice that the dynamics of the
forward intensity under for the OU case Q is

df(t, T ) =
σ2

a′
ea

′(T−t)
(
ea

′(T−t) − 1
)
dt+ σea

′(T−t)dW ′(t). (30)

It reminds of the Hull and White dynamics for forward interest rates, when
the parameters are constant.
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7 Mortality risk hedging

In order to study the hedging problem of a portfolio of pure endowment
contracts, we assume first that the interest rate is deterministic and, without
loss of generality, equal to zero. This allows us to focus in this Section
on the hedging of systematic mortality risk only. At a later stage, we will
introduce again financial risk (section 8) and study the problem of hedging
both mortality and financial risk simultaneously.
Once the risk-neutral measure Q has been defined, in order to introduce
an hedging technique for systematic mortality risk we need to derive the
dynamics of the reserve, which represents the value of the policy for the
issuer (assuming that the unique premium has already been paid). We do
this, for the sake of simplicity, assuming an OU behavior for the intensity.

7.1 Dynamics and sensitivity of the reserve

7.1.1 Affine intensity

Let us integrate (24), to obtain the forward death probability:

f(t, T ) = f(0, T ) +

∫ t

0

[v(u, T )du+ w(u, T )dW ′(u)] (31)

Substituting it into the survival probability (13) and recalling that we write
S(u) for S(0, u), we obtain an expression for the future survival probability
S(t, T ) in terms of the time-zero ones:

S(t, T ) =
S(T )

S(t)

[
exp−

∫ T

t

∫ z

0

[v(u, T )du+ w(u, T )dW ′(u)] dz

]
Considering the expressions for v and w under Assumption 4, we have:

S(t, T ) =
S(T )

S(t)
[exp−

∫ T

t

∫ z

0

{α′′(T − u) + β′′(T − u)λ(u) +

− β′(T − u) [a(u, λ) + p(u) + q(u)λ(u)]]du+

− β′(T − u)σ(u, λ)dW ′(u)]}dz].
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7.1.2 OU and FEL intensities

We focus now on the OU intensity case. We derive the expression for the
forward survival probabilities integrating the dynamics (30):

f(t, T ) = f(0, T ) +
σ2

a′2
{e2a′T

[
e−2a′t − 1

]
− 2ea

′T
[
e−a

′t − 1
]
}

+ σ

∫ t

0

ea
′(T−s)dW (s)

Hence, the reserve can be written simply as

P (t, T ) = S(t, T ) =
S(T )

S(t)
exp [−X(t, T )I(t)− Y (t, T )] (32)

where12

X(t, T ) =
exp(a′(T − t))− 1

a′

Y (t, T ) = −σ2[1− e2a′(T−t)]X(t, T )2/(4a′)

I(t) := λ(t)− f(0, t)

We have therefore provided an expression for the future survival proba-
bilities - and reserves - in terms of deterministic quantities (X, Y ) and of a
stochastic term I(t), defined as the difference between the actual mortality
intensity at time t and its forecast today f(0, t). I(t), therefore, represents
the systematic mortality risk factor. Let us notice that, as in the correspond-
ing bond expressions of HJM, the risk factor is unique for all the survival
probabilities from t onwards, no matter which horizon T − t they cover.
Moreover, as Cairns, Blake, and Dowd (2006) point out, if we extend our
framework across generations and model the risk factor as an n dimensional
Brownian motion, we obtain that the HJM condition is satisfied for each
cohort. Applying Ito’s lemma to the survival probabilities, considered as
functions of time and the risk factor, we have:

dPdS ' ∂S

∂t
dt+

∂S

∂I
dI +

1

2

∂2S

∂I2
(dI)2

It follows that the hedging coefficients for mortality risk are

∂S

∂I
= −S(t, T )X(t, T ) ≤ 0 (33)

∂2S

∂I2
= S(t, T )X2(t, T ) ≥ 0 (34)

12Notice that −X(t, T ) = β as soon as a = a′.
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or, for given t,

dP (t, T )

P (t, T )
' −X(t, T )dI +

1

2
X(t, T )2(dI)2

We denote (33) as Delta(∆M) and (34) Gamma (ΓM), where the superscript
M indicates that the coefficient refers to mortality risk. These factors allow
us to hedge mortality risk up to first and second order effects. They are the
analogous of the duration and convexity terms in classical financial hedging
of zero-coupon-bonds, and they actually collapse into them when σ(t, λ) =
σ = 0. In this case, in which mortality has no systematic risk component,
we have:

Y (t, T ) = 0

Hence, Delta and Gamma are functions of a′ only, as in the deterministic
case. We have

∆σ=0 =
S(T )

S(t)
X(t, T )

Γσ=0 =
S(T )

S(t)
X2(t, T )

It is straightforward to compute the sensitivity of any pure endowment
policy portfolio with respect to mortality risk (evidently, this must be done
for each generation separately). If the portfolio, valued Π, is made up of
ni policies with maturity Ti, i = 1, ..n, each one with value S(t, Ti), we have

dΠ =
∑

nidS(t, Ti) =

n∑
i=1

ni
∂S

∂t
dt+

n∑
i=1

ni
∂S

∂I
dI +

1

2

n∑
i=1

n2
i

∂2S

∂I2
(dI)2

7.2 Hedging

In order to hedge the reserve we have derived in the previous section we
assume that the insurer can use either other pure endowments – with different
maturities – or zero-coupon longevity bonds on the same generation 13. Since
we did not price idiosyncratic mortality risk, the price/value of a zero-coupon
longevity bond is indeed equal to the pure endowment one. The difference,
from the standpoint of an insurance company, is that it can sell endowments
– or reduce its exposure through reinsurance – and buy longevity bonds,

13If there is no longevity bond for a specific generation, basis risk arises: see for instance
Cairns, Blake, Dowd, and MacMinn (2006).
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while, at least in principle, it cannot do the converse14. We could use a
number of other instruments to cover the initial pure endowment, starting
from life assurances or death bonds, which pay the benefit in case of death
of the insured individual. We restrict the attention to pure endowments and
longevity bonds for the sake of simplicity. Let us recall also that – together
with the life assurance and death bonds – they represent the Arrow Debreu
securities of the insurance market. Once hedging is provided for them, it can
be extended to every more complicated instrument.
Suppose for instance that, in order to hedge n endowments with maturity
T , it is possible to choose the number of endowments/longevity bonds with
maturity T1 and T2: call them n1 and n2. The value of a portfolio made up
of the three assets is

Π(t) = nS(t, T ) + n1S(t, T1) + n2S(t, T2).

Its Delta and Gamma are respectively

∆M
Π (t) = n

∂S

∂I
(t, T ) + n1

∂S

∂I
(t, T1) + n2

∂S

∂I
(t, T2)

ΓMΠ (t) = n
∂2S

∂I2
(t, T ) + n1

∂2S

∂I2
(t, T1) + n2

∂2S

∂I2
(t, T2)

We can set these Delta and Gamma coefficients to zero (or some other precise
value) by adjusting the quantities n1 and n2. One can easily solve the system
of two equations in two unknowns and obtain hedged portfolios:{

∆M
Π = 0

ΓMΠ = 0

Any negative solution for ni has to be interpreted as an endowment sale,
since this leaves the insurer exposed to a liability equal to n times the policy
fair price. Any positive solution for ni has to be interpreted as a longevity
bond purchase. The cost of setting up the covered portfolio – which is rep-
resented by Π(t) – can be paid using the pure endowment premium received
by the policyholder. Alternatively, the problem can be extended so as to
make the hedged portfolio self-financing. Self-financing can be guaranteed
by endogenizing n and solving simultaneously the equations Π = 0,∆M

Π = 0
and ΓMΠ = 0 for n, n1, n2. As an alternative, if n is fixed, a third pure endow-
ment/bond with maturity T3 can be issued or purchased, so that the portfolio

14Reinsurance companies have less constraints in this respect. For instance, they can
swap pure endowments or issue longevity bonds: see for instance Cowley and Cummins
(2005).
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made up of S(t, T ), S(t, T1), S(t, T2) and S(t, T3) is self-financing and Delta
and Gamma hedged. Our application in section 9 will cover both the non
self-financing and self-financing possibilities.

8 Mortality and financial risk hedging

Let us consider now the case in which both mortality and financial risk exist.
Again we develop the technique assuming a OU intensity. We also select
a constant-parameter Hull and White model for the interest rate under the
risk-neutral measure:

Σ(t, T ) = Σ exp(−g(T − t)) (35)

with Σ, g ∈ R+. Substituting in (21) indeed we have

r(t) = F (0, t) +
1

2

Σ2

g2
(1− e−gt)2 + Σ

∫ t

0

e−g(t−s)dW ‘F (s).

which allows us to derive an expression for B(t, T ) analogous to (32):

B(t, T ) =
B(0, T )

B(0, t)
exp

[
−X̄(t, T )K(t)− Ȳ (t, T )

]
where

X̄(t, T ) :=
1− exp(−g(T − t))

g

Ȳ (t, T ) :=
Σ2

4g
[1− exp(−2gt)] X̄2(t, T )

where K is the financial risk factor, measured by the difference between the
short and forward rate:

K(t) := r(t)− F (0, t)

The pure endowment reserve at time t, according to (5) above, is

P (t, T ) = exp

(
−
∫ T

t

[f(t, u) + F (t, u)] du

)
= S(t, T )B(t, T )

Given the independence stated in Assumption 3, we can apply Ito’s lemma
and obtain the dynamics of the reserve P (t, T ) as

dP = BdS + PdB ' B

[
∂S

∂t
dt+

∂S

∂I
dI +

1

2

∂2S

∂I2
(dI)2

]
+

+ S

[
∂B

∂t
dt+

∂B

∂K
dK +

1

2

∂2B

∂K2
(dK)2

]
23



where
∂B(t, T )

∂K
= −B(t, T )X̄(t, T ) ≤ 0

∂2B(t, T )

∂K2
= B(t, T )X̄2(t, T ) ≥ 0

It follows that, for given t,

dP (t, T )

P (t, T )
' −X(t, T )dI +

1

2
X(t, T )2(dI)2 − X̄2(t, T )dK +

1

2
X̄2(t, T )(dK)2

Hedging of the reserve is again possible by a proper selection of pure en-
dowment/longevity bond contracts with different maturities and/or zero-
coupon-bonds with different maturities. Here we consider the case in which
the hedge against mortality and financial risk is obtained either issuing (pur-
chasing) pure endowments (longevity bonds) or using also bonds.
Consider first using mortality linked contracts only. We can see that Delta
and Gamma hedging of both the mortality and financial risk of n endow-
ments with maturity T can be obtained via a mix of n1, n2, n3, n4 endow-
ments/longevity bonds with maturities ranging from T1 to T4, by solving
simultaneously the following hedging equations:

∆M
Π = 0

ΓMΠ = 0

∆F
Π = 0

ΓFΠ = 0

(36)

This indeed means solving the system of equations
∆M

Π = nBSX + n1B1S1X1 + n2B2S2X2 + n3B3S3X3 + n4B4S4X4 = 0

ΓMΠ = nBSX2 + n1B1S1X
2
1 + n2B2S2X

2
2 + n3B3S3X

2
3 + n4B4S4X

2
4 = 0

∆F
Π = nBSX̄ + n1B1S1X̄1 + n2B2S2X̄2 + n3B3S3X̄3 + n4B4S4X̄4 = 0

ΓFΠ = nBSX̄2 + n1B1S1X̄1
2

+ n2B2S2X̄2
2

+ n3B3S3X̄3
2

+ n4B4S4X̄4
2

= 0

(37)

where B denotes B(t, T ) and Bi, Xi, X̄i denote B(t, Ti), X(t, Ti), X̄(t, Ti)
for i = 1, ..., 4.

Consider now using both mortality-linked contracts and zero-coupon-
bonds. In this case, the hedging equations (36) become:

∆M
Π = nBSX + n1B1S1X1 + n2B2S2X2 = 0

ΓMΠ = nBSX2 + n1B1S1X
2
1 + n2B2S2X

2
2 = 0

∆F
Π = nBSX̄ + n1B1S1X̄1 + n2B2S2X̄2 + n3B3X̄3 + n4B4X̄4 = 0

ΓFΠ = nBSX̄2 + n1B1S1X̄1
2

+ n2B2S2X̄2
2

+ n3B3X̄3
2

+ n4B4X̄4
2

= 0

(38)

24



These equations can be solved either all together or sequentially (the
first 2 with respect to n1, n2, the others with respect to n3 and n4), covering
mortality risk at the first step and financial risk at the second step.
Both problems outlined in (37) and (38) can be extended to self-financing
considerations. In both cases the value of the hedged portfolio is given by

Π(t) = nBS + n1B1S1 + n2B2S2 + n3B3S3 + n4B4S4

It is self-financing if Π(0) = 0 or if an additional contract is inserted, so that
the enlarged portfolio value is null. In our applications we will explore both
possibilities.

9 Application to a UK sample

In this Section, we present an application of our hedging model to a sample
of UK insured people. We exploit our minimal change of measure, which
preserves the biological and historically reasonable behaviour of the intensity.
We also assume that a′ = a, i.e. that the risk premium on mortality risk
is null. This assumption could be easily removed by calibrating the model
parameters to actual insurance products, most likely derivatives. We take the
view that their market is not liquid enough to permit such calibration (see
also Biffis (2005), Cairns, Blake, Dowd, and MacMinn (2006), to mention a
few). We therefore calibrate the mortality parameters to historical data (the
IML tables, that are projected tables for English annuitants). We assume
also - at first - that the interest rate is constant and, without loss of generality,
null - as in Section 7. We derive a ”term structure of pure endowments” and
the values of coefficients Delta and Gamma of the contracts. Afterwards, we
introduce also a stochastic interest rate.

9.1 Mortality risk hedging

We keep the head fixed, considering contracts written on the lives of male
individuals who were 65 years old on 31/12/2010. Hence, we set t = 0 and
we calibrate our parameters a65, σ65, λ65(0) = − ln p65 from our data set,
considering the generation of individuals that were born in 1945. For this
generation, a is calibrated to 10.94 %, while σ is 0.07 %. λ65(0) is instead
0.885%.15

First of all, we analyze the effect of a shock of one standard deviation
on the Wiener driving the intensity process. Figure 1 shows graphically the

15We refer the reader to Luciano and Vigna (2008) for a full description of the data set
and the calibration procedure.
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Figure 1: This figure shows the effect on the forward death intensity f(1, T )
of a shock equal to one standard deviation as a function of T . The central –
solid – line represents the initial forward mortality intensity curve f(0, T )

impact of an upward and downward shock of one standard deviation on the
forward intensity at t = 1 for different time horizons T . The forward mor-
tality structure is derived from (3) using (15). The Figure clearly highlights
that the effect becomes more and more evident – the trumpet opens up –
as soon as the time horizon of the forward mortality becomes longer. Please
notice that the behaviour is – as it should, from the economic point of view
– opposite to the one of the corresponding Hull-White interest rates. In the
rates case indeed the trumpet is reversed, since short-term forward rates are
affected more than longer ones.

The following Table 1 reports the ”term structure of pure endowment
contracts” and compares the Delta and Gamma coefficients associated with
contracts of different maturity in the stochastic case with the deterministic
ones.

It appears clearly from the previous Table that the model gives hedging
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Table 1: Stochastic vs. deterministic hedging coefficients

Stochastic hedge Deterministic hedge
Maturity S(t, T ) ∆M ΓM ∆σ=0 Γσ=0

1 0.99069 -1.04691 1.10633 -1.04691 1.10633
2 0.98041 -2.19187 4.90030 -2.19187 4.90030
5 0.94282 -6.27449 41.75698 -6.27439 41.75633
7 0.91116 -9.58396 100.80807 -9.58347 100.80284
10 0.85174 -15.46366 280.74803 -15.46053 280.69129
12 0.80306 -19.94108 495.16678 -19.93255 494.95501
15 0.71505 -27.19228 1034.08392 -27.16108 1032.89754
18 0.60899 -34.31821 1933.91002 -34.22325 1928.55907
20 0.52957 -38.32543 2773.64051 -38.14219 2760.37929
25 0.31713 -41.77104 5501.91988 -41.05700 5407.86868
27 0.23633 -39.27090 6525.53620 -38.18393 6344.91753
30 0.13319 -31.20142 7309.51024 -29.46466 6902.64225
35 0.03144 -12.93603 5322.98669 -10.78469 4437.74408

coefficients for mortality-linked contracts which are quite remarkably differ-
ent from the deterministic ones for long maturities. For instance, the ∆M and
ΓM hedging coefficients for a contract with maturity 30 years are respectively
6% smaller and larger than their deterministic counterparts. Contracts with
long maturities are clearly very interesting from an insurer’s point of view
and hence their proper hedging is important.

As an example, imagine that an insurer has issued a pure endowment
contract with maturity 15 years. Suppose that he wants to Delta-Gamma
hedge this position using as cover instruments mortality-linked contracts with
maturity 10 and 20 years. At a cost of 0.37, the insurer can instantaneously
Delta-Gamma hedge its portfolio, by purchasing, respectively, 1.11 and 0.26
zero-coupon longevity bonds on these maturities. Having at disposal also
the possibility of using contracts with a maturity of 30 years on the same
population of individuals, a self-financing Delta-Gamma hedging strategy can
be implemented by purchasing 0.48 and 0.60 longevity bonds with maturity
respectively 10 and 20 years, and issuing 0.10 pure endowments with maturity
30 years.
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Table 2: Hedging coefficients for stochastic financial risk

Maturity P (t, T ) ∆F ΓF

1 0.98395 -0.9798 0.9666
2 0.96214 -1.9103 3.7185
5 0.86696 -4.2988 20.0963
7 0.78430 -5.4865 34.9707
10 0.64372 -6.6170 57.9341
12 0.54597 -6.9606 71.2657
15 0.40404 -6.9596 85.7216
20 0.20649 -6.0149 92.7836
25 0.07972 -4.5599 82.7129
27 0.04902 -3.9667 75.8645
30 0.02037 -3.1366 64.3246
35 0.00278 -1.9995 45.1377

9.2 Mortality and financial risk hedging

The same procedure, as shown in Section 8, can be followed to hedge simul-
taneously the risks deriving from both stochastic mortality intensities and
interest rates. Notice that, if we consider that the interest rate is stochas-
tic (or at least different from zero), prices of pure endowment contracts no
longer coincide with survival probabilities. Nonetheless, their ∆M and ΓM ,
the factors associated to mortality risk, remain unchanged when we intro-
duce financial risk (see Section 8). Once one has estimated the coefficients
underlying the interest rate process, we can easily derive the values of ∆F

and ΓF , the factors associated to the financial risk, and the prices P (t, T ) of
pure endowment/longevity bond contracts.
We calibrate our constant-parameter Hull and White model for forward inter-
est rates to the observed zero-coupon UK government bonds at 31/12/2010.16

Table 2 shows prices and financial risk hedging factors of pure endowment
contracts subject to both financial and mortality risks. Please notice that
the absolute values of the factors related to the financial market are smaller
than the ones related to the mortality risk.

These factors ∆F and ΓF , together with their mortality risk counterparts,
∆M and ΓM , allow us to hedge pure endowment contracts from both finan-
cial and mortality risk by setting up a portfolio - even self-financing - which
instantaneously presents null values of all the Delta and Gamma factors.
As an example, consider again the hedging of a pure endowment with ma-

16The parameter g is 3.23%, while the diffusion parameter Σ is calibrated to 1.25 %
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turity 15 years. In order to Delta-Gamma hedge against both risks, we need
to use four instruments (five if we want to self-finance the strategy). We
can either use four pure endowments/longevity bonds written on the lives of
the 65 year-old individuals or two mortality-linked contracts and two zero-
coupon-bonds. In the first case, imagine to use contracts with maturity 10,
20, 25 and 30 years. The hedging strategy consists then in purchasing 0.35
longevity bonds with maturity 10 years, 1.27 with maturity 20 years and
0.30 with maturity 30 years, while issuing 0.87 pure endowment policies with
maturity 25 years. In the second case, imagine the hedging instruments are
mortality contracts with maturities 10 and 20 years and two zero-coupon-
bonds with maturities 5 and 20 years. The strategy consists in purchasing
1.11 longevity bonds with maturity 10 years and 0.26 with maturity 20 years
and in taking a short position on 0.60 zero-coupon-bonds with maturity 5
years and a long one on 0.10 zero-coupon-bonds with maturity 20 years. A
self-financing hedge can be easily obtained by adding an instrument to the
portfolio. For example, such a self-financing hedge can be obtained by pur-
chasing 0.41 longevity bonds with maturity 10 years, 0.98 with maturity 20
years and 0.22 with maturity 35 years and issuing 0.38 pure endowments
with maturity 25 years and 0.13 with maturity 30 years.

10 Summary and conclusions

This paper develops a Delta and Gamma hedging framework for mortality
and interest rate risk.
We have shown that, consistently with the interest rate market, when the
spot intensity of stochastic mortality follows an OU or FEL process, an HJM
condition on its drift holds for every constant risk premium, without assum-
ing no arbitrage. Hence, we have shown that it is possible to hedge systematic
mortality risk in a way which is identical to the Delta and Gamma hedging
approach in the HJM framework for interest rates. Delta and Gamma are
very easy to compute, at least in the OU case. Similarly, the hedging quan-
tities are easily obtained as solutions to linear systems of equations. Hence,
this hedging model can be very attractive for practical applications.
Adding financial risk is a straightforward extension in terms of insurance
pricing, if the bond market is assumed to be without arbitrages (and com-
plete, so that the financial change of measure is unique). Delta and Gamma
hedging is straightforward too if - as in the examples - the risk-neutral dy-
namics of the forward interest rate is constant-parameter Hull and White.
Our application shows that the unhedged effect of a sudden change on the
mortality rate is remarkable and the stochastic and deterministic Deltas and
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Gammas are quite different, especially for long time horizons. Last but not
least, calibrated Deltas and Gammas are bigger for mortality than for fi-
nancial risk. The Delta and Gamma computation can be performed in the
presence of FEL stochastic mortality. The whole hedging technique can also
be extended using the same change of measure to the case of a CIR mortality
intensity, reverting to a function of time.
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