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Abstract

This paper presents a modified LM test of spatial error components, which is shown

to be robust against distributional misspecifications and spatial layouts. The proposed

test differs from the LM test of Anselin (2001) by a term in the denominators of the

test statistics. This term disappears when either the errors are normal, or the variance

of the diagonal elements of the product of spatial weights matrix and its transpose is

zero or approaching to zero as sample size goes large. When neither is true, as is often

the case in practice, the effect of this term can be significant even when sample size

is large. As a result, there can be severe size distortions of the Anselin’s LM test, a

phenomenon revealed by the Monte Carlo results of Anselin and Moreno (2003) and

further confirmed by the Monte Carlo results presented in this paper. Our Monte Carlo

results also show that the proposed test performs well in general.
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1 Introduction.

The spatial error components model proposed by Kelejian and Robinson (1995) provides

a useful alternative to the traditional spatial models with a spatial autoregressive (SAR)

error process or a spatial moving average (SMA) error process, in particular in the situation

where the range of spatial autocorrelation is constrained to close neighbors, e.g., spatial

spillovers in the productivity of infrastructure investments (Kelejian and Robinson, 1997;

Anselin and Moreno, 2003). Anselin (2001) derived an LM test for spatial error components

based on the assumptions that the errors are normally distributed. Anselin and Moreno

(2003) conducted Monte Carlo experiments to assess the finite sample behavior of Anselin’s

test and to compare it with other tests such as the GMM test of Kelejian and Robinson

(1995) and Moran’s (1950) I test, and found that none seems to perform satisfactorily in

general. While Anselin and Moreno (2003) recognized that the LM test for spatial error

components of Anselin (2001) is sensitive to distributional misspecifications and the spatial

layouts, it is generally unclear on the exact cause of it and how this normal-theory based test

performs under alternative distributions for the errors and under different spatial layouts.

In this paper, we present a modified LM test of spatial error components, which is shown

to be robust against distributional misspecifications and spatial layouts. We show that the

proposed test differs from the LM test of Anselin (2001) by a term in the denominators of

the test statistics. This term disappears when either the errors are normal, or the variance

of the diagonal elements of the product of spatial weights matrix and its transpose is zero

or approaching zero as sample size goes large. When neither is true, as is often the case in

practice, we show that (i) if the elements of the weights matrix are fixed, this term poses a

large sample effect in the sense that without this term Anselin’s LM test does not converge

to a correct level as sample size goes large; and (ii) if the elements of the weights matrix

depend on sample size, this term poses a significant finite sample effect in the sense that

without this term Anselin’s LM test can have a large size distortion which gets smaller very

slowly as sample size gets large.

Anselin and Bera (1998), Anselin (2001) and Florax and de Graaff (2004) provide excel-

lent reviews on tests of spatial dependence in linear models. Section 2 introduces the spatial

error components model and the describes the existing test. Section 3 introduces a robust
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LM test for spatial error components. Section 4 presents Monte Carlo results. Section 5

concludes the paper.

2 The Spatial Error Components Model

The spatial error components (SEC) model proposed by Kelejian and Robinson (1995)

takes the following form:

Yn = Xnβ + un with un =Wnνn + εn (1)

where Yn is an n× 1 vector of observations on the response variable, Xn is an n× k matrix
containing the values of explanatory (exogenous) variables, β is a k× 1 vector of regression
coefficients, Wn is an n × n spatial weights matrix, νn is an n × 1 vector of errors that
together with Wn incorporates the spatial dependence, and ε is an n× 1 vector of location
specific disturbance terms. The error components νn and εn are assumed to be independent,

with independent and identically distributed (iid) elements of mean zero and variances σ2ν

and σ2ε , respectively. So, in this model the null hypothesis of no spatial effect can be either

H0 : σ
2
ν = 0, or θ = σ2ν/σ

2
ε = 0. The alternative hypothesis can only be one-sided as σ

2
ν is

non-negative, i.e., Ha : σ
2
ν > 0, or θ > 0. Anselin (2001) derived an LM test based on the

assumptions that errors are normally distributed. The test is of the form

LMSEC =
ũnWnWnũn/σ̃

2
ε − T1n

(2T2n − 2
N T

2
1n)

1
2

(2)

where σ̃2ε = 1
n ũnũn, ũn is the vector of OLS residuals, T1n = tr(WnWn) and T2n =

tr(WnWnWnWn). Under H0, the positive part of LMSEC converges to that of N(0, 1).

This means that the above one sided test can be carried out as per normal. Alternatively,

if the squared version LM2
SEC is used, the reference null distribution of the test statistic for

testing this one sided test is a chi-square mixture. See Verbeke and Molenberghs (2003) for

a detailed discussion on tests where the parameter value under the null hypothesis falls on

the boundary of parameter space.

Anselin and Moreno (2003) provide Monte Carlo evidence for the finite sample perfor-

mance of LMSEC and find that LMSEC can be sensitive to distributional misspecifications

and spatial layouts. Our Monte Carlo results given in Section 5 reinforce this point. How-

ever, the exact cause of this sensitive is not clear, and a robust test is not available.
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3 Robust LM Test for Spatial Error Components

We now present a robustified version of the above LM test statistic. The following

basic regularity conditions are necessary for studying the asymptotic behavior of the test

statistics.

Assumption 1: The innovations {εi} are iid with mean zero, variance σ2ε , and excess
kurtosis κε. Also, the moment E|εi|4+η exists for some η > 0.

Assumption 2: The elements wn,ij of Wn are at most of order h
−1
n uniformly for

all i and j, with the rate sequence {hn}, bounded or divergent but satisfying hn/n → 0 as

n → ∞. The sequence {Wn} are uniformly bounded in both row and column sums. As
normalizations, the diagonal elements wn,ii = 0, and j wn,ij = 1 for all i.

Assumption 3: The elements of the n× k matrix Xn are uniformly bounded for all n,
and limn→∞ 1

nXnXn exists and is nonsingular.

The Assumption 1 corresponds to one assumption of Kelejian and Prucha (2001) for

their central limit theorem of linear-quadratic forms. Assumption 2 corresponds to one

assumption in Lee (2004a) which identifies the different types of spatial dependence. Typ-

ically, one type of spatial dependence corresponds to the case where each unit has fixed

number of neighbors such as Rook contiguity and in this case hn is bounded, and the other

type of spatial dependence corresponds to the case where the number of neighbors of each

spatial unit grows as n goes to infinity such as the case of group interaction and in this case

hn is divergent. To limit the spatial dependence to a manageable degree, it is thus required

that hn/n→ 0 as n→∞.

Theorem 1: If Wn, {εi} and Xn of Model (1) satisfy the Assumptions A1-A3, then a
robust LM test statistic for testing H0 : σ

2
ν = 0 vs Ha : σ

2
ν > 0 takes the form

LM∗SEC =
ũnWnWnũn/σ̃

2
ε − S1n

(κ̃εS2n + S3n)
1
2

(3)

where S1n =
n
n−k tr(WnWnMn), S2n = i a

2
n,ii with {an,ii} being the diagonal elements of

An =Mn(WnWn − 1
nS1nIn)Mn, S3n = 2tr(A

2
n), and κ̃ε is the excess sample kurtosis of ũn.

Under H0, (i) the positive part of LM
∗
SEC converges to that of N(0, 1), and (ii) LM

∗
SEC is

asymptotically equivalent to LMSEC when κε = 0.
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Proof: Proof of the theorem needs four lemmas given in Appendix. We have

LM∗SEC =
ũnWnWnũn/σ̃

2
ε − S1n

(κ̃εS2n + S3n)
1
2

=
ũnWnWnũn − σ̃2εS1n
σ2ε(κεS2n + S3n)

1
2

· σ
2
ε(κεS2n + S3n)

1
2

σ̃2ε(κ̃εS2n + S3n)
1
2

and ũnWnWnũn − σ̃2εS1n = ũn(WnWn − 1
nS1nIn)ũn = unMn(WnWn − 1

nS1nIn)Mnun =

unAnun. Under H0, the elements of un are iid, we have E(unAnun) = σ2εtr(An) = 0. By

Assumption 1 and Lemma A.1 in Appendix and noticing that the matrix An is symmetric,

we have Var(unAnun) = σ4ε(κεS2n+S3n). Now, Assumption 2 ensures that the elements of

WnWn are uniformly of order h
−1
n , and Lemma A.2 shows that Mn is uniformly bounded

in both row and column sums. It follows from Lemma A.4(iii) that 1
nS1n = O(h−1n ).

Assumption 2 and Lemma A.4 lead to that {WnWn} are uniformly bounded in both row
and column sums. Thus, {WnWn− 1

nS1nIn} are uniformly bounded in both row and column
sums. Finally, Lemma A.4(i) gives that {An} are uniformly bounded in both row and

column sums. It follows that the central limit theorem of linear-quadratic forms of Kelejian

and Prucha (2001) is applicable, which gives

ũnWnWnũn − σ̃2εS1n
σ2ε(κεS2n + S3n)

1
2

D−→ N(0, 1).

Now, it is easy to show that σ̃2ε
p−→ σ2ε and that κ̃ε

p−→ κε. Thus,

σ2ε(κεS2n + S3n)
1
2

σ̃2ε(κ̃εS2n + S3n)
1
2

p−→ 1.

This finishes the proof of Part (i).

For Part (ii), it suffices to show that S1n ∼ T1n and S3n ∼ 2T2n− 2
nT

2
1n, where ‘∼’ stands

for ‘asymptotic equivalence’. The former follows from Lemma A.3(i), i.e., tr(WnWn)+O(1).

For the latter, write An =MnA
o
nMn, where A

o
n =WnWn − 1

nS1nIn. We have

tr(A2n) = tr(MnA
o
nMnMnA

o
nMn)

= tr[(AonMn)
2]

= tr((Aon)
2) +O(1) by Lemma 3(iii)

= tr[(WnWn −
1

n
S1nIn)(WnWn −

1

n
S1nIn)]

= tr(WnWnWnWn)−
2

n
S1ntr(WnWn) +

1

n2
S21ntr(In) +O(1)

= T2n − 1
n
T 21n +O(1),
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which shows that S3n = 2tr(A
2
n) = 2T2− 2

nT
2
1+O(1). Q.E.D.

From Theorem 1 we see that LM∗SEC differs from LMSEC essentially in the denominators

and by a term κ̃εSn2. This term becomes (asymptotically) negligible when κε = 0, which

occurs when ε is normal. This is because S2n =
n
i=1 a

2
ii ≤ n

i=1
n
j=1 a

2
ij =

1
2S3n. When

κε = 0, which typically occurs when ε is non-normal, κ̃ε = Op(1). In this case it becomes

unclear whether κ̃εS2n is also asymptotically negligible. The key is the relative magnitudes

of S2n and S3n, which depend on many factors. The following corollary summarize the

detailed results.

Corollary 1: Under the assumptions of Theorem 1, we have

(i) If hn is bounded, then S2n ∼ S3n, where ∼ stands for asymptotic equivalence;
(ii) If hn →∞ as n→∞, then S2n = O(n/h2n) and S3n = O(n/hn);
(iii) 1

nS2n ∼ σ2n(r) ≡ 1
n

n
i=1(rn,i − r̄n)2, where r̄n = n

i=1 rn,i with {rn,i, i = 1, · · · , n}
being the diagonal elements of WnWn.

Proof: For (i) and (ii), note that the elements of WnWn− 1
nS1nIn are at most of order

O(h−1n ) uniformly. By Lemma A.4 (iii), the elements of An are also at most of order O(h−1n )

uniformly as {Mn} are uniformly bounded in both row and column sums. This leads to

S2n = O(n/h
2
n). Furthermore, as An itself is uniformly bounded in both row and column

sums (see the proof of Theorem 1), Lemma A.4 (iii) shows that the elements of A2n are at

most of order O(h−1n ) uniformly. This shows that S3n = O(n/hn).

To prove (iii), Note that Wn is row normalized. We have
1
nS1n ∼ 1

nT1n =
1
ntr(WnWn) =

1
n

n
i=1 rn,i. From Lemma A.3 (v) we have

1

n
S2n =

1

n

n

i=1

a2ii ∼
1

n

n

i=1

(WnWn −
1

n
S1nIn)ii

2

∼ 1

n

n

i=1

(rn,i − r̄n)2 ≡ σ2n(r), (4)

which completes the proof of Corollary 1.

The results of Corollary 1 lead to some important conclusions. Firstly, when hn is

bounded, S2n ∼ S3n. Hence, if κε = 0, the asymptotic variance of LMSEC will be larger

than 1, leading to a test that over-rejects the null hypothesis when errors are nonnormal.

This point is confirmed by the Monte Carlo results given in Table 1, where we see that the

empirical coverage of the LMSEC test under non-normal errors increases with n, reaching to
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around {15%, 9.4%, 3.8%} when n = 1500 (last line of Table 1) for tests of nominal levels
{10%, 5%, 1%}. In contrast, the LM∗SEC test performs very well in general.

Secondly, when hn increases with n, S3n is generally of higher oder in magnitude than

S2n. Hence, as n increases S3n eventually becomes the dominate term in the denominator

of the test statistic LM∗SEC, and LM
∗
SEC would eventually behave like LMSEC even when

there exists excess kurtosis or non-normality in general. However, a detailed examination

shows that the finite sample difference between LM∗SEC and LMSEC could still be large even

when the sample size is very large. Take, for example, hn = n
0.2. We have S2n = O(n

0.6)

and S3n = O(n0.8). It follows that with κ̃ε being Op(1) the excess kurtosis may have

significant impact on the variance and hence on the test statistic even when n is very

large. The Monte Carlo simulation results under hn = O(n
0.25) given in Section 5 (Table 4,

Panels 2 & 3) indeed confirm this point, where we see huge size distortions of the LMSEC

test in the cases of non-normal errors. Although the magnitude of size distortion seems

decrease as n increases the empirical sizes of the test LMSEC are still around {17%, 11%,
6%} corresponding to nominal sizes {10%, 5%, 1%} even when n is 1500. Take another
example with hn = n0.8. We have S2n = O(n−0.6) and S3n = O(n0.2). Apparently under

this situation, the impact of the κ̃εS2n term is negligible. Once again our Monte Carlo

simulation confirms this observation (Table 4, Panels 5 & 6).2

Thirdly and perhaps more importantly, the result (iii) of Corollary 1 shows that the

variance σ2n(r) (variability in general) of the diagonal elements of WnWn plays a key role

in the behavior of the test statistics. When σ2n(r) = 0 or σ
2
n(r) → 0 as n → ∞, LMSEC ∼

LM∗SEC. When σ2n(r) = 0 even when n is large, LMSEC may differ from LM∗SEC, and

as n goes large the difference may grow (as in the case where hn is bounded and errors

are nonnormal), or may shrink (as in the case where hn is unbounded and the errors are

nonnormal). It is interesting to note that in the framework of spatial contiguity the ith

diagonal element rn,i of WnWn is the reciprocal of the number of neighbors that the ith

spatial unit has; and that in the framework of group interaction, rn,i is the reciprocal of

2Note that one spatial layout leading to hn = n
δ, 0 < δ < 1, is the so-called group interaction (see, e.g.,

Lee, 2007). In this case hn corresponds to the average group size. If δ = 0.2, for example, then there are

many groups but each group contains only a few members although the number of units in each group grows

with n. If δ = 0.8, however, then there are a few groups, but each group contains many members.
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the size of the ith group. Hence, in these situations, the variability of {rn,i} boils down to
whether the number of neighbors or whether the group size varies across the spatial units,

and whether these variations disappear as the sample size goes large.

4 Monte Carlo Results

The finite sample performance of the test statistics introduced in this paper is evaluated

based on a series of Monte Carlo experiments under a number of different error distribu-

tions and a number of different spatial layouts. Comparisons are made between the newly

introduced test LM∗SEC and the existing LMSEC of Anselin (2001) to see the improvement of

the new tests in the situations where there is a distributional misspecification. The Monte

Carlo experiments are carried out based on the following data generating process:

Yi = β0 +X1iβ1 +X2iβ2 + ui,

where X1i’s are drawn from 10U(0, 1) and X2i’s are drawn from 5N(0, 1) + 5. Both are

treated as fixed in the experiments. The parameters β = {5, 1, 0.5} and σ = 1. Seven

different sample sizes are considered for each combination of error distributions and spatial

layouts. Each set of Monte Carlo results (each row in the table) is based on 10,000 samples.

Three general spatial layouts are considered in the Monte Carlo experiments. The first

is based on Rook contiguity, the second is based on Queen contiguity and the third is based

on the notion of group interactions.

The detail for generating the Wn matrix under rook contiguity is as follows: (i) index

the n spatial units by {1, 2, · · · , n}, randomly permute these indices and then allocate them
into a lattice of k ×m(≥ n) squares, (ii) let Wij = 1 if the index j is in a square which

is on immediate left, or right, or above, or below the square which contains the index i,

otherwise Wij = 0, i, j = 1, · · · , n, to form an n× n matrix, and (iii) divide each element of
this matrix by its row sum to give Wn. So, under Rook contiguity there are 4 neighbors for

each of the inner units, 3 for a unit on the edge, and 2 for a corner unit. The Wn matrix

under Queen contiguity can be generated in a similar way as that under rook contiguity,

but with additional neighbors which share a common vertex with the unit of interest. In

this case a inner unit has 8 neighbors, an edge unit has 5, and a corner unit has 3. Thus the
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variability of the number of neighbors is greater under Queen than under Rook contiguity.

For irregular spatial contiguity, the variation in number of neighbors is greater.

For both regular Rook and Queen spatial layouts, weather k is fixed makes a difference.

Thus, we consider two cases: (i) k = 5, and (ii) k = m. It is easy to show that for spatial

units arranged in a regular k ×m lattice, Rook contiguity leads to σ2n(r) defined in (4) as

nσ2n(r) =
k +m+ 2

6km

2

+ 2
1

12
− m+ k + 2

6km

2

(k +m− 4) + 4 1

4
− m+ k + 2

6km
. (5)

With n = km, it is easy to see that, if k is fixed, then m = O(n) and σ2n(r) = O(1) for

k > 2; if both k and m go large as n → ∞, then σ2n(r) = o(1). Thus the case of either

k > 2 or m > 2 fixed leads to a permanent variablity in {rn,i}, whereas the case of neither
k nor m fixed leads to a temporary or finite sample variability in {rn,i} which disappears
as n→∞. Similarly, under Queen contiguity, we have

nσ2n(r) =
9(k +m)− 14

60km

2

(k − 2)(m− 2) + 2 3

40
− 9(k +m)− 14

60km

2

(k +m− 4)

+4
5

24
− 9(k +m)− 14

60km
, (6)

which gives σ2n(r) = O(1) when either k > 2 or m > 2 is fixed, and σ2n(r) = o(1) when

neither k nor m is fixed.

To generate the Wn matrix according to the group interaction scheme, suppose we have

k groups of sizes {m1,m2, · · · ,mk}. DefineWn = diag{Wj/(mj−1), j = 1, · · · , k}, a matrix
formed by placing the submatricesWj along the diagonal direction, whereWj is an mj×mj

matrix with ones on the off-diagonal positions and zeros on the diagonal positions. Note

that n = k
j=1mj . We consider three different ways of generating the group sizes.

The first is that the group size is a constant across the groups and with respect to the

sample size n, i.e., m1 = m2 = · · · = mk = m, where m is free of n. In this case increasing

n means having more groups of the same size m. The second is that the group size changes

across the groups but not with respect to the sample size n. In this case, increasing n means

having more groups of sizesm1 orm2, · · ·. The third method is the most complicated one and
is described as follows: (i) calculate the number of groups according to k =Round(n ), and

the approximate average group size m = n/k, (ii) generate the group sizes (m1,m2, · · · ,mk)

according to a discrete uniform distribution from m/2 to 3m/2, (iii) adjust the group sizes
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so that k
j=1mj = n, and (iv) define W = diag{Wj/(mj − 1), j = 1, · · · , k} as described

above. In our Monte Carlo experiments, we choose = 0.25, 0.50, and 0.75, representing

respectively the situations where (i) there are few groups and many spatial units in a group,

(ii) the number of groups and the sizes of the groups are of the same magnitude, and (iii)

there are many groups of few elements in each. Clearly, the first method leads to σ2n(r) = 0,

the second method leads to σ2n(r) = 0, and the third method leads to σ
2
n(r)→ 0 as n→∞.

In all spatial layouts described above, only the last one gives hn unbounded with hn = n
1− .

For the error distributions, the reported Monte Carlo results correspond to the following

three: (i) standard normal, (ii) mixture normal, (iii) log-normal, and (iv) chi-square, where

(ii)-(iv) are all standardized to have mean zero and variance one. The standardized normal-

mixture variates are generated according to

ui = ((1− ξi)Zi + ξiσZi)/(1− p+ p ∗ σ2)0.5,

where ξ is a Bernoulli random variable with probability of success p and Zi is standard

normal independent of ξ. The parameter p in this case also represents the proportion of

mixing the two normal populations. In our experiments, we choose p = 0.05, meaning

that 95% of the random variates are from standard normal and the remaining 5% are from

another normal population with standard deviation σ. We choose σ = 10 to simulate the

situation where there are gross errors in the data. The standardized lognormal random

variates are generated according to

ui = [exp(Zi)− exp(0.5)]/[exp(2)− exp(1)]0.5.

This gives an error distribution that is both skewed and leptokurtic. The normal mix-

ture gives an error distribution that is still symmetric like normal but leptokurtic. The

standardized chi-square random variates are generated in a similar fashion. Other non-

normal distributions, such as normal-gamma mixture, are also considered and the results

are available from the author upon request.

Selected Monte Carlo results are summarized in Tables 1-4. The results in Table 1

correspond to Rook or Queen contiguity with k fixed at 5. In this case, hn is bounded,

σ2n(r) = O(1), and κ̃ = Op(1) if errors are nonnormal. Hence κ̃S2n ∼ S3n, which means that
the difference between LMSEC and LM

∗
SEC does not vanish as n goes large. Monte Carlo
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results in Table 1 indeed show that when errors are not normal the sizes of the LMSEC

test get larger as n increases. This gets more severe under Queen contiguity as in this case

σ2n(r) is larger. In contrast, the sizes of the LMSEC test are all quite close to their nominal

levels irrespective of error distributions and spatial layouts. It is interesting to note that

LM∗SEC seems perform better than LMSEC even when the errors are drawn from a normal

population.

The results reported in Table 2 also correspond to Rook or Queen contiguity but with

k = m =
√
n. In this case σ2n(r) = o(1), and hence the term κ̃S2n is negligible relative to

S3n when n is large, and the two statistics should behave similarly. The results confirm this

theoretical finding although the comparative advantage seems go to the new statistic.

The results reported in Table 3 correspond to group interaction spatial layout with fixed

group sizes {2, 3, 4, 5, 6, 7} for upper three panels, and a fixed group size 5 for the lower three
panels. The first case gives σ2n(r) = O(1) and the second gives σ

2
n(r) = 0. The results in

the upper three panels show that when errors are not normal, the LMSEC test can perform

quite badly with the empirical sizes far above their nominal levels. In contrast, the LM∗SEC
test performs very well in all situations.

The results given in Table 4 correspond to group interaction again, but this time the

group size varies across groups and increases with n, which results in an unbounded hn.

Although the theory predicts that the two tests should behave similarly when n is large

and the results indeed show some signs of convergence in size, the LMSEC can still perform

badly even when n = 1500, when there are many small groups (upper three panels where

k = n0.75). Again, the LM∗SEC test performs very well in general.
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Table 1. Empirical Means, SDs and Sizes for One-sided Tests, Rook or Queen, k = 5∗

Anselin’s Test Proposed Test
n Mean SD 10% 5% 1% Mean SD 10% 5% 1%

Rook Contiguity, Normal Error
20 -0.2010 0.9273 .0673 .0325 .0084 -0.0168 1.1201 .1332 .0831 .0279
50 -0.1823 0.9564 .0712 .0366 .0092 0.0112 1.0435 .1148 .0675 .0203
100 -0.1516 0.9909 .0817 .0406 .0101 -0.0013 1.0376 .1123 .0629 .0167
200 -0.1171 0.9904 .0841 .0443 .0092 -0.0006 1.0145 .1066 .0581 .0134
500 -0.0603 0.9951 .0916 .0461 .0099 0.0174 1.0051 .1095 .0556 .0130
1000 -0.0446 0.9938 .0941 .0463 .0093 0.0056 0.9986 .1049 .0532 .0112
1500 -0.0459 1.0045 .0972 .0501 .0099 -0.0010 1.0077 .1049 .0555 .0115

Rook Contiguity, Normal-Mixture, τ = 10, p = 0.05
20 -0.1899 0.9237 .0663 .0326 .0061 -0.0033 1.0526 .1209 .0678 .0204
50 -0.1941 0.9862 .0758 .0480 .0158 -0.0006 0.9570 .0949 .0594 .0189
100 -0.1414 1.0721 .0883 .0529 .0216 0.0072 0.9485 .0886 .0508 .0165
200 -0.1139 1.1124 .0983 .0582 .0215 0.0021 0.9595 .0894 .0476 .0141
500 -0.0782 1.1436 .1107 .0663 .0212 -0.0005 0.9814 .0919 .0479 .0121
1000 -0.0443 1.1576 .1206 .0726 .0226 0.0052 0.9930 .0969 .0503 .0115
1500 -0.0496 1.1506 .1214 .0699 .0210 -0.0043 0.9872 .0975 .0483 .0109

Rook Contiguity, Lognormal
20 -0.1866 0.9192 .0685 .0342 .0083 0.0005 1.0527 .1211 .0712 .0223
50 -0.2102 0.9740 .0775 .0446 .0132 -0.0182 0.9815 .1041 .0611 .0198
100 -0.1424 1.0493 .0903 .0538 .0207 0.0083 0.9843 .1019 .0587 .0196
200 -0.1142 1.0864 .1011 .0588 .0234 0.0017 0.9827 .0999 .0545 .0189
500 -0.0820 1.1306 .1128 .0709 .0259 -0.0037 0.9747 .0956 .0535 .0156
1000 -0.0561 1.1976 .1345 .0811 .0289 -0.0070 0.9922 .1031 .0538 .0137
1500 -0.0331 1.2093 .1390 .0898 .0309 0.0089 0.9885 .1066 .0544 .0139

Queen Contiguity, Normal Error
20 -0.6166 0.6046 .0073 .0027 .0001 -0.0301 1.0992 .1223 .0802 .0328
50 -0.2943 0.8860 .0546 .0304 .0098 0.0277 1.0541 .1178 .0756 .0311
100 -0.2583 0.9216 .0597 .0336 .0089 -0.0114 1.0123 .1070 .0644 .0215
200 -0.2125 0.9695 .0714 .0385 .0102 -0.0215 1.0158 .1063 .0599 .0200
500 -0.1087 0.9763 .0840 .0448 .0124 0.0105 0.9947 .1042 .0590 .0161
1000 -0.1011 1.0008 .0860 .0431 .0115 -0.0126 1.0107 .1018 .0544 .0141
1500 -0.0859 0.9809 .0855 .0439 .0099 -0.0150 0.9873 .0959 .0502 .0121

Queen Contiguity, Normal-Mixture, τ = 10, p = 0.05
20 -0.6033 0.6535 .0071 .0019 .0001 -0.0073 1.0820 .1246 .0806 .0321
50 -0.3206 0.9617 .0662 .0424 .0160 -0.0020 0.9774 .1043 .0669 .0249
100 -0.2399 1.0861 .0837 .0517 .0221 0.0059 0.9666 .0958 .0564 .0220
200 -0.1877 1.1425 .0973 .0579 .0222 0.0031 0.9605 .0920 .0495 .0160
500 -0.1341 1.1929 .1160 .0733 .0267 -0.0128 0.9809 .0966 .0500 .0154
1000 -0.0840 1.2116 .1317 .0796 .0268 0.0039 0.9899 .1024 .0521 .0132
1500 -0.0755 1.2058 .1320 .0808 .0306 -0.0039 0.9845 .0980 .0533 .0126

Queen Contiguity, Lognormal
20 -0.6127 0.6418 .0078 .0022 .0003 -0.0214 1.0747 .1216 .0798 .0300
50 -0.3231 0.9232 .0573 .0353 .0134 -0.0067 0.9813 .0990 .0621 .0242
100 -0.2604 1.0219 .0738 .0460 .0165 -0.0121 0.9754 .0966 .0597 .0205
200 -0.1994 1.1125 .0902 .0559 .0223 -0.0076 0.9826 .0959 .0558 .0195
500 -0.1397 1.1957 .1179 .0751 .0292 -0.0172 0.9944 .0976 .0551 .0185
1000 -0.0783 1.2472 .1375 .0898 .0371 0.0061 0.9873 .1034 .0580 .0148
1500 -0.0715 1.2921 .1473 .0942 .0379 0.0007 0.9968 .1033 .0551 .0144
∗The n spatial units are randomly placed on a lattice of k ×m squares.
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Table 2. Empirical Means, SDs and Sizes for One-sided Tests, Rook or Queen, k = m∗

Anselin’s Test Proposed Test
n Mean SD 10% 5% 1% Mean SD 10% 5% 1%

Rook Contiguity, Normal Error
52 -0.2445 0.9219 .0584 .0305 .0064 0.0008 1.0915 .1249 .0752 .0261
72 -0.2366 0.9405 .0624 .0315 .0065 0.0091 1.0525 .1165 .0689 .0220
102 -0.1817 0.9560 .0674 .0345 .0066 -0.0007 1.0063 .1038 .0547 .0141
152 -0.1050 0.9848 .0840 .0415 .0100 0.0126 1.0074 .1057 .0579 .0139
232 -0.0873 0.9996 .0865 .0443 .0120 -0.0083 1.0096 .1019 .0534 .0142
322 -0.0723 0.9943 .0879 .0420 .0092 -0.0154 0.9994 .0995 .0483 .0110
392 -0.0536 0.9978 .0917 .0451 .0089 -0.0059 1.0014 .1011 .0506 .0102

Rook Contiguity, Normal-Mixture, τ = 10, p = 0.05
52 -0.2374 0.9456 .0722 .0412 .0099 0.0081 1.0307 .1208 .0732 .0247
72 -0.2574 0.9919 .0751 .0424 .0134 -0.0129 0.9775 .1044 .0616 .0170
102 -0.1842 1.0612 .0818 .0502 .0223 -0.0018 0.9573 .0877 .0523 .0206
152 -0.1194 1.1046 .0957 .0589 .0232 -0.0017 0.9625 .0878 .0502 .0166
232 -0.0925 1.0985 .1023 .0594 .0216 -0.0123 0.9798 .0921 .0493 .0159
322 -0.0311 1.0864 .1083 .0635 .0213 0.0238 0.9910 .0995 .0529 .0163
392 -0.0645 1.0562 .0997 .0564 .0157 -0.0157 0.9761 .0917 .0481 .0118

Rook Contiguity, Logormal
52 -0.2428 0.9405 .0718 .0370 .0092 0.0023 1.0382 .1213 .0754 .0234
72 -0.2479 0.9542 .0661 .0383 .0133 -0.0050 0.9788 .1004 .0594 .0191
102 -0.1829 1.0234 .0818 .0497 .0185 -0.0027 0.9714 .0982 .0568 .0212
152 -0.1088 1.0942 .0987 .0629 .0249 0.0080 0.9898 .0986 .0611 .0226
232 -0.0762 1.0997 .1084 .0682 .0265 0.0022 0.9836 .1012 .0595 .0185
322 -0.0379 1.1008 .1176 .0712 .0261 0.0189 0.9881 .1075 .0611 .0187
392 -0.0584 1.0896 .1067 .0645 .0227 -0.0088 0.9835 .0968 .0557 .0166

Queen Contiguity, Normal Error
52 -0.5225 0.7358 .0238 .0123 .0033 -0.0105 1.0931 .1226 .0826 .0385
72 -0.3269 0.8596 .0506 .0256 .0078 0.0033 1.0357 .1157 .0730 .0275
102 -0.2960 0.9100 .0536 .0271 .0093 -0.0133 1.0149 .1066 .0620 .0212
152 -0.1800 0.9562 .0738 .0399 .0099 0.0106 1.0013 .1094 .0618 .0190
232 -0.1276 0.9776 .0785 .0420 .0096 0.0016 0.9979 .1018 .0555 .0146
322 -0.0924 1.0037 .0899 .0478 .0118 0.0026 1.0149 .1089 .0581 .0160
392 -0.0721 0.9906 .0931 .0479 .0109 0.0048 0.9980 .1061 .0573 .0139

Queen Contiguity, Normal-Mixture, τ = 10, p = 0.05
52 -0.5254 0.7444 .0244 .0117 .0016 -0.0147 1.0131 .1102 .0707 .0272
72 -0.3285 0.9625 .0660 .0418 .0158 0.0010 0.9760 .1022 .0666 .0263
102 -0.2933 1.0668 .0772 .0499 .0216 -0.0089 0.9668 .0933 .0588 .0233
152 -0.2062 1.1313 .0997 .0621 .0253 -0.0133 0.9558 .0931 .0530 .0188
232 -0.1173 1.1626 .1119 .0680 .0274 0.0105 0.9927 .1032 .0569 .0189
322 -0.0760 1.1260 .1115 .0658 .0249 0.0172 0.9883 .0984 .0556 .0172
392 -0.0675 1.1151 .1105 .0669 .0240 0.0084 0.9932 .0973 .0548 .0158

Queen Contiguity, Lognormal
52 -0.5093 0.7573 .0257 .0122 .0028 0.0073 1.0434 .1203 .0789 .0305
72 -0.3285 0.9280 .0617 .0364 .0122 0.0002 0.9883 .1041 .0678 .0261
102 -0.2768 1.0158 .0725 .0459 .0181 0.0090 0.9868 .1032 .0637 .0257
152 -0.1940 1.0903 .0931 .0557 .0233 -0.0041 0.9652 .0966 .0537 .0206
232 -0.1260 1.1619 .1118 .0710 .0316 0.0034 0.9958 .1058 .0623 .0222
322 -0.0767 1.1719 .1144 .0729 .0317 0.0154 1.0069 .1029 .0621 .0218
392 -0.0792 1.1359 .1089 .0704 .0290 -0.0014 0.9813 .0979 .0576 .0193
∗The n spatial units are randomly placed on a lattice of k ×m squares.

13



Table 3. Empirical Means, SDs and Sizes for One-sided Tests, Group Interaction

Anselin’s Test Proposed Test
m Mean SD 10% 5% 1% Mean SD 10% 5% 1%

Group sizes = {2, 3, 4, 5, 6, 7}∗ repeated m times, Normal Error

1 -0.3336 0.9075 .0547 .0293 .0065 -0.0007 1.0951 .1279 .0825 .0320
2 -0.1264 0.9809 .0861 .0463 .0124 -0.0004 1.0458 .1185 .0693 .0217
4 -0.1178 0.9873 .0835 .0471 .0113 -0.0047 1.0218 .1089 .0615 .0164
8 -0.0938 0.9996 .0891 .0457 .0117 -0.0126 1.0171 .1080 .0573 .0143
19 -0.0548 0.9965 .0905 .0462 .0119 -0.0022 1.0035 .1022 .0528 .0135
37 -0.0464 0.9975 .0953 .0481 .0115 -0.0096 1.0015 .1019 .0531 .0130
56 -0.0201 0.9946 .0977 .0484 .0088 0.0101 0.9971 .1029 .0528 .0105

Group sizes = {2, 3, 4, 5, 6, 7} repeated m times, Normal Mixture, τ = 5, p = 0.05

1 -0.3616 1.0951 .0759 .0507 .0244 -0.0246 1.1121 .1241 .0853 .0419
2 -0.1429 1.3396 .1237 .0851 .0488 -0.0119 1.0576 .1149 .0791 .0396
4 -0.0806 1.5452 .1529 .1176 .0732 0.0198 1.0376 .1160 .0818 .0393
8 -0.0885 1.6708 .1720 .1334 .0843 -0.0060 1.0153 .1108 .0745 .0294
19 -0.0603 1.7699 .1962 .1538 .0950 -0.0065 1.0100 .1073 .0686 .0233
37 -0.0260 1.8042 .2152 .1663 .1010 0.0051 1.0007 .1098 .0664 .0216
56 -0.0316 1.8223 .2215 .1691 .1025 -0.0023 1.0062 .1069 .0633 .0186

Group sizes = {2, 3, 4, 5, 6, 7} repeated m times, Chi-Square with df = 3

1 -0.3270 1.0297 .0783 .0503 .0200 0.0058 1.1219 .1325 .0934 .0433
2 -0.1261 1.1192 .1080 .0702 .0311 0.0022 1.0433 .1197 .0749 .0289
4 -0.0937 1.1844 .1235 .0800 .0346 0.0164 1.0313 .1190 .0704 .0242
8 -0.0943 1.2152 .1230 .0820 .0352 -0.0090 1.0179 .1051 .0630 .0212
19 -0.0460 1.2414 .1404 .0901 .0382 0.0048 1.0127 .1077 .0626 .0197
37 -0.0329 1.2334 .1426 .0920 .0368 0.0035 0.9976 .1048 .0585 .0169
56 -0.0283 1.2400 .1458 .0909 .0366 0.0009 0.9958 .1020 .0557 .0150

Group sizes = 5∗ repeated m times, Normal Error
5 -0.3917 0.8607 .0468 .0256 .0077 -0.0117 1.0770 .1245 .0804 .0336
10 -0.2553 0.9431 .0676 .0400 .0100 0.0004 1.0428 .1193 .0726 .0263
20 -0.1217 0.9845 .0838 .0475 .0139 0.0078 1.0225 .1081 .0650 .0214
40 -0.0904 1.0024 .0902 .0528 .0128 0.0144 1.0235 .1087 .0649 .0175
100 -0.0653 0.9883 .0911 .0454 .0100 -0.0012 0.9964 .1036 .0545 .0117
200 -0.0392 1.0063 .0974 .0490 .0111 0.0034 1.0102 .1064 .0545 .0126
300 -0.0290 0.9954 .0962 .0519 .0121 0.0088 0.9982 .1032 .0547 .0131

Group sizes = 5 repeated m times, Normal Mixture, τ = 5, p = 0.05
5 -0.3917 0.8169 .0393 .0199 .0054 -0.0117 1.0148 .1111 .0711 .0275
10 -0.2580 0.8821 .0552 .0275 .0069 -0.0025 0.9709 .1019 .0595 .0183
20 -0.1300 0.9263 .0710 .0373 .0085 -0.0008 0.9609 .0960 .0524 .0142
40 -0.0986 0.9412 .0742 .0383 .0095 0.0061 0.9605 .0936 .0518 .0129
100 -0.0599 0.9807 .0871 .0432 .0095 0.0042 0.9886 .0979 .0498 .0117
200 -0.0405 0.9772 .0894 .0474 .0093 0.0021 0.9810 .0976 .0510 .0111
300 -0.0399 0.9946 .0908 .0453 .0095 -0.0021 0.9973 .0994 .0497 .0111

Group sizes = 5 repeated m times, Chi-Square with df = 3
5 -0.3669 0.8508 .0465 .0259 .0080 0.0192 1.0603 .1229 .0810 .0343
10 -0.2461 0.9321 .0640 .0382 .0131 0.0105 1.0285 .1114 .0687 .0285
20 -0.1439 0.9663 .0817 .0434 .0116 -0.0153 1.0033 .1083 .0600 .0190
40 -0.0948 0.9852 .0911 .0479 .0120 0.0099 1.0058 .1106 .0620 .0167
100 -0.0674 0.9906 .0905 .0485 .0127 -0.0033 0.9986 .1013 .0565 .0152
200 -0.0549 0.9947 .0908 .0482 .0121 -0.0123 0.9986 .0968 .0528 .0133
300 -0.0434 0.9940 .0909 .0492 .0121 -0.0057 0.9968 .0966 .0537 .0131
∗ For group sizes = {2, 3, 4, 5, 6, 7}, n = 27m; for group size =5, n = 5m.
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Table 4. Empirical Means, SDs and Sizes for One-sided Tests, Group Interaction

Anselin’s Test Proposed Test
n Mean SD 10% 5% 1% Mean SD 10% 5% 1%

k = n.75, group sizes ∼ U(.5n.25, 1.5n.25), Normal Error∗
20 -0.1115 0.9529 .0758 .0308 .0018 -0.0015 1.1489 .1405 .0809 .0150
50 -0.0878 0.9946 .0865 .0369 .0056 0.0057 1.0608 .1169 .0608 .0115
100 -0.0758 0.9849 .0879 .0429 .0078 0.0074 1.0176 .1102 .0551 .0120
200 -0.0880 0.9975 .0870 .0449 .0090 -0.0166 1.0148 .1029 .0547 .0127
500 -0.0669 0.9990 .0958 .0489 .0109 -0.0050 1.0071 .1079 .0581 .0135
1000 -0.0597 0.9954 .0890 .0440 .0116 -0.0114 0.9998 .0983 .0493 .0136
1500 -0.0379 0.9968 .0941 .0489 .0106 0.0024 0.9999 .1016 .0544 .0122

k = n.75, group sizes ∼ U(.5n.25, 1.5n.25), Normal Mixture
20 -0.1230 1.3587 .1569 .1167 .0582 -0.0150 1.1944 .1859 .1121 .0108
50 -0.1199 1.9904 .2418 .2051 .1472 -0.0074 1.0853 .1799 .0704 .0048
100 -0.1266 2.3663 .2421 .2097 .1591 -0.0166 1.0398 .1502 .0923 .0182
200 -0.0613 2.1549 .2092 .1708 .1201 0.0037 1.0275 .1119 .0836 .0373
500 -0.0680 1.7972 .1954 .1519 .0918 -0.0023 0.9985 .0988 .0608 .0242
1000 -0.0728 1.4726 .1750 .1195 .0571 -0.0156 0.9886 .0972 .0535 .0145
1500 -0.0415 1.4200 .1697 .1145 .0541 -0.0011 1.0026 .1008 .0573 .0178

k = n.75, group sizes ∼ U(.5n.25, 1.5n.25), Lognormal
20 -0.1327 1.3252 .1606 .1144 .0381 -0.0249 1.2033 .1839 .1038 .0108
50 -0.0631 1.7203 .2239 .1778 .1064 0.0235 1.0846 .1698 .0775 .0068
100 -0.0699 2.0036 .2207 .1838 .1239 0.0064 1.0500 .1504 .0921 .0155
200 -0.0738 1.8680 .1814 .1438 .0851 -0.0016 1.0179 .1084 .0728 .0360
500 -0.0586 1.7801 .1731 .1337 .0779 0.0004 1.0056 .1006 .0604 .0242
1000 -0.0394 1.5745 .1695 .1234 .0676 0.0027 0.9955 .1065 .0622 .0236
1500 -0.0426 1.5613 .1634 .1148 .0640 -0.0037 1.0063 .0998 .0612 .0243

k = n.5, group sizes ∼ U(.5n.5, 1.5n.5), Normal Error
20 -0.2132 0.9496 .0794 .0495 .0152 -0.0085 1.1136 .1320 .0894 .0396
50 -0.2461 0.9408 .0727 .0429 .0125 0.0047 1.0487 .1204 .0793 .0312
100 -0.2265 0.9570 .0737 .0417 .0142 0.0002 1.0302 .1172 .0717 .0265
200 -0.1998 0.9649 .0759 .0442 .0152 -0.0211 1.0078 .1041 .0653 .0242
500 -0.1549 0.9902 .0818 .0461 .0143 -0.0055 1.0172 .1088 .0624 .0222
1000 -0.1191 0.9767 .0853 .0443 .0119 0.0060 0.9943 .1074 .0581 .0178
1500 -0.0874 0.9891 .0953 .0503 .0131 0.0238 1.0028 .1139 .0621 .0177

k = n.5, group sizes ∼ U(.5n.5, 1.5n.5), Normal Mixture
20 -0.2098 0.9573 .0920 .0530 .0136 -0.0029 1.0531 .1358 .0876 .0291
50 -0.2373 0.9128 .0605 .0336 .0112 0.0130 0.9410 .0954 .0533 .0199
100 -0.2362 0.9538 .0702 .0411 .0147 -0.0090 0.9265 .0922 .0538 .0190
200 -0.1824 1.0352 .0869 .0525 .0199 -0.0019 0.9476 .0936 .0548 .0192
500 -0.1611 1.0072 .0862 .0482 .0152 -0.0112 0.9797 .0993 .0582 .0168
1000 -0.1159 0.9939 .0866 .0481 .0144 0.0090 0.9819 .1018 .0567 .0173
1500 -0.1197 1.0109 .0885 .0508 .0151 -0.0086 0.9911 .1014 .0582 .0170

k = n.5, group sizes ∼ U(.5n.5, 1.5n.5), Lognormal
20 -0.2075 0.9667 .0883 .0525 .0188 -0.0001 1.0721 .1279 .0853 .0354
50 -0.2366 0.9137 .0660 .0394 .0132 0.0140 0.9656 .1010 .0635 .0235
100 -0.2268 0.9661 .0722 .0454 .0182 -0.0003 0.9732 .0983 .0610 .0254
200 -0.1921 1.0295 .0853 .0553 .0245 -0.0120 0.9715 .0960 .0608 .0261
500 -0.1456 1.0137 .0838 .0519 .0211 0.0026 0.9865 .1006 .0611 .0233
1000 -0.1130 1.0002 .0877 .0535 .0187 0.0119 0.9832 .1016 .0612 .0212
1500 -0.1116 1.0249 .0929 .0561 .0190 -0.0014 0.9928 .1043 .0616 .0198
∗ k is the number of groups. Average group size = n/k
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5 Conclusions

The proposed modified LM test performs very well in general, irrespective of error dis-

tributions and spatial layouts. Variations in the diagonal elements of WnWn play a key role

in the robustness of Anselin’s (2001) LM test. When there is a variation and this variation

does not vanish as n goes large, Anselin’s LM test is not robust against non-normality, and

the size of the test does not converge to its nominal value. When there is a variation but

it vanishes as n goes large, there can be huge finite sample size distortions for Anselin’s

LM test when errors are nonnormal, even when n is fairly large. When the elements of

Wn is of order h
−1
n with hn → ∞ as n → ∞, our theory shows that the proposed LM test

and Anselin’s LM test are asymptotically equivalent, but it may require a very large n for

Anselin’s LM test to behave properly.
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Appendix: Some Useful Lemmas

Lemma A.1 (Lee, 2004a, p. 1918): Let vn be an n×1 random vector of iid elements with
mean zero, variance σ2v, and finite excess kurtosis κv. Let An be an n dimensional square

matrix. Then E(vnAnvn) = σ2vtr(An) and Var(vnAnvn) = σ4vκv
n
i=1 a

2
n,ii + σ4vtr(AnAn +

A2n), where {an,ii} are the diagonal elements of An.

Lemma A.2 (Lee, 2004a, p. 1918): Suppose that the elements of the n× k matrix Xn
are uniformly bounded; and limn→∞ 1

nXnXn exists and is nonsingular. Then the projectors

Pn = Xn(XnXn)
−1Xn and Mn = In −Xn(XnXn)−1Xn are uniformly bounded in both row

and column sums.

Lemma A.3 (Lemma A.9, Lee, 2004b): Suppose that An represents a sequence of n×n
matrices that are uniformly bounded in both row and column sums. The elements of the

n×k matrix Xn are uniformly bounded; and limn→∞ 1
nXnXn exists and is nonsingular. Let

Mn = In −Xn(XnXn)−1Xn. Then

(i) tr(MnAn) = tr(An) +O(1)

(ii) tr(AnMnAn) = tr(AnAn) +O(1)

(iii) tr[(MnAn)
2] = tr(A2n) +O(1), and

(iv) tr[(AnMnAn)
2] = tr[(MnAnAn)

2] = tr[AnAn)
2] +O(1)

Furthermore, if an,ij = O(h
−1
n ) for all i and j, then

(v) tr2(MnAn) = tr
2(An) +O(

n
hn
), and

(vi) n
i=1[(MnAn)ii]

2 = n
i=1(an,ii)

2 +O(h−1n ),

where (MnAn)ii are the diagonal elements of MnAn, and an,ii the diagonal elements of An.

Lemma A.4 (Kelejian and Prucha, 1999; Lee, 2002): Let {An} and {Bn} be two
sequences of n× n matrices that are uniformly bounded in both row and column sums. Let
Cn be a sequence of confirmable matrices whose elements are uniformly O(h

−1
n ). Then

(i) the sequence {AnBn} are uniformly bounded in both row and column sums,
(ii) the elements of An are uniformly bounded and tr(An) = O(n), and

(iii) the elements of AnCn and CnAn are uniformly O(h
−1
n ).
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