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Abstract

This paper proposes an ICAPM in which the risk premium embedded in variance swaps
is the factor mimicking portfolio for hedging exposure to changes in future investment
conditions. Recent empirical evidence shows that the fears by investors to deviations
from Normality in the distribution of returns are able to explain time-varying financial
and macroeconomic risks in addition to being a determinant of the variance risk
premium. Moreover, variance swaps hedges unfavorable changes in the stochastic
investment opportunity set, and is not a redundant asset because significantly expands
the efficient mean-variance frontier. Thence, we should expect the variance swap risk
premium to be priced in the market. We report relatively favorable evidence on the
incremental pricing information associated with the variance risk premium, particularly

at shorter horizons.



1. Introduction

As shown by Carr and Wu (2009), Todorov (2010), and Egloff, Leippold and
Wu (2010) among many others, the average variance risk premium is negative and
sizeable for all available horizons. Since the payoff of a variance swap contract is the
difference between the realized variance and the variance swap rate, the observed
negative returns for long positions on variance swap contracts for all time horizons
suggest that investors are willing to accept negative returns for insuring against future
realized variance. Recently, Nieto, Novales and Rubio (2010) use the implications of an
asset pricing model proposed by Chabi-Yo (2009) to find evidence that as it is the case
with standard indicators of different types of macroeconomic and financial risks, the
variance risk premium responds to changes in higher order moments of the conditional
distribution of market returns." This common dependence suggests that the variance
swap may offer hedging against a variety of risks and, consequently, the variance risk
premium could be capturing the market willingness to pay for such a hedge.

A natural question then refers to whether the fluctuations in the variance risk
premium may act as a sufficient statistic summarizing the information contained in a
variety of macroeconomic and financial risk indicators which is relevant for asset
valuation. In the continuous-time Intertemporal Asset Pricing Model (ICAPM hereafter)
of Merton (1973), the value function depends not only on aggregate wealth, but also on
the innovations to some state variables that describe the stochastic behavior of the
investment opportunity set. These additional variables may hint at ways to design an
appropriate hedge against unfavorable changes in the stochastic investment
opportunities and the optimal portfolio should be made up by a combination of the

market and the hedging portfolios. In this paper, we employ the payoff of the variance

! See the related evidence reported by Bondareko (2004) who shows that the variance risk premium
explains returns that exhibit significant skewness.



swap as the hedging variable for alternative investment horizons. Therefore, we take the
ICAPM as the natural framework to investigate whether the variance risk premium may
add information to the return on market wealth as an aggregate risk factor explaining the
cross-section of expected returns.?

Specifically, the stochastic discount factor (SDF hereafter) is specified as a
power function of the return on the market portfolio, expanded with an exponential
function of the excess return of the variance swap contract as hedging variable. We
perform several empirical tests of the model that suggest that the variance risk premium
contains relevant information that helps pricing average stock returns. The measures of
the global fit indicate that the model performs better when it includes the variance risk
premium factor than when it only incorporates the market return portfolio. This
evidence is generally observed for both the non-linear specification and the beta (linear)
specification of the model. Specifically, the comparison between the one-factor model
and the two-factor model at the one-month investment horizon reveals that the mean
absolute pricing error decreases from 0.343 to 0.288 in the non-linear specification, and
that the pseudo cross-sectional R-square used in the estimation increases from 0.278 to
0.412 in the beta specification. Moreover, we also show that, on average, test portfolio
betas relative to the variance risk premium factor are strongly negative when we allow
for regressions with two regimes based on a market return threshold. The relatively
favorable evidence on the variance risk premium being a financial factor that is priced
in the market is consistent with the result in Nieto, Novales and Rubio (2010), who
show that the variance swap is not being spanned by a set of assets composed of

government and corporate bonds and the stock market portfolio.?

2 Malkhozov (2009) shows how the variance risk premium arises in asset pricing models with stochastic
volatility and production economies with dynamic hedging effects.
¥ See also the related evidence reported by Chabi-Yo (2008).



The paper is organized as follows. Section 2 briefly describes the variance swap
contract and defines the variance risk premium. Section 3 contains a description of the
data. The two-factor asset pricing model is presented in Section 4, while Section 5
reports the results of the empirical tests. Section 6 concludes with a summary of our

findings.

2. Variance Swap Contracts and the Variance Risk Premium

A variance swap is an over-the-counter financial instrument that pays the
difference between a standard estimate of the realized variance of the return on a given
asset (a stock market index in this case) and the fixed variance swap rate. More in detail,
one leg of the variance swap pays an amount based upon the realized variance of the
price changes of the underlying asset. Conventionally, these price changes will be daily
log returns, based upon the most commonly used closing price. The other leg of the
swap pays a fixed amount, the strike, quoted at the deal's inception. Thus the net payoff
to the counterparties is the difference between these two values. It is settled in cash at
the expiration of the deal, though some cash payments are likely to be made along the
way by one or the other counterpart to maintain an agreed upon margin. The payoff of a

variance swap issued at time t and maturing at time t+z is therefore given by,

Nyar (RVi 47 = SWi g4z ), 1)
where Ny, denotes variance notional, also called variance units, RV;,, is the
annualized realized variance over the life of the contract, and SW; ¢, . is the delivery

price quoted at time t for the variance of the asset between t and t+7, also known as
the variance swap rate. Hence, profits and losses from a variance swap depend directly

on the difference between realized and implied variance.



Since variance swaps cost zero at entry, no arbitrage requires that the variance
swap rate must be equal to the risk-neutral expected value of the realized variance.

Therefore,
SWitir = EIQ(RV'[,'[+T)' 2)

where EtQ () is the time-t conditional expectation operator under some risk-neutral
measure Q. The variance risk premium at period t is then defined as,

VRR!'T = Ef (th,t+r)_ SWtiz s 3)

where EtP(.) is the time-t conditional expectation operator under the physical

probability measure P. If investors price variance risk, the variance swap rate will differ
from the expected realized variance under P at the corresponding horizon, the difference

being the variance risk premium.

3. Data and Descriptive Statistics

In this paper we analyze variance swap contracts on the S&P 500 index. Daily
variance swap rates on five different maturities from January 4, 1996 to January 31,
2007 are obtained from Bank of America. We get monthly data by using the quotes on
the last day of each month. Our estimation of the realized variance employs intra-daily
data observed at 30-minute intervals, from 9 a.m. to 3 p.m., on the S&P 500 index
returns provided by the Institute of Financial Markets. For each month in our sample,
we compute the realized variance for each maturity z of a variance swap contract
(r=1, 2, 3, 6, and 12 months) using quadratic changes on the value of the S&P 500
index, as given by

2
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where P; is the level of the index at time t, L is the number of 30-minute intervals

comprised in the interval (t,t+7). We work with variance swap rates and realized
variances in percent numbers.
For each month t and each maturity = we compute the log variance risk

premium as the logarithm of the ratio between realized variance and the swap rate,
RV,
VRR!? = log(ﬁ} ()

which can be read as the excess rate of return of the variance swap contract. Clearly,

VRP"" is known only at time t+ 7. Figure 1 displays variance swap rates and realized

variance for 1-, 3- and 6-month maturities. As expected, the swap rate is most often
above the level of realized variance, especially for longer maturities. This evidence is
similar to that shown by Carr and Wu (2009) for stock market indices and, to a lesser
extent, for individual stocks.” It is clear that investors are willing to accept a
significantly negative return to long variance swaps on the S&P index in exchange for
being hedged against future unexpected volatility shocks. Therefore, shorting variance
swap contracts in the S&P index generates significantly positive average excess returns
during our sample period, since the variance risk premium can be seen as the return on
holding the variance swap contract.

Panel A of Table 1 reports the variance risk premium descriptive statistics for
alternative maturities. The variance risk premium is always negative on average, and it
becomes more negative with maturity. Panel B of Table 1 reports the correlation

coefficients between the wvariance risk premia at any two different maturities.

* Driessen, Maenhout, and Vilkov (2009), and Vilkov (2008) show that the variance risk premium for
stock indices are systematically larger, i.e., more negative, than for individual securities. They argue that
the variance risk premium can in fact be interpreted as the price of time-varying correlation risk. Anton
(2010) replicates their analysis using Eurostoxx50 and, contrary to the previous results, he reports
individual variance risks different form zero.



Correlations between variance risk premia at adjacent maturities are high, debilitating
for faraway maturities. The correlation matrix suggests the existence of at least two
factors in the structure of variance risk premium.’

Monthly data on value-weighted stock market portfolio returns (R, ) and the
risk-free rate (R¢ ) are taken from Kenneth French’s web page. We also collect the

excess returns of 25 size/book-to-market value-weighted portfolios and 17 industry
value-weighted portfolios. We compute monthly series of cumulative returns
corresponding to the five maturity intervals of the variance swap rates for the market

return, the risk-free rate, and the 25 and 17 portfolio returns.

4. A Two-Factor Intertemporal Asset Pricing Model

Evidence presented in Nieto, Novales and Rubio (2010) indicates that the
variance risk premium is able to anticipate different kinds of risk embedded in
traditional state variables, such as the stock market risk, risk of default, illiquidity risk
or consumption and employment growth risk. On the other hand, previous empirical
literature about the ICAPM shows that innovations to state variables that forecast future
investment opportunities seem to be priced by investors.® It may therefore be the case
that the ICAPM holds as a two factor model with the excess return of the variance swap
contract as the hedging factor. Bollerslev and Todorov (2010) show that, even though
the equity market risk premium and the variance risk premium share similarities in the

general dynamic dependencies in jump risk premia, they maintain important differences

> This is consistent with the formal analysis contained in Egloff, Leippold, and Wu (2010), and Amengual
(2009). They show that two factors are needed to capture the term structure variation of the variance swap
rates. The first factor might control the instantaneous change in the variance rate, while the second could
represent the level to which the variance reverts.

¢ See Brennan, Wang and Xia (2004), Hahn and Lee (2006), and Petkova (2006).



in the way how they capture the compensations for rare events (tail events).” Their
results imply that any satisfactory model explaining the cross-sectional variation of
expected returns should be able to generate a large and time-varying compensation for
fears of economic recessions. This is precisely the role that the variance risk premium
may be playing in the ICAPM framework.

It is well known that, assuming no arbitrage opportunities, a positive SDF (m,)

exists such that,
Ey lmt+1R?,t+1 J:O ' (6)

e
where R s

1 Is the excess return on asset j from t to t+1. The alternative asset pricing
models are generated by specifying different SDFs; that is, assuming different
preferences for investors or different stochastic processes for asset prices. For example,
under the ICAPM, the SDF contains, in addition to the aggregate wealth return,
variables that capture time variation in future investment opportunities. Although the
model is generally accepted because evidence shows that state variables other than the
market index are important for pricing stock returns, the debate about which state
variables must enter in the SDF remains open. Therefore, a natural question to ask is
whether the information embedded in fluctuations in the variance risk premium may act
as a sufficient statistic summarizing relevant information for asset valuation.

To explore this possibility, we use five time horizons corresponding to the five

maturities of the swap contracts and data sampled at monthly frequency, to estimate the

following ICAPM specification

Et+r—1l((RW . eXP{CNRPtHT })Rje,t+r JZ 0, (7

” Similarly, Bondareko (2004) shows that the variance risk premium has a component that is independent
of the risk premium on primitive assets.



where Ry ¢, is the gross cumulative return on wealth between t and t+7, VRRI s

the variance risk premium, i.e.; the log-difference between the variance swap rate at

month t with maturity on t+7 and the realized variance of the market index between t
and t+ 7, as defined by expression (5), Rj—’,tH is the excess cumulative return between t

and t+7 onassetj,and =1, 2, 3, 6 and 12 months.

This SDF specification is consistent with Brennan, Wang and Xia (2004), and it
ensures a positive SDF. These authors argue that if the interest rate and the maximal
Sharpe ratio follow a joint Markov process, the investment opportunity set is fully
described by their joint dynamics. Accordingly, they propose a three-factor
intertemporal model in which the SDF is the product of an exponential function of the
innovations of these two variables and a power function of the aggregate wealth return.?

The basic idea behind equation (7) relies on focusing on the two key risk premia
in financial markets: i) the equity risk premium for holding the market portfolio, and ii)
the variance risk premium for holding the variance of the market portfolio. It is clear
that both risk premia should be correlated. Bollerslev and Todorov (2010) show that
roughly 60 percent of the equity risk premium is due to fears of rare events, while half
of the variance risk premium is also due to investors fears. Then, in the empirical
estimation of equation (7), rather than using directly the variance risk premium, it may
be advisable to employ the residuals of a linear projection of the variance risk premium
on the market excess portfolio return. Our aim is therefore to test whether the variance
risk premium has incremental explanatory power over and above the market portfolio

return within an ICAPM framework.

8 More recently, Brennan, Liu and Xia (2006) include market volatility as the third state variable into their
exponential pricing kernel

10



5. Asset Pricing Model Performance
5.1 The Non-linear Version of the Two-factor ICAPM Model

Panel A in Table 2 reports estimates of the coefficients of the iso-elastic SDF,
obtained by applying first-stage GMM to Euler equation (7), which amounts to
minimizing the Euclidean norm of the average vector of pricing errors.” The test assets
are the 25 Fama-French portfolios and 17 industry portfolios. Below each estimate, in
parentheses, we report the standard errors that are computed taking into account the fact
that pricing errors have different variances and nontrivial covariances. The J-test
statistic for overidentifying restrictions, given by T times the sum of the squared pricing

errors, T(g'g), is reported in the fourth column, with its p-value in parenthesis. The

last column of the table (MAPE) is the mean absolute pricing error across portfolios. We
estimate model (7) twice, with and without the exponential factor for the variance risk
premium, and for the for five time horizons available in our database. The sample
frequency is always monthly, from January 2006 to January 2007, which permits the
comparison between results across the different horizons and panels of Table 2.

When we use the identity matrix as the weighting matrix in Panel A, the results
for the one-month horizon show that the J-test fails to reject both pricing specifications.
Estimates of risk aversion look reasonable, between 2.5 and 3.6, although estimated
standard errors are relatively large. The coefficient of the variance risk premium (c1) is
positive, as expected, but it is also estimated with low precision.'® Apart from that, both

the J-statistic and the MAPE become lower when adding the variance risk premium to

% It is basically the Hansen-Jagannathan (1997) distance (HJ-distance) with the identity matrix as the
weighting matrix. See the Appendix for a brief description of the estimation method and the calculation of
the p-value for the test of overidentification restrictions.

9 To understand the positive sign of the coefficient associated with the variance risk premium in the
proposed SDF, it should be noted that if the variance risk premium increases and becomes positive, the
marginal utility of wealth would decrease. One additional unit of wealth would then not be highly valued,
because we would already be hedged by going long in the variance swap contract. Hence, the estimate
associated with the variance risk premium should be positive, as it is the case in Table 2.

11



the market factor, reflecting an improvement in the fit of the model. Hence, the variance
risk premium, as a second factor in an ICAPM framework, seems to contain some
relevant information for explaining the cross-section of average returns.

For all other horizons, the two pricing specifications are rejected by the J-test at
the standard 5% significance level, although the enlarged specification at the 2-month
horizon presents a p-value of 0.04. The risk aversion estimate increases with the
horizon. The estimated coefficient for the variance risk premium is always positive,
with a relatively low standard error for maturities of six and twelve months. The
monthly average pricing errors of the CAPM and the two-factor model are higher than
those obtained for the shortest horizon. The reduction in MAPE by introducing the VRP
as a second factor for asset pricing is negligible at 2- and 3-month horizons, but it is
around 16 percent at the 1-month horizon, and 18 percent at the 6- and 12-month
horizons.

Panel B of Table 2 displays estimation results using the inverse of the matrix of
second order moments of excess returns as weighting matrix. Therefore, the pricing
specification tests are now based on the traditional HJ-distance.** Neither one of the two
alternative pricing specifications are rejected at the one-month horizon at the 1%
significance level. On the contrary, both specifications are rejected at conventional
significance levels for all other horizons. As before, the relative risk aversion coefficient
increases with the horizon, but it is uniformly lower than in Panel A. The coefficient of

the variance risk premium is smaller than in Panel A, close to zero except at the one-

1 \We could have also used the optimal GMM weighting matrix; that is, the variance-covariance matrix
of pricing errors, instead of a pre-specified matrix. However, that choice would have precluded the
comparison between the values of the objective function for different specifications of the SDF. To
establish that comparison, we need to use the same weighting matrix for each SDF specification. On the
other hand, we are also specifically interested in pricing the original portfolios, which is why we also
emphasize the use of the identity as weighting matrix. In any case, the correlations among the pricing
errors are taken into account when computing the standard errors of the parameter estimates, as shown in

the Appendix. See Cochrane (2005) for a detailed discussion of these issues.
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month horizon, and it is estimated with large standard errors. As a consequence, the
contribution of the variance risk premium is now much smaller than when estimating
with the identity matrix. Asset prices in our sample are much better fitted under the
first-step GMM estimates. In fact, MAPE is lower for all horizons by at least 25%,
relative to estimates obtained under the HJ-metric.

As an alternative way to compare the two model specifications, we now compute
the time series for the SDFs obtained with the parameters estimated with an identity
weighting matrix. To capture the strong cross-sectional and time-series variation of
expected returns, we need a SDF with enough volatility. Moreover, its volatility should
be high at the beginning of recessions and low when expansion periods begin. Figure 2
shows the time-series of estimated SDFs for the two asset pricing models, for the one-
and six-month horizons. At the shortest maturity, the SDF for the one-factor model
becomes more volatile and with higher peaks in declining stock market periods once we
add the variance risk premium as a second factor. This contribution of the variance risk
premium is consistent with the relatively best results provided by the variance risk
premium-based ICAPM relative to the one factor model in Table 2. At the six-month
horizon, adding the variance risk premium again increases the volatility of the estimated
SDF, relative to the one-factor model. This extensive representation of the SDF over the
whole sample seems quite revealing of the difference between the two specifications.
Furthermore, the reduction in MAPE indicates that the increased volatility in SDF
actually helps pricing the portfolios in our sample.

Independently of the non-concluding global evaluation of the model through the
J-test, it is worthwhile to examine the model ability to explain portfolio prices in detail.
We now describe which specific portfolios the model is more able to price correctly.

Figure 3 shows the average over time of the absolute pricing errors (APE) for each of

13



the 42 original portfolios at the one- and six-month horizons, under the CAPM as well
as under the ICAPM specification that incorporates the variance risk premium. When
we add the variance risk premium to the one-factor model, the APE is reduced for most
of the 42 portfolios considered. More specifically, the two-factor model reduces the
APE for three out of the five extreme growth portfolios, FF31, FF41, and FF51 at both
horizons. Interestingly, this is not the case for FF11, the portfolio of growth and small
assets, whose performance shows a higher APE, or for the FF21 portfolio, whose
pricing errors are essentially equal under the two specifications. It is also important to
point out that the variance risk premium consistently helps pricing the extreme value
Fama-French portfolios (FF15, FF25, FF35, and FF45)." Finally, at the one-month
horizon, the ICAPM model achieves a better fit for portfolios FF12 throughout F15
(smallest assets) than the one-factor model. This evidence therefore suggests that the
VRP factor contributes to an improvement in pricing extreme value, extreme growth and
small-firm portfolios. Regarding industry portfolios, it turns out that adding the variance
risk premium leads to a smaller APE for Mines, Oil, Machinery and Utilities at both
horizons. Uncovering the characteristics of these sectors that provide a better fit in

prices remains an interesting issue for further research.

5.2 The Linear Version of the Two-factor ICAPM Model

Estimating a tight theoretical model with a relatively short time series data can
easily lead to a significant loss of efficiency in estimation that may condition the results
of the tests for model adequacy. Despite the fact that the VRP seems to contain
significant incremental information when pricing the cross-section of our test portfolios,

especially at the shortest horizon, it should be recognized that the estimated coefficient

12 With the exception of the largest FF55 portfolio.
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of the VRP at this horizon is obtained with a large standard error. This consideration
moves us to analyze in this section the pricing results obtained for the 25 Fama-French
and the 17 industry portfolios under the linear beta representation of equation (7) for the
one-month horizon. We therefore perform the well known Fama-MacBeth (1973) two-

pass cross sectional analysis in which the monthly cross-sectional regressions are given
by:

R(jet =40 + AmBimt + AvrpBjurpt + U jt (8

The results are presented in Table 3. Columns 1 to 3 report the risk premia

estimates, together with the Fama-MacBeth and Shanken’s (1992) standard errors.

Columns 4 and 5 provide two pseudo- R? statistics based on the residual sum of squares
of the cross-sectional regressions. The coefficient associated with the variance risk
premium beta turns out not to be statistically different from zero.*® But as in the non-
linear model, it looks as if this could be more a consequence of estimating the risk
premium for the variance swap payoff with low precision, since the incorporation of the
variance risk premium as hedging factor leads to an increase in the cross-sectional
overall goodness of fit from 0.237 to 0.358, or from 0.334 to 0.462, depending upon the
statistical measure we may employ. The better fit of the linear model after incorporating
the variance risk premium can be clearly appreciated in the two graphs of Figure 4, that
contain fitted expected returns versus average realized returns for the 42 portfolios for
the CAPM and the ICAPM. The largest revisions occur for the FF25 portfolio, and for
the Steel and Mine industry portfolios. The variance risk premium also improves
average pricing for the small-value Fama-French portfolios, FF14 and FF15, which is

consistent with the evidence reported on the GMM estimates.

3 As expected, under the linear specification, the sign of the coefficient associated with the variance risk
premium is negative.
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5.3 The Linear Version of the Two-factor ICAPM Model with Two Regimes based on
a Market Return Threshold

As suggested by our proposed SDF, stock returns should react very differently to
the variance risk premium depending upon the state of the economy. In fact, as we
already pointed out, the variance risk premium has very distinct compensation
behaviour for negative tail events. The previous non-significant cross-sectional results
ignore the possibility of different conditional sensitivities of stock returns to the
variance swap payoffs on “bad” versus “good” scenarios. We now want to analyze
whether the actual information content of the variance risk premium occurs mainly
during recessions

In order to investigate this issue, we allow for market and variance risk premium
betas to change over time as a function of the market state. We define factor regression
regimes as a function of a given level of market returns, and estimate such threshold
simultaneously with the betas for the market and the variance risk premium in each
regime. In each regime we use the pooled data for the 42 portfolios for the
corresponding periods. This is a Threshold Regression Model, which we estimate under
the assumption of a Normal error term. The maximum likelihood estimate is the
threshold level for which the least squares estimates of the regressions for the good and

bad regimes lead to the lowest aggregate residual sum of squares:

42 T1(u) "
Z (R(J?t —a(U) = Bm1(U)Rm = Burp1 (U )VRP, + )
Min j=1t=1 ®
u,a,fm S 42 To(u) .
{ m VI’P} + z (R(Jat —az(U)—ﬂmz(u)Rrent _ﬂvrpz(u)VRPtt+1)
j=1t=1
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where u is the market return threshold, and Sp1, Syrp1, and Bma Pyrp2 are the market

and variance risk premium betas for the regimes above and below the threshold
respectively.

The maximum likelihood estimate of the market return threshold is -7.20 percent.
This is an extreme return that splits the sample into “good/regular” regime for the 95
percent of the sample, and a “very low/very bad” regime that includes 5 percent of the
sample. Given this partition, the results for the two-regime betas are reported in Table 4.
The difference on the overall variance risk premium betas between both regimes are
striking. The variance risk premium beta is highly significant and equal to -0.067. Since
the variance risk premium is negative for most periods, long positions on variance
swaps have positive payoffs only in those states in which the realized volatility is high
enough to compensate the fears embedded in the risk neutral expectation of volatility.
Moreover, it is also well known that volatility increases in periods of extremely low
returns. This explains the large negative and highly significant variance risk premium
beta in bad states. On the other hand, the variance risk premium beta for periods with
positive or relatively small negative returns becomes practically zero. Even more
illustrative is the evidence contained in Figure 5 in which we present the variance risk
premium betas for both regimes for each portfolio separately. For most portfolios, the
variance risk premium betas become negative and large in bad states. However, they are
practically zero in good and regular states. Interestingly, the extreme small-growth
portfolios and construction have positive variance risk premium betas in bad states. This
implies that the variance swap does not play its hedging role relative to these portfolios.
It should be recalled that our sample period coincides with the boom in the real estate

industry.
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Given this evidence, we now run the Fama-MacBeth two-pass cross sectional
regressions using for the market return and the variance risk premium the appropriate

betas for the market state in each period:
RSt = A0 + AmBe + ApBjurpt + Ut - (10)
where ﬁ;}{{ and ,B}:,/r_pt denote the betas in the appropriate “good” or “bad” states. As

before, Figure 6 shows a clear improvement in fit when we include the two-regime
variance risk premium betas relative to the CAPM. More precisely, Table 5 reports the
risk premia coefficients from the cross-sectional regression of expression (10). The
compensation for the variance risk premium beta becomes much more negative than in
Table 3 moving from -0.083 to -0.265 with a clear increase in precision. Moreover, the
two measures of goodness of fit employed in the paper increase from 0.188 to 0.274 and
from 0.278 to 0.412 when we add to the cross-sectional regression the variance risk
premium betas conditional on the market threshold.

To summarize our findings, Figure 7 contains the monthly differences between the

adjusted R? statistic from each Fama-MacBeth cross-sectional regressions with and
without the variance risk beta as an explanatory variable. Independently of using a
market threshold in the estimation of betas, we find an increase in the explanatory
power of the two-factor ICAPM model relative to the one-factor CAPM model in all
months of our sample. We may therefore conclude that the variance risk premium

contains incremental information for asset pricing over and above the market portfolio.
6. Conclusions

Recent available evidence show that the excess return on the variance swap

contract hedges equity market risks, interest rate and business cycle risks. This evidence
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motivates the consideration of a two-factor ICAPM with the variance risk premium
playing the role of a hedging portfolio. The question is whether the variance risk
premium acts as a sufficient statistic summarizing the information contained in a variety
of risk indicators that might be potentially relevant for asset valuation.

Specification tests based on GMM estimates using the identity matrix as metric
do not reject the model at one- and two-month horizons at conventional significance
level, although the opposite is obtained at the remaining horizons. The time-varying
behavior of the estimated SDF under the two-factor model presents a relatively more
volatile behavior than the simple one-factor model, and pricing errors on individual
portfolios are generally lower when the variance risk premium is incorporated into the
model. More specifically, and relative to the one-factor model, the variance risk
premium seems to explain small and value stocks, as well as Mines, Steel, Oil,
Machinery, and Utilities. This is reflected in a reduction in global measures of fit
between 16 and 18 percent for 1-, 6- and 12-month horizons, even though the reduced
size of pricing errors does not seem to be small enough to not reject the model at these
longer horizons according to the standard test for over-identification constraints. The
linearized version of the model supports these results by providing a clearly improved
fit to observed returns for the 25 Fama-French portfolios and the 17 industry portfolios,
always at the one-month horizon.

Although it is standard practice, considering time-invariant parameter values for
the full sample period might be too strong an assumption to make the model compatible
with the data. When we include a recession threshold in the estimation of the variance
risk premium betas in the linearized version of the model, we obtain that the
compensation to the variance risk premium beta in asset pricing is limited to recession

periods. Hence, the role of the variance risk premium as a pricing factor seems to
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concentrate on periods of significant market downturns. The cross-sectional overall
measures of fit for the two-factor ICAPM model relative to the one-factor CAPM

specification increase independently of using conditional bad state betas or constant

betas. The increase in monthly adjusted RZin the cross sectional regression from adding
the variance risk premium beta is often sizeable. Overall, our results suggest that the
premium in variance swaps contains relevant information for asset pricing, possibly
because summarizes information contained in a variety of macroeconomic and financial
risk indicators. Analyzing the distinct gains in fitting prices of the different portfolios

remains as an interesting issue for further research.
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Appendix
Let RY be the N x 1 vector of excess return of the N assets at time t and my (&) be

one out of the two specifications of the SDFs described in Section 4, where @ is the
vector of the preference parameters for each particular specification. We define an N x 1
vector of moment conditions containing the pricing errors generated by the model at

time t,
fi(0)=| RE-m(O)RE |, (A1)

and the corresponding sample averages,

gr (0)=—=—— (A2)
Then GMM estimator minimizes the following quadratic form
o7 (0)'Wror (9) (A.3)

where Wt is a weighting N x N matrix.

For estimation, we could use the optimal weighting matrix in Hansen (1982), ST_l,

where

S =t (A4)

Instead of that, we employ a pre-specified weighting matrix which is either the
identity matrix (for the results of Panel A of Table 4) or the matrix of the second

moments of excess returns (for the results of Panel B of Table 4).

The asymptotic variance-covariance matrix of the GMM estimates is given by



v =T3(DT 'W, D, )" D, "W, S,W,D, (D,'W, D, ), (A5)

where Dy isa matrix of partial derivatives defined by

iaft(ﬁ)/@(e)

_1=1
Dr = . (A-6)

Then, the standard errors of the estimated coefficients @ are computed from the
estimated variance:

V ==(B,w, By ) By W, §w, B, (

~ -1
= WD) (A7)

where I5T and §T are obtained replacing & by 6 in Dy and S, respectively.

The evaluation of the model performance is carried out by testing the null

hypothesis:

H :T[Dist(¢)] =0, (A.8)
with Dist=/g (6)'Wg (8) where, as mentioned above, the weighting matrix, W, is
either the identity matrix or the second moment matrix of excess returns.

If the weighting matrix is optimal, T [Dist(@)}z is asymptotically distributed as a

Chi-square with N-P-1 degrees of freedom, where P is the number of parameters.
However, for any other weighting matrix (including the identity matrix), the distribution

of the test statistic is unknown. Jagannathan and Wang (1996) show that, in this case,
~ 2
T[Dist(@)} is asymptotically distributed as a weighted sum of N-P-1 independent

Chi-squares random variables with one degree of freedom. That is
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-9 d N=P-1
T[Dist(e)} > Y A, (A.9)

i=1

where 4;, for i=1,2,...,N —P —1, are the positive eigenvalues of the following matrix:
-1
] _1 ] ] ]
A:S%/ZWTW{IN ~(w+?) "or (or'wrbr) oy W%/Z}(WTW) (s¥?) a0

in which X2 means the upper-triangular matrix from the Choleski decomposition of

X ,and Iy isa N-dimensional identity matrix.

Therefore, in order to test the different models we estimate, we proceed in the

following way. First, we estimate the matrix A by
A~ A -1. . A~ =1 ~ ~
1Y20,1/2 12 : w12 2\ (a1/2)\
A=S¥2nY {IN ~(w?) " Br (BrwrBr ) Brrwe }(WT]/ J(57%) @
and compute its nonzero N-P-1 eigenvalues. Second, we generate {vhi} ,h=1,2,...,100,

i =1,2,...,N+1-P, independent random draws from a (1) distribution. For each h,

_N-P-1

Uh="i

AiVhi 1s computed. Then we compute the number of cases for which

a2
Up >T[Dist(9ﬂ . Let p denote the percentage of this number. We repeat this

procedure 1000 times. Finally, the p-value for the specification test of the model is the

average of the p values for the 1000 replications.
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Table 1
Variance Risk Premia
Descriptive Statistics

Panel A: Descriptive Statistics

VRP1 VRP2 VRP3 VRP6 VRP12
Mean -0.646 -0.635 -0.659 -0.694 -0.736
Median -0.697 -0.682 -0.719 -0.751 -0.734
Maximun 0.834 0.952 0.841 0.706 0.441
Minimum -1.556 -1.612 -1.631 -1.576 -1.600

Panel B: Linear Correlations

VRP1 VRP2 VRP3 VRP6 VRP12
VRP1 1 0.793 0.659 0.402 0.224
VRP2 1 0.910 0.650 0.453
VRP3 1 0.798 0.574
VRP6 1 0.793
VRP12 1

VRP is the variance risk premium associated with the alternative horizons of the variance swap contract
between 1 and 12 months. It is computed as the difference between the ex-post realized variance at the
end of the swap contract and the observed variance swap rate.




Table 2
GMM Estimation
25 Size/Book-to-Market Portfolios and 17 Industry Portfolios
Monthly Data, January 1996-January 2007

Panel A: First Step Panel B: Hansen-Jagannathan Distance

Horizon 14 C, T(9'g) MAPE I C, TDist? MAPE
3.57 0.0992 0.3425 2.07 64.895 0.4588
(2.11) (0.092) (1.97) (0.010)

1 month
2.54 0.90 0.0758 0.2881 1.95 0.29 63.689 0.4389
(2.15) (0.65) (0.286) (1.98) (0.43) (0.018)
5.78 0.1024 0.3480 3.02 92.063 0.4609
(2.95) (0.008) (2.74) 0)

2 months
4.10 1.12 0.0893 0.3298 2.93 0.11 91.866 0.4595
(2.97) (0.67) (0.041) (2.74) (0.44) 0
8.37 0.1038 0.3514 4.27 105.805  0.4542
(3.76) (0.000) (3.42) 0)

3 months
6.48 1.08 0.0948 0.3406 4.30 -0.03 105.790  0.4542
(3.87) (0.84) (0.001) (3.41) (0.39) 0
16.76 0.1202 0.3903 8.19 118.208  0.4702
(5.68) 0) (5.16) 0)

6 months
12.22 1.24 0.0960 0.3292 8.19 0.00 118.208  0.4702
(5.63) (0.54) 0) (5.13) (0.31) 0)
25.31 0.1340 0.4261 12.53 121.344  0.4732
(7.00) 0) (6.60) 0)

12 months
20.08 1.21 0.1048 0.3569 12.57 -0.02 121.336  0.4745
(6.92) (0.41) 0) (6.59) (0.26) 0)

We estimate the standard version and an intertemporal version of the CAPM using the variance risk
premium as the hedging factor in the intertemporal specification. The vector of moment conditions is

- t
El(Ru o1 )7 explesVRRET RS | 14,1 =0
where Ifew is the gross return on wealth, y is the relative risk aversion coefficient, Rf is the excess

return on portfolio j and VRP represents the variance risk premium, computed as the log difference
between the realized variance at the end of the swap contract (t+7 ) and the variance swap rate at the
beginning of the contract (t) . We use a linear projection to compute the component of the variance risk
premium that is orthogonal to the market return. The estimation is made for different investment
horizons (), from 1- to 12-months, using always monthly data. Results reported on Panel A refer to
the first step GMM estimation while the estimates shown in Panel B have been obtained using the
inverse of covariance matrix of the portfolio excess returns as weighting matrix. Columns 2, 3, 6, and 7
contain the estimated coefficients. Associated standard errors are shown below, in brackets. Column 4
provides the value of T times the sum of squared pricing errors. The p-value for the test of
overidentifying conditions is shown in brackets, while in Panel B the specification test of the model is
performed using the Hansen-Jagannathan distance (column 9). Finally, MAPE indicates the mean
absolute pricing error across portfolios, in percentage terms.




Table 3
Estimates and Standard Errors of Intercepts and Risk Premia for the
Traditional Fama-MacBeth Two-Pass Cross-Sectional Regressions,
Monthly Data, January 1996-January 2007

o Am jwp Statistic 1 Statistic 2
FM Estimate 0.00445 0.00218 0.237 0.334
FM St. Error (0.00475) (0.00647)
SH St. Error [0.00475] [0.00682]
FM Estimate 0.00444 0.00169 -0.08337 0.358 0.462
FM St. Error (0.00467) (0.00628) (0.08017)
SH St. Error [0.00467] [0.00673] [0.08670]

This table presents the Fama-MacBeth two-step cross-sectional estimation results for the one-factor
(CAPM) and two-factor (ICAPM) capital asset pricing models using the variance risk premium as the
hedging factor:

R?t =0 + AmBjmt + AurpBjurpt T U jt
The test assets are the returns on the 25 FF portfolios plus 17 industry portfolios in excess of the T-bill

rate. We report risk premium parameter estimates (;1), standard errors under the Fama-MacBeth (FM)
methodology in parenthesis, and the Shanken (SH) errors-in-variable-robust standard errors in brackets.
The overall goodness of model fit is measured by the two following statistics:

T
> (TSS; —RsSy) T
.. _ L. R
Statistic1: =L - Statistic 2: iz 1 RS
T a TSS;
>TSS, -
=1

TSS and RSS denote the Total Sum of Squares and the Residual Sum of Squares, respectively.
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Table 4
Estimates and Standard Errors of Alphas and Betas from a Pooled OLS Regression
with Two Regimes Based on a Market Return Threshold
January 1996-January 2007

Extremely Low Market Return Regular Market Return
é By Py a By Py
Estimates 0.0093 1.0523 -0.0677 0.0022 0.8814 -0.0007
St. Errors 0.0161 0.1467 0.0073 0.0011 0.0162 0.0015

This table reports the overall market beta and the variance risk premium beta from a pooled OLS time-
series regression under a two-regime specification defined by a given market return. The market return
threshold is simultaneously estimated with the two regressions. The test assets are the 25 FF portfolios
and 17 industry portfolios, with the returns in excess of the T-bill rate. The maximum likelihood estimate
is the threshold level for which the least squares estimates of the regressions for the good and bad regimes
lead to the lowest aggregate residual sum of squares:

42 Tq(u)

2
22 (R?t —a1(U) = B1(U)Rey _ﬂvrpl(U)VRPt”l)
Min j=1 t=1
e furp )| 42T
m-Avrp +Z Z (Rlet_“Z(U)_'BmZ(u)Rﬁlt—ﬂvrpz(U)VRPt”l)z
j=1 t=1

where u is the market return threshold, and Bmi, Pyrp1, and Bma, Bupz are the market and the

variance risk premium betas for the regime with the market return above and below the threshold
respectively
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Table 5
Estimates and Standard Errors of Intercepts and Risk Premia for the
Market Threshold Two-Regimes Fama-MacBeth Two-Pass Cross-Sectional Regressions,
January 1996-January 2007

o Am jwp Statistic 1 Statistic 2
FM Estimate 0.00438 0.00377 0.188 0.278
FM St. Error (0.00526) (0.00613)
SH St. Error [0.00526] [0.00746]
FM Estimate 0.00247 0.00437 -0.26525 0.274 0.412
FM St. Error (0.00467) (0.00642) (0.19408)
SH St. Error [0.00467] [0.00739] [0.21250]

This table presents the Fama-MacBeth two-step cross-sectional estimation results for the one-factor
(CAPM) and two-factor (ICAPM) capital asset pricing models using the variance risk premium as the
hedging factor:

e +/- +/-
Rijt = 4o +/1mﬁjr{1t +’1vrpﬁjv/rpt TUjts

where /3+/ +and g/ . denote the betas in the corresponding states.

+/
jmt jvrpt
The test assets are the 25 FF portfolios and 17 industry portfolios, with returns in excess of the T-bill

rate. We report risk premia parameter estimates (1), standard errors under the Fama-MacBeth (FM)
methodology in parenthesis, and the Shanken (SH) errors-in-variable-robust standard errors in brackets.
The overall goodness of model fit is measured by two statistics:

T
> (TSS; —RsSy) T s
L. _ L. R
Statistic1: =L - Statistic 2: iZ(l— tj
T

-
>TSS, =1
t=1

TSS and RSS denote the Total Sum of Squares and the Residual Sum of Squares, respectively.
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Figure 1. Monthly Variance Swap Rate and Realized Variance for Different Maturities
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Figure 2. Time Series of Estimated Stochastic Discount Factors from GMM Parameter Estimates
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Figure 3. Fama-French and Industry Portfolio Absolute Pricing Errors from GMM Parameter
Estimates Obtained Using the Identity Matrix as Weighting Matrix.
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Figure 4. Fitted Expected Returns vs. Average Realized Returns
January 1996-January 2007

This figure shows realized returns on the horizontal axis and fitted expected returns on the vertical axis
for 25 size and book-to-market sorted portfolios and 17 industry portfolios. For each portfolio, the
realized average return is the time-series average of the portfolio return, while the fitted expected return is
the fitted value for the expected return from the corresponding model.
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Figure 5. Variance Risk Premium Betas across 25 Fama-French and 17 Industry Portfolios from a
Pooled OLS Regression with Two Regimes Based on a Market Return Threshold
January 1996-January 2007
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Figure 6. Fitted Expected Returns vs. Average Realized Returns from
Cross-sectional Regressions under Two-Regime Betas Based on a Market Return Threshold
January 1996-January 2007

This figure shows realized returns on the horizontal axis and fitted expected returns on the vertical axis
for 25 size and book-to-market sorted portfolios and 17 industry portfolios. For each portfolio, the
realized average return is the time-series average of the portfolio return, while the fitted expected return is
the fitted value for the expected return from the corresponding model.
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Figure 7. Differences between Adjusted R-squares from Monthly Cross-Sectional Regressions
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