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Abstract
Vehicular traffic typically plays an important role in atmospheric

pollution. This is especially true in urban areas, where high pollu-
tant concentrations are often observed. In this paper, we consider
hourly measures of concentrations of nitrogen oxides (NO, NO2 and
NOx), carbon oxide (CO) and particulate matter (PM), collected at
the stations distributed throughout the city of Turin. To help explain
the short-term behavior of the concentrations of these pollutants, we
propose using generalized additive models (GAM), focusing in partic-
ular on traffic along with the meteorological predictors. All the data
are collected during the period from December 2003 to April 2005.
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1 Introduction

The impact of air pollution on human health (Barnett et al. (2005); Bell
et al. (2004); Samet et al. (2000)) and environment has been one of the cen-
tral issues in environmental public policy and decision making. For exam-
ple, European Union mission mandates yearly improvement of environmental
quality, lower emission standards, and support of environmental technology
and scientific research and development (Dir96/62/EC (1996); Dir99/30/EC
(1999), Dir00/69/EC (2000) and Dir02/3/EC (2002)) while the recent air
quality directive Dir50/08/EC (2008) requires that information on air qual-
ity for current day, with trend and forecast for the next days be publicly
available. Similarly, the United States policy makers and industry leaders
have recently begun instituting renewable energy and environmental protec-
tion research programs at universities and state agencies across the country.

Understanding the behavior of pollutants, and understanding the com-
ponents of variation in pollutant concentrations are arguably the most im-
portant goals of air quality research for public policy purposes. For example,
understanding how pollutant concentrations vary with respect to intensity
and patterns of traffic would allow policy makers to assess the consequences
of implementing certain traffic regulation measures. However, if an interven-
tion such as traffic measure is being considered or evaluated, it is crucial to
also account for those processes which co-vary with the outcome (pollutant)
as well as with the regulatory (traffic) variable. In the studies of traffic and
air pollution such confounding processes could include meteorological, health,
social and other societal-level processes that affect both pollution and traffic
volume. Those confounders are unfortunately often unobserved – such as flu
or other infectious disease activity that makes people stay at home more and
drive less, and also happens to occur in winter when smog and air pollution
are high – and thus the level of their covariation with traffic patterns and
also with the pollution are difficult to ascertain. However not accounting
for those confounders at all would hide the true effects of interest and yield
biased estimates of the regulatory effects.

In the Torino region, previous analysis of pollution have examined carbon
monoxide (CO) concentrations and traffic volume in the Torino metropolitan
area, as in Bertaccini et al. (2007) who used a seasonal linear regression model
for each station monitoring CO. Subsequently, Fassó et al. (2007) studied the
same problem using a linear vectorial auto-regressive model and carried out
a sensitivity analysis to describe the relative roles of traffic and meteorology,
by their respective principal components.

However, sometimes in modeling city-level processes, (generalized) lin-
ear models are not the most adequate ones to use. Although chemical and
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physical dynamics of processes is deterministic, local chaotic behavior can
be very difficult to understand and to model properly. However, local pro-
cesses, such as wind and topography of the city structures, can impact the
pollutant distributions around the city significantly. Therefore, it would be
advantageous to consider a statistical alternative to the deterministic dif-
ferential equation based modeling of pollution. To that extent, generalized
additive models, or GAM (Hastie and Tibshirani (1990)) offer an alternative
which is capable of not only flexibly modeling relationship between pollution
concentration and predictors, but also relationships between predictors. This
approach could flexibly approximate complex physical and chemical relation-
ships between processes co-varying with traffic and pollution. In addition,
GAM can account for the smooth time-varying processes reflecting the con-
founders which vary slowly relative to the predictor of interest, by including
“time” as a flexibly (but smoothly) modeled predictor.

While generalized additive models have been widely used as a standard
method in studies of pollution and health (see for example the pioneering
work by Schwartz (1994)), they have only recently been introduced into the
air pollution modeling with traffic and meteorological covariates (Carslaw
et al. (2007)). The authors find that one of the most important factor is
the flexible interaction between wind speed and wind direction, due to the
canyon effect of the nearby buildings. Their analysis has confirmed the im-
portant role of wind in pollutant dispersion and in describing the variation
in pollutant concentration due to changes in meteorological conditions. Sim-
ilarly, Aldrin and Hobæk Haff (2005) use generalized additive models for
several different pollutants in different locations over the Oslo urban area,
using traffic and meteorological observed data.

In this paper we present a set of models that are able to realistically ex-
plain much of the variation in the pollutant concentration while still yielding
precise estimates of the effects of meteorology and traffic on pollution concen-
tration. More specifically, building on the work in Bertaccini et al. (2008) and
Bertaccini (2009), we propose the use of generalized additive models to ana-
lyze the space-averaged air pollutant concentration over Torino metropolitan
area as a function of vehicular traffic, while adjusting for potential meteoro-
logical and other possibly unobserved confounders.

The paper is organized as follows: after a brief data description (Sec. 2),
we describe the basic theory and some advantages of using the generalized
additive models (Sec. 3). In Section 4 we introduce the model for the whole
city area, and discuss the selection of the best model and the predictor subset
for pollutant concentration. In addition, as traffic is measured in numerous
sites throughout the city, we also discuss an optimal way to summarize traffic
data (Sec. 4.1). Finally, specific models are proposed and results analyzed
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for common pollutants, CO, NO, NO2, NOx, and PM (Sec. 4.2 and 4.3).

2 Data

Traffic data are provided by 5T s.r.l., working in the Torino city area with
a widely distributed set of 500 “inductive loop ” sensors (i.e. flow count-
ing points), embedded in the surface of the roads. Inductive loops work by a
simple principle of sensing the change in inductance – when a car (or another
large metal object) passes over a loop, the car’s presence changes the total
inductance, and the loop sensor count goes up by one. Loop network is a
part of the monitoring system UTOPIA/SPOT (Urban Traffic Optimization
by Integrated Automation/System for Priority and Optimization of Traffic),
designed to serve as an urban traffic control system as described in Kron-
borg and Davidsson (2000) and Wood (1993). Such a system operates as a
framework implemented to improve both private and public transportation
efficiency in the Turin metropolitan area. The network of available sensors
is set up to monitor the vehicular traffic at the main intersections of the city
road graph (Fig.1).

This extensive network allows us to observe the behavior of traffic over
time at multiple points throughout the city. However, having so many mea-
suring devices also means that many of the individual time series will have
a non-trivial fraction of missing data, sometimes over large continuous peri-
ods of time. These “gaps”in the measurement series are most often due to
road maintenance or to the repair of the sensors themselves. In such cases,
the missingness can be treated as missing at random (independent of the
pollutant levels).

Our traffic data, the number of vehicles that pass over a certain monitor
within 5-minute intervals, have been aggregated into hourly counts. Specific
subsets of all traffic time series have been chosen so that they all correspond
to the outflow of traffic at any given crossroads (which also equals to the
influx of traffic to the same crossroads), in order to avoid double counting of
the vehicles. The availability of meteorological and chemical data constrains
further our study period to December 19th, 2003, to April 27th, 2005, and
the final dataset is thus composed of 107 hourly measurement time series.

In the analyses in this paper we use hourly city-wide averaged variables,
focusing on the average traffic behavior of the city, as shown in Fig.2. The
boxplots show typical features of the traffic trend at three different time-
scales: daily, weekly and yearly. In the daily scale we can see the strong
difference in traffic magnitude between day-time and night-time; as well as
high traffic intensity due to the morning and evening rush hour. The weekly
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Figure 1: Turin vehicle traffic, air and meteorology monitoring network:
green disk are the 107 traffic counters, red and black disks are the pollution
stations and blue flags are the meteorological stations

(a) Hours (b) Days (c) Months

Figure 2: Box-plots of the city-wide average traffic volume for different time-
scale.

5



scale shows the differences between weekdays and weekends: Saturday and
Sunday traffic differs both in the total number of vehicles and the timings of
the peak volume hours. Observing the yearly representation we can see that
traffic is almost constant during the year except for the month of August
where a sharp reduction is due to the summer holydays.

Arpa Piemonte and Regione Piemonte have provided pollution data.
Hourly records at six different stations for NOx, NO2, NO and CO have
been provided, while PM was measured by four sensors on a daily basis.
The seven stations are Grassi, Rebaudengo, Rivoli, Consolata, Cristina,
Gaidano and Lingotto located as shown in Fig.1, while sensors are distributed
as in Tab.1.

Table 1: Available chemical sensors at the sites: Consolata (Con.), Rivoli
(Riv.), Rebaudengo (Reb.), Cristina (Cri.), Gaidano (Gai.), Lingotto (Ling.),
Grassi (Gra.).

Con Riv Reb Cri Gai Lin Gra
CO x x x x x x
NO x x x x x x

NO2 x x x x x x
NOx x x x x x x

PM10 x x x x

Pollution concentrations for the five different pollutants exhibit relatively
similar behavior. In order to show a typical behavior of the pollutants, we
summarize as an example the NO2 concentration measured at the “Conso-
lata” station (Fig.3). As can be seen in Fig.3.a, the lowest values happen
during the middle of the month of August while the highest are during the
two winters (recall that the study period is December 2003 through April
2005). The hourly box-plots of the concentration shown in Fig.3.b allow us
to see that the concentration decreases during the night and has two peaks:
one in the morning and one in the evening, related to commuter behavior.
Note that this shape is pretty similar to the one observed for vehicular traffic
(Fig.2.a), motivating the importance of using the hourly time-scale. As can
be seen from the boxplots by day of the week (Fig.3.c) the concentration
seems to increase in the first few weekdays and decrease during the weekend.
The box-plots by month (Fig.3.c) confirm that the lowest values happen in
August while the highest happen in the winter. Further explorative analyses
on pollution features are available in Bertaccini (2009), Chapter 1.

Meteorological data are collected by four different stations as shown in
Tab.2, the data are provided by Arpa Piemonte and Regione Piemonte. The
locations of the meteorological stations are shown in Fig.1, marked with the

6



(a) Time Series (b) Hours (c) Days (d) Months

Figure 3: Time series and box-plots for NO2 concentration measured at
Consolata Station.

blue flags. For each variable we generally have at least three locations pro-
viding data at any given time. Hence, we have a rather reliable description of
the meteorological conditions around the city. In addition, pressure generally
differs very little across the entire Torino metropolitan area, so we can ba-
sically use the value measured by a single (ReissRomoli (CSELT )) station
as representative of the city-wide pressure level.

Table 2: Available meteorological variables
RRom Cons Alenia Vall
(North) (Center) (West) (South)

Press. x
Temp. x x x x

Rel. Hum. x x x
Wind Sp. x x x
Wind Dir. x x x
Solar Rad. x x x

Rain x x x

Averages of the available variables are presented as time series in the
following figures (Fig.4). As can be seen, meteorology is reduced to the city-
wide vector (ME) containing wind speed (wsp), solar radiation (sun), relative
humidity (rh), temperature (tmp) and pressure (press). Precipitation has
not been included due to being composed of relatively rare and localized
events and to having a rather limited impact on our results of interest (the
sensitivity analysis was examined separately and is not shown in this paper).
Moreover, wind direction has been omitted from the model due to the lack of
a meaningful single “average” direction for the whole city, and the negligible
effect observed on the model results (again examined separately and not
shown). Finally in all our model we also consider the lagged (delayed) effects
of some of the crucial meteorological variables, to account for the amount

7



time it takes for certain chemical and physical processes to realize and have
an impact.

Figure 4: Time series of the averaged meteorological variables

In Fig.4 we present the time series of the averaged collected meteorological
variables. Pressure generally shows variability over time which seems to have
a shorter range during the summer. Wind speed is generally low, with some
strong events that will turn out to be important in influencing the quality
of air. Temperature as well as solar radiation shows the typical seasonal
behavior with high values during the summer and low values during the
winter. Relative humidity is generally conditioned by rainfall or wind events.
Precipitation is relatively rare, with many days without rainfall and some
occasional events.

3 Generalized additive models (GAM)

In modeling of air pollution, we will assume that transformed average out-
come is additive in predictors, and can be appropriately modeled using Gen-
eralized Additive Models (GAM). GAMs have the advantage that they are
able to describe nonlinear effects over time, and still be easily interpretable
due to their additive structure. Moreover GAMs provide some flexibility
via nonlinear or non-parametric terms but do not suffer from the curse of di-
mensionality like some other non-parametric methods such as kernel smooth-
ing or polynomial modeling. For the outcome (eg., logarithm of pollutant,
Y = log(Pollutant)), we assume that it is additive in its predictors and nor-
mally distributed with mean µt and variance σ2. The systematic part µt could
include linear and nonlinear components, as well as potential confounders.
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A general model with additive component would then be

Yt ∼ Gaussian(µt, σ
2)

µt = α +
l∑

f=1

βfxf,t +

+
m∑

g=1

∑

h∈Hg

ηg,hzg,t−h +

p∑
i=1

s(ki,t, λi)

where α is the intercept, ~xt are the current-time predictors, ~β are their effects,
zg,t−h is the value of variable zg h hours prior to the current time (with lag
times taking values in set Hg), with an effect size ηg,h. Nonlinear effects
are modeled non-parametrically trough smooth functions s(·, λ), where the
smoothness is controlled by the scalar parameter λ.

In this study we model the aforementioned pollutants as time series rep-
resenting the average level of pollution measured hourly or daily, where av-
eraging is done over the available stations (the number of stations at each
time changes depending on the pollutant under observation, Tab. 1). For
each pollutant we consider the time series of the logarithm of the average
pollutant concentration over Torino. Given that we wish to estimate the
effect on pollution solely due to traffic, we pay special attention to potential
confounders, which are related to both the concentration of the pollutant
in the atmosphere and to the traffic volume itself. Meteorological variables
are the typical confounders, and are routinely adjusted for in the pollution
analyses. In GAM, we have the added flexibility of considering smooth func-
tions of the meteorological variables, s(ME, λme). However, there are also
potential unmeasured confounders which we have not observed, such as for
example health and behavior patterns related to weather (and therefore pol-
lution) and to traffic volume. Though these confounders are unobserved, we
can assume that they are varying rather smoothly over time, or at least more
smoothly than the predictor of interest (in this case traffic). In cases where
such assumption is appropriate, we can proxy these unobserved confounders
via a smooth function of time.

On the one hand, not adjusting for these unmeasured confounders will
result in bias in the estimates of the effect of traffic. On the other, if we
adjust too much (using a highly varying function of time), the effect of traffic
may be conditioned away. Thus, a sensible model selection criterion which
is capable of balancing goodness of fit with penalty due to complexity and
high variability of confounder functions is crucial in choosing the optimal
GAM model. Following the common trend, we use the Bayesian information
criterion (BIC) Schwartz (1978). The BIC is like the AIC (Akaike (1978))
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but with more severe penalization related to the complexity of the model. It
takes the form of the penalized log-likelihood where the penalty is equal to
the logarithm of the sample size n times the number of estimated parameters
θ: BIC = 2`n(θ̂)− log(n) length(θ).

4 GAM models for Torino-wide pollution

Following the general principle mentioned in the section 3 we now develop
semiparametric GAM models of pollutant concentration over the whole urban
Torino area. Estimation of the penalty parameter in the model is obtained
using the generalized cross validation method (Wood (2006), Wood and Au-
gustin (2002)), and the best number of basis is found by comparing different
models, using the BIC values.

Our main goal is to assess what the effective role of vehicular traffic on
five different pollution species. In order to do that thoroughly, we propose
different approaches to summarize traffic and select the most appropriate
functional form for each pollutant. The selection of the suitable models is
based on the information criterion BIC. We use this criterion to select the
most important variables as well as the optimal number of spline basis for
each covariate in the model.

Another important issues is related to cross-correlation between pollu-
tants and some meteorological variables. This cross-correlation, when strong,
suggests that one should use lagged variables into the model. In fact this of-
ten allows a substantial improvement of fit. In this paper, lagged variables
have been dealt with in two ways: a) using a spline of the average of up
to twelve previous values (lags 1-12), and b) using the splines for those in-
dividual lagged variables selected based on the highest correlation with the
pollutant. Since the latter procedure almost always yields a better fit, we
prefer it for modeling pollution in our study.

4.1 Assessing the effect of traffic via model selection

As we stated before, in this work we consider the log-pollution concentration
as the outcome. Covariates are traffic and meteorology, moreover time is used
as a proxy for unmeasured confounders. To assess the effect of traffic, we pro-
pose different models and compare the appropriateness of each of the model
via BIC. The models we consider are those with or without meteorological
or traffic variables, and adjusting for the unmeasured confounders with a
varying-degree spline function of time (i.e. s(t, λ)). The three considered
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models have an additive form as follows:

M1 : µt = α + s(t, λ) + s(ME,λME) (1)

M2 : µt = α + s(t, λ) + s(tr, λtr) (2)

M3 : µt = α + s(t, λ) + s(tr, λtr) + s(ME, λME) (3)

where ME indicate the involved meteorological variables: wind speed, solar
radiation, relative humidity, temperature and pressure as s(ME, λME) =
s(wsp, λwsp)+s(sun, λsun)+s(RH, λRH)+s(temp, λtemp)+s(press, λpress); tr
is the number of vehicles per hour. Time t is defined as (julian day)+(h/24),
where h is the hour of the day.

The results shown in Tab.3 indicate that traffic seems to be generally
more important than meteorology for the model fit. This is most visible in
models for NO2 and NOx. However, in models for PM the meteorology
seems to be more effective then traffic, which is not unexpected given the
more physical and granular nature of PM . Finally, as we can see by the BIC
values of model M3, the use of meteorological and traffic variables together
gives, obviously, better performances for every pollutant.

Table 3: BIC values for models of traffic and logarithm of pollutant concen-
tration

NO NO2 NOx CO PM
M1 26492 1908 14817 4386 439
M2 25636 -1576 12605 2390 598
M3 19572 -5010 5764 -4543 337

Given that the network of 107 traffic induction loops is rather dense,
we propose summarizing traffic data so that its key features (with respect to
pollution) are preserved. We have analyzed and compared four different ways
of “summarizing” traffic data: 1) a simple average of the whole network,
2) time decomposition of traffic using moving average, 3) spline of traffic
average and 4) principal component analysis. In the last case we analyze the
effect of using 1, 3 or 10 principal components (one component is enough to
explain over 90% of the variability in traffic, while 10 components are enough
to explain over 96% of traffic variability and are denoted as PCA(tr, 10));
basically we can observe that the first component of traffic PCA behaves like
the average of the traffic both when used as is or as a spline (even though
the simple average is slightly favored by BIC). Similarly, using the first three
components slightly improves on the previous case, while using the first 10
components yields a rather good fit, as shown below.
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Following that general principle, we define the models as follows

M4 : µt = α + s(t, λ) + βM trMtC + βW trWtC + βDtrDtC + βRtrR

+ s(ME, λME) (4)

M5 : µt = α + s(t, λ) + βtrtr + s(ME, λME) (5)

M6 : µt = α + s(t, λ) + ~βPCAPCA(tr, 10) + s(ME, λME) (6)

where trMtC , trWtC , trDtC and trR are respectively the monthly, weekly, daily
and residual components in a time scale decomposition, tr is the average
traffic variable and PCA(tr, 10) indicates the first ten principal components
from the analysis of the whole network (107 loops).

Tab.4 shows the BIC values of the models. The performance of the model
M3 remains the best when considering pollutants NO2, NOx and CO, while
in two cases (i.e. NO and PM) model M4 seems to fit slightly better.
This may imply that in these cases the decomposition of traffic in seasonal
components is better (more succinctly) able to explain the traffic pattern.
These results will be taken into account for the definition of the further
models described below.

Table 4: BIC values in models with different parametrizations of traffic
NO NO2 NOx CO PM

M4 19167 -3710 6810 -2830 288
M5 20806 -3688 7590 -3033 337
M6 19838 -4843 6416 -4153 385

4.2 Modeling of hourly NO, NO2, NOx and CO

We now describe how to select more carefully the predictors to use in mod-
els, which are related to the chemical and physical dynamics of the measured
pollutant. This theory-based approach to selecting variables may not neces-
sarily result in a better fit, but it will help incorporate scientific reasoning,
physics and chemistry, behind the behavior of the pollutants.

First, lagged values of wind speed and solar radiation are expected to play
an important role in the chemistry and physical transport of the pollution
throughout the city. Following Carslaw et al. (2007), the wind direction was
considered in the preliminary phases of this analysis but no important effects
on pollutant concentration have been observed. This result is likely related
to the fact that we are working with the average of the variables over the
whole city, which may cancel out any directional effects. These models use
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hourly average concentrations of NO, NO2, NOx and CO, and are given as
follows:

M7 : µt = α + s(t, λt) + ~βDoW + s(tr, λC)

+s(wsp, λC) + s(lag(wsp, 1), λC) + s(lag(wsp, 2), λC)

+s(sun, λC) + s(lag(sun, 1), λC) + s(lag(sun, 12), λC)

+s(rh, λC) + s(tmp, λC) + s(press, λC) (7)

Here, social and generally unmeasured confounders are recognized with the
smooth function of time s(t, λt), and to some extent also with the vector
of variables indicating the days of the week DoW which turns out to con-
tribute greatly to quality of fit. The other covariate are vehicular traffic (tr);
wind speed (wsp) and the lagged values at one hour (lag(wsp,1)) and two
hours (lag(wsp,2)); solar radiation (sun) and the lagged values at one hour
(lag(sun,1)) and twelve hours (lag(sun,12)); relative humidity (rh); temper-
ature (tmp) and pressure (press). Despite the fact that the results in the
previous section indicate that the use of traffic seasonal decomposition is the
most suitable for Nitric oxide, we will advocate using the spline functions of
traffic because it will turn out that it performs better with the additional
predictors in the model.

To select the best model supported by the available data, we first choose
the suitable number of basis for the covariate smooth functions according to
the BIC. The actual degrees of freedom (the penalty λ) are estimated using
the generalized cross validation (GCV). The resulting performances of the
models are given in Tab. 5, where we can observe that the models are able
to explain a large fraction of variation in each of the processes. Although we
do not advocate using the coefficients of determination statistic for assessing
goodness of fit, we report for consistency with previous published work that
the coefficient of determination in all our models is above 0.8, in agreement
with those reported in Aldrin and Hobæk Haff (2005) and Carslaw et al.
(2007). Since time has a quite different trend respect to the other covariates
we propose several models with different number of knots, and select the
number of the basis for time and for the other covariates separately. Looking
at variations of these models with other numbers of degrees of freedom and
number of time basis functions, yields the surface plot shown in Fig.5 where
the “potential well” indicates the minimum BIC obtained.

Tab. 6 and Fig.6 summarize the main effects of the predictors under
consideration, where linear effects are described with the coefficients and the
main non linear effects are represented graphically as smooth functions.

The estimated function of time and the days of week (DoW) are, as
mentioned above, supposed to capture the adjusted effect of unobserved con-
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Table 5: Performance indexes and number of basis for model M7 (BIC val-
ues, Time-bs = basis dimension of time, Cov-bs = basis dimension of other
covariates)

NO NO2 NOx CO
BIC 17173 -6573 3316 -6681

Time-bs 410 248 410 410
Cov-bs 6 6 6 6

(a) NO (b) NO2

(c) NOx (d) CO

Figure 5: BIC distribution with respect to degrees of freedom of Time and
other covariates
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founders on the pollutant. The first plot shows the estimated spline of time
with around 4 or 6 knots per week (depending on the pollutant). This rela-
tive large number of knots could explain the daily and weekly cyclical social
behaviour (i.e. heat during the day, or heavy traffic in specific hours of the
day or the week) that is related to traffic and pollution. It is reasonable to
expect that the number of knots should have some influence on BIC and on
the importance we attribute to the unmeasured variables, and that it should
have an effect on the other estimates. However, comparing this model with
others with smaller number of knots, we observe that this model is still bet-
ter with respect to the BIC criterion, while the other predictors’ estimated
spline coefficients change only negligibly.

The smooth effect curves of time for all pollutants show stronger effects
during wintertime (winter 2003-04 corresponds to hours 12400-12500 and
winter 2004-05 to 12740-12840), see Fig.6.a. Concentrations are generally
lower and more stable otherwise, reflecting the usual seasonal behaviour nor-
mally associated with the atmospheric boundary layer. Only NO seem to
have a slightly different behaviour during summer. Beside the quite large
sensitivity due to the typical instability of the pollutant, it seems to increase
during summers when other pollutants decrease and it is likely related to
certain photochemical processes. Days of week (DOW ) seems to always
have positive effects relative to baseline (Sunday), see Tab.6, with Saturdays
having the lowest average concentrations among the other six days.

We can observe that traffic tr is, as expected, an important factor in pol-
lution (see Fig.7 for partial traffic effect with relative standard error, detailed
for every pollutant). In fact traffic is one of the most important atmospheric
nitric oxide generator. Nitric oxides seem to be especially related to traffic
as the average log-concentrations keep increasing rapidly with the number
of vehicles at lower counts (below the median), ultimately leveling off after
about 700 vehicles per hour per loop. The average CO log-concentration has
an almost linear behaviour with a slow increase associated with the increase
in number of vehicles. Like NO, CO pollutant is associated with vehicular
traffic but the range of variation is far less significant (the carbon monoxide
is no longer a critical pollutant in Torino). For all the pollutants we can
highlight a threshold between 300 and 400 vehicles, corresponding to the
night-vs-day time traffic. Below this threshold the relationship between the
average log-concentration and traffic is generally steeper than above it.

At low temperatures (tmp) the average log-concentration tends to be high
for majority of pollutants, and then it decreases at higher temperatures, given
other factors in the model. This effect is more clear for NO and NOx than for
NO2 and CO, see Fig.6.c. In fact, the last two pollutants seem to be scarcely
conditioned by the temperature and show an almost linear trend. The higher
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values at low temperatures are related to the seasonal atmospheric situation:
generally low temperatures are during the winter, when the solar radiation
and boundary layer are reduced too.

The estimated solar radiation splines, shown in Fig.6.d-f (sun, sun1,
sun12), suggest that the partial effect of this variable has a generally dif-
ferent behavior in influencing the average concentration depending on the
lag of the effect observed: in fact, high values of solar radiation cause an
increase in the concentration in the next hour, but the lagged variables show
negative effects, particularly for NO and NOx. The persistent effect after
many hours is likely explained by the fact that a strong radiation tends to
delay a new rise in pollution concentration.

Wind speed has an important effect, given other variables in the model,
especially when observed at different lags, and it generally reduces the con-
centrations significantly as it increases. Lagged variables show that a strong
wind may influence the pollution for many hours (Fig.6.g-i). The four pollu-
tants reduce the concentration in a similar way for wind speed below 2m/s,
with the functions being very different after that point but also more uncer-
tain because of sparse data. The same effect is observed on the four pollutants
when the wind measure from the preceding hour is used. The lagged values
show that delayed effects normally have a greater effect especially on NO2

and NOx.
Peculiar decrease observed in the partial effect of relative humidity at

high values (Fig.6.j) could be associated to rainfall events that usually ac-
company it. In fact, during rainfall events the humidity goes to saturation
and precipitation is generally effective in pollution reduction. Such a be-
havior is common for all the pollutants even if CO decreases more slowly.
The behaviour at low values could be associated with the increase of wind
intensity, when pollution and humidity are normally blown away. Differently
from other pollutants, NO has a quite constant trend, even if this situation
could be due to an increase in solar radiation and the consequent chemical
dynamics (low values of relative humidity are normally related to clear sky
situations). The variation observed in pressure (Fig.6.k) is very small and it
could be due to the use of hourly scale for a variable that usually changes
more slowly in time. This result is unusual since high pressure is normally
related to atmospheric stability, except in the event of atmospheric inversion;
hence further analysis may be necessary.

4.3 Estimates for PM10 model

Given that PM data are daily, we will use the daily average for all the
covariates in the model. As discussed in Sec. 4.1, time decomposition of
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(a) Time (b) Traffic (c) Temperature

(d) Solar radiation (e) Solar radiation (lag 1) (f) Solar radiation (lag 12)

(g) Wind speed (h) Wind speed (lag1) (i) Wind speed (lag2)

(j) Relative Humidity (k) Pressure

Figure 6: Estimated effects of traffic and meteorological variables for Nitric
Monoxide (NO, red dashed), Nitric Dioxide (NO2, green dash-dot), Nitric
Oxides (NOx, blue small dashed) and Carbon Monoxide (CO, black contin-
uous).
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Table 6: Coefficients of the parametric part of the additive predictors for
NOx, NO, NO2 and CO

NOx NO NO2 CO
Est. Std.Er. Est. Std.Er. Est. Std.Er. Est. Std.Er.

(Interc.) 4.81 0.014 3.41 0.025 4.14 0.008 0.19 0.009
Mon. 0.17 0.015 0.27 0.027 0.15 0.008 0.04 0.010
Tue. 0.17 0.022 0.27 0.039 0.14 0.012 0.05 0.014
Wed. 0.21 0.024 0.32 0.044 0.12 0.014 0.08 0.016
Thu. 0.23 0.025 0.38 0.044 0.12 0.014 0.09 0.016
Fri. 0.18 0.022 0.32 0.040 0.11 0.012 0.06 0.015
Sat. 0.11 0.015 0.17 0.027 0.07 0.008 0.04 0.010

(a) NO (b) NO2

(c) NOx (d) CO

Figure 7: Estimated effect of traffic and relative standard error for Nitric
Monoxide, Nitric Dioxide, Nitric Oxides and Carbon Monoxide.
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traffic data (calculated using moving average) seems to be the best way to
summarize traffic (see Tab. 4). We start with the model M4, and add “day
of the week” (DoW ), and different lagged covariates:

M8 : µt = α + s(t, λt) + β1(DoW )

+β2trMtC + β3trWtC + β4trDtC + β5trRes

+s(wsp, λC) + s(lag(wsp, 1), λC) + s(lag(wsp, 2), λC)

+s(rh, λC) + s(press, λC) (8)

where t is time; trMtC , trWtC and trDtC are, respectively, the monthly, weekly
and daily components in a time scale decomposition and trR is the residual.
The wsp covariate denotes wind speed; lag(wsp,1) and lag(wsp,2) are the
lagged wind speed at one and two hours, respectively. These lagged vari-
ables have been choosen based on the correlation between wind speed and
the pollutant. Finally, rh and press denote relative humidity and pressure,
respectively. In Figure 8 we show the BIC values for different models as we
change the number of basis for covariates and for time. As can be seen from
that figure the BIC preferes the model M8, whose specific performance index
values and number of bases are shown in Table 7.

The coefficients of the traffic seasonal components and days of week are
presented in Table 8. We can observe that even though the coefficients of
traffic are positive, indicating a positive effect of traffic on the pollution
log-concentration, their values are generally small, and show little variation
on the montly and weekly scale. This result is consistent with Tab. 3,
where we have observed that traffic seems less effective then meteorology
in explaining the behavior of PM concentration. The effect of daily factor
(DoW ) with respect to Sunday is again clear, and as expected weekdays have
higher average log-concentration than Saturday. Figure 9.a shows a strong
relative increase of PM during wintertime, reflecting confounders like social
(e.g. heating) or meteorological (e.g. boundary layer thickness variation)
processes. Increase in temperature seems to be associated with an increase
in average PM log-concentration (Fig.9.b). Increase in wind speed is related
to reduced PM concentration, both for current time (Fig.9.c) and its one
day lagged values (Fig.9.d). Increase in relative humidity is associated with
a reduction in average PM log-concentration at high and low values (Fig.9.e).
This could be due to rain (high values) or strong wind (low values), although
at low values the data are more sparse. Finally an increase in pressure
is related in an almost linear way to the increase in the average PM log-
concentration (Fig.9.f).
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Figure 8: BIC values for PM models, respect to the number of knots of Time
and other covariates

Table 7: Performance indexes and number of basis for model M8 (BIC values,
Time-bs = basis dimension of time, Cov-bs = basis of other covariates)

PM
BIC 253

Time-bs 9
Cov-bs 5

Table 8: Estimated coefficients and standard errors of the parametric part
of the additive predictors for PM

PM
Est. Std.Er.

(Intercept) 3.74 0.031
trMtC 0.00009 0.0007

trWtC 0.00005 0.0008
trDtC 0.002 0.0006
trRes 0.005 0.0023

Monday 0.19 0.071
Tuesday 0.24 0.083

Wednesday 0.24 0.082
Thursday 0.19 0.085

Friday 0.22 0.089
Saturday 0.11 0.066
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(a) Time (b) Temperature (c) Wind speed

(d) Wind speed (lag1) (e) Relative Humidity (f) Pressure

Figure 9: Estimated effects of traffic and meteorological variables on partic-
ulate matter (PM)
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5 Conclusions

In this paper we present a study of the air pollution in the city of Turin
through the framework of generalized additive models. We have used the
generalized additive models (GAM) to model the behavior of five species of
pollutants (CO, NO, NO2, NOx and PM) averaged over the city of Torino
as a function of traffic, while controling for the main meteorological variables
as well as an unobserved confounding process. GAM allow flexible modeling
of pollution processes which has traditionally been done in a classical style of
differential equation-based models. In our study, the GAM models have been
able to capture the relationship between pollutants and predictors flexibly,
using semi-parametric components modeled with penalized cubic regression
splines, where the penalty (the smoothing parameter) is estimated using
generalized cross validation (GCV). One of the main advantages of GAM is
perhaps their ability to extend this flexibility to unobserved confounders, by
allowing “time” to act as a proxy for them. Including a smoothly varying
function of time to capture the behavior of relatively slowly-varying unob-
served confounders help address the bias in estimates of the effects of interest,
such as traffic.

We have used the Bayesian Information Criterion (BIC) to select the op-
timal number of knots for the splines, and choose among several different
models. First, we compare simple models containing only meteorological
variables and traffic to check the relative importance of the effect of traffic
on pollution. The results show that for CO, NO, NO2 and NOx traffic
is more important than meteorology in explaining the log-pollution concen-
tration, while for log-PM traffic turns out to be less important than the
observed meteorological covariates. Second, between the four different ways
to summarize traffic data, in three cases (CO, NO2 and NOx) the splines of
traffic fit better, while in the remaining two cases (NO and PM) the time
decomposition of traffic gives better fit. Third, we estimate the relationship
between the different covariates for all pollutants. In fact, increase in traffic
volume is associted with increase in the pollutants adjusted for other factors,
while temperature, solar radiation and wind speed have positive partial ef-
fects in the pollution reduction. The nonlinearities found in the estimated
effects confirm that the generalized additive models are a useful framework
to estimate and interpret the relations between pollution, traffic and meteo-
rology.

There are several possible extensions to this work. We have observed that
better model selection techniques and effective degree of freedom computa-
tion are necessary for high-degree spline models, perhaps along the lines of
work by Simonoff and Tsai (1999) and Shi and Tsai (1999). Another natural
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extension is to consider a joint spatial or spatio-temporal model for pollutants
measured by the individual monitoring stations throughout Torino, using the
vectorized version of the generalized additive mixed models (GAMM) (Wood,
2006), a work which is currently ongoing.
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