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Abstract

This paper provides a new, unified, and flexible framework to measure and

characterize a convergence process. Specifically, we formally define the notion of

asymptotic price convergence and propose a model to represent a wide range of

transition paths that converge to a common steady-state. Our framework enables

the econometric measurement of such transitional behaviors and the development of

testing procedures. In particular, we derive a statistical test to determine whether

asymptotic convergence exists and, if so, of which type: strong or weak and as

catching-up or steady-state. The application of this methodology to historic wheat

prices results in a novel explanation about the event that triggered the convergence

process experienced during the 19th century.
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1 Introduction

Most articles on convergence in economics are based on the study of the steady state of

the underlying processes, i.e., the state in which convergence was already reached. In

this context, common cointegration analysis fails to answer some questions about the

character of the convergence process, concerning, e.g., when the process started or ended

and the shape or speed of convergence. Specifically, this happens when the convergence

process is known as catching-up. The previous questions are not only of theoretical in-

terest, but also of major importance in some fields, such as macroeconomics, economic

history, international economics or financial econometrics.

Particularly, our paper looks at price convergence from a time-series perspective, but

some straightforward modifications make its results general enough to be applied to con-

vergence in output or any other variable of interest. We present four contributions (three

theoretical and one empirical) in this framework. First, we formally define a generalized

notion of asymptotic price convergence, based on the property of cointegration, which

adapts to both existing types of convergence –as catching-up and steady-state– and re-

lates with the Law of One Price. To our knowledge, this is done for the first time in

the literature. Second, we provide a model where the transition or catching-up phase

is represented by an exogenous deterministic input. Therefore, this model allows one to

identify from the data many different and flexible transition paths (even one for each

relative price, if necessary), and fully describes a general convergence process. Third, we

show how to test appropriately the parameter restrictions implied by the definitions pro-

posed in the model previously built. Thus, the methodology proposed is self-contained,

presenting the steps and tools required to fully analyze a price convergence process us-

ing a time-series approach. The last contribution is of empirical and historical character.

Our study suggests a novel explanation for the convergence process experienced by wheat

prices during the second half of the 19th century. We find that prices’ transition to parity

began just after the elimination, mainly in Britain and about 1846, of the import tariffs

on grain and were almost completed just before the American Civil War.

The number of works that relates convergence and cointegration in a time-series ap-

proach is extensive. The pioneer work by Bernard and Durlauf (1995, 1996) was the first

in stating this relationship with two different definitions for convergence: as catching-up

or steady-state. They concluded that only the second one can be linked to the concept

of cointegration. Our definition is more general and encompasses these two type of con-

vergences. Since then, several authors have contributed to this literature. Hobijn and
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Franses (2000) redefine the term, derive its necessary and sufficient conditions and intro-

duce a cluster algorithm that allows for the endogenous selection of converging countries.

Nahar and Inder (2002) prove that stationarity is not a necessary condition in Bernard

and Durlauf’s steady-state convergence definition. These authors propose a new test for

convergence and highlight the inappropriateness of tests for unit roots and cointegration

as an indicator of the presence of convergence. Other authors test the hypothesis of

convergence using more complex and recent cointegration models by relaxing some as-

sumptions in the original framework. Specifically, Datta (2003) and Bentzen (2005) relax

structural stability, while Chong et al. (2008) and King and Ramlogan-Dobson (2011)

test for nonlinear convergence. The papers mentioned above were originally devised to

analyze convergence in output, but their theoretical contributions have also been used to

study convergence in prices (see, e.g., Robinson, 2007). However, none of them general-

izes the definition of convergence or presents a model that fully represents it. Particularly

focused on relative prices and inflation convergence, Busetti et al. (2006) show how the

joint use of unit-root and stationarity tests in levels and first differences allows one to

distinguish between catching-up and steady-state convergence.

An expanded and slightly different approach is to analyze convergence using panel

data methods. A very partial list of some recent contributions to this focus includes Cec-

chetti et al. (2002), Goldberg and Verboven (2005), Fan and Wei (2006), Phillips and Sul

(2007, 2009) or Lan and Sylwester (2010). Unfortunately, available data does not always

fulfill the characteristics required by panel-data analysis, e.g., a large enough number of

cross-section observations. This is often the case of data used by economic historians.

In other cases, one could be interested in testing the hypothesis of convergence of a re-

stricted and small number of goods, cities or countries. It is in those situations where

our time-series procedure seems to be the adequate approach.

The paper is organized as follows. Section 2 introduces our theoretical framework

and two definitions of asymptotic price convergence. Section 3 describes the model and

illustrates different types of convergence in prices. In Section 4 the econometric represen-

tation and the hypothesis testing are presented. Section 5 shows the empirical results on

wheat price convergence in the second half of the 19th century, while Section 6 concludes.

2 Theoretical framework

We assume that (log) nominal prices need a difference to be stationary. This reflects

the idea that some shifts in supply (e.g., due to technological breakthroughs, changes

3



in wages, etc.) or in demand (e.g., due to changes in consumer preferences, population

growth, etc) imply price adjustments are necessary to clear the market in the long run.

Specifically, we consider that the (log) price series satisfy an ARIMA(p, 1, q) model as:

φi,p(B)∆pi,t = θi,q(B)ai,t, (1)

where φi,p(B) = 1 − φi,1B − ... − φi,pB
p, θi,q(B) = 1 − θi,1B − ... − θi,qB

q, ∆pi,t =

(1−B) log Pi,t = log(Pi,t/Pi,t−1), ai,t is a sequence of zero-mean uncorrelated random vari-

ables with finite variance, from now on Weak White Noise (WWN), and i, j = 1, 2, ..., m

for i 6= j. We assume that the process ∆pi,t is strictly stationary and invertible –i.e.,

the autoregressive and moving average polynomials have all their zeros lying outside the

unit circle– and there are no common factors between φi,p(B) and θi,q(B). Our view of

market efficiency follows the line proposed by Lo (2004, 2005) in the sense of the Adaptive

Market Hypothesis, which means that model (1) permits transitory arbitrage situations

under uncertainty.1

We establish now some assumptions about the relationship between the goods whose

prices will be analyzed. The paper considers price convergence of perfectly homogeneous

and quasi-homogeneous goods. We assume that price similarities or dissimilarities (gen-

erated by quality, brand, and consumer perception) are time-invariant. Then arbitrage

should prevent prices for those goods from moving independently of each other. This

idea can be expressed as pi,t = αpj,t + εt, where pk,t (k = i, j) is as in (1), εt is a sta-

tionary stochastic process, and α > 0 models the (time-invariant) degree of homogeneity

between both prices. Thus, if two prices have converged, they should be cointegrated

of order CI(1,1), with cointegrating vector [1,−α]. Specifically, when two goods are

perfectly homogeneous, their elasticity of substitution should be extremely large, and a

change in the price of one good will lead to a proportional change in the other’s. In that

case, α should be equal to the unity.2

From this reasoning based on arbitrage and following the stochastic definitions of

convergence in output presented by Bernard and Durlauf (1995, 1996) and Hobijn and

Franses (2000), we state the two following definitions, where Ft denotes all information

available to the agents at t.

Definition 1 Asymptotically Strong Price Convergence (ASPC). Prices of goods i and j

1Other market hypothesis can be used. For instance, the Efficient Market Hypothesis can be consid-
ered by assuming that prices follow a random walk.

2It is easy to see that (βPi,t)/(βPj,t)α = Pi,t/Pα
j,t ⇐⇒ α = 1, where β is a multiplicative variation

of prices.
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converge asymptotically strongly, if:

lim
k→∞

E
[
pi,t+k − αpj,t+k|Ft

]
= 0.

This definition coincides with Bernard and Durlauf’s definition of convergence in output

but allows α to be different from the unity. Our definition also allows asymptotically

strong price convergence in non-perfectly homogeneous goods. When α = 1, Definition

1 is interpreted as the asymptotic and stochastic representation of the strict form of the

law of one price, which assumes perfect competition, no trade barriers and no transport

costs. In such a case the long-term forecast of (log) price differentials is zero-mean

stationary. However, the assumptions made in the strict law of one price can be broken

in many different situations in practice. Hence, it would be worthwhile to look at a

definition of convergence that relaxes those assumptions, permitting a price differential

to converge to a nonzero constant, τij, that precisely reflects those transaction costs.

Thus, we complement Definition 1 with the following one.

Definition 2 Asymptotically Weak Price Convergence (AWPC). Prices of goods i and j

converge asymptotically weakly, if:

lim
k→∞

E
[
pi,t+k − αpj,t+k|Ft

]
= τij.

Note that this requirement is weaker than those required by cointegration, as it allows

the price differential to present a deterministic trend. The relations between these two

definitions and the notion of cointegration are straightforward: zero-mean stationary price

differential (zero-mean cointegrated nominal prices)⇒ ASPC⇒ AWPC, while stationary

price differential (cointegrated nominal prices) ⇒ AWPC. However, as we will see further

on, the reverse does not hold true.

3 The model

Once the framework has been set up, we introduce a deterministic input that will be used

to represent the convergence process in our model. Let ξt∗
t describe the effects of an event

that will last permanently after time t∗, as unity whenever t > t∗ and zero otherwise. We

use this step-at-time-t∗ sequence to formally define the transition path as:

ν(B)ξt∗
t :=

ωs(B)

δr(B)
Bbξt∗

t (2)

where ωs(B) = ω0 − ω1B − ... − ωsB
s, δr(B) = 1 − δ1B − ... − δrB

r, there are no com-

mon factors between ωs(B) and δr(B), and s, r, b are non-negative integers. The concept
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of convergence is closely linked to stability and, consequently, we assume that δr(B) is

stable, i.e., the roots of the characteristic equation δr(B) = 0 lie outside the unit circle.

Two interesting parameters can be estimated from the stable convergence process defined

in (2): (i) the steady-state gain, g, defined as g :=
∞∑

k=0

νk = ν(1) < ∞, and (ii) the mean

lag of response, l := ν ′(B)/ν(B)|B=1, where ν ′(B) is the derivative of ν(B) with respect

to B, which measures the speed of convergence when the response is monotone. Note

that our transition path can easily be related to the literature of level shifts. For s = 0

and r = 0 the convergence path (2) results in an abrupt shift in the level, known as an

additive outlier, while for s = 0 and r > 0 it allows for a smooth shift from the initial

level to a new level, known as an innovational outlier. b > 0 just introduces a number of

time delays or dead times.

An example of a convergence process can be represented by a smooth monotone re-

sponse, with ν(B) = ω0/(1− δ1B) and 0 < δ1 < 1, reflecting the fact that agents are not

likely to react all at once, for instance, due to market inefficiencies. In this case, δ1 = 1

would imply a ω0-slope linear transition. This linearity is commonly used in the literature

–see Razzaque et al. (2007); Robinson (2007); Chong et al. (2008) among others– but has

two important drawbacks, as it: (i) is very restrictive, (ii) very abrupt, and (iii) requires

one to provide not only the date when the convergence started but also when it ended,

otherwise no convergence is possible. Figure 1 shows two examples of (2) that represent

a gradual monotone, and a damped quasi-cyclical convergence path.

Figure 1 should be around here

Using equations (1) and (2), our model for the (log) price differential is written as:

pi,t − αpj,t = Dij,t + Sij,t,

Dij,t = νij(B)ξt∗
t + µij, (3)

φij,p(B)Sij,t = θij,q(B)aij,t

where µij is a constant mean, Sij,t is a stochastic process and aij,t is a WWN. From

the asymptotic price convergence definitions previously stated, we relate the concepts

of catching-up and steady-state convergence with the existence or non-existence of a

transition path in model (3).

Definition 3 Steady-state convergence. Prices of goods i and j converge in steady-state,

if they converge asymptotically (weakly or strongly) when νij(B) = 0.
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Definition 4 Catching-up convergence. Prices of goods i and j converge in catching-up,

if they converge asymptotically (weakly or strongly) when νij(B) 6= 0.

The relations between model (3) and Definitions 1-4 are stated in the following proposition

that makes them more easily testable.

Proposition 1 Let pi,t−αpj,t be represented by model (3), then pi,t and pj,t converge in:

1. AWPC as steady-state if pi,t − αpj,t is a stationary process.

2. AWPC as catching-up if νij(B) 6= 0 and Sij,t is a stationary process.

3. ASPC as steady-state if pi,t − αpj,t is a zero-mean stationary process.

4. ASPC as catching-up if νij(B) 6= 0, Sij,t is a stationary process and τij := gij +µij =

0.

Proofs are given in the Appendix. Clearly, log-price differential (corrected by the

convergence path in the case of catching-up) stationarity is a necessary and sufficient

condition so that AWPC holds, but only a necessary condition for ASPC. Propositions

1.3 and 1.4 also require the transition path steady-state gain to be equal to the mean

of the log-price differential corrected by the transition. In the following examples we

will explain the implications of ASPC and why it fits both types of convergence with

three illustrative cases.3 For simplicity, we will assume that α = 1, Sij,t is stationary and

τij = 0 in all of them. Examples 2 and 3 are depicted in Figure 2.

Figure 2 should be around here

Example 1. ASPC as steady-state. This coincides with Bernard and Durlauf’s orig-

inal interpretation. Prices converged at some t < t0 and the relationship has been, since

then, in its steady-state. pi,t − pj,t is stationary and τij = 0 implies µij = 0, therefore

(log) nominal prices converge in ASPC as steady-state.

Example 2. ASPC as catching-up. The relative price started the transition to its

steady-state before or at the beginning of the sample and (almost4) reached it at some

point before its end. pi,t − pj,t − νij(B)ξt∗
t requires νij(B) 6= 0 to be stationary. Further,

as τij = µij + gij = 0, they converge in ASPC.

3Implications of AWPC are straightforwardly derived from those of Definition ASPC.
4The steady-state is only strictly reached when t → ∞. With almost we mean close enough to the

steady-state.
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Example 3. ASPC as catching-up. Prices shared the same long-run trend with

a nonzero mean from the begining of the sample, but a transition to the zero mean

steady-state began at some t∗ and was (almost) completed before the sample ended.

Again, pi,t − pj,t is nonstationary, but pi,t − pj,t − ν(B)ξt∗
t is a stationary process. As

τij = µij + gij = 0 prices converge in ASPC.

4 Representation and hypothesis testing

Testing the type of convergence that two price series present or whether the definitions

above hold, requires an appropriate representation. To do so, univariate and multivariate

techniques should be employed.

4.1 Testing the Asymptotically Weak Price Convergence

The AWPC only requires the log-price differential, corrected or uncorrected by the tran-

sition path, to be stationary. Thus, we suggest to use the common two-stages procedure

proposed by Engle and Granger (1987) that consists of running a regression and testing

the nonstationarity of its residuals. We test AWPC as follows:

1. Run the regression: pi,t = αpj,t + µij + Sij,t.

2. Get the residuals, Ŝij,t, and test whether they are stationary. To do so, com-

mon Augmented Dickey-Fuller (ADF) type tests can be employed. In this respect,

MacKinnon (1991) provides appropriate tables (distinct from usual Dickey-Fuller’s)

for different sample sizes and number of regressors. Here the constant-and-two-

regressors row should be used.

2.1. When the null of nonstationary is rejected, there is evidence in favor of AWPC

as steady-state. The next step will be testing the ASPC (see section 4.2).

2.2. When the nonstationary is not rejected, there is no evidence in favor of steady-

state convergence and a transition path should be introduced in the regression

in step 1.

3. Run the regression: pi,t = αpj,t +µij +νij(B)ξt∗
t +St∗

ij,t. When r = 0, νij(B) = ωs(B)

and the previous model can be estimated by ordinary least squares. When r > 0,

the estimation requires a nonlinear iterative procedure.

4. Get the residuals, Ŝt∗
ij,t, and test whether they are stationary as in step 2.

4.1. When the null of nonstationary is rejected, there is evidence in favor of AWPC

as catching-up. The next step will be testing the ASPC (see section 4.2).
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4.2. When the nonstationary is not rejected, we will conclude that there is no

evidence in favor of convergence as steady-state or catching-up.

4.2 Testing the Asymptotically Strong Price Convergence

When α is jointly estimated with the rest of the parameters, estimates from steps 1 or

3, in the previous section, are generally not asymptotically normally distributed, and

hence standard inference cannot be applied (see Phillips, 1991). To properly test the

ASPC we use a modified version of Phillips’ Triangular Error Correction Mechanism

(TECM, Phillips, 1991). This representation has two remarkable advantages for our

purpose. First, maximum likelihood estimation of the multivariate model makes that an

optimal asymptotic theory of inference applies, and so ASPC can be tested using standard

asymptotic tests. Second, some other interesting joint null hypotheses, e.g., gi = gm or

µi = gj, for i, j = 2, ..., m− 1, can now be tested in the multivariate model (4), which is

presented below. Taking p1t as numéraire without loss of generality, we formalize:

Φ(B)
[
Ψ(B)Zt − µ

]
= Θ(B)at, (4)

with:

Φ(B) =




φ11(B) 0 · · · 0

0 φ22(B) · · · 0
...

...
. . .

...

0 0 · · · φmm(B)




; Ψ(B) =

[
∆ 0 0

−α Im−1 −ν(B)

]
;

Θ(B) =




θ11(B) 0 · · · 0

0 θ22(B) · · · 0
...

...
. . .

...

0 0 · · · θmm(B)







1 θ12(B) · · · θ1m(B)

θ21(B) 1 · · · θ2m(B)
...

...
. . .

...

θm1(B) θm2(B) · · · 1




,

where φii(B) = 1−φ1,iiB− . . .−φp,iiB
p, θii(B) = 1− θ1,iiB− . . .− θq,iiB

q for i = 1, ..., m

and θij(B) = −θ1,ijB − . . . − θq̄,ijB
q̄, for i, j = 1, ..., m and i 6= j. We assume Zt

to be strictly stationary and strictly invertible, i.e., all the zeros of the determinantal

polynomials |Φ(B)| and |Θ(B)| are outside the unit circle, and
[
Φ(B) Θ(B)

]
to be

left prime. Moreover, α := [α2, α3, ..., αm]T , Im−1 is a m − 1 × m − 1 identity matrix,

ν(B) := [ν2(B), ν3(B), ..., νm(B)]T , Zt := [p1t, p2t, ..., pmt, ξ
t∗
t ]T and µ := [0, µ2, ..., µm]T .

Vector at := [a1t, a2t, ..., amt]
T is a (0m,Σa) WWN, where Σa is a m×m symmetric pos-

itive definite matrix. Although model (4) is somehow restrictive, compared to a general

VARMA representation, it is general enough for our purpose.
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For simplicity’s sake, in what follows we will assume m = 2 in (4), and then Zt :=

[p1t, p2t, ξ
t∗
t ]T . Assuming normality, we use the likelihood function l(Θ1|p1,t, p2,t, ξ

t∗
t ),

where Θ1 = {α, µ2, ω0, ..., ωs, δ1, ..., δr, φ1,ii, ..., φp,ii, θ1,ii, ..., θq,ii, θij} for i, j = 1, 2 and

i 6= j that can be derived from Mauricio (2005), to estimate model (4). When there is

evidence of AWPC, as steady-state or catching-up (see steps 2.1 or 4.1, respectively, in

the previous section), testing ASPC consists of testing the null hypothesis τ12 = 0. To

do so, one could use the following lemma which is proved in the Appendix.

Lemma 1 Let ĝij and µ̂ij be consistent and asymptotically normally distributed estima-

tors of gij and µij, respectively. We have that
√

T (τ̂ij − τij)/σ̂τ
d→ N(0, 1), where τ̂ij and

σ̂τ are defined in the Appendix.

For the same purpose the statistic −2 log l(Θ2|p1,t, p2,t, ξ
t∗
t )/l(Θ1|p1,t, p2,t, ξ

t∗
t ), where

Θ2 = {α, ω0, ..., ωs, δ1, ..., δr, φ1,ii, ..., φp,ii, θ1,ii, ..., θq,ii, θij}, that asymptotically follows a

χ2 distribution with 1 degree of freedom can be applied. Whatever the test employed,

when AWPC and τ12 = 0 cannot be rejected then p1,t and p2,t converge in ASPC. This

Likelihood Ratio (LR) test will also be used to test some other joint null hypotheses as

gi = gm or µi = gj, for i, j = 2, ..., m− 1, in the multivariate model (4).

On the other hand, in many situations one would be interested in fixing the parameter

α a priori, according to the economic theory, e.g., the goods whose prices are analyzed are

identical and so α is restricted to unity. This not only makes the analysis much simpler

but also has gains in terms of power in the unit root tests as the critical values are closer

to zero. In this case, Saikkonen and Lütkepohl (2002), hereafter SL-GLS, present a test

for unit root with different level shifts that includes our transition path (2), where they

proof that the convergence parameters in νij(B) or the time at which the convergence

begins, t∗, do not affect the limiting distribution of the nonstationarity test. Further,

Shin and Fuller (1998) test, SF, which is more powerful than ADF-type tests in the case

of ARMA structures, can also be employed. Moreover, when the nonstationary hypoth-

esis is rejected standard inference applies and Phillips’ TECM is no required. Table 1

summarizes the methodology for price convergence analysis.

Table 1 should be around here

5 Empirical results on price convergence

Our empirical analysis considers annual series of wheat prices in Arnhem (A), London

and Southern England (L), Vienna (V), Strasbourg (S) and Pennsylvania (P), measured
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in gram of silver per liter. All of them cover a common period from 1720 to 1875.5 This

sample includes most of O’Rourke and Williamson’s (1999) canonical period of global-

ization, i.e., when these prices went to parity in some moment after 1840. The series are

depicted in Figure 3.

Figure 3 should be around here

The main goal of this exercise is to test whether the wheat prices mentioned above

converge at some point in the 19th century and, if so, find out the type of convergence and

describe the process. The historical literature does not reach a consensus on when this

process could have started and what the main cause was that preceded it. We suggest

that two events constituted the spark that triggered this convergence process: (i) the end-

ing of the protectionist trade policy in Britain and other countries -denominated “Corn

Laws”- from 18466 and (ii) the rapid decline in transaction costs experienced some years

later.

All nominal prices show similar statistical properties. They: (i) are integrated of or-

der one, (ii) need to be transformed into natural logarithms to avoid heteroskedasticity,

non-normality and non-linearity, (iii) fit a zero-mean ARIMA(2,1,1) model, and (iv) have

a small number of impulse interventions due to wars and revolutions.7 The AR(2) struc-

tures have two conjugate imaginary roots, giving rise to damped oscillations with a period

of 5-13 years and a damping factor of around 0.5, which represent a quasi-cyclical behav-

ior where the period describes the time elapsed (in years) from peak to trough. There is

no evidence of over-differentiation in the univariate models of the nominal prices, as the

null hypothesis of MA(1) noninvertibility is clearly rejected by the Generalized Likelihood

Ratio (GLR) test by Davis et al. (1995). Moreover, SF does not reject the null hypothesis

of nonstationarity in an alternative ARIMA(3,1) model. Consequently, I(1) is confirmed

in all cases. These results are summarized in Table 2.

Table 2 should be around here

Figure 3 also shows the standardized relative prices with respect to London’s wheat

price. We fix London as numéraire as it was considered the linking-wheat price between

European and American trade activities by that time, although the results are robust

5L covers 1700-1896, P covers 1720-1896 and A, V and D cover 1700-1875
6The import tariffs for foreign imports of grains were abolish gradually between 1846-1848.
7All the interventions are of impulse type and do not significantly affect the results. The information

about the intervention analysis is available from the authors upon request.
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regardless of the numéraire chosen. The relative prices look stationary except for the last

part of each sample. It was only around 1847 that prices seem to converge toward parity.

In all the analyses performed from now on, we fix t∗ = 1847 the year at which

the convergence could have started. Despite historical reasons that justify the use of

this year as an initial point for the convergence process, we carried out a thorough

search looking for alternative starting dates. For each case presented in this section,

we estimate several models with different transition paths and different starting dates,

t∗ = 1830, 1831, ..., 1850, without finding any other satisfactory result. A more sophis-

ticated method to determine where the convergence processes begin, when there is no

extra-sample information available, could be the subject of future research.

5.1 Results imposing the perfect homogeneity restriction

Here we assume perfect homogeneity of wheat across markets as it simplifies the analysis,

improves the performance of the unit root tests and seems a realistic restriction. We will

relax this constraint later on. We carry out the steps presented in Section 4 to every

wheat-relative-price series, with α = 1 and employing L as numéraire. Table 3 Panel

A shows the results of the unit root tests previously mentioned. The tests generally do

not reject the nonstationarity at a 5% level (except, maybe, for S/L) when there is no

convergence input in the model. A first conclusion is that nominal wheat prices do not

converge as steady-state when α = 1 is imposed.8 However, the nonstationarity is clearly

rejected in all the cases when a transition term is introduced from 1847, which reveals a

strong evidence of asymptotic convergence as catching-up.

Table 3 should be around here

The estimation results for the ratios are reported in Table 4, Panel A. The model

identified is relatively simple: (i) an order-one autoregressive for the stochastic part,

and (ii) a mean, µ, and a gradual and monotone convergence path, ω0/(1 − δ1B), for

the deterministic component.9 The estimated parameters and some diagnostic tools are

also presented. All the parameters are statistically different from zero, including the

steady-state gain g, and the convergence operator is stable. Q statistics by Ljung and

Box (1978) show no sign of poor fit, except for the case V/L, where a second-order AR

8Again S and L could be an exception to this statement, although we did not find any economic or
historical argument in favor of this fact.

9The initial specification for the stochastic part is according to the correlogram, AIC (Akaike, 1974)
and HQ (Hannan and Quinn, 1979) criteria, which agree with the same initial specification.
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operator could better fit the data.10 The speed of convergence, measured by l, is not

statistically different between cases and more than 90% of the transition path long-run

gain was already reached in 1860 for every ratio.

Table 4 should be around here

Results of the test for ASPC (H0: τ = 0) is presented in Table 5. Both, t-student

and LR test, clearly confirm that wheat series converge in ASPC. In 1875 the remaining

gaps between Arnhem, Strasbourg, and Pennsylvania with London prices do not exceed

five percent, being less than the respective relative price standard error.

Table 5 should be around here

5.2 Results relaxing the perfect homogeneity restriction

Results of the unit root tests when the perfect homogeneity restriction is relaxed are even

more convincing. Table 2 Panel B shows that none of the tests rejects the nonstationarity

in the model without the convergence input while the opposite occurs when a transition

path is included from 1847.

To study the robustness of the results when α is jointly estimated with the rest of the

parameters, we employ the TECM introduced in (4). The two equations in the baseline

bivariate model are the univariate model for L (the numéraire equation) and the ratio

univariate model, i/αL where i = A, V, S, P .

The results are reported in Table 4 Panel B, that does not present information about

the numéraire equation, L, as it is virtually the same as in Table 2. Estimated parameters

in the TECMs do not differ substantially from those in the respective univariate relative

price models. The cointegration coefficient α is estimated to be significantly different

from zero and close to one in all cases. Only in A/αL the null hypothesis of perfect

homogeneity is rejected at 5% level. The estimates θ̂12(B) and θ̂21(B), interpreted as the

percentage response of lagged effects of an unexpected unitary shock from one side of

the market to the other, indicate positive relationships in both directions for each pair of

markets. A unitary shock in London had a two-lag effect in Arnhem (34% and 32%) and

in Philadelphia (16% and 9%), a one-lag effect in Strasbourg (24%), and no appreciable

effects in Vienna. The feedback is of order one in all cases. The speed of convergence

10For simplicity’s sake only first order AR models are shown. Conclusions do not change significantly
if a second-order representation is employed.
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is very similar in both types of model. The only exception is V/L since its convergence

velocity in the bivariate model is a little slower than in the univariate counterpart. This

could be due to the absence of the estimated feedback in the direction L → V/L. The

estimated value of τ is close to zero in all cases, independently of the model specification,

confirming the ASPC as catching-up of nominal prices (see Table 5). Figure 4 shows the

estimated convergence paths for this case.

Figure 4 should be around here

Finally, we estimate a multivariate TECM, which includes all the series, and we test

the joint null hypothesis H0: τi = 0, with i = A, V, S, P . The estimated values of

τi = gi + µi are again close to zero in all cases: τ̂A = 0.04 ± 0.26, τ̂V = −0.18 ± 0.24,

τ̂S = 0.02± 0.24 and τ̂P = 0.14± 0.32 in a 95% confidence interval, where τ̂i corresponds

to i/L and ± values are twice the standard errors from the estimated values. Further,

the values of the LR statistic for the joint null hypothesis H0: τi = 0, ∀i and its corre-

sponding p-value are 1.5 and 0.68, respectively, clearly not rejecting H0.
11

The main conclusions of the analysis are: (i) nominal wheat prices in Arnhem, Vienna,

Strasbourg and Pennsylvania converge to London’s in ASPC as catching-up, (ii) the

catching-up process began around 1847, lasted about 14 years, and was gradual and

monotone, and (iii) the estimated parameters of the transition path are robust across

model specifications. In this sense, the univariate analyses of the ratios seem to be

sophisticated enough to draw conclusions about the convergence to parity by price pairs.

However, the multivariate models are more helpful to understand how the system works

and whether the perfect homogeneity hypothesis has an empirical basis.

6 Concluding remarks

This paper presents a general framework for the analysis of price convergence accord-

ing to the econometric tradition, i.e., including assumptions, definitions, model building,

econometric representations, and hypothesis testing. Our work is based on cointegration

analysis but is very flexible and, consequently, compatible with steady-state or catching-

up convergence. Further, it enables one to distinguish between asymptotic weak or strong

convergence, as steady-state or catching-up, and describe completely a convergence pro-

cess, by representing its transition path and measuring its speed.

11Parameter estimates of this model are available from the authors upon request.
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The empirical study shows how to use the proposed methodology, coming to an inter-

esting conclusion for economic historians: the end of Britain’s protectionist trade policy

about 1846 triggered the price convergence process as catching-up experienced during the

second half of the 19th century.

Finally, at least two main subjects related to this paper could be the object of future

research. First, the methodology is flexible enough to different data frequencies and so it

has great potential not only in prices, but also in output, productivity or finance. Second,

a procedure to endogenously identify the time when the convergence process begins would

be very helpful for users who have no extra-sample information. This last issue is clearly

related with the existing literature about unit roots with shifts at unknown dates.
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Technical Appendix

Proof of Proposition 1:

We will first prove that any convergent sequence can be good enough approximated by

ν(B)ξt∗
t , defined in (2). We assume, for simplicity and without loss of generality, b = 0,

s = r and t∗ = 1 in ν(B)ξt∗
t = [ωs(B)/δr(B)]Bbξt∗

t .

Let define a convergent sequence {xt: t ∈ N} with lim
t→∞

xt = L and L ∈ R. Now we

will prove that ν(B)ξt∗
t can approximate xt as close as necessary by choosing adequately

s, ωs and δr. To do so, let, rewrite ν(B)ξt∗
t as the sequence {zt: t ∈ N} with general term:

zt =
t−1∑
i=0

ωi

(
t∑

n1=1

δn1−1
1 +

t−1∑
n2=2

δn2−1
2 + ... +

t−r∑
nr=r

δnr−1
r

)
, for t ≤ s,

zt =
s∑

i=0

ωi

(
t∑

n1=1

δn1−1
1 +

t−1∑
n2=2

δn2−1
2 + ... +

t−r∑
nr=r

δnr−1
r

)
, for t > s. (5)

On the one hand, by choosing appropriate wi in (5), the first s terms of xt will be per-

fectly approximated by zt, i.e., there exists an integer s such that |xt− zt| = 0, whenever

t ≤ s. On the other hand, from the definition of limit, we have that for all ε > 0 there

exists s > 0 such that |xt − L| < ε, whenever t > s. As zt is also a convergent sequence

(recall we assume the roots of the characteristic equation δr(B) = 0 to lie outside the

unit circle), then the subsequence xs+1, xs+2, ... will be good enough approximated by the

sum of summations in parenthesis in equation (5) when the integer r and the coefficients

δr are appropriately choosing.

The second part of the proof arises directly from model (3). By adding k periods and

taking conditional expectations we have:

E
[
pi,t+k − αpj,t+k|Ft

]
= E

[
Dij,t+k + Sij,t+k|Ft

]
= νij(B)ξt∗

t+k + µij + E
[
Sij,t+k|Ft

]
, (6)

and applying limits to (6) yields:

lim
k→∞

E
[
pi,t+k − αpj,t+k|Ft

]
= lim

k→∞
νij(B)ξt∗

t+k + µij + lim
k→∞

E
[
Sij,t+k|Ft

]
. (7)

We will use equation (7) in the proof of the four points in Proposition 1:

1. From Definition 3, νij(B) = 0. It is then easy to see in (7) that Sij,t must be

stationary so that AWPC holds. Further, from model (3), if νij(B) = 0 and Sij,t

is stationary then pi,t − αpj,t is necessarily stationary, as it has no deterministic

and/or stochastic trends.
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2. From Definition 4, νij(B) 6= 0. As νij is stable, then
∞∑

k=0

νij,k = gij. So again Sij,t

must be stationary so that AWPC holds in (7).

3. Identical to 1, but in this case µij = 0 must hold, so that ASPC holds in (7).

4. Identical to 2, but in this case µij = gij must hold, so that ASPC holds in (7).

¤

Proof of Lemma 1:

As g ≡
∞∑

k=0

νk = ν(1) is the long-run gain of the rational transfer function, by employ-

ing the polynomial approximation for g, we get g =
(
ω0−

s∑
i=1

ωi

)
/
(
1−

r∑
i=1

δi

)
= ω(1)/δ(1).

Replacing the parameters ωi, i = 0, 1, ..., s and δi, i = 1, 2, ..., r with their consistent and

asymptotically normally distributed maximum likelihood estimates, leads to consistent

estimate of g. Similarly, a consistent estimate for the long-run gap, τ̂ , is obtained by

replacing the parameters in τ = g + µ with ĝ and µ̂. Further, an approximate linear

expansion of τ̂ can be got as:

τ̂ = τ +
1

δ(1)
(ω̂0 − ω0)− 1

δ(1)

s∑
i=1

(ω̂i − ωi) +
ω(1)

δ(1)2

r∑
i=1

(δ̂i − δi) + (µ̂− µ) + Op(n
−1). (8)

Taking variances on (8) leads to:

σ2
τ ' 1

δ(1)2

s∑
i=0

σ2
ωi

+
ω(1)2

δ(1)4

r∑
i=1

σ2
δi

+ σ2
µ +− 2

δ(1)2

s∑
i=1

σω0,ωi
+

2

δ(1)2

s−1∑
i=1

s∑
j=i+1

σωi,ωj

+
2ω(1)

δ(1)3

r∑
i=1

σω0,δi
− 2ω(1)

δ(1)3

s∑
i=1

r∑
j=1

σωi,δj
+ 2

ω(1)2

δ(1)4

r−1∑
i=1

r∑
j=i+1

σδi,δj
+

2

δ(1)
σµ,ω0

− 2

δ(1)

s∑
i=1

σµ,ωi
+

2ω(1)

δ(1)2

r∑
i=1

σµ,δi
(9)

where σ2
a and σa,b denote, respectively, the variance of â and the covariance between â

and b̂. From this result and appealing to Slutsky’s Theorem, it follows that
√

T (τ̂ −τ)
d→

N(0, σ2
τ ). The square root of the value obtained by replacing ω(1), δ(1), the variances

and covariances in (9) with its consistent estimates is a consistent estimate of στ , and

therefore
√

T (τ̂ − τ)/σ̂τ
d→ N(0, 1).

The estimated variance of ĝ can similarly be obtained by removing the terms associ-

ated to µ in (9). ¤
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Data Appendix

Sources of data and methods of conversion from local units into grams of silver per liter

are:

Arnhem, 1700-1875: Wheat prices in grams of silver per liter from series elaborated

by Robert C. Allen:

http://www.history.ubc.ca/faculty/unger/ECPdb/xls/Wheat/Arnhem Wheat.xls

The original source is C.A. Verrijn Stuart ”Marktprijzen van Granen te Arnhem in de

jaren 1544-1901,” ”Bijdragen tot de Statistiek van Nederland”, new series, vol. 26 (1903),

pp. 19-25.

London and Southern England, 1700-1896: Wheat prices in grams of silver per liter

from series elaborated by Robert C. Allen:

http://www.nuff.ox.ac.uk/users/allen/studer/london.xls

Pennsylvania, 1720-1896: Wheat prices in grams of silver per kilo from the GPIHG:

http://gpih.ucdavis.edu/files/Penn spliced 1720-1896.xls. The kilo/liter ratio used is

0.772: http://gpih.ucdavis.edu/files/Weight vs volume.xls.

Strasbourg, 1700-1875: Wheat prices in grams of silver per liter from series elabo-

rated by Robert C. Allen: http://www.nuff.ox.ac.uk/users/Allen/studer/strasbourg.xls.

Missing observations are 1794-1795.

Vienna, 1700-1875: Wheat prices in grams of silver per liter from series elaborated by

Robert C. Allen: http://www.nuff.ox.ac.uk/users/allen/studer/vienna.xls.
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Ŝ
t(

b)
tr

an
si

ti
on

pa
th

(c
)

de
ci

si
on

on
Ŝ
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Table 2: Estimated univariate models of wheat prices series in log differences.(1)

Sample Variable AR(2) MA(1) Resid. ACF(2) SF(3) GLR(4)

(Acronym) φ̂1 φ̂2 θ̂ Std.Dev. Q(9) H0 : φ = 1 H0 : θ = 1
(s.e.) (s.e.) (s.e) (%)

1700-1896 London .63 -.26 .78 16.6 6.3 0.0 23.0∗

(L) (.09) (.07) (.07)
1700-1875 Arnhem .64 -.11 .86 18.9 9.4 0.0 19.2∗

(A) (.09) (.07) (.06)
Vienna .70 -.18 .88 22.4 7.9 0.0 18.54∗

(V ) (.09) (.08) (.05)
Strasbourg .74 -.44 .71 16.9 6.9 0.1 30.8∗

(S) (.12) (.07) (.13)
1720-1896 Pennsylvania .66 -.40 .67 16.9 3.3 0.0 32.0∗

(P ) (.12) (.08) (.12)

Notes: (1) 18th and 19th centuries yearly prices in gr.Ag./liter. (2) Q is the Ljung and Box (1978)
statistic for the autocorrelation function (ACF). H0: there is no autocorrelation in the first nine lags.
(3) We estimate an alternative ARIMA(3,0,1) model and test the null hypothesis with Shin and Fuller
(1998) test. (4) GLR: Generalized Likelihood Ratio (GLR) test of Davis, Chen and Duismuir (1995) for
the null hypothesis of noninvertibility of an MA(1) operator.
∗Rejects H0 at 5% level.

Table 3: Results of the unit root tests for wheat price series: Testing asymptotic conver-
gence as steady-state or catching-up.

Model Test A/αL P/αL S/αL V/αL

Panel A: α restricted to 1 (Relative prices)

Without transition
ADF -1.67 -1.60 -3.09∗ -1.50

path
SL-GLS -0.92 -1.67 -2.24∗ -1.69

SF 0.00 0.20 1.60 0.00
ADF -2.47∗ -3.39∗ -4.20∗ -3.70∗

With transition path SL-GLS -1.16 -2.99∗ -2.46∗ -2.87∗

SF 55.5∗ 53.0∗ 29.8∗ 44.3∗

Lags in test regressions - 6 10 5 10
∗rejects H0 at 5%. Critical values: -1.94 (Fuller, 1996) for ADF and SL-GLS, and 1.75 for
SF (Shin and Fuller, 1998).

Panel B: α estimated

Without transition ADF -2.78 -2.36 -2.62 -2.96
path SL-GLS -1.26 -2.00 -2.89 -2.71

With transition path
ADF -4.70∗ -4.14∗ -3.96∗ -4.64∗

SL-GLS -1.02 -3.42∗ -3.37∗ -4.39∗

Lags in test regressions - 5 4 3 4
∗rejects H0 at 5%. Critical value: -3.37 (MacKinnon, 1991).
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Table 4: Relative price and bivariate convergence model estimates for wheat price series
with London as numéraire.

Ratio Stochastic Component Deterministic Component Diagnostics
AR MA Convergence Op. Mean Resid. ACF(1) CCF(1)

θ21(B) θ12(B) ν(B) = ω/(1− δB) Std.Dev. Q(9) Q(9)

α̂ φ̂1 θ̂1,21 θ̂2,21 θ12 ω̂ δ̂ l̂ ĝ µ̂ (%)
(s.e.) (s.e.) (s.e.) (s.e.) (s.e) (s.e.) (s.e.) (s.e.) (s.e.) (s.e.)

Panel A: Univariate models for relative prices (α = 1)

A/L 1 .46 - - - .074 .79 3.6 .35 -.32 23.4 8.5 -
(.07) (.040) (.12) (2.2) (.11) (.04)

V/L 1 .56 - - - .13 .77 3.3 .56 -.70 24.7 21.8∗ -
(.06) (.05) (.10) (1.8) (.13) (.06)

S/L 1 .70 - - - .13 .66 4.0 .39 -.39 20.7 7.0 -
(.05) .06 (.10) (0.9) (.15) (.05)

P/L 1 .54 - - - .086 .82 4.6 .48 -.43 18.9 12.9 -
(.06) (.048) (.11) (3.5) (.08) (.03)

Panel B: Bivariate models in TECM (α estimated)

A/αL .67 .50 -.34 -.32 -.13 .10 .75 3.1 .40 -.38 18.3 7.8 7.3
(.07) (.07) (.09) (.08) (.07) (.06) (.16) (2.6) (.07) (.03)

V/αL .93 .57 - - -.14 .094 .84 5.3 .59 -.70 24.3 20.6∗ 7.6
(.11) (.06) (.06) (.004) (.05) (1.8) (.15) (.04)

S/αL .85 .73 -.24 - -.22 .14 .65 3.8 .41 -.41 19.0 12.6 8.3
(.13) (.05) (.09) (.07) (.02) (.13) (1.0) (.13) (.05)

P/αL 1.10 .55 -.16 -.091 -.23 .090 .80 4.1 .46 -.41 19.4 12.0 6.9
(.08) (.08) (.11) (.084) (.07) (.006) (.15) (3.8) (.07) (.03)

Notes: (1) Q is the Ljung and Box (1978) statistic for the autocorrelation function (ACF) and the cross
correlation function (CCF). H0: there is no autocorrelation or cross correlation in the first nine lags.
∗Rejects H0 at 5% level.

Table 5: Results of the statistical test for ASPC.

Relative prices (α = 1) Bivariate TECM (α estimated)
τ̂i,L (s.e.) LR p-value τ̂i,L (s.e.) LR p-value

A/αL .03 (.11) .1 .75 .03 (.07) .1 .75
V/αL -.14 (.13) .3 .58 -.12 (.15) .1 .75
S/αL .00 (.15) .0 1.0 -.01 (.13) .0 1.0
P/αL .05 (.08) .6 .43 .05 (.07) .6 .44

Notes: τ̂i,L = ĝi,L + µ̂i,L is the estimated remaining gap. LR is the likelihood ratio
test with H0: τi,L = 0 for i = A, V, S, P .
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Figure 1: Examples of transitional paths: a) gradual monotone; b) damped quasi-cyclical.
Case a) subject to ω0 > 0 and 0 < δ1 < 1. Case b) subject to ω0 > 0, δ2

1 + 4δ2 < 0,
δ2 + δ1 < 1, δ2 − δ1 < 1 and |δ2| < 1.
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Figure 2: Examples of two relative prices (α = 1) following ASPC as catching-up. Left:
Case 2. The relative price started the transition to its steady-state before or at the beginning
of the sample and reached it at some point before its end. pi,t − pj,t is nonstationary, but
pi,t − pj,t − ν(B)ξt∗

t is a µ-mean stationary process and g + µ = 0. Right: Case 3. Prices
shared the same long-run trend from the begin of the sample, but a transition to the zero-
mean steady-state began at some t∗ and was completed before the sample ended. Again,
pi,t − pj,t is nonstationary, but pi,t − pj,t − ν(B)ξt∗

t is a µ-mean stationary process and
g + µ = 0.
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Figure 3: Yearly wheat price (gr.Ag/liter in logs) in Europe and Pennsylvania during
the 18th and 19th centuries and standardized relative price with London as Numraire (plot
below) in Logs.w and σw are, respectively, the sample mean and standard deviation of the
relative price. The Corn Laws were repealed from 1846.
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Figure 4: Estimated transition paths in the multivariate TECMs.
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