
 
 

ANY OPINIONS EXPRESSED ARE THOSE OF THE AUTHOR(S) AND NOT NECESSARILY THOSE OF 
THE SCHOOL OF ECONOMICS , SMU 

 

 

   
 

 
 
 
 
 
 
 
 

 

Optimal Collusion with Internal Contracting 
 
 
 
 
 

 

 
 

Gea Myoung Lee 
February 2008 

 
 
 
 
 
 
 
 

   Paper No. 08-2008 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6234917?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Optimal Collusion with Internal Contracting

This draft: February 2008

Gea M. Lee∗

School of Economics and Social Sciences

Singapore Management University

90 Stamford Road, Singapore 178903

gmlee@smu.edu.sg

Tel: 65-6828-0857

Fax: 65-6828-0833

Abstract

In this paper, we develop a model of collusion in which two firms play an infinitely-

repeated Bertrand game when each firm has a privately-informed agent. The colluding firms,

fixing prices, allocate market shares based on the agent’s information as to cost types. We

emphasize that the presence of privately-informed agents may provide firms with a strate-

gic opportunity to exploit an interaction between internal contracting and market-sharing

arrangement: the contracts with agents may be used to induce firms’ truthful communica-

tion in their collusion, and collusive market-share allocation may act to reduce the agents’

information rents.
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1. Introduction

Collusions in practice are often characterized by price-fixing and market-share allocation.1 Along
with such actual features, recent theoretical work has shed light on diverse aspects of collusion in
prices and quantities. An important feature in recent theoretical work is that the state of firms’
production costs is regarded as private information. Aoyagi (2003), Athey and Bagwell (2001,
2006), Athey et al. (2004) and Skrzypacz and Hopenhayn (2004) develop models of this kind,
where firms play a repeated Bertrand pricing game or repeated procurement auctions.2 Despite
their rich analyses of collusion, those theoretical models have given no attention to the possibility
that the location private information is the hired agents who produce firms’ outputs. By contrast,
private information, held by agents, as to the state of production has received extensive attention
in the literature, and in practice, productions are often accomplished by agents on a contractual
basis. In this paper, building on recent work on theory of collusion, we investigate how the
presence of privately-informed agents affects a commonly observed collusive behavior, price-fixing
with market-share allocation.

Our paper develops a model of collusion in which two firms play an infinitely-repeated Bertrand
game, and uses work by Athey and Bagwell (2001) and Athey et al. (2004) as a benchmark.
Following their models, we consider the environment in which firm actions are publicly observed.
A novelty of our model is that each firm has a privately-informed agent: private information is
held by the agent who produces output for the firm. Employing Perfect Public Equilibrium (PPE),
we establish two different classes of equilibria, asymmetric and symmetric PPE, to describe the
features that would not be observed without the presence of privately-informed agents.

There is a two-tier relationship in our model: each firm writes to its agent a law-enforced
contract and makes a self-enforced agreement with its rival firm. In each period, each agent
privately observes its cost type. The cost type is high or low and i.i.d. across agents and time.3

Each agent makes a report of cost type to its firm. The firm then makes a cost announcement to its
rival firm, sets prices and allocates market shares. In an ideal collusive scheme, setting high prices,
firms would allocate market shares by the criterion of productive efficiency, whereby all production
is assigned to the agent(s) with the lowest production cost. Given the two types of relationship, a
major difficulty with finding an optimal collusion is to establish a two-tier revelation mechanism
that induces agents to make truthful reports and firms to make truthful announcements.

We firstly analyze an asymmetric PPE (APPE), and show how the presence of privately-

1Whinston (2006) surveys theoretical and empirical literature on price-fixing collusions, and Harrington (2006)
provides patterns of price and market allocation in real cartels.

2Some recent literature explores self-enforcing trade agreements among privately-informed countries. See, e.g.,
Bagwell and Staiger (2005), Lee (2007) and Martin and Vergote (2007).

3Private information in our model is transitory. If private information is persistent, then the analysis will be more
complicated; a fim’s action may signal its information and affect its rival’s belief. For related recent work, see
Athey and Bagwell (2006).
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informed agents affects the APPE-value set when firm strategies are unrestricted (possibly asym-
metric). Colluding firms would intend to communicate truthfully to allocate market shares by the
criterion of productive efficiency. To achieve productive efficiency, the firm that announces high
cost must give up its market share when the rival announces low cost. There are contrasting incen-
tive problems in the model. At the inter-firm level, a high-cost firm has an incentive to understate
the reported high cost in the hope of increasing its market share, given that each firm privately
observes its agent’s report. To elicit the high-cost firm’s truthfulness today, a high continuation
value (as future reward) is afforded to the firm that reports high cost.4 At the intra-firm level,
a low-cost agent has an incentive to overstate the observed low cost in the hope of receiving the
greater transfer payment for a given level of production. To elicit the low-cost agent’s truthful
reports, internal contract grants information rents to the agent who reports low cost.5

Interestingly, these contrasting incentives can work to the colluding firms’ advantage.6 Consider
first the effect of collusion on internal contract. If colluding firms coordinate to allocate market
shares by the criterion of productive efficiency, then a low-cost agent who reports high cost will be
paid nothing (because of no production) when the other firm announces low cost. Market-allocation
collusion may thus soften the low-cost agent’s incentive to overstate the observed cost type and
make it less costly to induce the agent’s truthfulness in terms of information rents. Consider next
the effect of internal contract on collusion. If an internal contract specifies that a high-cost agent
receives a large payment when the agent produces more than a predetermined level of output, then
the contract acts to soften the high-cost firm’s current-period incentive to understate the reported
cost type and thus reduce the corresponding continuation-value (future) reward.7

Our analysis of APPE, building on the “no-agent” model by Athey and Bagwell (2001), has
the following distinct features. We show that the existence of privately-informed agents may
significantly affect the APPE-value set. As in their paper, we establish a Pareto-frontier line

4 In practice, the cartels prosecuted by the U.S. Antitrust Division are found to use rather sophisticated schemes. For
instance, many cartels have used “future markets” as a channel of exchanging direct side-payments. They used a
compensation scheme, whereby any firm that had sold more than its allotted share was required in the following budget
period to purchase the excess from an underbudget firm that had not reached its allocation target in the preceding
period (Business Week, July 27, 1998).

5The internal incentive problem is not new; a similar and more generalized incentive problem is widely found in the
mechanism design literature (e.g., Fudenberg and Tirole, 1991) and in the extensive “transfer pricing” literature. For a
classic evidence on agent’s overstating behavior, see Schiff and Lewin (1970), and for agent’s cost-padding behavior, see
Laffont and Tirole (1993).

6The contrasting incentives between informed and uninformed parties differ from the “countervailing incentives”
faced only by an informed party, as seen in Lewis and Sappington (1989), Spiegel and Spulber (1997) and others.

7Continuation values in our paper play the role of side-payments in a legalized cartel. The models with legalized
cartel (e.g., Roberts, 1985; Cramton and Palfrey, 1990; Kihlstrom and Vives, 1992) show that communication helps
firms to identify the most efficient firm, and side-payments provide firms with truth-telling incentives. Our analysis, in
its relation to literature on repeated procurement auctions, may describe the case in which (i) two collusive bidders play
a knockout auction, prior to actual bidding, to find who will be a lowest-cost supplier (e.g., McAfee and McMillan,
1992), and (ii) each bidder suffers some costs of distorting information, were it to lie.
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segment of APPE values. Construction of the line segment is possible only when the segment is
sufficiently long, so that a high-cost firm is persuaded to be truthful today by a sufficiently high
continuation value drawn within the segment even if the firm may end up with zero market share.8

In the model, agents hold private information and firms deliver it following the agents’ report.
Having an incentive to distort the agents’ private information, firms use the internal contract and
endogenize the level of costs a high-cost firm suffers when it falsifies its agent’s report. As argued
above, such a contractual arrangement reduces the continuation-value reward that is necessary
to induce the high-cost firms’ current-period truthfulness, which relaxes the constraint that the
segment must be sufficiently long. In this way, the internal contract acts as a commitment device
that elicits the firm’s truthfulness. As a result, an interaction between collusion and internal
contracting can be exploited: a contractual arrangement is used to achieve productive efficiency in
market-allocation collusion, and productive efficiency in market allocation, in turn, enhances the
contractual efficiency by reducing information rents for agents. This interaction also applies to the
analysis of a symmetric PPE.

We secondly analyze a symmetric PPE (SPPE), and investigate how the presence of privately-
informed agents affects the SPPE-value set when there is a symmetry restriction on firm strategies.
Symmetry here means that current-period prices and market-share allocations must be symmetric
across firms for all histories. The corresponding value set is then restricted to the 45-degree line,
and the Pareto frontier is reduced to a point, not a line segment. In the APPE we construct, a
continuation-value loss for one firm implies a continuation-value gain for another along the Pareto-
frontier segment; continuation-value transfers do not cause inefficiency along the segment. In any
SPPE, by contrast, continuation-value variations entail some waste of values for all firms together;
continuation-value transfers are wasteful on the 45-degree line.

We construct an SPPE in which to prevent the high-cost firm’s understatement today, a low
continuation value (as future penalty) is given to the firms that announce low cost together. In our
model, a simple commitment device of contract is used so that a high-cost firm gains nothing today
when it lies and increases its market share above the predetermined level. It then becomes unneces-
sary to penalize the low-cost firms with the low-continuation value. Thus, with a simple contractual
arrangement, firms are induced to be truthful without depending on wasteful continuation-value
transfers. This finding shows that the symmetry restriction affects characteristics of SPPE differ-
ently between our model and the no-agent model: SPPE suffers a waste of equilibrium values in
the no-agent model, but it can approximate the optimal monopoly profit despite the symmetry
restriction in our model.

Our analysis of APPE and SPPE is based on the assumption that information as to the state of
production cost is asymmetrically held by agents. If firms can observe their agents’ cost types at
no cost, then our model becomes the no-agent model. If firms can observe their agents’ cost types

8We establish a self-generating set of APPE values, following the recursive structure explored by Abreu et al. (1986,
1990), whereby after any history, the set of continuation values are always equal to the equilibrium value set.
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only after incurring informational costs, then our findings imply that colluding firms may find it
beneficial to deliberately restrict their own observability of agents’ cost types until signing the
internal contract. At a broad level, our paper predicts that in the presence of privately-informed
agents, firms may find it relatively easy to achieve an optimal APPE and save a potential waste of
optimal SPPE values.9 In the literature, firms own private information. Firms there can observe
and distort private information at no extra costs. In this paper, agents hold private information
and firms deliver it. The contractual arrangement in this paper captures the circumstance in which
firms deliberately reduce the degree to which they control of private information; their incentive
to distort the agents’ private information is bounded by the contract with agents. We find that
a simple contractual arrangement that reduces the firms’ incentive to distort the agents’ private
information makes it possible to establish a sufficiently long Pareto-frontier segment in APPE and
avoid wasteful continuation-value transfers in SPPE.

Our model also contrasts with the no-agent model by Athey et al. (2004) in which cost types are
continuously distributed. They predict that when the distribution of cost types is log-concave, opti-
mal SPPE is characterized by a pooling equilibrium in which market shares are constant regardless
of cost types; firms sacrifice productive efficiency and instead save informational costs that would
be necessary to deter higher-cost firms from mimicking lower-cost firms. In our two-type model,
firms achieve productive efficiency in market allocation, which, in turn, reduces informational costs.

Our findings provide a new perspective on collusive behavior: the presence of privately-informed
agents may provide firms with a strategic opportunity to exploit the interaction between internal
contracting and market-sharing arrangement. A variety of strategic contracting devices have been
highlighted by the literature.10 There is a broad analogy between our analysis and the work done
by Fershtman and Judd (1987) or by Fershtman et al. (1991). They show that a firm may compete
more effectively in a Cournot oligopoly game, or collude more effectively with the other firm, if its
manager enters this game and is bounded by a wage contract. Likewise, we show that firms may
collude more effectively when they are bounded by a strategic use of internal contract.

The rest of this paper is organized as follows. Section 2 introduces the basic model, and describes
the approach we use in the paper. Section 3 describes the constraints that equilibrium strategies
must satisfy. Section 4 characterizes an APPE, where firm strategies are unrestricted. Section
5 describes an SPPE, where firm strategies are restricted to be symmetric. Section 6 discusses
possible extensions of the model. Section 7 provides conclusions.

9Related theme is found in the literature. Using an principal-agent setting, Dewatripont and Maskin (1995)
show that the contracting parties may find it desirable to deliberately restrict the observability of principal. Lee (2003)
argues that the scope of intertemporal price discrimination may diminish if a monopolist has more information
as to consumers’ past purchasing history.
10Vickers (1985), Fershtman and Judd (1987), Katz (1991), Reitman (1993), Sklivas (1987), Spagnolo (2000),
and Kockesen and Ok (2004) show that incentive contracts with delegated agents can serve as a strategic commitment
device.
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2. TheModel

There are two ex ante identical firms. A novel feature in our model is that each firm has a privately-
informed agent: private information is held by the agent who produces output for the firm. Prices
and quantities are publicly observed, but unit costs are privately observed by the agent. In each
period, costs are independently drawn from the identical common-knowledge distribution with
discrete support {θL, θH}. A cost type θL (θH) is drawn with probability µ (probability 1 − µ).

For notational simplicity, define the cost differential as 4 ≡ θH − θL > 0 and denote the discrete
support as {L,H}. The main purpose of our analysis is to highlight how the presence of privately-
informed agents affects a commonly observed collusive behavior, price-fixing with market-share
allocation. To this end, we assume that there is a unit mass of homogeneous consumers whose
valuation of the good is ρ. This assumption greatly simplifies our analysis, since the problem of
finding an optimal collusion can be reduced to that of finding market-share allocations, given that
patient firms will not undercut the optimal fixed price ρ, which is assumed to be higher than θH .

2.1. Optimal Values

In this subsection, as a motivating benchmark, we consider a contracting game in which a monop-
olist offers a contract to two privately-informed agents. Our later analysis will show that colluding
firms may be able to replicate the monopolist’s optimal behavior. The timing of the game is as
follows: (i) each agent i privately observes its cost type θi ∈ {L,H}, (ii) the monopolist offers a
single-period contract to each agent, (iii) each agent i makes a report ri ∈ {L,H} to the firm,
(iv) the monopolist determines a production level for each agent, qi, and each agent produces the
quantity and (v) the monetary transfers requested by the contract are enforced.

The firm determines the level of output subsequent to the agents’ report. The production
level assigned for agent i, qi, is conditional on the agents’ report. Thus, the production level
is determined by a production-allocation scheme, qi : {L,H} × {L,H} → Q, where Q ≡ [0, 1].

The contract for agent i is a pair,
©
ti, qi

ª
, where ti is the payment for agent i. A type-θj agent

has utility ti − θjq
i if the agent produces qi and receives monetary transfer ti, and any type

of agent gets zero utility if the agent refuses the contract. In a pair of cost types (θj , θk), θj
is agent 1’s cost type and θk is agent 2’s cost type. The pair (θj , θk) is hereafter indexed by
(j, k) ∈ {(L,L), (L,H), (H,L), (H,H)}. Let pjk represent the price selected for state (j, k) and
let tijk and qijk represent the transfer for agent i in (j, k) and the quantity produced by agent
i in (j, k), respectively. Following these notations, we can denote the contracts for agents by
{(t1jk, q1jk), (t2jk, q2jk)}. For later use, letting µL ≡ µ and µH ≡ 1 − µ, we define the expected
quantities:

q1j ≡
X

k∈{L,H}
µkq

1
jk and q2k ≡

X
j∈{L,H}

µjq
2
jk.

We now find an optimal contract of the monopolist.
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Monopolist’s Problem: The optimal prices are fixed, pjk = ρ ∀(j, k). The monopolist finds the
contract {(t1jk, q1jk), (t2jk, q2jk)} that maximizes the expected profitX

j∈{L,H}

X
k∈{L,H}

µjµk
£
ρ · (q1jk + q2jk)− t1jk − t2jk

¤
(1)

subject to:

(i) Incentive Compatibility for agent 1: ∀k ∈ {L,H},
t1Lk − θLq

1
Lk ≥ t1Hk − θLq

1
Hk (IC1Lk)

t1Hk − θHq
1
Hk ≥ t1Lk − θHq

1
Lk (IC1Hk)

(ii) Individual Rationality for agent 1:X
k∈{L,H}

µk
¡
t1Lk − θLq

1
Lk

¢ ≥ 0 (IR1L)X
k∈{L,H}

µk
¡
t1Hk − θHq

1
Lk

¢ ≥ 0 (IR1H)

(iii) IC2jL, IC
2
jH , IR

2
L and IR

2
H for agent 2.

Note that we use dominant-strategy incentive constraints to find the optimal contract. In this
context, however, the contract can be equivalently implemented in Bayesian or in dominant strategy
if the expected output decreases in cost type (qiL > qiH), this being satisfied in the solution.

11

Hence, there is no loss of generality in looking for the optimal contract within the set of dominant-
strategy implementation. It is implied by optimality that incentive compatibility for “low-cost”
agents, IC1Lk, and individual rationality for “high-cost” agents, IR

1
H , are binding. Observing that

there is some freedom in the choice of t1HL and t
1
HH , we can find many transfer schemes that satisfy

these binding constraints. One candidate is that for k ∈ {L,H}, high-cost agents participate in all
states of nature, t1Hk = θHq

1
Hk, and low-cost agents receive t

1
Lk = θLq

1
Lk+4·q1Hk. The corresponding

candidate for agent 2 is that for j ∈ {L,H}, t2jH = θHq
2
jH and t2jL = θLq

2
jL +4 · q2jH . Thus, a

low-cost agent i is induced to be truthful by the expected information rent 4 · qiH .
Given that all the candidates derive the same expected profit, the Monopolist’s Problem now

looks for the production-allocation scheme, {(q1jk, q2jk)}, that maximizesX
j∈{L,H}

X
k∈{L,H}

µjµk
£
ρ · (q1jk + q2jk)− Cjq

1
jk − Ckq

2
jk

¤
, (2)

where CL and CH represent the virtual (unit) costs associated with productions of low- and high-
cost agents:

CL ≡ θL and CH ≡ θH +
µ

1− µ
4. (3)

11The use of dominant-strategy implementation is due to Mookherjee and Reichelstein (1992). They show that the
equivalence between Bayesian and dominant-strategy implementations holds if the agents’ cost functions satisfy
a generalized single crossing property. This property trivially holds in our model.
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The virtual costs include informational costs of eliciting the agents’ truthfulness, which are reflected
in the additional terms µ

1−µ4 in (3). It follows that the optimal solution satisfies (i) q1LH = q2HL = 1,

(ii) q1LL + q2LL = 1, and (iii) q1HH + q2HH = 1 if ρ ≥ CH , and q1HH + q2HH = 0 otherwise. In this
paper, we say that productive efficiency is achieved if these three conditions hold. The conditions
mean that all production is assigned to the agent(s) with the lowest production cost: in (L,H)
or (H,L), the lowest-cost agent alone produces the output, and in (L,L) or (H,H), agents may
together produce the total output. In the parameter range ρ < CH , informational costs of eliciting
the agents’ truthfulness make the production in (H,H) unprofitable.

There is a striking benefit of achieving productive efficiency: production is carried out only
by the lowest-cost agent(s), and further, productive efficiency enhances contractual efficiency by
reducing information rents. Under productive efficiency, the virtual costs in (L,L), (L,H) or (H,L)

are only production costs θL; the virtual cost gap between the high- and low-cost agent is then
CH −CL = 4+ µ

1−µ4, which is more than the gap between cost types, θH − θL = 4. The virtual
costs are higher than production costs only in (H,H), and thus the expected information rents
are reduced to (1 − µ)2(CH − θH) = µ(1 − µ)4 · (q1HH + q2HH). The overall expected costs are
[1− (1− µ)2]θL + (1− µ)2CH = E(θ) if ρ ≥ CH , and [1− (1− µ)2]θL otherwise.

Lemma 1. The optimal monopoly profit is

πm ≡
½

ρ−E(θ) if ρ ≥ CH

[1− (1− µ)2](ρ− θL) otherwise.
(4)

The first-best profit is πf ≡ ρ−[1−(1−µ)2]θL−(1−µ)2θH , which is what the firm could earn if it
were able to observe the agents’ cost types. In the presence of privately-informed agents, πf > πm.

If ρ ≥ CH , the profit differential is the information rents: πf−πm = µ(1−µ)4. If ρ < CH , the firm
incurs no information rents but sacrifices the profit in (H,H): πf − πm = (1− µ)2 (ρ− θH).12 In
this paper, we say that firms achieve an optimal collusion if they earn πm as their per-period joint
profit. For later use, we define a value set V m ≡ {(u1, u2) : u1 + u2 = πm

1−δ}, where δ is common
discount factor.

We lastly clarify the assumptions that we have made to derive Lemma 1. The first assumption
is that there is no side-contracting collusion between agents; agents across firms cannot form a
cartel to make collusive reports using side-payments.13 The second assumption is that the firm
can make an ex ante commitment to production schedules. Under ρ < CH , before the agent’s
report, the virtual cost of producing q1HH + q2HH = 1 is CH , which is too high. After the agents’

12The assumption, ρ > θH , ensures that πf > πm. If θL < ρ ≤ θH , then πm = πf . We ignore the parameter
range θL < ρ ≤ θH , where our analysis becomes trivially simple, given that a high-cost firm has no incentive to produce
any output and mimic a low-cost type.
13Our paper does not allow any form of side-payment across firms or across agents. Laffont and Martimort (1997,
2000) characterize optimal collusion-proof mechanisms when privately-informed agents are collusive in their side-
contracting games. In related work, Che and Kim (2007) and Dequiedt (2007) study collusion-proof mechanisms
in auction.

7



report of (H,H), however, the firm may be tempted to produce q1HH + q2HH = 1 if the contract
is renegotiable.14 In later analysis, production schedule in any state is achieved by a self-enforced
agreement.

2.2. Nash-Equilibrium Values

In this subsection, we look for the Nash-equilibrium values. There are two firms. Each firm
now has a privately-informed agent. Departing from the monopoly model, we introduce a new
notation for the payment scheme for each agent. The payment function for agent i is a mapping,
ti : {L,H} ×Q → R. A typical payment for agent i is denoted by ti(qi, ri) when agent i makes a
report of ri ∈ {L,H} and produces qi ∈ [0, 1].
To find Nash-equilibrium values, we proceed with two steps. First, suppose that each firm knows

its agent’s cost at no information rents. A high-cost firm charges price at θH , and a low-cost firm
mixes, earning the expected profit (1 − µ)4 by slightly undercutting the high-cost firm’s price.
The ex ante expected profit for each firm is then µ(1− µ)4. Second, we specify the contract that
elicits agent’s truthfulness. If agent i reports low cost and produces qi, then the agent receives
ti(qi, L) = θLq

i + (1−µ)4
2 , and if agent i reports high cost and produces qi, then the agent receives

ti(qi,H) = θHq
i. We now confirm that agents’ incentive compatibility holds. Consider incentive

compatibility of a low-cost agent. Given that market shares in states (L,H), (H,L) and (H,H)

are determined by prices, q1LH = q2HL = 1 and q1HH = q2HH =
1
2 , a low-cost agent is induced to be

truthful by the expected information rent (1−µ)42 = 4 · qiH . Consider next incentive compatibility
of a high-cost agent. If a high-cost agent i mimics a low-cost type, then the agent will get the
expected information rents (1−µ)42 = 4 · qiH but suffer an increase of the expected production cost
4· qiL. It follows that 4· qiL ≥ 4· qiH , since the monotonicity, qiL ≥ qiH , holds for any realization of
qiLL under the mixed prices of two low-cost firms. We now find the ex ante expected profit of each
firm. The ex ante expected information rents are µ(1−µ)4

2 , and thus the ex ante expected profit,
net of such information rents, is πn ≡ µ(1−µ)4

2 . For the punishment phase in the repeated game
below, we define the set of Nash-equilibrium values as V n ≡ {(u1, u2) : u1 = u2 = v ≡ πn

1−δ}.

2.3. The Repeated Game

In this subsection, we describe the stage game and the repeated game. Our analysis hereafter
is based on the following assumptions: (i) firms do not exchange side-payments in the form of
monetary transfers across firms, (ii) agents across firms do not form a cartel to make collusive
reports using their side-payments and (iii) no firm secretly renegotiates the contract (collude)
with its agent. The model thus addresses a stringent environment for collusive side-contracting

14The ex post production in (H,H) is possible only if the contract is renegotiable; under ρ < CH , the ex ante
optimal contract specifies payments only for low-cost agents, tijk = θLq

i
jk for relevant (j, k). The optimal renegotiation-

proof contract would be the contract offered under ρ ≥ CH , and the associated suboptimal profit would be ρ−E(θ).
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behaviors. Note also that the contract with agent lasts for only one period.15

Consider the stage game. The timing of the stage game is as follows: (i) each agent i privately
observes its cost type θi ∈ {L,H}, (ii) each firm i offers a single-period contract xi to each agent,
(iii) each agent i makes a report ri ∈ {L,H} to the firm, (iv) each firm i makes an announcement
ai ∈ {L,H} to its rival firm j 6= i, (v) each firm i chooses a price pi and makes a market-share
proposal qi and (vi) each agent i produces the quantity requested by the firm. Market shares are
realized and the contracts are enforced.

The stage game is designed to reflect an environment in which equally priced firms, subsequent
to the agents’ report, communicate with each other to allocate market shares in a state-dependent
way, and each agent, following firms’ selection of market allocations, produces the corresponding
quantity (market share). Each agent i observes θi ∈ {L,H} and reports ri ∈ {L,H} under a
contract xi. Each firm then announces ai ∈ {L,H} and sets price pi and makes market-share
proposal qi. Given that each agent accepts the contract, the vectors, p ≡ (p1, p2) and q ≡ (q1, q2),
jointly determine market share for firm i, mi. If pi > ρ, then mi = 0, and if pi < pj ≤ ρ, then
mi = 1. If p1 = p2 ≤ ρ, thenmi = 1

2 if q
1+q2 6= 1, andmi = qi otherwise. We can find that market-

share proposals matter only for equally priced firms; if prices are different, then the lowest-priced
firm captures the entire market for a relevant price range.

To simplify the exposition, we now follow two steps: we first describe the inter-firm game for a
given internal contract xi, and then describe the contract. Then, in the interim stage that follows
the agent’s report ri ∈ {L,H}, firm i has a finite strategy set:16

Si =
©eai | eai : {L,H}→ {L,H}ª× ©epi | epi : {L,H} × {L,H}→ R

ª
× ©eqi | eqi : {L,H} × {L,H}→ Q

ª
.

Announcement function, eai, is conditional on the agent i’s report, and pricing and market-share
functions, epi and eqi, are conditional on the agent i’s report and its rival’s announcement. A typical
stage-game strategy for firm i 6= j is

si
¡
ri, aj

¢ ≡ ©eai ¡ri¢ , epi ¡ri, aj¢ , eqi ¡ri, aj¢ª .
The associated vector is denoted by s(r) ≡ (s1(r1, a2), s2(r2, a1)), where r is the vector of the
agent reports, r ≡ (r1, r2). A strategy vector s provides an interim stage-game payoff, Πi(s) =
Erj

£
πi(s, r)

¤
, where πi(s, r) represents the realized profit given the strategies. An ex ante expected

stage-game payoff is Π
i
(s) = Eri

£
Πi(s)

¤
.

15An example of such environment might be the one in which agents play a one-shot game when each firm, having
replaceable potential agents, can easily detect side-contracting behaviors. It is beyond the scope of the present paper
to analyze a contracting scheme when each agent has future prospects in various multi-period contractual relationships.
In the extension section, however, we will present the case in which agents have future prospects.
16Note that it is not ensured for now that agents make truthful report (ri = θi) and firms make truthful an-
nouncements, (ai = ri).
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Consider the repeated game. For solution concept, we employ Perfect Public Equilibrium (PPE),
where strategies are conditional on the publicly observed history of realized choices (Fudenberg et
al., 1994). Upon entering a period, each firm publicly observes the realized choices. Each firm also
privately observes its current cost type, the history of the cost types it had and the choice functions
it used in previous periods. Thus, a firm does not observe its rival firm’s current or past cost types
and does not observe its rival firm’s current or past choice functions. Let a ≡ (a1, a2) represent the
vectors of firm announcements. Upon entering a period τ , each firm observes the public history of
realized choices, hτ = {at,pt,qt}τ−1t=1 and h1 = ∅. A strategy of firm i in period τ , denoted by σiτ ,
is a mapping from the set of potential public histories Hτ to the set of stage-game strategies Si.

A strategy profile in each period τ is then defined by στ ≡ (σ1τ , σ2τ ). Each history hτ provides the
per-period expected payoff Π

i
(στ (hτ )). Each strategy involves a probability distribution, and thus

entails the expected payoff E[
P∞

τ=1 δ
τ−1Πi(στ (hτ ))].

We finally describe the contract xi. As in most of the existing literature that studies a strategic
device of contract, we assume that contracts are observed by colluding firms.17 A one-period
contract is chosen from a set of payment schemes, xi ∈ {eti | eti : {L,H} × Q → R}. A typical
payment for agent i is denoted by ti(qi, ri) when agent imakes a report of ri ∈ {L,H} and produces
qi. This quantity qi is conditional on the two firms’ announcement, qi : {L,H} × {L,H} → Q.

In this paper, we restrict attention to the contracts in which compensations to agents are at least
as high as production costs, ti(qi, L) ≥ θLq

i and ti(qi,H) ≥ θHq
i, which ensures that each agent

produces the requested quantity if the agent accepts any one-period contract.

In an ideal collusive scheme, firms would communicate with each other to allocate market shares
by the criterion of productive efficiency, whereby all production is assigned to the agent(s) with the
lowest production cost. Because of the two-tier communication channels, such market-allocation
collusions may pose a challenging problem in regard to finding enforceable contracts. For example,
we invoke the payment scheme that we used above under ρ ≥ CH :

ti
¡
qi, L

¢
= θLq

i +4 · qiH and ti(qi,H) = θHq
i.

In this payment scheme, although the term qi on the RHS is conditional on the two firms’ announce-
ments, it is the “actual” quantity that agent i produces, and thus is verifiable. The information-rent
term 4 · qiH is, however, determined by the expected quantity that agent i would produce if the
agent reported high cost. This quantity is not conditional on the agent’s current cost type (low
cost) and associated production. Hence, the payment ti(qi, L) ∀i is verifiable only if low-cost agents
are able to verify what would be the market-allocation schemes in (H,L), (L,H) and (H,H). In
this sense, the notation ti(qi, ri) is overly simplified. Another problem with finding enforceable
contracts is that agents may find it difficult to verify whether firms truthfully announce what they
have reported. If firms have an incentive to falsify the agents’ reported information, it may not

17 In a recent study of strategic delegation, Kockesen and Ok (2004) show that even unobservable contracts may serve
as a commitment device.
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be ensured that agents make truthful reports of their cost types. Complication thus arises; the
payment to an agent (ti) is determined by the agent’s report (ri) and the firms’ market-allocation
schemes that are conditional on firms’ external announcements (ai and aj). For now, we simply
avoid these difficulties by making the following assumption:

Assumption 1. Each agent is able to verify both firms’ announcements and their market-allocation
schedules.

This assumption is very restrictive. However, after we find a payment scheme that is enforceable
only under the assumption, we will establish an alternative scheme that is enforceable in the absence
of Assumption 1. In the alternative scheme, the payment to agent i will be dependent solely on
the real quantity qi that the agent produces. With this in mind, we use the notation ti(qi, ri) for
now, despite its oversimplification.

2.4. Two-Tier Mechanism Design

In this subsection, we describe how the repeated game and internal contract are pulled together. A
major difficulty with finding an optimal collusion is to establish a two-tier revelation mechanism:
ri = θi (agent i’s truthful report to firm i) and ai = ri (firm i’s truthful announcement to firm
j 6= i). Our approach involves two steps. Broadly speaking, in Step 1, we assume that each firm
knows its agent’s type for a given contract, and find collusive market-share schedules, and in Step 2,
we find an internal contract such that market-share allocation achieves productive efficiency. This
subsection is organized as follows. We first describe Step 1 and introduce a dynamic programming
tool developed by Abreu et al. (1986, 1990). Following this tool, each firm’s PPE payoff is factored
into two components, current-period profit and (discounted) expected continuation values that are
conditional on current-period actions, and after any history, the set of continuation values is equal
to the equilibrium-value set. We next follow Athey and Bagwell (2001) and Athey et al. (2004),
who show that existing tools from (static) mechanism design theory can be used to find the solution
of the factored program. We finally establish a two-tier mechanism design program.

Step 1 (Factored Program): Assume that for a given contract, each firm knows its agent’s cost
type (or equivalently each agent makes truthful report (ri = θi)). The program chooses current-
period strategies s ∈ S and continuation-value function υ : {L,H} × {L,H} × R4 → co(V ) to
maximize

ui = Eθi
£
Πi(s) + δυi (s(θ))

¤
subject to: for firms i and j, and any deviation bsi = (bai, bpi, bqi) ∈ Si,

Eθi
£
Πi(s) + δυi (s(θ))

¤ ≥ Eθi
£
Πi
¡bsi, sj¢+ δυi

¡bsi(θi,eaj(θj)), sj(θj ,bai(θi))¢¤ .
Note that continuation-value function υ is conditional on two firms’ announcement and current-
period strategies (p,q).
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We next adopt the work by Athey and Bagwell (2001) and Athey et al. (2004), who show that
the self-generating set (in the spirit of Abreu et al.) can be found by using existing tools from the
(static) mechanism design literature. Let the vector z ≡ (p,q,v) represent the equilibrium-path
strategy vector for prices, quantities and continuation values. To find the equilibrium-path payoffs,
suppose that firm 1 announces cost type ̂ when it knows that its agent draws cost type j, and that
if (̂, k) is realized as a result of the stage game, then the firm receives the current-period payoff
π1(p1̂k, q

1
̂k, j) and continuation value v

1
̂k. It then follows that if firm 1, knowing that its agent’s cost

type is j, announces cost type ̂, then it receives the interim current-period payoff and continuation
value:

Π1 (̂, j) ≡
X

k∈{L,H}
µkπ

1(p1̂k, q
1
̂k, j) and v1̂ ≡

X
k∈{L,H}

µkv
1
̂k.

We express the equilibrium-path interim payoff for firm i in a “direct” form: Πi (̂, j) + δvî.

Two-Tier Program:

Step 1 (Mechanism Design Program): Assume that for a given contract, each firm knows its
agent’s cost type (each agent makes truthful report (ri = θi)). The program chooses current-period
strategies (p,q) : {L,H} × {L,H} → R4 and continuation-value function v : {L,H} × {L,H} ×
R4 → co(V ) to maximize the ex ante expected payoff

ui(z) =
X

j∈{L,H}
µj
£
Πi (j, j) + δvij

¤
subject to:

(i) On-Schedule Constraints: ∀̂ 6= j, vîk ∈ co(V ),

Πi (j, j) + δvij ≥ Πi (̂, j) + δvî. (On-ICi
j)

(ii) Off-Schedule Constraints: ∀(cpjk, cqjk) /∈ {(pijk, qijk)}, bv ∈ co(V ),

πi
¡
pijk, q

i
jk, j

¢
+ δvijk ≥ πi (cpjk, cqjk, j) + δbv. (Off-ICi

jk)

(iii) Off-Schedule Constraints: ∀(cp̂k,cq̂k) /∈ {(p1jk, q1jk)}, bv ∈ co(V ),

Π1 (j, j) + δv1j ≥
X

k {L,H}
µk
£
π1 (cp̂k,cq̂k, j) + δbv¤ . (Off-m-IC1j)

The constraint Off-m-IC2 is analogous.

Step 2 (Choice of Contract): Letting ui(z(xi)) represent the ex ante expected payoff under a
contract xi, we find a contract xi that satisfies

(i) Agent’s Truthful Reports: ri = θi.

(ii) Optimality Condition: for any alternative contract bx, ui(z(xi)) ≥ ui(z(bx)).
The mechanism design program chooses current-period strategies (p,q) conditional on two firms’

announcement, and chooses continuation-value function v conditional on two firms’ announcement
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and current-period (p,q). The vector z ≡ (p,q,v) is chosen to satisfy feasibility and incentive-
compatibility constraints. Feasibility constraint means that continuation values are drawn from
the equilibrium-value set. Incentive compatibility consists of two parts: (i) the “on-schedule”
(truth-telling) incentive compatibility that each firm truthfully announces its cost and (ii) the “off-
schedule” (non-deviating) incentive compatibility that each firm cannot gain by choosing a price
or market share that is not specified for any cost type. An on-schedule deviation is not detected
as a deviation to the rival firm, since it follows the equilibrium vector, whereas an off-schedule
deviation is observed. The repeated play of the (noncooperative) Nash equilibrium is always an
equilibrium of the repeated game; thus, when firms are sufficiently patient, the Nash reversion can
be used as the punishment that follows any off-schedule deviation.

There are two types of off-schedule deviations: (i) a deviation from the vector (p,q) after the
announcement (Off-ICi

jk), and (ii) a “misrepresentation” at the announcement and a subsequent
deviation from the vector (Off-m-ICi

j).
18 The first type of deviation is realized by a firm that

slightly undercuts the price (say, cpjk = pijk − ε) and captures the entire market (cqjk = 1) after the
announcement (j, k). The second type of deviation is realized by a firm that misrepresents its type,
aiming to undercut the price subsequently. For example, if the price at the announcement (̂, k),
p̂k, is higher than in other announcements, then firm 1, knowing that its agent’s type is j, may be
tempted to announce ̂ 6= j, aiming to undercut the high price (cp̂k = p̂k − ε). In the section that
follows, we will argue that the second type of deviation can be ignored at a price-fixing collusion.

In Step 1, we adopt the work by Athey and Bagwell (2001), whereby the PPE-value set in the
Factored Program (say, it is V ∗) can be equally established by vectors z = (p,q,v) that satisfy
feasibility and incentive-compatibility constraints in the Mechanism Design Program.19 To be
precise, define the set of incentive compatible vectors, where continuation values are drawn from
co(V ):

ZIC(V ) ≡ ©z : On-ICi
j , Off-IC

i
jk and Off-m-IC

i
j hold, and (v

1
jk, v

2
jk) ∈ co(V ) ∀i, j, (j, k)ª .

Athey and Bagwell show that a value set, generated by these vectors, together with the punishment-
value set (V n) is equal to the PPE-value set:©¡

u1, u2
¢
: ∃z ∈ ZIC(V )

ª ∪ V n = V ∗.

This means that for any PPE values (u1, u2) ∈ V, there exists z ∈ ZIC(V ) such that ui = ui(z).

In Step 2, we build on this result and select a contract xi that induces the agent’s truthfulness
and maximizes the expected profit. In the following section, we will argue that the role of contract
is not only a mechanism for agents’ truthfulness but also a strategic device for an optimal collusion.

18The on-schedule constraints imply that firms in the announcement stage are truthful along the equilibrium-
path (incentive compatible) vector z. Hence, a firm lies at the announcement stage only for a subsequent off-schedule
deviation.
19See Lemma 2 in their paper.
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3. Incentive Compatibility with Contract

In this section, we demonstrate that there is an interaction between contractual form for agents’
truthfulness and incentive-compatibility constraints for firms. Among other alternatives, we con-
sider a contract that is enforceable only under Assumption 1: when agent 1 reports low cost and
produces q1, then the agent receives

t1
¡
q1, L

¢
= θLq

1 +4 · q1H , (5)

and when agent 1 reports high cost and produces q1, then the agent receives

t1(q1,H) =

(
θHq

1 if q1 = q1Hk

θHq
1 + α (ρ− θH) (q

1
L − q1H) if q1 = q1Lk,

(6)

where 0 ≤ α ≤ 1. The contract for agent 2 is analogous.
Note that the compensation to agent i is conditional on the actual quantity qi that agent i

produces and other expected quantities, qiH and qiL − qiH , that are not conditional on the agent’s
current report of cost type. Given that market-share allocations are monotone (qiL > qiH), this
contract contains a commitment device that induces the firm’s truthfulness: when a high-cost agent
produces a large quantity that is assigned for a low-cost agent, the agent receives an extra payment.
If an agent reports high cost but the firm lies and announces low cost (understates) to increase its
market share, then the firm will have the expected gain (ρ− θH) (q

i
L− qiH) but suffer the expected

expense α (ρ− θH) (q
i
L − qiH). The contractual form for agent i seen in (5) and (6) is hereafter

denoted by xi(α).20 The level of α is used to represent a contractual parameter that captures how
strongly firms are bounded to truthfulness by the contractual form xi(α). In the previous literature,
firms own private information; they can observe and distort private information at no extra costs.
In our model, agents hold private information and firms deliver it following the agents’ report.
Having an incentive to distort the agents’ private information, firms use the internal contract and
endogenize the level of costs a high-cost firm suffers when it falsifies its agent’s report. The level of
α reflects the level of costs that a high-cost firm incurs to falsify its agent’s report. The contractual
arrangement captures the circumstance in which firms deliberately reduce the degree to which they
control of private information; their incentive to distort the agents’ private information is bounded
by the contract with agents.21

20The qualitative results would be unaffected by a different commitment device, ti(qi;H) = θHq
i + α, where

α > 0 if firm i lies, and zero otherwise. Our analysis also does not resort to an immediate solution, where α

is a very large number, in order to show that a contract of this nature can be easily modified to a more realistic contract
in later analysis.
21 In relation to the previous literature, our analysis can be extended to the model in which firms hold private
information but face some costs to distort it; a higher level of falsification costs may reflect a lower degree of
private information. A similar falsification cost is found in the principal-agent model by Maggi and Rodríguez-
Clare (1995), where the agent can distort its private information at some costs.
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The contract xi(α) has important features under the monotonicity, qiL > qiH . First, the contract
has a direct commitment effect and yet is enforceable only under Assumption 1. Second, the two-
tier revelation problems are closely intertwined: agents’ truthful reports are ensured if and only if
firms do not lie. If firms are truthful, then agents are truthful under the contract. If high-cost firms
do lie (understate the reported cost types), then low-cost agents have an incentive to overstate their
cost types. If a low-cost agent i lies and reports high cost and firm i understates it, then the agent
receives ti(qi,H) = θHq

i + α (ρ− θH) (q
i
L − qiH) as in (6). This agent will then have the expected

net gain:

(θH − θL)q
i
H −4 · qiH + α (ρ− θH) (q

i
L − qiH) > 0.

The low-cost agent who lies can get the expected cost saving in production (first term) but lose the
information rents (second term) that the agent could earn without overstatement. The first two
terms cancel each other out. Third, if firms are truthful, then they can optimally allocate market
shares by the criterion of productive efficiency, which enhances contractual efficiency; firms can
reduce information rents by mitigating the low-cost agent’s incentive to overstate the cost type.
Information rents will be realized for two low-cost agents in (L,L), and for one low-cost agent in
(H,L) or (L,H). Letting I i ≡ 4 · qiH , the overall expected information rents will be the same as
in the optimal monopoly contracting:

µ2(I1 + I2) + µ(1− µ)(I1 + I2) = µ(1− µ)4 · (q1HH + q2HH).

At this point, it is worthwhile to present an overview of how the contract acts as a commitment
device in later analysis. First, we will establish a Pareto-frontier line segment of APPE values.
Construction of the line segment is possible only when the segment is sufficiently long, so that a
high-cost firm is persuaded to be truthful today by a sufficiently high continuation value drawn
within the segment even if the firm may end up with zero market share. If the contract xi(α) is
selected such that a high-cost firm suffers some falsification costs when it lies, then the high-cost
firm can be induced to be honest today by a reduced continuation-value reward, which relaxes the
restriction that the segment must be sufficiently long. In this way, the internal contract acts as
a commitment device that elicits the firm’s truthfulness. Second, we will characterize an optimal
SPPE, wherein to prevent the high-cost firm’s understatement today, a low continuation value (as
future penalty) is given to the firms that report low cost together. If the contract xi(α) is selected
such that a high-cost firm gains nothing by telling a lie today (because α is high enough) today,
then it becomes unnecessary to penalize the firms that report low cost together tomorrow. The
contract then acts to avoid the equilibrium-path penalization that would otherwise follow a pair
of low-cost announcement.

We now fully express incentive-compatibility constraints for a given contract xi(α). Suppose
that prices are fixed at ρ, and market-share schedules are monotone, qiL > qiH . Both conditions
hold in equilibrium. If the internal contract has a commitment device as in (5) and (6), then the
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current-period profit for firm 1 is

Π1(̂, j) =
X

k∈{L,H}
µkπ

1
¡
ρ, q1̂k, j

¢
=

X
k∈{L,H}

µk
£
ρq1̂k − t1

¡
q1̂k, j

¢¤
.

To represent the interim-stage profits in a direct form, let U i(̂, j) ≡ Πi (̂, j) + δvî.
22 The on-

schedule constraints are then given by

U i(H,H) ≥ U i(L,H) (On-ICi
H)

U i(L,L) ≥ U i(H,L). (On-ICi
L)

Our analysis focuses on the binding downward incentive constraint (On-ICi
H), based on the follow-

ing Lemma.

Lemma 2. Assume that prices are fixed at ρ and that qiL > qiH . Under a contract x
i(α), if On-IC i

H

is binding, then On-IC i
L is slack.

The proof is in the Appendix. The binding On-ICi
H is assumed, given that a high-cost firm

has an incentive to mimic a low-cost type that has a higher market share. The relevant incentive
problem is how to dissuade a high-cost firm from mimicking a low-cost type.23

We next find the expected profit function when On-ICi
H is binding. Under a contract xi(α), if

a high-cost firm is truthful, then it earns

U i(H,H) = Πi(H,H) + δviH ,

and if a high-cost firm lies, then it earns

U i(L,H) = Πi(H,H) + (1− α)(ρ− θH)
¡
qiL − qiH

¢
+ δviL.

The binding On-ICi
H means

δ(viH − viL) = (1− α)(ρ− θH)
¡
qiL − qiH

¢
. (7)

The binding On-ICi
H thus indicates the balance between the expected current-period gain from

understatement (RHS) and the expected continuation-value loss that a firm will suffer from telling
a lie (LHS). It then follows that the interim profit for a low-cost firm is

U i (L,L) = U i(H,H) +4 · ¡qiL − qiH
¢
+ α(ρ− θH)

¡
qiL − qiH

¢
.

22All the interim-stage profits are provided by the proof of Lemma 2 in the Appendix.
23As will be seen below, there is a constraint that a Pareto-frontier line segment must be sufficiently long for
it to exist. The assumption that On-ICiH is binding provides the minimum length of the segment that satisfies
this constraint.
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It is immediate to derive this equation from U i(H,H) = U i(L,H). The second term on the RHS
represents information rents, and the last term is the extra costs that a high-cost firm will incur
when it lies. Thus, for a given contract xi(α), if On-ICi

H is binding, then the expected equilibrium
payoff, ui(z(α)) =

P
j µjU

i (j, j) , is given by

ui(z(α)) = (ρ− θH) q
i
H + δviH + µ4 · ¡qiL − qiH

¢
+ αµ(ρ− θH)

¡
qiL − qiH

¢
. (8)

As mentioned above, there are two types of off-schedule deviations: (i) a firm can slightly
undercut the price and capture the entire market after the communication with the other firm,
and (ii) a firm can overstate or understate at the communication and then undercut the price. No
firms will gain by undertaking the first type of deviation if ∀j, k, (j, k)

δ
¡
v1jk − v

¢ ≥ ρ− θj −
¡
ρq1jk − t1(q1jk, j)

¢
(Off-IC1jk)

δ
¡
v2jk − v

¢ ≥ ρ− θk −
¡
ρq2jk − t2(q2jk, k)

¢
. (Off-IC2jk)

The Nash-equilibrium value, denoted by v, is used as the punishment that follows any off-schedule
deviation. The RHS represents the current-period gain that firm i can have by undercutting
slightly the price ρ in state (j, k), whereas the LHS represents the loss that firm i will suffer in the
future. Note that ρ− θj is the highest current-period payoff that firm i of type j can get for any
payment scheme ti(qi, j) ≥ θjq

i. We can show that since a misrepresentation has no cost savings
in terms of payments to the agent under xi(α), the constraint for the second deviation (Off-m-ICi

j)

is redundant in a price-fixing collusion; Off-m-ICi
j holds whenever other constraints are satisfied.

For instance, consider Off-m-IC1L. Firm 1 of a low-cost type has its interim payoff under xi(α):

U1(L,L) =
X

k∈{L,H}
µk
£
(ρ− θL)q

1
Lk + δv1Lk −4 · q1H

¤ ≥ X
k∈{L,H}

µk [(ρ− θL) + δv] .

The RHS represents the highest expected payoff that a low-cost firm can get when it misrepresents
its cost type for a subsequent deviation. The inequality is given by Off-IC1Lk.

4. Optimal APPE

In this section, we establish the existence of an optimal APPE as follows. In regard to the existence,
we show that a contract xi(α) can be designed such that there exists a value set V (α) generated
by incentive compatible vectors z(α) ∈ ZIC(V (α)) under the contract:

V (α) =
©
(u1, u2) : ∃z(α) ∈ ZIC(V (α)) such that ui = ui(z(α)) ∀iª .

Agents’ truthful reports are ensured under xi(α) by firms’ incentive compatibility under z(α).
In regard to the optimality, given that a contract xi(α) provides a value set V (α), we choose
the contract such that values in V (α) achieve the optimal monopoly values: V (α) ⊂ V m, where
V m ≡ {(u1, u2) : u1 + u2 = πm

1−δ}. Then, we say that there exists a set V (α) ⊂ V m such that
V (α) ∪ V n is a self-generating set of PPE values. For the base model, we preserve Assumption 1
together with the assumption, µ > 1

2 . These assumptions will be relaxed.
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4.1. Contractual Range

To establish an optimal APPE-value set V (α), we find a contract xi(α) (a range of α in (6)),
wherein for any (u1, u2) ∈ V (α), there exists a vector z(α) ∈ ZIC(V (α)) such that ui = ui(z(α))

∀i. Since the set V m has slope du2

du1 = −1, any optimal value set V (α) ⊂ V m is a line segment with
slope −1. The line segment is defined as V (α) = [(u, u), (u, u)], where u > u and u+ u = πm

1−δ . As
is standard, we first explore only the on-schedule constraints, assuming that firms are sufficiently
patient so that off-schedule constraints hold.

Consider first the parameter range ρ ≥ CH ≡ θH +
µ
1−µ4 in which q1HH + q2HH = 1 in an

optimal collusion, as seen in Lemma 1. It follows from the optimality that price is fixed at ρ, and
market shares in states (L,H) and (H,L) are fixed at q1LH = q2HL = 1. Each point in V (α) is
therefore established by varying market shares in ties, qiLL and qiHH . At an endpoint (u, u) of the
line segment V (α), for example, firm 1 receives the smallest value u by being assigned to the least
favored market shares such that q1LL and q1HH are close or equal to zero. Attention is thus on how
to elicit a firm’s truthfulness at its “disadvantaged” position, where the firm draws high cost and
thus may have zero market share. A high continuation value v1HL (as future reward) is afforded to
firm 1, in order to induce its truthfulness today at the least favored endpoint. The level of such
future reward is determined by the binding On-ICi

H in (7):

v1HL − v1LH =
(1− α) (ρ− θH)

δ
. (9)

The equation is derived by adding up both sides of the binding On-ICi
H :
24

2X
i=1

δ(viH − viL) =
2X

i=1

(1− α)(ρ− θH)
¡
qiL − qiH

¢
. (10)

The equation (9) implies that if a line segment V (α) ⊂ V m exists, then its width must be sufficiently
long: the value u must exceed u by at least the RHS of (9).25 Only then is it feasible to reward a
high-cost firm with a high continuation value v1HL drawn from the segment. Thus, the on-schedule
constraints imply that there is an “additional” constraint:

u− u ≥ (1− α) (ρ− θH)

δ
. (Add-IC)

We now establish that there exists a vector z(α) that satisfies the binding On-ICi
H and Add-IC if

for any δ,

α ≥ α∗(δ) ≡ 1− δ + δ(2µ− 1) (1− µγ)

1− δ + δ2µ2
,

where γ represents the ratio 4
ρ−θH .

To clarify the exposition, consider the case where α = α∗(δ) for any δ.26 Define a vector z(α)

24The derivation of (9) is included in the proof of Lemma 3 in the Appendix.
25The length given by the RHS of (9) satisfies the required length for the segment to exist. If On-ICiH is not
binding (say, slack), then the width on the RHS is not long enough.
26 In the Appendix, we show that for any α ≥ α∗(δ) for a given δ, there exist z(α) ∈ ZIC(V (α)) that establishes
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such that (i) prices are fixed at ρ, (ii) market shares are allocated by the criterion of productive
efficiency with q1LL = q1HH = 0 and (iii) continuation values are v

1
LH = v1HH = u,

v1HL = v1LH +
(1− α)(ρ− θH)

δ
= u+

(1− α)(ρ− θH)

δ

v1LL = u+
2µ− 1

µ
· (1− α)(ρ− θH)

δ
,

together with the condition, v1ij+v
2
ij = u+u ∀(j, k). Given the price and productive efficiencies, this

vector z(α) achieves optimality. To see this, using the equilibrium payoff in (8), let u1(z(α)) = u

and u2(z(α)) = u. The vector z(α) then obtains the values at the endpoint:

u =

¡
µ− µ2α

¢
(ρ− θH) + µ(1− µ)4
1− δ

(11)

u =

¡
1− µ+ µ2α

¢
(ρ− θH) + µ24

1− δ
. (12)

Note that u decreases in α whereas u increases in α, and that ∀α

u+ u =
ρ−E(θ)

1− δ
=

πm

1− δ
.

The defined vector indicates that firm 1, at the end point (u, u), receives the least favored market
shares in ties, and produces zero output in (H,L). Given the vector, the binding On-ICi

H in (9)
implies that firm 1 receives a high continuation value v1HL = u+ (1−α)(ρ−θH)

δ . This continuation-value
reward will be delivered when firm 1 takes more favored market shares in ties in the future after
the realization of (H,L). We confirm that this vector z(α) is (on-schedule) incentive compatible.
The value v1LL is chosen to satisfy the binding On-IC

1
H , and the value v1HL is chosen to satisfy

the equation (10), given the other values. Because of the binding On-IC1H and the equation (10),
On-IC2H is also binding. It follows from Lemma 2 that ∀i if On-ICi

H is binding, then On-ICi
L is

slack. We still need to confirm that Add-IC holds. The level of α = α∗(δ) is determined to satisfy
the binding Add-IC: u− u = (1−α)(ρ−θH)

δ . Lastly, we verify that the continuations are drawn from
the value set [(u, u), (u, u)]. If Add-IC holds, then u < v1HL ≤ u, and if µ > 1

2 , then u < v1LL < u.27

Hence, vijk ∈ V (α) ∀i, (j, k).
We next construct the other endpoint (u, u) of V (α). If there exists an incentive compatible

vector z(α) that establishes an endpoint (u, u), then there exists an analogous vector z0(α) that
establishes the other endpoint (u, u). Then, the remainder of the segment can be constructed by
a convex combination of two vectors. The reason is that given the fixed price ρ, firms’ payoffs
and the on-schedule constraints are linear in terms of market shares and continuation values, for a
given level of α.

We also emphasize that the contract xi(α) can be used to lengthen the width of V (α). Observe
that the gap u − u increases in α. To investigate how the equilibrium payoff in (8) changes with

the end point (u, ū). This result and the arguments that follow are detailed by the proof of Lemma 3 in the Appendix.
27Note that the assumption µ > 1

2
is necessary for the continuation values to be drawn from the value set V (α).
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α, suppose that α rises. Then, the payoff of firm 2 (u) increases. The last term in (8) αµ(ρ −
θH)(q

2
L−q2H) rises with α, and this positive effect is maximized, because of the most favored market

shares, q2LL = q2HH = 1, given the continuation values, v
2
LH = v2HH = u under z(α).28 When α rises,

however, the payoff of firm 1 (u) falls. The positive effect through the last term is minimized for firm
1, because of the least favored market shares, q1LL = q1HH = 0, and the continuation-value reward
v1HL = v1LH +

(1−α)(ρ−θH)
δ falls, given v1LH = u under z(α). To see how the width is lengthened,

consider an alternative contract xi(bα), where bα = bα(δ) > α∗(δ) for any δ. The associated vector
z(bα) is defined such that productive efficiency is achieved with q1LL = q1HH = 0, and continuation
values are similar to those in z(α) except that bα replaces α in v1HL and v

1
LL.We can then construct

a value set V (bα) whose width is longer than that of V (α) under α = α∗(δ). Since the RHS of
Add-IC decreases in α, Add-IC is slack under the alternative contract.

Our argument can be summarized as follows. It is highly beneficial that firms allocate market
shares by productive efficiency. Variations of continuation values are necessary to induce firms’
current-period truthfulness. These continuation-value transfers are delivered in the form of market-
share favors in ties (in terms of favored location on the segment). Construction of the optimal
APPE-value set is possible only when the frontier of value set is long enough. The frontier can be
sufficiently lengthened by the contractual device such that the least favored firm is persuaded to be
truthful by a continuation-value reward drawn from the segment. Given the recursive structure of
the model, any collusive scheme is designed to elicit firms’ truthfulness in each period, regardless
of their previous cost reports. Even after a history of 10 consecutive draws of (H,L), for example,
firm 1 is induced to be truthful today by the promise of the most favored market shares tomorrow,
if it is patient enough to endure asymmetric market-share arrangements in ties.29

Lemma 3. Assume that µ > 1
2 and ρ ≥ CH , and that firms are sufficiently patient. If α ≥ α∗(δ),

there exists a set

V (α) =
©
(u1, u2) : ∃z(α) ∈ ZIC(V (α)) such that ui = ui(z(α)) ∀iª ⊂ V m.

A detailed proof is provided in the Appendix. An example of the locus α = α∗ (δ) is in Fig. 1.
Note that α∗(δ) is decreasing in δ. If δ rises, the gap u−u rises but the RHS of Add-IC falls. Thus,
if δ is higher, then Add-IC may hold for a lower α. Intuitively, when firms are more patient and
thus more willing to wait for future reward than to capture the current-period gain by understating
their cost types, they may depend on a lower level of contractual commitment. Note also that the
level of α∗(δ) is decreasing in the ratio γ = 4

ρ−θH . Intuitively, when 4 is higher, high-cost firms
are more willing to wait for the continuation-value reward; when the continuation-value reward
is delivered in terms of market-share favors (e.g., qiLL = qiHH = 1), the payoff will increase more

28Letting market shares in ties q2LL = q2HH = q2T , the last term in (8) becomes αµ(ρ−θH)[(2µ−1)q2T +(1−µ)], which
rises in q2T if µ > 1

2
.

29 If firms are not sufficiently patient, some inefficiency begins to have an effect on the APPE-value set as is
detailed by Athey and Bagwell (2001).
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Figure 1: Example of α = α∗(δ) and β = β∗(δ).

significantly for a higher 4. Firms may then need a lower level of contractual commitment. On
the other hand, when the margin ρ−θH is higher, high-cost firms are more tempted to capture the
current-period gain, and thus their incentives should be more strongly bounded by the contract.

Consider next the parameter range ρ < CH in which q1HH + q2HH = 0 in an optimal collusion.
The contract xi(β) that corresponds to (5) and (6) becomes

ti
¡
qi, L

¢
= θLq

i and (13)

ti
¡
qi,H

¢
= θHq

i + β (ρ− θH) q
i, (14)

where 0 ≤ β ≤ 1. A high-cost firm is assigned to zero output in an optimal collusion. Any positive
production is accomplished by either a low-cost firm or a high-cost firm that surely lies. If a high-
cost firm lies and ever produces qi > 0, it has gain (ρ− θH) q

i but suffers costs β (ρ− θH) q
i. Note

that there is no information-rent term in the payment. The binding On-ICi
H implies that

v1HL − v1LH =
(1− β)(2− µ)(ρ− θH)

δ
. (15)

Thus, if a line segment V (β) ⊂ V m exists, then its width must be sufficiently long:

u− u ≥ (1− β)(2− µ)(ρ− θH)

δ
. (Add-IC)

There is a vector z(β) that satisfies the binding On-ICi
H and Add-IC if for any δ,

β ≥ β∗(δ) ≡ max
½
(2− µ) (1− δ + µδ)− µ2δγ

2− µ+ (3µ− 2) δ , 0

¾
.

Following the same arguments as above, we can obtain the following result.30

30The vector z(β) is detailed in the proof of Proposition 1 in the Appendix. Note that the assumption µ >
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Lemma 4. Assume that µ > 3−√5
2 and ρ < CH , and that firms are sufficiently patient. If

β ≥ β∗(δ), there exists a set

V (β) =
©
(u1, u2) : ∃z(β) ∈ ZIC(V (β)) such that ui = ui(z(β)) ∀iª ⊂ V m.

An example of β = β∗ (δ) is illustrated in Fig. 1. The level of β∗(δ) is decreasing in δ and
γ = 4

ρ−θH ; as above, firms needs a lower level of contractual commitment when δ and γ are higher.
The inequality ρ < CH is rewritten as γ > 1−µ

µ . If γ is low and close to 1−µ
µ , then β∗(δ) is higher

than α∗(δ) for a given δ. If γ keeps rising, then β∗(δ) shifts down below α∗(δ). If γ is higher
than 2−µ

µ and if δ is sufficiently high, then β∗ (δ) = 0. This finding implies that the contractual
commitment becomes unnecessary if γ and δ are sufficiently high.

4.2. Optimal APPE with Assumption 1

As of yet, our analysis has been confined to the on-schedule constraints. In this subsection, we
identify the critical discount factor δ∗ above which the off-schedule constraints also hold. To find
δ∗, we use the above vector z(α). It then suffices to check whether a firm’s off-constraints hold at
its disadvantaged endpoint, since the firm there is more tempted to undercut the price than at
any other point of the segment. Firm 1 is disadvantaged at the endpoint (u, u) and assigned to
q1LL = q1HH = 0 under z(α). In (L,H), firm 1 would not undercut the price, since it captures the
entire market in equilibrium. Comparing (H,L) to (H,H), firm 1 is less tempted to deviate in
(H,L) than in (H,H); the continuation value v1HL is higher than v1HH , and the RHS remains the
same under q1HL = q1HH = 0 in Off-IC

1
HL and Off-IC

1
HH :

δ
¡
v1HL − v

¢ ≥ ρ− θH − (ρ− θH) q
1
HL

δ
¡
v1HH − v

¢ ≥ ρ− θH − (ρ− θH) q
1
HH .

Given that q1LL = q1HH = 0 under z(α), Off-IC1LL is δ(v
1
LL − v) ≥ ρ − θL. Hence, the off-schedule

constraints reduced to Off-IC1LL and Off-IC
1
HH . If ρ ≥ CH , for example, the two relevant constraints

are

δ

µ
u+

2µ− 1
µ

· (1− α)(ρ− θH)

δ
− v

¶
≥ ρ− θL (Off-IC1LL)

δ (u− v) ≥ ρ− θH . (Off-IC1HH)

By plugging α = α∗(δ) and u in (11) and (12) into the constraints, we can find the associated
critical discount factors, δ∗LL and δ∗HH . Then, δ

∗ = max {δ∗LL, δ∗HH} .

Example. Suppose that ρ = 4, θH = 2, θL = 1 and µ = 0.6. Consider first the on-schedule
constraints. A contract xi(α) can be designed to establish the existence of a value set V (α) =
[(u, u), (u, u)] ⊂ V m. If V (α) exists, then the on-schedule constraints imply that the width of V (α)

1
2
is relaxed to µ > 3−√5

2
≈ 0.382. As above, this assumption is necessary for v1LL to be drawn from V (β).
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must be long enough (Add-IC): u−u ≥ 2(1−α)
δ . The endpoint (u, u) can be constructed by a vector

z(α) in which productive efficiency is achieved with q1LL = q1HH = 0, and continuation values are
assigned to satisfied the binding On-ICi

H : v
1
LH = v1HH = u,

v1HL = v1LH +
2(1− α)

δ
and v1LL = u+

2(1− α)

3δ
.

The vector constructs the values:

u =
1.44− 0.72α

1− δ
and u =

1.16 + 0.72α

1− δ
.

Note that u + u = 2.6
1−δ =

πm

1−δ . All the on-schedule constraints are satisfied: On-IC
i
H is binding,

On-ICi
L is slack and Add-IC is binding if α = α∗(δ) = 1−0.86δ

1−0.28δ . Consider next the off-schedule
constraints for firm 1 at (u, u). The relevant off-schedule constraints are Off-IC1LL and Off-IC

1
HH :

δ
¡
v1LL − v

¢ ≥ 3 and δ
¡
v1HH − v

¢ ≥ 2.
Using the values v1LL and v1HH under z(α) and α = α∗(δ), we find that δ∗LL ≈ 0.729 and δ∗HH ≈
0.678. Thus, δ∗ = max {δ∗LL, δ∗HH} ≈ 0.729. This example highlights that V (α) ⊂ V m exists even
if firms are not infinitely patient: if δ = 0.8 > δ∗, then α∗(δ) ≈ 0.402, u ≈ 5.753 and u ≈ 7.247.
As argued above, the contract xi(α) can be used to lengthen the width of V (α). Under an

alternative contract xi(bα), if bα = bα(δ) > α∗(δ) for any δ, then there exists a vector z(bα) in which
productive efficiency is achieved with q1LL = q1HH = 0, and continuation values are assigned as in
z(α) except that bα replaces α in continuation values. The width of the associated value set V (bα) is
longer than that of V (α) under α = α∗(δ). Add-IC becomes slack under the alternative contract.
Note, however, that the values, v1LL and v

1
HH , are lower under z(bα) than z(α), and thus lengthening

the value segment may be constrained by the off-schedule deviation of the least favored firm unless
δ is sufficiently high.

By contrast, the alternative contract xi(bα) may be used to shorten the width of the value set.
Under the contract xi(bα), there exists a vector bz(bα) 6= z(bα) such that productive efficiency is
achieved with q1LL = q1HH ∈ (0, 12) while continuation values remain similar to those under z(bα). A
distinct feature here is that market shares of firm 1 in ties are above zero and Add-IC is binding;
the level of bα = bα(δ) and market shares in ties are tailored to satisfy the binding Add-IC.31 In
this case, the width of the corresponding set V (bα) is shorter than that of V (α) under α = α∗(δ).
Note that the RHS of Off-IC1LL and Off-IC

1
HH decreases when q

1
LL and q

1
HH decrease, and that the

value u in the LHS rises when the segment is shortened. Thus, shortening the segment may relax
the off-schedule constraints of the least favored firm in some parameter range. We summarize our
findings as follows:

Proposition 1. Assume that firms are sufficiently patient. (i) If ρ ≥ CH and µ > 1
2 , then for

α ≥ α∗(δ), there exists a set V (α) ⊂ V m such that V (α) ∪ V n is a self-generating set of APPE

31 It is shown by the proof of Lemma 3 that for any α ≥ α∗(δ) for a given δ, there exists a vector z(α) in which On-ICiH
and Add-IC are binding.
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values. (ii) If ρ < CH and µ > 3−√5
2 , then for β ≥ β∗(δ), there exists a set V (β) ⊂ V m such that

V (β) ∪ V n is a self-generating set of APPE values.

The proof is in the Appendix. The benefit of the interaction between internal contracting and
inter-firm collusion is substantial. Even if firms are not infinitely patient, they may be able to
duplicate the monopolist’s optimal performance. If the information that facilitates collusion is
held by other parties (agents), then the contract with agents may act as a commitment device
to relax the truth-telling constraint for colluding firms to allocate market shares by the criterion
of productive efficiency. Conversely, collusive market-share allocations may act to discipline the
agents’ overstating incentive and thus reduce their information rents. This finding is, however,
based on Assumption 1.

4.3. Optimal APPE without Assumption 1

In this subsection, we relax Assumption 1. In the previous analysis, the continuation-value reward
was delivered in the form of market-share favors in ties (or in terms of favored position on the
segment), and construction of an optimal APPE-value set was possible, since market shares in
ties, qiLL and qiHH , varied along the equilibrium-value set without causing any inefficiency. The
market-sharing arrangements are, however, feasible only when they are verifiable for agents. Our
objective here is to find a payment scheme ti(qi, j) that is conditional only on the real quantity qi

that agent i produces after the report of j. A difficulty with finding such a payment scheme is that
the information-rent term for a low-cost agent, 4 · qiH , involves the market-sharing schemes that
the agent would face only after the report of high cost. Given this difficulty, we put a restriction
on market shares in ties: qiHH is held constant at 12 and only qiLL is used for market-share favors.
Using the restriction, we can construct a simple and enforceable contract. Assuming that ρ ≥ CH ,

define a contract xi(α):

ti
¡
qi, L

¢
= θLq

i +
(1− µ)4

2
and (16)

ti
¡
qi,H

¢
=

(
θHq

i if 0 ≤ qi ≤ 1
2

θHq
i + α (ρ− θH)

¡
qi − 1

2

¢
if qi > 1

2 .
(17)

Note that payments to agent i are conditional only on the actual output qi that the agent produces.
A low-cost agent receives a fixed information rent, and a high-cost agent receives an extra payment
when the agent produces more than a fixed output 12 . Given the restriction qiHH =

1
2 , information

rent is fixed at the minimal level, 4·qiH = (1−µ)4
2 , and production above 12 is carried out by either a

low-cost firm or a high-cost firm that surely lies. If firms are truthful with the commitment device,
then agents also are truthful with the minimal information rent. The overall expected information
rent for both agents is the same as that in the optimal monopoly contract, µ(1− µ)4.

Following the previous procedure, we can establish the existence of a value set V (α) ⊂ V m
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under the contract xi(α) if for any δ,

α ≥ α∗ (δ) ≡ 1− δ + δµ (1− µγ)

1− δ + δµ (1 + µ)
. (18)

As above, the contract xi(α) can be used to lengthen (or shorten) the width of V (α). The scope
of market-sharing arrangements at (H,H) is reduced from [0, 1] to 1

2 . At the same time, however,
the rigidity, qiHH = 1

2 , reduces the market-share disadvantage in ties. The assumption on µ is
necessary in order to make the continuation-value reward sufficient for a firm to be truthful at
its disadvantaged endpoint. The assumption is now relaxed to µ > 1

3 , as the rigidity reduces the
market-share disadvantage in ties.

Proposition 2. Assume that firms are sufficiently patient. If ρ ≥ CH and µ > 1
3 , then for

α ≥ α∗(δ) as in (18), there exists a set V (α) ⊂ V m such that V (α)∪V n is a self-generating set of
APPE values.

The proof is in the Appendix. In the parameter range ρ < CH , the result in Proposition 1 (ii)
remains without depending on Assumption 1. Any modification of the contract xi(β) in (13) and
(14) is unnecessary, since the payments are conditional only on the real output qi.

In the previous literature, firms own private information; firms can observe and distort private
information at no extra costs. In our model, agents hold private information and firms deliver
it; firms deliberately reduce the degree to which they control of private information. A very
simple contractual arrangement that reduces the firms’ incentive to distort the agents’ private
information makes it possible to establish a sufficiently long Pareto-frontier segment, so that firms
are induced to be truthful by continuation-value transfers. As a result, an interaction between
internal contracting and market-sharing collusion is exploited: firms achieve an optimal market
allocation, and the benefit of the optimal market allocation is not limited to productive efficiency
but expanded to contractual efficiency. This argument becomes apparent in comparison with the
no-agent setting as in Athey and Bagwell (2001). To characterize first-best collusion, Athey and
Bagwell restrict γ = 4

ρ−θH to be above a certain level. As argued above, when γ falls, the need for
the commitment device grows, and thus α∗(δ) rises. If this restriction fails in the no-agent model,
then first-best profit is approximated only when firms are infinitely patient; as firms becomes more
patient, the width of Pareto-frontier segment grows, but not sufficiently for δ < 1. In this paper,
however, the width restriction on the equilibrium-value set is relaxed even if firms are moderately
patient.

5. Optimal SPPE

In the previous section, continuation-value transfers were used to construct an optimal APPE-value
set, and they were delivered in the form of asymmetric market shares in ties without sacrificing
any efficiency; market shares in ties, qiLL and q

i
HH , are unrestricted (changeable) as in Proposition
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1, and qiLL is unrestricted and q
i
HH is restricted to

1
2 as in Proposition 2. We now impose a stronger

restriction on market-shares in ties: both qiLL and q
i
HH are restricted to

1
2 . This symmetry restriction

makes it impossible to exchange market-share favors in ties. In this section, to allow for the
symmetry restriction, we employ Symmetric Perfect Public Equilibrium (SPPE) and characterize
the features that would not be found in the no-agent model because of its symmetry restriction.

5.1. Symmetry Restriction

In this subsection, we study what symmetry means. Recall that a strategy of firm i in period τ is
a mapping from the set of potential public histories to the set of stage-game strategies. A typical
strategy of firm i in period τ is σiτ (hτ ). In SPPE, firms follow the public history and adopt symmet-
ric strategies, σiτ (hτ ) = σjτ (hτ ) ∀i, j, τ , hτ . This means that stage-game strategies are symmetric
across firms for all histories. Among the stage-game strategies we have used, only strategies (p,q)
are affected by the symmetry restriction in this section; we have considered symmetric contracts,
xi = xj , and firm announcements are truthful in both APPE and SPPE. Thus, when ρ ≥ CH , the
optimal symmetric vectors of prices and market shares are

∀i, (j, k), pijk = ρ, q1LH = q2HL = 1, and qiLL = qiHH =
1

2
. (19)

Note that prices and market-share schedules are symmetric across firms.

Again, we use the previous two-tier mechanism design program to establish an SPPE-value set:
assuming the agents’ truthfulness, we find current-period strategies (p,q) and continuation-value
function v that satisfy the on- and off-schedule constraints, and select a contract xi that induces
the agent’s truthfulness and achieves optimality. Let V s denote the set of SPPE continuation
values. The values in V s are restricted to the 45-degree line, and the Pareto-frontier value set of
SPPE is reduced to a point (bu, bu): V s ⊂ ©(u1, u2) : u1 = u2 ≤ buª .32 In SPPE, any continuation-
value reduction (below the Pareto-frontier value set) is suffered by all firms together. In APPE, by
contrast, a continuation-value loss for one firm may imply a continuation-value gain for another.
Thus, efficient continuation-value transfers across firms are unavailable in SPPE.

To emphasize how the presence of privately-informed agents affects the SPPE-value set V s(α),

we first consider the no-agent model and argue that symmetry is a real restriction. In no-agent
model, On-IC1H isX

k∈{L,H}

£
µk (pHk − θH) q

1
Hk

¤
+ δv1H ≥

X
k∈{L,H}

£
µk(pLk − θH)q

1
Lk

¤
+ δv1L.

On-IC2H is similarly given. The constraint shows that (i) if a vector (p,q,v) achieves price efficiency
(pjk = ρ) and Pareto-efficient continuation values (vijk = bu), then it entails productive inefficiency
(qiL = qiH), and (ii) if the vector achieves productive efficiency and Pareto-efficient continuation

32The value u is the supremum of SPPE continuation values. We show below that the Pareto-frontier set of
SPPE values includes this supremum.
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values, then it entails price inefficiency (pjk < ρ for some (j, k)). These two cases occur in an
SPPE that is stationary, wherein firms repeatedly use the same current-period strategies (p,q) to
satisfy all the constraints, fixing continuation values at bu. Any SPPE that is nonstationary involves
variations of continuation values, which necessarily entails a reduction of some continuation values
below bu to satisfy On-ICi

H . Therefore, because of the intrinsic nature of SPPE that continuation-
value transfers are wasteful, optimal SPPE values are lower than the optimal monopoly values in
the no-agent model.33

Lemma 5. In the no-agent model, the Pareto-frontier SPPE values are lower than the optimal
monopoly values.

5.2. Optimal SPPE Values

The result in Lemma 5 seems fairly straightforward. However, it becomes far different if each firm
has a privately-informed agent. In this subsection, we establish a nonstationary SPPE and show
that along with a simple contractual arrangement, the SPPE-value set V s(α) may approximate the
point: V m = {(u1, u2) : u1 = u2 = πm

2(1−δ)}.We construct an SPPE-value set V s(α) = [(u, u), (u, u)],

where u > u. This set has the two endpoints of SPPE values, (u, u) and (u, u), on the 45-degree
line. If firms randomize over the two vectors that construct the two endpoints, the SPPE-value set
becomes convex and fully characterized. We thus focus on the construction of the two endpoints.

To establish V s(α), we find a contract xi(α), wherein for any (u1, u2) ∈ V s(α), there exists a
vector z(α) ∈ ZIC(V s(α)) such that ui = ui(z(α)) ∀i. We for now consider only the on-schedule
constraints, assuming that the off-schedule constraints hold. Assuming that ρ ≥ CH , define a
contract xi(α):34

ti
¡
qi, L

¢
= θLq

i +
(1− µ)4

2
and (20)

ti
¡
qi,H

¢
=

 θHq
i if 0 ≤ qi ≤ 1

2

θHq
i + α(ρ−θH)

2(1−µ) if qi > 1
2 .

(21)

Note that payments to agent i are conditional only on the real output qi that the agent produces. A
low-cost agent receives a fixed information rent, and a high-cost agent receives a fixed extra payment
when the agent produces more than 1

2 . Given the symmetry restriction qiHH =
1
2 , information rent

is fixed at the minimal level, 4 · qiH = (1−µ)4
2 , and production above 1

2 is carried out by either a
low-cost firm or a high-cost firm that surely lies. The high-cost firm that lies incurs falsification
costs with probability of (1 − µ). If market shares follow the optimal symmetric vectors in (19),

33See Lemma 5 in Athey and Bagwell (2001) to find how symmetry restricts the Pareto frontier.
34There are various forms of contract and associated vector z(α) that can establish a SPPE-value set V s(α).

The qualitative result, however, would be unaffected: Vm can be approximated by V s(α) along with a simple
contract xi(α).
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the high-cost firm that lies can have the current-period gain:

(ρ− θH)
¡
qiL − qiH

¢− (1− µ)
α (ρ− θH)

2(1− µ)
=
(1− α)(ρ− θH)

2
.

Thus, under xi(α), the binding On-ICi
H becomes

δ
¡
viH − viL

¢
=
(1− α)(ρ− θH)

2
. (22)

We first construct the higher SPPE-values (u, u). Define a symmetric vector z(α) such that
current-period strategies (p,q) are the vectors in (19) and continuation-value vector v is given by
v1jk = v2jk = u ∀(j, k), except

v1LL = v2LL = u− (1− α)(ρ− θH)

2δµ
. (23)

The continuation value viLL is lower than other values and is chosen to satisfy the binding On-
ICi

H in (22). In SPPE, continuation-value transfers across firms are wasteful; any variation of
continuation values entails some inefficiency and is suffered by all firms together. The symmetric
vector z(α) uses a lower continuation value viLL (as future penalty) to prevent the high-cost firm’s
understatement today. This future penalty will be delivered subsequent to the realization of (L,L).
The equation (23) also implies that if an SPPE-value set V s(α) exists, then the distance between
the two endpoints must be sufficiently long (Add-IC): the value u must be greater than u at least
by (1−α)(ρ−θH)

2δµ . Only then is it feasible to penalize low-cost firms with a low continuation value
viLL drawn from V s(α). Note that the expected payoff of firm i takes the same form as (8), since
On-ICi

H is binding. Letting ui(z(α)) = u and using the vector z(α), we can find the value:

u =
ρ−E (θ)

2
+ δu− (1− α)µ(ρ− θH)

2
. (24)

The third term on the RHS reflects the (discounted) potential future penalty that follows the
realization of (L,L).

We next construct the lower SPPE values (u, u). Define a vector z0(α) such that prices are fixed
at a lower level, pijk = ρ < ρ ∀i, (j, k), and market shares and continuation values, q and v, are the
same as in the previous vector z(α).35 Following the vector z0(α), firms deliver the future penalty
(a lower continuation value) by setting the lower price ρ after the realization of (L,L). With no
prior assumption that On-ICi

H is binding under z0(α), the expected payoff of firm i becomes

ui(z0(α)) =
X

j {L,H}
µj
£
Πi (j, j) + δvij

¤
=

X
j {L,H}

µj
£
(ρ− θj) q

i
j + δvij

¤− µ(1− µ)4
2

.

35 In order to construct the lower-value point, firms may use a productive inefficiency rather than a price reduction.
An advantage of choosing the price reduction is that it reduces the incentive to undercut the price at the lower-
value point.
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The last term represents the expected information rent under the contract. Letting ui(z0(α)) = u

and using the vector z0(α), we can find the value:

u =
ρ−E (θ)

2
+ δu− (1− α)µ(ρ− θH)

2
. (25)

The lower value u captures the current-period price reduction (first term) and the switch to the
higher value in the following period (second term) together with the potential future penalty
(third term). The level of ρ is now chosen to satisfy the binding Add-IC: u− u = (1−α)(ρ−θH)

2δµ , or
equivalently

ρ = ρ− (1− α) (ρ− θH)

µδ
. (26)

Note that ρ ≤ ρ for any α ∈ [0, 1] with equality for α = 1. The binding Add-IC together with (24)
and (25) yields values:

u =
ρ−E (θ)− (1− α)µ(ρ− θH)

2(1− δ)
(27)

u = u− (1− α)(ρ− θH)

2δµ
. (28)

As in the Appendix, the level of α is next chosen to ensure that the vectors z(α) and z0(α) satisfy
the on-schedule constraints.36 A certain level of α is necessary to prevent the low-cost firm from
overstating its cost type to avoid the potential future penalty.

We finally consider the off-schedule constraints. Since firms are more tempted to undercut the
price ρ than ρ, we focus on the firm 1’s off-schedule incentive at the endpoint (u, u). When firm
1 is a low-cost type, it will not undercut the price in (L,H) since it captures the entire market
in that state. When firm 1 is a high-cost type, it will be more tempted to undercut the price in
(H,L) than in (H,H), since the current-period market share q1HL is lower than q1HH for the same
continuation values, v1HL = v1HH = u. Hence, firm 1 will not undertake any off-schedule deviation
if

δ
¡
v1LL − v

¢ ≥ (ρ− θL)q
2
LL =

ρ− θL
2

(Off-IC1LL)

δ
¡
v1HL − v

¢ ≥ (ρ− θH)q
2
HL = ρ− θH . (Off-IC1HL)

The off-schedule constraints of firm 2 are symmetrically described. The continuation values on
the LHS are v1LL = u and v1HL = u, and the RHS represents the current-period gain that firm 1
can make when it undercuts the price. Letting δ∗ = max{δ∗LL, δ∗HL}, we obtain the result that
corresponds to Lemma 3 in APPE: for some range of α and δ, there exist the two vectors that
can establish (u, u) and (u, u), respectively, and the remainder of V s(α) can be constructed by a
convex combination of the two vectors.

We now conclude that a simple contractual arrangement may significantly change the SPPE-
value set V s(α). It is evident that if α→ 1, then (i) ρ→ ρ, (ii) u→ u, (iii) u→ πm

2(1−δ) and (iv) δ
∗

36See the proof of Proposition 3 in the Appendix.
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decreases and converges to the lowest level of δ that solves

δ

µ
πm

2(1− δ)
− πn

1− δ

¶
≥ max

½
ρ− θL
2

, ρ− θH

¾
.

In other words, if α → 1 and δ > δ∗, then V s(α) → V m. We emphasize that the contract xi(α)
can be used to shorten the width of V s(α). When α → 1, wasteful continuation-value transfers
become unnecessary and the width of V s(α) is shortened to a point V m. Having an incentive to
distort the agents’ private information, firms use the contractual arrangement to increase the costs
a high-cost firm suffers when it falsifies its agent’s report. The high-cost firm then gains nothing
by telling a lie today, and thus it becomes unnecessary to penalize the firms that report low cost
together. The contract thus acts to avoid the equilibrium-path penalization that would otherwise
follow a pair of low-cost announcement.

Proposition 3. Assume that ρ ≥ CH and that firms are sufficiently patient. If α → 1, then an
SPPE can approximate the optimal monopoly profit; if α→ 1, then there exists a set V s(α) such
that (i) V s(α) ∪ V n is a self-generating set of SPPE values and (ii) V s(α)→ V m.

The result is not based on the assumption µ > 1
2 , and the result for ρ < CH is analogous. Our

finding shows that a very simple contractual arrangement can shorten the SPPE-value set so that
firms are induced to be truthful without depending on wasteful continuation-value transfers. The
symmetry restriction in SPPE affects characteristics of an optimal collusion differently between
our model and the no-agent model: SPPE suffers a waste of equilibrium values in the no-agent
model, but it can approximate the optimal monopoly profit despite the symmetry restriction in
our model.

Our model also contrasts with the no-agent model by Athey et al. (2004), where cost types are
continuously distributed. They predict that when the distribution of cost types is log-concave, opti-
mal SPPE is characterized by a pooling equilibrium in which market shares are constant regardless
of cost types; firms sacrifice productive efficiency and instead save informational costs that would
be necessary to deter higher-cost firms from mimicking lower-cost firms. In our two-type model,
firms achieve productive efficiency in market allocation, which, in turn, reduces informational costs.

6. Extensions

In this section, we informally present some possible extensions of the model.37 First, we discuss
the role of communication between firms in comparison with other models. Second, we consider
internal contracting with agents who have future prospects.

37This section is motivated by referees’ reports.
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6.1. Non-communicative Firms

The role of communication in the model is to achieve state-dependent market-sharing arrangements.
Athey and Bagwell (2001) show that if observable past prices act as public history on which
subsequent collusion is coordinated, then first-best profit may be achieved without communication.
Skrzypacz and Hopenhayn (2004) find, however, that the scope of collusion is constrained without
explicit communication when firms have imperfect public monitoring on past actions. A potential
benefit of communication is also suggested in a large and growing private-monitoring literature.
It would be very complicated to keep track of each player’s belief over rival types as private
information is accumulated over time. Compte (1998) and Kandori and Matsushima (1998) show
that players can generate a public history, benefiting from communication.38

Returning to our model, we follow Athey and Bagwell (2001) and establish a non-communicative
APPE. Consider a price vector: p1H = ρ, p1L = ρ−2ε, p2H = ρ−ε and p2L = ρ−3ε for arbitrarily small
ε > 0, where pij denotes price of firm i when its cost type is j. Note that prices and market shares
correspond to the vector that we used to construct the endpoint (u, u); productive efficiency is
achieved, and market shares in ties are in favor of firm 2 in the Bertrand model. Since continuation
values can be contingent only on prices, communication is unnecessary. In this way, we can
directly use arguments by Athey and Bagwell without depending on their restriction on γ =
4

ρ−θH .
39 Furthermore, we can establish a non-communicative SPPE that approximates the optimal

monopoly values. Prices can be defined as piH = ρ and piL = ρ− ε to construct (u, u), and piH = ρ

and piL = ρ− ε to construct (u, u). Market shares are symmetric and achieve productive efficiency
in each endpoint, and continuation values can be contingent only on prices. Communication is
then unnecessary. A relative easiness of collusion in our model is still demonstrated in this non-
communicative collusion: no restriction on γ is necessary in APPE and no optimal values are
wasted in SPPE.

6.2. Non-myopic Agents

It has been assumed so far that the internal contract with agent lasts for only one period. The
contracting scheme is stationary; the same contract is repeatedly offered over time. It is beyond the
scope of the present paper to analyze a contracting scheme when each agent has future prospects in
various multi-period contractual relationships. In the remainder of this section, we briefly present
a possibility that colluding firms may benefit when agents have future prospects; firms can use
agent’s future prospects to make the internal contract more efficient. To this end, we construct
a self-generating set of agents’ values, V A = {(uA, uA), (uA, uA)}, where uA > uA. When agent i

38Recent work shows that the Folk Theorem seems quite robust in games with private monitoring (without commu-
nication) within the class of prisoner’s dilemma model (e.g., Sekiguchi, 1997; Bhaskar and Obara, 2002; and
Ely and Välimäki, 2002).
39For detail, see their Proposition 8. Athey and Bagwell (2001) further address the circumstances where non-
communication benefits colluding firms.
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observes cost type j and reports ̂, the agent receives interim-stage payoff,

UAi(̂, j) = t
i
̂ − θjq

i
̂ + δwi

̂,

where tî and wi
̂ represent the expected transfers and continuation values under the report ̂: for

agent 1, for instance,

t
1
̂ =

X
k∈{L,H}

µkt
1
̂k and w1̂ =

X
k∈{L,H}

µkw
1
̂k.

Observing that the agent has an incentive to overstate the cost type, we focus on the binding
constraint of a low-cost type:40

δA
¡
wi
L − wi

H

¢
= t

i
H − θLq

i
H −

³
t
i
L − θLq

i
L

´
, (IC-Ai

L)

where δA represents agents’ common discount factor. An overstatement has current gain (RHS)
and future loss (LHS). When IC-Ai

L is binding, the expected payoff of agent i is

uAi ≡
X

j∈{L,H}
µjU

Ai(j, j) = t
i
L − θLq

i
L + δwi

L − (1− µ)4 · qiH . (29)

As in the contract in (16) and (17), with a predetermined output qiHH = bqi > 0 in mind, we define
xi(α):

ti
¡
qi, L

¢
= θLq

i + (1− µ)4 · bqi − ψi and (30)

ti
¡
qi,H

¢
=

(
θHq

i if 0 ≤ qi ≤ bqi
θHq

i + α (ρ− θH)
¡
qi − bqi¢ if qi > bqi. (31)

Since the contract becomes more efficient only when agents’ information rents exist and become
lower, assuming ρ ≥ CH = θH+

µ
1−µ4, we deal with the case where productive efficiency is achieved

and productions in (H,H) are positive: bq1+bq2 = 1. In the previous analysis, information rents were
given by 4 · qiH = (1−µ)4 · bqi. A new constant term ψi ≥ 0 represents a reduction of information
rents for a low-cost agent i, and will be derived below. We first construct a point (uA, uA) ∈ V A,

where continuation values are drawn from V A and conditional on current-period productions:¡
w1LL, w

2
LL

¢
=
¡
w1LH , w

2
LH

¢
= (uA, uA) and

¡
w1HH , w

2
HH

¢
=
¡
w1HL, w

2
HL

¢
= (uA, uA).

Note that the point (uA, uA) is in favor of agent 1. Continuation values indicate that if agent
1 reports low cost (high cost) today, then the agent will preserve (lose) the current favored po-
sition tomorrow as future reward (penalty). To deliver continuation-value reward (penalty), a
non-stationary contracting schedule and market-sharing arrangements in (H,H) are employed as
follows. If agent 1 in its favored position reports low cost (high cost) today, the agent will receive
a favorable (unfavorable) contract and market share in (H,H) tomorrow. If any agent i (agent j)
is given the favored (disadvantaged) position today, then (i) qiHH = bqi = 1 (qjHH = bqj = 0) so that
40Constraints for high-cost types, IC-A1H and IC-A2H , are slack as below.
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information rents 4 · qiH are maximized (minimized to zero), and (ii) the contract is offered such
that the net surplus (1− µ)4 · bqi − ψi is positive (zero with ψj = 0).

At the point (uA, uA), firm 1 has a market-share favor in (H,H), q1HH = 1. We now greatly
simplify our analysis and focus only on the agents’ constraints by neutralizing any firm’s relative
benefit from market-sharing arrangements. To this end, we find a disadvantaged market share for
firm 1 in (L,L), q1LL ∈ (0, 12), that exactly offsets firm 1’s benefit in (H,H). Under productive
efficiency, if µ is not too low, then there always exists q1LL ∈ (0, 12) in which the firm 1’s gain (firm
2’s loss) in (H,H) is equal to its loss (its gain) in (L,L) in terms of the expected profit.41 Along
with such market shares in ties, we set α = 1 in xi(α). In this case, the expected profits are the
same across firms in each period, firms’ continuation values are drawn from the same value and
their on-schedule constraints are trivially satisfied.

Returning to the above history-dependent contracting schedule and continuation values, we can
rewrite the binding IC-A1L:

δ(uA − uA) = θLq
1
L +∆ · q1H − t

1
L = ψ1. (32)

The second equality is given by (30). We can easily find that IC-A2L has zero in both sides. Hence,
the “additional” constraint (Add-IC for agents’ constraints) is simply reduced to IC-A1L.

42 Using
the expected payoff in (29) and letting uA1 = uA and uA2 = uA, we can find the values, uA and
uA, and the differential:

uA − uA =
1

1− δAµ

h
t
1
L − θLq

1
L −

³
t
2
L − θLq

2
L

´
+ (1− µ)∆ · ¡q2H − q1H

¢i
. (33)

Since agent 1 is favored now, let t2L − θLq
2
L = 0 and q2H = 0. Plugging (33) into (32), we can get

t
1
L = θLq

1
L +∆ · q1H −

δAµ

1− δA(1− µ)
∆ · q1H .

The last term represents the information-rent reduction; observe that (i) if δA > 0, then δAµ
1−δA(1−µ) >

0 and (ii) if δA → 1, then δAµ
1−δA(1−µ) → 1 and so t1L → θLq

1
L. Given that q

1
HH = bq1 = 1 and that ψ1

is used to denote the information-rent reduction, we can define the last term as:

δAµ(1− µ)∆

1− δA(1− µ)
≡ ψ1 > 0 for δA > 0.

The other point (uA, uA) ∈ V A can analogously be constructed. In the first period where history
is null, firms may start with any point. This result shows that in some parameter range, (i) if

41Without a prior assumption that On-IC1H is binding, we can find

q1LL =
1

2
1− (1− µ)2(ρ− θH)− µ(1− µ)∆

µ2(ρ− θL)
.

If µ is not too low, then q1LL ∈ (0, 12 ).
42As for high-cost agents, IC-A1H is given by∆·(q1L−q1H)+ψ1 ≥ δ(w1L−w1H), where the RHS becomes δ(uA−uA) = ψ1

by (32). IC-A2H is ∆ · (q2L − q2H) ≥ δ(w2L − w2H), where the RHS becomes zero. Hence, both constraints are slack.
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agents ever care about the future (δA > 0), then sufficiently patient firms can reduce information
rents (and thus increase their expected profits) and (ii) if δA → 1, then they may approximate
the first-best profit. This striking result is due to the interaction between internal contracting and
market-sharing arrangement.

7. Conclusions

In this paper, we investigated a commonly observed collusive behavior, price-fixing with market-
share allocation, when private information is held by the agent who engages in production. We
established two classes of an optimal collusion and found some features that are not observed
in no-agent models. In particular, our findings provided a new perspective on collusive conduct,
arguing that colluding firms, facing the contrasting incentives on internal and inter-firm level, may
be able to exploit the interaction between internal contracting and market-sharing arrangement.
The presence of privately-informed agents may thus provide firms with a strategic opportunity to
achieve an optimal APPE in a wider parameter range and save a potential waste of optimal SPPE
values. The argument can be extended at a broad level: if each firm has to determine whether it
should identify its agent’s cost type (with informational costs) before signing the internal contract,
then it may deliberately delay getting informed of its agent’s cost type to take advantage of the
strategic opportunity.

In the literature, firms own private information; firms can observe and distort private infor-
mation at no extra costs. The contractual arrangement in this paper captures the circumstance
in which firms deliberately reduce the degree to which they control of private information; their
incentive to distort the agents’ private information is bounded by the contract with agents. We
showed that a very simple contractual arrangement that reduces the firms’ incentive to distort the
agents’ private information makes it possible to establish a sufficiently long Pareto-frontier segment
in APPE and avoid wasteful continuation-value transfers in SPPE. The internal incentive problem
seen here is not new, and market-allocation collusion is commonly observed. Despite extensive
research, the literature that links the two is rarely found. Our paper raises new challenging ques-
tions: What is the degree of asymmetric information within firms? How is the degree to which
firms own private information related to inter-firm behaviors?
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Appendix
Proof of Lemma 2. Given the contract defined in (5) and (6) and the fixed price ρ, the interim-
stage profits for firm i are

U i(H,H) = (ρ− θH)q
i
H + δviH

U i(L,H) = (ρ− θH)q
i
L − α(ρ− θH)(q

i
L − qiH) + δviL

U i(L,L) = (ρ− θL)q
i
L −4 · qiH + δviL

U i(H,L) = (ρ− θL)q
i
H −4 · qiH + δviH .

Before we prove Lemma 2, we first show that a weak monotonicity, qiL ≥ qiH , is a necessary feature
of equilibrium, since the on-schedule constraints, U i(H,H) ≥ U i(L,H) and U i(L,L) ≥ U i(H,L),

imply the weak monotonicity. To see this, note that the on-schedule constraints imply

U i(H,H)− U i(H,L) ≥ U i(L,H)− U i(L,L).

This inequality is equivalent to

4 · ¡qiL − qiH
¢
+ α(ρ− θH)(q

i
L − qiH) ≥ 0. (A1)

Since this inequality must be satisfied in equilibrium, a weak monotonicity, qiL ≥ qiH , is necessarily
satisfied in equilibrium.
We next prove Lemma 2. The binding On-ICi

H implies that

U i(H,H) = U i(L,H) = (ρ− θH)q
i
L − α(ρ− θH)(q

i
L − qiH) + δviL.

It then follows that

U i(L,L)− U i(H,H) = U i(L,L)− U i(L,H)

= 4 · ¡qiL − qiH
¢
+ α(ρ− θH)(q

i
L − qiH) ≥ 0.

The last inequality comes from (A1). Lastly, we show that the term U i(H,H) equals U i(H,L):

U i(H,L) = (ρ− θL)q
i
H −4 · qiH + δviH

= (ρ− θH)q
i
H + δviH = U i(H,H).

Hence, U i(L,L) ≥ U i(H,L) ∀α. Further, if qiL > qiH holds as in the optimal collusion, then
U i(L,L) > U i(H,L) ∀α. ¥
Proof of Lemma 3. Before we establish the existence of V (α) ⊂ V m, we derive the equation

(9), which is a necessary feature implied by the the binding On-ICi
H . Adding the two binding

On-ICi
H yields

δ
2X

i=1

(viH − viL) = (1− α)(ρ− θH)
2X

i=1

¡
qiL − qiH

¢
. (A2)

The LHS of (A2) is

δ
£
µ(v1HL − v1LL) + (1− µ)(v1HH − v1LH) + µ(v2LH − v2LL) + (1− µ)(v2HH − v2HL)

¤
= δ

£
µ(v1HL − v1LL) + (1− µ)(v1HH − v1LH) + µ(v1LL − v1LH) + (1− µ)(v1HL − v1HH)

¤
= δ

£
v1HL − v1LH

¤
.
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The first equality transforms the continuation values for firm 2 into the ones for firm 1; since
continuation values are drawn from V (α) = [(u, u), (u, u)], we can show that

v2LH − v2LL = v1LL − v1LH and v2HH − v2HL = v1HL − v1HH .

A simplification confirms the second equality. The term,
P2

i=1(q
i
L − qiH), on the RHS of (A2)

becomes

µ
¡
q1LL + q2LL

¢
+ (1− µ)

¡
q1LH + q2HL

¢− µ
¡
q1HL + q2LH

¢− (1− µ)
¡
q1HH + q2HH

¢
= 1.

Hence, (A2) boils down to

v1HL − v1LH =
(1− α)(ρ− θH)

δ
. (A3)

Thus, if V (α) exists, then its width must be at least as long as the RHS:

u− u ≥ (1− α) (ρ− θH)

δ
. (Add-IC)

We hereafter establish the existence of V (α). To this end, we first construct an endpoint (u, u)
of a segment V (α). Consider a vector z(α):

z(α) =



pijk = ρ,

q1LL = q1HH = q1T (q
2
LL = q2HH = q2T ),

q1LH = q2HL = 1 (q
1
HL = q2LH = 0),

v1LH = v1HH = u (v2LH = v2HH = u).

(A4)

The term qiT represents the firm i’s market share when two firms tie as in (L,L) and (H,H), and
q1T + q2T = 1. Note that the continuation values, v1HL and v1LL, are not specified yet, and will be
defined below. If On-ICi

H ∀i is binding, then the firm’s expected payoff is
ui(z(α)) = (ρ− θH) q

i
H + µ4 · ¡qiL − qiH

¢
+ αµ(ρ− θH)

¡
qiL − qiH

¢
+ δviH . (A5)

Using the vector z(α) in (A4), we find the values, u and u, in the self-generating set. Letting
u1 = u in (A5), we can find

u = (ρ− θH)[1− µ+ µα(2µ− 1)]q1T +4µ(2µ− 1)q1T (A6)

+ (ρ− θH)µ(1− µ)α+4µ(1− µ) + δ
£
µv1HL + (1− µ)v1HH

¤
.

We rearrange the last continuation-value terms:

δ
£
µv1HL + (1− µ)v1HH

¤
= δ

·
µv1LH +

µ(1− α)(ρ− θH)

δ
+ (1− µ)v1HH

¸
= δu+ µ(1− α)(ρ− θH).

The first equality holds because of (A3) and the second equality comes from (A4). Plugging this
into (A6), we can get

(1− δ)u = (ρ− θH) [1− µ+ µα(2µ− 1)] q1T +4µ(2µ− 1)q1T (A7)

+ (ρ− θH)µ(1− µα) +4µ(1− µ).
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Likewise, letting u2 = u in (A5), we can find

(1− δ)u = (ρ− θH) [1− µ+ µα(2µ− 1)] q2T +4µ(2µ− 1)q2T (A8)

+ (ρ− θH)µ(1− µ)α+4µ(1− µ).

Note that a line segment V (α) = [(u, u), (u, u)] achieves the optimality, V (α) ⊂ V m:

u+ u =
ρ−E(θ)

1− δ
=

πm

1− δ
∀α.

We next look for the range of α in which the constraint Add-IC is satisfied. We claim that the
constraint Add-IC is binding,

u− u =
(1− α) (ρ− θH)

δ
, (A9)

if and only if

q1T =
1

2
− (1− α)

¡
µ+ 1−δ

δ

¢
2(1− µ) + 2µ(2µ− 1) (α+ γ)

. (A10)

To prove this, we plug (A7) and (A8) into (A9), recollecting q2T = 1− q1T and γ = 4/(ρ− θH). If
firm 1 is in the least favored position (q1T = q1LL = q1HH = 0), then we can get

α∗(δ) ≡ 1− δ + δ(2µ− 1) (1− µγ)

1− δ + δ2µ2
. (A11)

It follows from (A10) that (i) if α = α∗(δ), then q1T = 0, (ii) if α∗(δ) < α < 1, then 0 < q1T < 1
2

and (iii) if α = 1, then q1T =
1
2 . Hence, for any α ≥ α∗(δ) for a given δ, there exists a vector z(α)

in which Add-IC is binding.
We next verify that all the continuation values are drawn from the segment V (α): viij ∈

V (α) ∀i, (j, k). By the vector z(α), all the continuation values are in V (α) except v1HL and v1LL,

which are not specified by z(α) in (A4). We thus need to prove that given the vector z(α), v1HL

and v1LL are also drawn from V (α): u ≤ v1HL ≤ u and u ≤ v1LL ≤ u. Recall that the continuation
value v1HL is determined to satisfy (A2):

v1HL = v1LH +
(1− α)(ρ− θH)

δ
(A12)

= u+
(1− α) (ρ− θH)

δ
≤ u.

The last inequality comes from Add-IC. If q1T is chosen as in (A10), then Add-IC is binding as in
(A9) and

v1HL = u+
(1− α) (ρ− θH)

δ
= u.

Thus, if Add-IC is binding, then v1HL = u, and if Add-IC is slack, then u < v1HL < u. The
continuation value v1LL is determined to satisfy the binding On-IC

1
H :

v1LL = u+
2µ− 1

µ
· (1− α) (ρ− θH)

¡
1− q1T

¢
δ

. (A13)

Given the assumption µ > 1
2 , u ≤ v1LL ≤ u. Hence, viij ∈ V (α) ∀i, (j, k).
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We now prove that all the on-schedule constraints are satisfied. On-IC1H is binding, since v1LL
is chosen to satisfy the binding On-IC1H . Given that v

1
HL is chosen to satisfy (A2), we can confirm

that On-IC2H also is binding:

δ(v2H − v2L) = (1− α)(ρ− θH)
¡
q2L − q2H

¢
= (1− α)µ(ρ− θH)

£
(2µ− 1)q2T + (1− µ)

¤
.

Under z(α), the RHS of On-IC2H can be rewritten as the second equality, and the LHS is

δ
£
µv2LH + (1− µ)v2HH − µv2LL − (1− µ)v2HL

¤
= δ

·
µu+ (1− µ)u− µ

µ
u− 2µ− 1

µ
· (1− α)(ρ− θH)q

2
T

δ

¶
− (1− µ)

µ
u− (1− α) (ρ− θH)

δ

¶¸
= (1− α)µ(ρ− θH)

£
(2µ− 1)q2T + (1− µ)

¤
.

The values, v2LL and v2HL, are given by (A12) and (A13) and by the condition, v
1
jk + v2jk = u + u

∀(j, k). Thus, On-IC2H is binding. We then invoke Lemma 2 to show that since On-ICi
H ∀i is

binding, On-ICi
L ∀i is slack. Hence, all the on-schedule constraints are satisfied.

Until now, we have found that for α ≥ α∗(δ), there exists a vector z(α) ∈ ZIC(V (α)) that estab-
lishes the endpoint (u, u). Letting z0(α) ∈ ZIC(V (α)) denote an analogous vector that implements
the other endpoint, the remainder of the segment can be established with the convex combination
of z(α) and z0(α). This is possible, since for any α, firms’ payoffs and the on-schedule constraints
are linear in terms of market shares and continuation values.
Lastly, we show that Add-IC can be slack in the range {(δ, α) : α∗(δ) < α ≤ 1}. To this end,

consider the vector z(α) in which Add-IC is binding under α = α∗(δ) for a given δ. Then, this
vector z(α) specifies q1T = 0 as in (A10). The values in (A7) and (A8) become

u =

¡
µ− µ2α

¢
(ρ− θH) + µ(1− µ)4
1− δ

u =

¡
1− µ+ µ2α

¢
(ρ− θH) + µ24

1− δ
.

For an alternative contract xi(bα), where bα = bα(δ) > α∗(δ) for a given δ, define a vector z(bα) in
which q1T = 0 is preserved and continuation values are assigned as in z(α) except that bα replaces α
in v1HL and v

1
LL. Then, it follows that the vector z(bα) (along with z0(bα)) can establish the value set

V (bα) whose width is longer than the width of V (α), since u is higher and u lower under bα = bα(δ)
than under α = α∗(δ). On the other hand, the RHS of Add-IC is lower under bα = bα(δ) than under
α = α∗(δ):

(1− bα) (ρ− θH)

δ
<
(1− α) (ρ− θH)

δ
.

Hence, Add-IC is slack. Note that when Add-IC is slack, v1HL = u+ (1−α)(ρ−θH)
δ < u. ¥

Proof of Proposition 1. To establish the existence of V (α) and V (β), the proof focuses on
the two vectors z(α) and z(β) when α = α∗(δ) and β = β∗(δ), respectively. In these cases, q1T = 0.
Suppose first that ρ ≥ CH . To establish an endpoint (u, u) of a segment V (α), define a vector
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z(α):

z(α) =



pijk = ρ

q1LL = q1HH = 0 (q
2
LL = q2HH = 1)

q1LH = q2HL = 1 (q
1
HL = q2LH = 0)

v1LH = v1HH = u (v2LH = v2HH = u).

(A14)

It is shown by the proof of Lemma 3 that (i) all the on-schedule constraints and Add-IC are satisfied
and (ii) viij ∈ V (α) ∀i, (j, k). It now suffices to prove that off-schedule constraints are satisfied. We
restrict attention to the Off-IC of firm 1 that is the least favored position at the endpoint (u, u).
Because 4 · q1H = 0 under z(α), the associated off-schedule constraints are

δ(v1LL − v) ≥ ρ− θL − (ρ− θL) q
1
LL (Off-IC1LL)

δ(v1LH − v) ≥ ρ− θL − (ρ− θL) q
1
LH (Off-IC1LH)

δ(v1HL − v) ≥ ρ− θH − (ρ− θH) q
1
HL (Off-IC1HL)

δ(v1HH − v) ≥ ρ− θH − (ρ− θH) q
1
HH (Off-IC1HH)

Because q1LL = q1HL = q1HH = 0 and q1H = 0 under z(α), Off-IC
1
LH is slack and Off-IC1HL is implied

by Off-IC1HH . Thus, the off-schedule constraints are reduced to Off-IC
1
LL and Off-IC

1
HH :

δ(v1LL − v) ≥ ρ− θL and δ(v1HH − v) ≥ ρ− θH .

The values v1LL and v1HH are

v1LL = u+
2µ− 1

µ
· (1− α)(ρ− θH)

δ
and

v1HH = u =

¡
µ− µ2α

¢
(ρ− θH) + µ(1− µ)4
1− δ

.

Plugging the values with α = α∗(δ) into two inequalities, we can get δ∗LL and δ∗HH . The critical
discount factor is δ∗ = max{δ∗LL, δ∗HH}.
Suppose next that ρ < CH . For β = β∗(δ), define a vector z(β):

z(β) =



pijk = ρ

q1LH = q2HL = q2LL = 1

q1HH = q2HH = 0

v1LH = v1HH = u (v2LH = v2HH = u).

(A15)

The equation (A2) boils down to

v1HL − v1LH =
(1− β)(2− µ)(ρ− θH)

δ
. (A16)

Thus, if a line segment V (β) ⊂ V m exists, then its width must be sufficiently long:

u− u ≥ (1− β)(2− µ)(ρ− θH)

δ
. (Add-IC)
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The continuation values, v1HL and v1LL, are determined as follows. The value v
1
HL is assigned to

satisfy (A16):

v1HL = v1LH +
(1− β)(2− µ)(r − θH)

δ

= u+
(1− β)(2− µ)(r − θH)

δ
. (A17)

The value v1LL is chosen to satisfy the binding On-IC
1
H :

v1LL = u+
3µ− µ2 − 1

µ
· (1− β)(r − θH)

δ
. (A18)

If On-ICiH ∀i is binding, then the firm’s expected payoff takes the same form as (A5). Letting
u1 = u and u2 = u, the vector z(β) yields

u =
[µ(2− µ)− µβ] (ρ− θH) + µ(1− µ)4

1− δ

u =
µβ(r − θH) + µ4

1− δ
.

Note that u decreases in β whereas u increases in β, and that

u+ u =
[1− (1− µ)2](ρ− θL)

1− δ
=

πm

1− δ
∀β.

We now confirm that all the constraints hold. If Add-IC holds, then u < v1HL ≤ u, and if µ > 3−√5
2 ,

then u < v1LL < u. Hence, vijk ∈ V (β) ∀i, (j, k). Because of the binding On-IC1H and the equation
(A2), On-IC2H is binding. It follows from Lemma 2 that if On-ICi

H is binding, then On-ICi
L is

slack. Lastly, the level of β = β∗(δ) is determined to satisfy Add-IC:

β ≥ β∗(δ) ≡ max
½
(2− µ) (1− δ + µδ)− µ2δγ

2− µ+ (3µ− 2) δ , 0

¾
.

If the first term in max{·, ·} is positive, then Add-IC is binding, and if it is negative, then Add-IC
is slack. Hence, z(β) satisfies all the on-schedule constraints and constructs the endpoint (u, u).
The remainder of V (β) is constructed by a convex combination of two analogous vectors. The
previous arguments directly hold; when β rises, the width of V (β) is lengthened. As above, the
relevant off-schedule constraints are Off-IC1LL and Off-IC

1
HH :

δ
¡
v1LL − v

¢ ≥ ρ− θL and δ
¡
v1HH − v

¢ ≥ ρ− θH .

Plugging the continuation values in (A17) and (A18) with β = β∗(δ), we can get δ∗ = max{δ∗LL, δ∗HH}.
¥

Proof of Proposition 2. We here focus on the case of α = α∗ (δ) for any δ. The extension
to the case of α > α∗ (δ) follows the previous proof. To establish an endpoint (u, u) of a segment
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V (α), consider a vector z(α):

z(α) ≡



pijk = ρ

q1LH = q2HL = q2LL = 1

q1HH = q2HH =
1
2

v1LH = v1HH = u (v2LH = v2HH = u).

(A19)

Given this vector, the equation (A2) becomes

v1HL − v1LH =
(1− α)(ρ− θH)

δ
. (A20)

Thus, if V (α) ⊂ V m exists, then its width must be sufficiently long:

u− u ≥ (1− α) (ρ− θH)

δ
. (Add-IC)

The continuation value v1HL is chosen to satisfy (A20):

v1HL = u+
(1− α) (ρ− θH)

δ
(A21)

The continuation value v1LL is determined to satisfy the binding On-IC
1
H :

v1LL = u+
3µ− 1
2µ

· (1− α)(ρ− θH)

δ
. (A22)

If On-ICiH ∀i is binding, then the firm’s expected payoff takes the same form as (A5). Letting
u1 = u and u2 = u, the vector z(α) yields

u =
[1 + µ− µ (1 + µ)α] (ρ− θH) + µ(1− µ)4

2(1− δ)

u =
[1− µ+ µ (1 + µ)α] (ρ− θH) + µ (1 + µ)4

2(1− δ)
.

Note that

u+ u =
ρ−E (θ)

1− δ
∀α.

As above, the value u increases in α but u decreases in α. We next show that all the constraints
are satisfied. If Add-IC holds, then u < v1HL ≤ u, and that if µ > 1

3 , then u < v1LL < u. Hence,
vijk ∈ V (β) ∀i, (j, k). Because of the binding On-IC1H and the equation (A2), On-IC2H is binding.
By Lemma 2, On-ICi

L is slack. The level of α = α∗(δ) is determined to satisfy the binding Add-IC:

α∗ (δ) ≡ 1− δ + δµ (1− µγ)

1− δ + δµ (1 + µ)
.

Hence, if α = α∗(δ), there exists the vector z(α) ∈ ZIC(V (α)) that can establish the endpoint
(u, u) . The remainder of the segment can be established by convex combination of z(α) and z0(α).
Consider next the off-schedule constraints. The relevant off-schedule constraints are

δ
¡
v1LL − v

¢ ≥ ρ− θL − (ρ− θL) q
1
LL (Off-IC1LL)

δ
¡
v1HH − v

¢ ≥ ρ− θH − (ρ− θH) q
1
HH (Off-IC1HH)

δ
¡
v1HL − v

¢ ≥ ρ− θH − (ρ− θH) q
1
HL (Off-IC1HL)
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Given the above continuation values, q1LL = q1HL = 0 and q
1
HH =

1
2 under z(α), it is immediate that

Off-IC1LL implies Off-IC
1
HL since v

1
HL > v1LL for all µ > 1

3 . The off-schedule constraints are reduced
to Off-IC1LL and Off-IC

1
HH . Plugging the continuation values with α = α∗(δ) into the inequalities,

we can get δ∗ = max{δ∗LL, δ∗HH}. ¥
Proof of Proposition 3. We here confirm that the vector z(α) satisfies the on-schedule

constraints. Under z(α), the continuation value viLL is chosen to satisfy the binding On-IC
i
H . If

On-ICi
H is binding, then On-ICi

L is slack by Lemma 2. Add-IC is satisfied by the choice of ρ.
Because of the binding Add-IC, viLL in (23) becomes

viLL = u− (1− α)(ρ− θH)

2δµ
= u.

It follows that all the continuation values are drawn from V s(α): vijk = u except viLL = u ∀i, (j, k).
We also can verify that the other vector z0(α) satisfies the on-schedule constraint. Under z0(α),
On-ICi

H becomes

δ(viH − viL) ≥ (ρ− θH)
¡
qiL − qiH

¢− (1− µ)
α (ρ− θH)

2(1− µ)
.

The RHS represents the current-period gain that a high-cost firm can make when it lies. Given
the continuation values and (28), the LHS boils down to δµ(u− u) = (1−α)(ρ−θH)

2 . A simplification
shows that On-ICi

H becomes ρ ≥ ρ. Thus, as indicated by (26), this constraint is slack (binding) if
0 ≤ α < 1 (if α = 1). Under z0(α), On-ICi

L becomes

δ(viH − viL) ≤ (ρ− θL)
¡
qiL − qiH

¢
.

This can be rearranged as (1 − α)(ρ − θH) ≤ ρ − θL. If α rises, then the LHS falls, but the RHS
rises because the price ρ in (26) rises. This inequality is thus reduced to

α ≥ α∗(δ) ≡ max
½
1− µδ

1 + µδ

µ
ρ− θL
ρ− θH

¶
, 0

¾
.

Hence, the vectors z(α) and z0(α) satisfy the on-schedule constraints if α ≥ α∗(δ). This range of
α counters the low-cost firm’s incentive to overstate its cost type and avoid the possible future
penalty. ¥
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