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Abstract

In multilevel modelling, interest in modeling the nested structure of hierarchical data has
been accompanied by increasing attention to di¤erent forms of spatial interactions across
di¤erent levels of the hierarchy. Neglecting such interactions is likely to create problems
of inference, which typically assumes independence. In this paper we review approaches
to multilevel modelling with spatial e¤ects, and attempt to connect the two literatures,
discussing the advantages and limitations of various approaches.
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1 Introduction

Multilevel models are becoming increasingly popular across the range of the social sciences, as re-
searchers come to appreciate that observed outcomes depend on variables organised in a nested hier-
archy. 1 We see many applications of multilevel modelling in educational research where there exist
a number of well de�ned groups organized within a hierarchical structure, such as the teacher-pupil
relationship, leading to the analysis of e¤ects on individual pupil behaviour coming from di¤erent
hierarchical levels. For example, irrespective of personal attributes and other factors, being in the
same classroom will tend to cause pupil performance to be more similar than it otherwise would be.
This suggests that once the grouping has been established, even if its establishment is random, the
group itself will tend to become di¤erentiated. This implies that the group and its members can
both in�uence and be in�uenced by the composition of the group (Goldstein (1998)). In geograph-
ical studies, we can often envisage a hierarchy of e¤ects from cities, regions containing cities, and
countries containing regions. Failure to recognise these e¤ects emanating from di¤erent hierarchical
levels can lead to incorrect inference. However while the standard approaches to multilevel analysis
are well established, there is none the less much scope for the re�nement and development of this
extremely useful methodology. In this paper we focus on interdependencies beyond those intra-class
correlations that exist because individuals are taught in the same class room, or coexist within the
same region. The innovation in this paper is that we take this wider perspective on interdependencies,
drawing particularly on the burgeoning literature of spatial econometrics (Anselin (1988a)). This ac-
commodates spatial dependence within cross-sectional regression models, and also within panel data
analysis. In our review, we explore the connections between conventional multilevel models and the
kinds of models proposed by spatial econometricians. Naturally, as economists, most of our examples
and motivation are drawn from economics, and from economic geography, although we believe that
the approaches we consider have much wider potential application.

In economics, considerable recent attention has been given to spatial economics and international
trade, particularly with the advent of the �new economic geography�(Fujita and Krugman (1999)).
The increasingly spatial perspective means that very often we are faced with cross-sectional data
indexed by location rather than time, or panel data in which each time layer comprises a data set
of location-speci�c observations. In economic geography, with a hierarchy of local, regional and
national e¤ects typically in�uencing outcomes, the obvious starting point is multilevel modelling, in
which individual level cross-sectional (spatial) data within the same local administrative area, for
example, are subject to an e¤ect because of their common location. Perhaps local property taxes are
di¤erent across local administrative units, and properties, which are the units of observation, have
prices partly re�ecting these local tax di¤erences. Additional spatial e¤ects may arise at di¤erent
levels of a nested hierarchy; for instance we may wish also to control for the e¤ects of being located
within the same region, perhaps because policy instruments having an e¤ect on property prices are
applied at the regional level and are di¤erent from the e¤ects of local tax di¤erentiation.

The contribution of the spatial econometrics perspective is that it introduces the notion that
the analysis of spatial e¤ects simply via the e¤ects of multilevel group membership (local, regional,
national) may be inadequate as a means of totally capturing the true spatial dependencies in the
data, and this can produce misleading outcomes. For example, real estate prices may be a¤ected

1Over the past decade there has been a development of methods which have enabled researchers to model hierarchical
data. Examples of these methods include multilevel models (see, for example, Goldstein (1998)), random coe¢ cient
models (Longford (1993)) and hierarchical multilevel models proposed by Goldstein (1986) based on iterative generalized
least squares (IGLS).
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by individual level real estate attributes (size of plot etc.) and by hierarchical location e¤ects (local
administrative area e¤ects, regional e¤ects etc.), but there could also be an interaction between
neighbouring properties that depends on, say, distance, so that the intra-area correlation between
individual properties is unequal, due to the di¤erent distances between properties within areas, and
moreover, the correlation does not terminate abruptly at area boundaries, but spills over. This
spilling over of externalities across space will lead to unmodelled e¤ects (the error), or indeed prices
directly, being spatially autocorrelated. Modelling such externalities comes within the realm of spatial
econometrics. By not properly modelling these spatial interdependencies, with positive dependence,
the outcome could be that, since the actual information content is smaller than that implied by the
actual sample size, using the data as though they were independent leads to standard errors that
are biased downwards. Therefore alongside the nested structure of the hierarchical data increasing
attention has been paid to di¤erent forms of interactions and externalities in the hierarchical system
(Durlauf (2003), Manski (2000), Brock (2001), Akerlof (1997)). As another example, Bénabou (1993),
Durlauf (1996), Fernandez and Rogerson (1997) consider the e¤ects of residential neighbourhood on
education. Typically we will �nd that a child�s education is determined, at least in part, by factors
such as school quality, but the characteristics of other pupils with whom the pupil interacts, captured
possibly by a social network structure, will also be of relevance. The importance of such externalities
has led researchers to de�ne di¤erent concepts of membership and neighborhood e¤ects relying on
notions of distance in social space (Akerlof (1997), Anselin (2002)). Widespread use has been extended
to health research where for example multilevel modelling with spatial dependence has been applied
to examine the geographical distribution of diseases, since diseases often spread due to contagion via
contact networks (see, Langford, Leyland, Rasbash, and Goldstein (1999)).

Recognition of the di¤erent form of interactions between variables which a¤ect each individual
unit of the system and the groups they belong to has important empirical implications. In fact,
regardless of spatial autocorrelation, the assumption of independence is usually incorrect when data
are drawn from a population with a grouped structure since this adds a common element to otherwise
independent errors, thereby inducing correlated within group errors. Moulton (1986) �nds that it
is usually necessary to account for the grouping either in the error term or in the speci�cation of
the regressors. Apart from within- group errors, it is also possible that errors between groups will
be correlated. For example, if the groups are geographical regions then regions that are neighbours
might display greater similarity than regions that are distant. Again, Moulton (1990) shows that
even with a small level of correlation, the use of Ordinary Least Squares (OLS), will lead to standard
errors with substantial downward bias and to spurious �ndings of statistical signi�cance.

One way of incorporating the group e¤ect in a multilevel framework is to evaluate the impact of
higher level variables on the individual which measure one or more aspects of the composition of the
group to which the individual belongs. Bryk and Raudenbush (1992) consider di¤erent ways of doing
this, such as using a simple mean covariate over the higher level units as an explanatory variable.
The mean covariate characterizes group e¤ects which are measurable and in this respect di¤ers from
the use of dummy variables which capture the net e¤ect of several variables. Note that it is possible
that having controlled for these measurable compositional e¤ects there are still unobservable spatial
e¤ects.

Such correlated unobservables can be modeled either as �xed or random e¤ects. If we have
data grouped by geographic area with all the areas represented in the sample then a �xed e¤ects
speci�cation is appropriate. When only some of the areas are represented in the sample or there
is pattern of dependence involving unknown spatial e¤ects, we might opt for random e¤ects in a
hierarchical model operating through the error term. This is achieved by way of an unrestricted
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non-diagonal covariance matrix. As with unconditional ANOVA this will provide the decomposition
of the variance for the random e¤ect into an individual component and a group component. Under
a spatial dependence process acting at the level of random group e¤ects, the random components
are typically a¤ected by those of neighbouring groups. This assumption is usually a relaxation of
the main hypothesis in hierarchical modelling, i.e. independence between groups. As we have seen,
especially when the groups are geographical areas, this might often be unrealistic.

The paper is organized as follows. The following section presents a diagrammatic representation
of the multilevel modelling approach. Section two describes how to model spatial e¤ects through
the error term; it also describes di¤erent ways of de�ning spatial and multidimensional weighting
matrices. Sections three illustrates how to estimate linear random intercept models. Sections four
and �ve illustrate how to accommodate correlation between predictors and (group) spatial e¤ects using
�xed or random e¤ects in multilevel models. Section six links multilevel to spatial models, illustrates
how to identify the relevant parameters for the group random e¤ects and the endogenous spatial lag
and connects multilevel modelling to recent developments in panel data analysis, highlighting where
progress might be made in estimation methodology. Section seven concludes.

1.1 A Representation of a Multilevel Structure

Figure 1 represents a diagrammatic representation of a multilevel hierarchy. Here with R denoting
the top level, N the second level, and I the individual level. There is a variable number of individuals
per second level group, and varying numbers of second level groups in each category at the top level of
the hierarchy. In the context of spatial data we might consider a geographical grouping of individuals
with the highest level being R regions (r) each of which nests a total of G smaller geographical
sub-regions (g): These sub-regions may be either speci�c areas of residence or some other relevant
geographical units. Located within each sub-region there are individuals (I) with a variable number
of individuals per sub-region.

We associate with each individual a response Yi which is dependent upon a set of covariates Xi.
However, in assessing whether we might assign any causal relationships between one or more elements
of Xi and the individual response Yi, it is necessary to consider the hierarchical structure of the data,
and in particular within- and between-group e¤ects.

There are a number of advantages in taking a multilevel approach. First, in standard unilevel OLS
estimation the presence of nested groups of observations may be dealt with the use of dummy variables.
However, the large number of levels result in a dramatic reduction in degrees of freedom. Second,
this approach helps to analyze the e¤ect of heterogenous groups in the small sample situation. In
fact with unbalanced data, while OLS estimates of the coe¢ cients give equal weights to each cluster,
the variance-components model acknowledges the fact that estimates for the �xed coe¢ cients can
change according to the cluster size. It is therefore possible to adjust both the estimates and the
inference according to the precision associated with each group, which is determined by the number
of surveyed individuals (this is technically referred to as shrinkage). In most applications, shrinkage
is desirable as it only a¤ects clusters that provide little information and e¤ectively downplays their
in�uence, borrowing strength from other larger clusters. The hierarchical multilevel method, which
is sample size dependent, seems to have a distinct advantage over other methods in eliminating bias.

Compared to other approaches such as Clustered-Standard-Error OLS, Multilevel Modelling
(MLM) has some advantages: �rst, while CSE techniques treat the random variation as a simple
nuisance the objective of MLM is to estimate and decompose the total random variation in an in-
dividual component and a group component. Second, while CSE adjusts only standard errors for
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non-independence while having no impact on point estimates, MLM provides us with estimates of
the variance components at each level and these a¤ect point estimates directly. In turn, variances
and covariances constitute valuable information on the contribution of non-observable factors at each
level to the variation of the dependent variable (Aslam and Corrado (2007)).

2 Modelling spatial e¤ects through the error term

Below we introduce the basic multilevel model focussing on the two level case. We write this model
as:

Yij = �0 +Xij�1 + Zj
 + "ij ; (1)

where Yij denotes the response, Xij is a 1�k vector of covariates, Zj is a (1�q ) vector of group level
2 explanatory variables (invariant within groups) and "ij is the random disturbance; i, i = 1; : : : ; N
and j, j = 1; : : : ; G; denote, respectively, level 1 and level 2 units. We write the error term as:

"ij = eij + uj ; (2)

where "ij denotes an additive error term composed of a random error term eij for the ith unit belonging
to level j and a random e¤ect uj for each level 2 unit. We make the following assumptions:

eij jXij � N(0; �e) Cov(eij ; ei0j) = 0; 8i 6= i0
uj jXij � N(0; �u) Cov(uj ; eij) = 0

(3)

We let �2e (�
2
u) denote the variance of eij (uj) such that for cov(eij ; uj) = 0, then �

2
" = �

2
e + �

2
u

represents the sum, respectively of the within- and between-group variances. Based upon the above,
we may write the (equicorrelated) intra-class correlation as:

� =
�2u

�2u + �
2
e

: (4)

This correlation measures the proportion of the variance explained at the group level. In single-level
models �2u = 0 and �

2
" = �

2
e becomes the standard single level residual variance.

Following Anselin, Le Gallo, and Jayet (2007), who write from a spatial panel data perspective,
there are four ways we might wish to model spatial e¤ects operating through the error term, namely i)
direct representation, which originates from the geostatistical literature (Cressie (2003)); as noted by
Anselin (2003), this requires exact speci�cation of a smooth decay with distance and a parameter space
commensurate with a positive de�nite error variance-covariance matrix. Alternatively, as in Conley
(1999), a looser de�nition of the distance decay may be implemented, leading to non-parametric
estimation; ii) spatial error processes typi�ed by much work in spatial econometrics (Anselin (1988a)),
based on a so-called W matrix de�ning indirectly the spatial structure of the non-zero elements of
the error variance-covariance matrix. The W matrix comprises non-negative values representing
the a priori assumption about interaction strength between location pairs de�ned by speci�c rows
and columns of W, normally with zeros on the main diagonal. Typically but not necessarily W
is normalized to sum to 1 across rows; iii) common factor models originating from the time series
literature (Hsiao and Pesaran (2004), Pesaran (2007), and Kapetanios and Pesaran (2005)) and
iv) spatial error components models (Kelejian and Robinson (1995), Anselin and Moreno (2003))
combining local (eij) and spillover (uj) error components. To accommodate these e¤ects we rewrite
(2) as
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"ij = eij +
X
j 6=h

ujWjh; (5)

where W = fWjhg allows us to specify the way neighbouring areas a¤ect uj : The matrix W is a
matrix of distances between the G entities as discussed below. The intra-class correlation is now
given by:

� =
�2uP

j 6=h �
2
uW

2
jh + �

2
e

: (6)

One simple way to allow for these e¤ects is to set Wjh = 1(j ^ h) where 1(:) is the indicator function
and j ^ h denotes the contiguity of area j with area h: Trivially if W = I;where I is the identity
matrix, then we have the standard random e¤ects model ignoring any between group e¤ect.

If uj are treated as �xed parameters then we need to assume that cov(eij ; uj) = �eu = 0, that
is transient individual-level random e¤ects are uncorrelated with, say, a level 2 variable such as the
area of residence. If uj and eij are not independent the Generalised Least Squares (GLS) estimator
would be biased and inconsistent. If uj are permanent random e¤ects we also assume independence
between these and the covariates such that cov(Xij ; uj) = �ux = 0 (Blundell (1997)). Relaxing the
constraints �ux 6= 0 and �eu 6= 0 is discussed in sections �ve and six.

2.1 Spatial versus Multidimensional Weighting Matrices

In the following paragraphs we illustrate some of the traditional distance-based unidimensional mea-
sures adopted in spatial econometrics (Anselin (1988b)) and introduce other multidimensional mea-
sures based on various notions of social or economic distance. Typically, isotropy is assumed, so that
only distance between j and h is relevant, not the direction j to h. These may provide the basis for
direct or indirect estimation of the error variance-covariance matrix, including the spillover in error
components models.

Spatial externalities can sometimes re�ect not only pure spatial interaction but other important
substantive multiple phenomena at the economic, political, cultural and institutional level operating at
the group (or area) level (Tienda (1991)). For example, in community psychology (O�Campo (2003))
often the de�nition of neighbourhood is based on respondents�perception of their own neighborhood
as well as on economic and census data (Aronson and Brodsky (1999); Ross, Reynolds, and Geis
(2000); Shumow, Vandell, and Posner (1998)). Analysis of social exclusion (Muntaner, Lynch, and
Oates (1999); Ross, Reynolds, and Geis (2000)) and social segregation Goldstein and Noden (2003)
often considers geographical position as one among several factors that weaken the links between
individuals and the rest of society.

Crude measures of between group spatial �distance� include simple notions of proximity and
contiguity, concepts which have motivated the work of Cli¤ and Ord (1973) and Cli¤ and Ord (1981)
and speci�cally the measure of spatial autocorrelation. Cli¤ and Ord (1973) combines distance and
length of the common border thus :

Wjh = (djh)
a ��jh�b (7)

where djh denotes the distance between locations j and h and �jh is the proportion of the boundary
of j shared with h whereas a and b are parameters.

There are numerous alternatives, for example we might assume that
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Wjh = exp(��djh) (8)

with � controlling the strength of a distance-decay e¤ect.
Dacey (1968) suggests that

Wjh = bjh�j�jh (9)

in which bjh is a binary contiguity factor, �j is the share of unit j in the total area of all the spatial
units in the system, and �jh is the same boundary measure as used in (7).

The above measures apply mostly to physical features of geographical units. However, they are less
useful when spatial units consist of points and when the spatial interaction is determined by purely
economic variables which may have little to do with spatial con�guration of boundaries. Economic
distance has been a feature of work by Conley (1999), Pinkse, Slade, and Brett (2002), Conley and
Topa (2002), Conley and Ligon (2002) and Slade (2005). For example Conley and Ligon (2002)
estimate the costs of moving factors of production. Physical capital transport costs are related to
inter-country package delivery rates, and the cost of transporting embodied human capital is based on
airfares between capital cities (the correlations with great circle distances are not perfect). In their
analysis, for practical reasons, they con�ne their analysis to single distance metrics, but they prefer
multiple distance measures. Taking the wider perspective of the industrial organization literature,
distances may be in terms of trade openness space, regulatory space, commercial space, industrial
structure space or product characteristics space. These developments in the conceptualization of
economic distance have been surveyed in Greenhut, Norman, and Hung (1987). More general distance
measures include multidimensional indicator functions. For example, Bodson (1975) use a general
accessibility weight (calibrated between 0 and 1) which combines in a logistic function several channels
of communication between regions such as railways, motorways etc.:

Wjh =

JX
j=1

pj (a=1 + b exp(�cjdjh)) (10)

where pj indicates the relative importance of the means of communication j: The sum is over the J
means of communication with djh equal to the distance from j to h; a; b and cj are parameters which
need to be estimated.

Alternatively, if we have categorical data based on geographical and other socio-demographic
indicators and we want to de�ne general multidimensional binary measures of spatial and social
distance across the di¤erent units we may use a more general weighting scheme:

W h
jh =

GX
j=1

GX
h 6=1

W h1
jh �W

h2
jh � ::::W

hS
jh (11)

where W h = fW hs
jh g denotes the arti�cially constructed binary matrix based on indicators hs where

s = 1; 2; :::; S. Elements in W hs
jh equal 1 if units j and h belong to the same category. Hence W

h is a
multidimensional binary measure based on S di¤erent spatial and social categorical classi�cations of
the individual units.
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3 Linear Multilevel Model

In the random coe¢ cient model the level of the individual response varies according to location. For
example, individuals� income levels, controlling for individual level covariates such as educational
attainment, vary if they reside in di¤erent areas. Part of the reason will be the e¤ect of, say, �xed
level two contextual factors (Z), and partly because level two speci�c random e¤ects fujg. However
these �xed and random e¤ects, while accounting for heterogeneity across residential areas, are not
spatially correlated, a topic we address subsequently. With this in mind, our speci�cation is as in our
general multilevel model, which we rewrite here in general matrix notation. Consequently equation
(1) becomes:

Y = �0 +X�1 + Z
 + " (12)

where Z = fZijg is a set of contextual factors at level-two, Y = fYijg ; X = fXijg and " = feijg+
fujg. The dimension of Y and X and Z are (N � 1), (N � k) and (N � q ) respectively. The vectors
�0; �1 and 
 denote the vectors of �xed e¤ect coe¢ cients.

We �rst rewrite (12) in compact form as:

Y = J�+ �"" (13)

where J is (N � (k + q +1)) and � is ((k + q + 1 ) � 1) and �" is the design matrix of the random
parameters that will be used in the estimation to derive the estimates for b�2e and b�2u: The hierarchical
two-stage method for estimating the �xed and random parameters (the variance and covariances of
the random coe¢ cients) originally proposed by Goldstein (1986),2 is based upon an Iterative Least
Squares (IGLS) method that results in consistent and asymptotically e¢ cient estimates of �:

First we obtain starting values for �; ~� by performing OLS in a standard single level system
assuming the variance at higher level of the model to be zero. Conditioned upon ~�; we form the
vector of residuals which we use to construct an initial estimate, V; the covariance matrix for the
response variable Y: Then we iterate the following procedure �rst estimating the �xed parameters in
a GLS regression as:

b� = (JTV�1J)�1
�
JTV�1Y

�
(14)

and again calculating residuals br = Y � Jb�: We can rearrange this cross-product matrix as a vector
by stacking the columns one on top of another into a vector, i.e. r� = vec(br brT ) which is then used
in the next level of estimation to obtain consistent estimates of b�2e and b�2u. Hence, we can estimate
the random parameters as:

b�" = ("�TV��1"�)�1
�
"�TV��1r�

�
(15)

where V� is the Kronecker product of V; namely V� = V 
V and the covariance matrix is given
by V = E(br brT ). The matrix "� is the design matrix of the random parameters. From b�" we derive
estimates of b�2e and b�2u which are used to construct the covariance matrix of the response variable
Y at each iteration using a GLS estimation of the �xed parameters. Once the �xed coe¢ cients are
obtained, updated residuals are formed" brebru

#
=

" b�2eeTb�2uuT
#
V�1(Y � J�) (16)

2The method is currently implemented in the software MLwiN.
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and the random parameters estimated once again. This procedure is repeated until some convergence
criteria are met.3

As Goldstein (1989) has stressed, the IGLS used in the context of random multilevel modelling
is equivalent to a maximum likelihood method under multivariate normality which in turn may lead
to biased estimates. To produce unbiased estimates a Restricted Iterative Generalized Least Squares
(RIGLS) method may be used which, after the convergence is achieved, turns out to be equivalent to
a Restricted Maximum Likelihood Estimate (REML). One advantage of the latter method is that, in
contrast to IGLS, estimates of the variance components take into account the loss of the degrees of
freedom resulting from the estimation of the regression parameters. Hence, while the IGLS estimates
for the variance components have a downward bias, the RIGLS estimates don�t.

4 Multilevel Models with Spatial Fixed E¤ects

Often in a multilevel model a regressor can be regarded as endogenous as it is not independent from
the random e¤ects in the model. In such circumstances a basic assumption of modelling is not met
and obtaining consistent estimators of the parameters is not straightforward.

For example in a UK study of children performance in National Curriculum Key Stage 1 tests,
Fielding (1999) stresses that performance may be related to unmeasured school e¤ects uj . The
common in�uences may be such things as the locality in which the school is situated and from which
the pupils generally come.

Goldstein, Jones, and Rice (2002) show that when cov(uj ; Xij) = �ux 6= 0 and for small group size,
the IGLS estimator is biased and inconsistent. In the panel data literature, the standard test for this
is the Hausman test (Hausman (1978)). Considering multilevel models as extensions of random e¤ects
panel data models to the case of hierarchical data, we solve the problem of inconsistent estimators
due to correlation between the regressors and the random components in a similar way.

The �rst solution is the Least Squares Dummy Variable Estimator (LSDV). Consistent estimation
of � can be achieved by specifying (12) as a �xed e¤ect model, removing group variables, Z, specifying
dummy variables for group membership, D, and estimating by OLS:

Y = �0 +X�1 +D� + " (17)

where D is a (N � (G�1) ) vector of dummy variables and � is a ((G�1)�1 ) vector of coe¢ cients.
However the group level variables, Z, and the parameter vector, 
; as de�ned in (12), are not now
identi�able so the LSDV of �1 is not fully e¢ cient compared to a random e¤ects model.

Alternatively we may adopt a within groups (CV) estimator. Given our matrix of dummy variables
D; which is supposed to be of full column rank, we de�ne a projection matrix onto the columns space
ofD; denoted PG= D(D

TD)�1DT , whereasQD= I�PD is the projection onto the space orthogonal
to D: If we premultiply (17) by the idempotent matrix QD we obtain

QDY = QDX�1+QD" (18)

The within estimator of (18) can be treated as an Instrumental Variable (IV) estimator of �1;
determined by projecting (17) onto the null space of D by the matrix QD through the instrument
set QDX: By applying OLS to (18) we obtain a consistent estimator of �1; namely �̂W :

3Assuming multivariate normality the estimated covariance matrix for the �xed parameter is cov(�̂) =

(JTV�1J)�1and for the random parameters (Goldtsein and Rasbash (1992)) is cov(
^
�) = 2("TV��1")�1:
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�̂W = (XTQDX)
�1(XTQDY) (19)

Both the LSDV and the CV estimators do not allow identi�cation of group level coe¢ cients, 
,
as speci�ed in (12). However, these may be retrieved by a two step process (Hausman and Taylor
(1981)) where, �rst, we compute residuals, br = Y �X�̂W using as a �rst step the estimator in (19),
and then regressing the residuals on the group level variables Z :

br = Z
 + u (20)

If all elements of Z are uncorrelated with u OLS will be consistent for 
. If the columns of Z are
correlated with u; instruments may be found for Z, and estimation of (20) can proceed by Two-
Stage Least Squares (2SLS). If we have consistent estimates of � and 
 then we may proceed to have
consistent estimates of the variance components �2u and �

2
e:

5 Multilevel Models with Spatial Random E¤ects

Let�s now assume a speci�c form of spatial dependence where the dependent variable, Y, depends on
its spatial lag as in traditional spatial autoregressive (SAR) models:

Y = �0 + �WY +X�1+u+ e (21)

whereW is an N �N matrix with G groups/areas each containing wj units so that
PG
j=1wj = N:

Let�s start by assuming thatW is a block diagonal matrix:

W = Diag(W1; :::;WG) (22)

Wj =
1

wj � 1
(lwj l

0
wj � Iwj ) j = 1; ::; G

where lwj is the wj-dimensional column vector of ones and Iwj is the wj-dimensional identity matrix.
Elements on the diagonal of the matrix W indicate that individuals within a group are a¤ected by
the behaviour of other units residing in the same location, in other words by other members of the
same group.

Consider within-group e¤ects and assume �Yj = 1
wj�1

Pwj
i=1 Yij so that each unit within group j

has the same weight. This means that, somewhat di¤erently from conventional spatial econometrics,
the inter-individual interactions do not spill across group boundaries, and within groups no account
is taken of di¤erential location leading to di¤erent weights according to distance between individuals.
With the assumptions, we can rewrite:

Yij = �0 + �1 �Yj + �1Xij + eij + uj ; (23)

Note that because of endogeneity induced by the spatial lag then Cov (uj j Xij) 6= 0, and we �nd that
the unobserved heterogeneity is correlated with the explanatory variable, Xij . The reason for this
is that Xij determines Yij which determines �Yj , so Xij correlates with �Yj and therefore it correlates
with uj because uj is in Yij which is in �Yj :

If we adopt a �xed e¤ect speci�cation, illustrated in the previous section, we proceed to demean
the system to eliminate the �xed e¤ect. To do so we consider the Within-Group and Between-Group
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speci�cations:

WG : Yij = �0 + �1 �Yj + �1Xij+eij + uj

BG : �Yj = �0 + �1 �Yj + �1 �Xj+�ej + uj

and subtracting WG from BG gives:

Yij � �Yj = �1
�
Xij � �Xj

�
+ eij � �ej (24)

and then proceed to use OLS (assuming that E
h�
Xij � �Xj

�0
(eij � �ej)

i
= 0) to obtain the within-

group coe¢ cient for �1. However, as for the coe¢ cient, 
, on the contextual e¤ect, Z, described in
the previous section, this would leave the �xed e¤ect �1 unknown.

We therefore transform the original speci�cation (23) and use as an instrument for �Yj the following
obtained from the BG equation:

�Yj =
1

1� �1
�
�0 + �1 �Xj

�
+ u

0
j (25)

where u
0
j =

�ej+uj
1��1

: We know that the parameter �1 cannot be identi�ed from (25) as it cannot be

isolated from u
0
j so the possible identi�cation rests on the within equation relationship. Hence, this

is done by substituting (25) into (23) giving:

Yij =
�0

1� �1
+ �1Xij +

�1
1� �1

�1 �Xj + eij + u
00
j (26)

where u
00
j = uj + �1u

0
j . Therefore, we can e¢ ciently estimate �1, but this relies on the assumption

that the dependence between uj and Xij is given by (25). However, the overall speci�cation still
su¤ers from an additional problem as the covariates Xij and �Xj may be correlated, thus generating
a second type of dependence in which Cov (eij ; Xij) 6= 0.

We solve this additional problem by subtracting the group mean from the individual level (level-
one) covariate to produce a centred variable, which is referred to as the within-group deviation. We
know that the group mean is constant within each group and that the random group e¤ects, like the
group mean, vary only between groups. So they would be uncorrelated with the centered variable,
which varies within groups, which can therefore be used as an additional instrumental variable.

In this case, as suggested in the multilevel literature (Snijders and Berkhof (2008); Rabe-Hesketh
and Skrondal (2008)), a parametrization (26), with centered e¤ects

�
Xij � �Xj

�
; may be preferable:

Yij =
�0

1� �1
+

�1
1� �1

�Xj + �1(Xij � �Xj) + eij + u
00
j (27)

Hence by applying a MLM model with within and between group e¤ects we can identify the autore-
gressive parameter �1 while accounting for spatial dependence in the error term u

00
j . We have therefore

shown the equivalence between a centered two-level multilevel model and a (speci�c form of) SAR
model, where the individual i0s response in group j is a¤ected by, and simultaneously a¤ects, the
response of other individuals so long as they share the same group. Estimation of �xed and random
e¤ects can then proceed by using RIGLS conditional on �Xj .4

4A further method is proposed by Lee (2007) who considers the within equation:
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6 Multilevel Models with Interaction E¤ects

With the emergence of interaction-based models (Manski (2000), Brock (2001), Akerlof (1997)) re-
search has gradually moved from a pure spatial de�nition of neighborhood towards a multidimensional
measure based on di¤erent forms of social distance and spillovers (Anselin (2002), Anselin (1999)).
In this setting multilevel models with group-e¤ects are generally de�ned as economic environments
where the payo¤ function of a given agent takes as direct arguments the choice of other agents (Brock
(2001)). Typical example is the emergence of social network where it is often observed that persons
belonging to the same group tend to behave similarly (Manski (2000)) and that the propensity of a
person to behave in a certain way varies positively with the dominant behaviour in the group as in
the case of social norms (Bernheim (1994), Kandori (1992)).5

For example Graham (2004) suggests modelling the determinants of student achievement in dif-
ferent schools as an outcome of social interactions and individual heterogeneity as follows:

Yij = �0 + �1 �Yj + �1Xij + 
Zj + eij + uj (29)

where �Yj is the mean achievement level in the j � th classroom and Zj represents contextual e¤ects.
Equation (29) states that student achievement Yij varies with mean peer group j achievement, �Yj ; and
individual-level characteristics Xij . In fact the only di¤erence between (29) and (23) is the presence
of Zj . In particular, endogenous group e¤ects �Yj capture the impact of peers on learning; exogenous
or contextual e¤ects Zj arise when peer group background characteristics directly a¤ect students�
achievement; correlated or group e¤ects arise because group members share a common environment.
Group interaction e¤ects are present when either �1 or 
 di¤er from zero. Following Manski (1993),
�1 captures the strength of endogenous group e¤ects, 
 is the exogenous or contextual e¤ect, uj are
random group e¤ects and eij is an individual speci�c random component capturing other unmodelled
sources of variation in Yij .

By allowing for the possibility that the conditional mean of group e¤ect and the individual e¤ect
vary with group size, Graham (2004) also allows for the possibility that peer-group e¤ects may di¤er
according to class size, being stronger in bigger classes. As another example, consider workers in
�rms, with wages Yij dependent on individual worker attributes, Xij ; �rm level contextual e¤ects Zj
(such as sector, company wages policy, level of research and development activity, investment etc).
In addition we may have other unmeasured causes of wage variation represented by random group
(company) e¤ects uj and individual random e¤ects eij ; and with �1 6= 0 worker wages may also be

Yij� �Y j=
(wj � 1)�1
(wj � 1 + �1)

�
Xij � �Xj

�
+

(wj � 1)
(wj � 1 + �1)

(eij � �ej) (28)

where wj is the number of member in the j-th group. In this case the identi�cation of �1 relies on various degrees
of deviations across groups. This is possible when di¤erent groups have di¤erent number of units. However this
speci�cation of the within-group equation, di¤erently from (27) cannot help to identify �1 when all groups have the
same number of units, i.e. when wj is a constant for all groups: Also when wj are all large, �1 cannot be, again, identi�ed
as the factor (wj�1)

(wj�1+�1)
is close to one and the speci�cation (28) can be approximated by the conventional (24) and

estimated by OLS. For all other intermediate cases and varying group size Lee uses a conditional maximum likelihood
(CML) estimation. The main limitation of the proposed CML is that the �xed group e¤ects which are assumed to be
uncorrelated with the regressors. The multilevel speci�cation (27) goes one step forward by considering group random
e¤ects and in taking into account the correlation information between group random e¤ects and the regressors in the
estimation of the coe¢ cients.

5Other in�uences are the so called peer in�uence e¤ects which have been extensively examined both in education
(Bénabou (1993)), in the psychology literature (Brown (1990) and Brown, Clasen, and Eicher (1986)) and in the
occurrence of social pathologies (Bauman (1986); Krosnick and Judd (1982); Jones (1994)).
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endogenously determined so that a higher level of productivity/wage by one worker spills over (via
�Yj) to other workers in the �rm.
As with (??), taking group means of both sides of (29) and solving for �Yj (assuming �1 6= 1)

results in the between group variation:

�Yj =
�0

1� �1
+

�1
1� �1

�Xj +



1� �1
Zj + u

0
j (30)

where u
0
j =

�ej+uj
1��1

. This is simply equation (25) with the additional variable Zj : If �Xj = Zj (what
Manski calls re�ection) from (30) and (29) and centering:

Yij=
�0

1� �1
+
�1 + 


1� �1
�Xj+�1(Xij � �Xj) + eij+u

00
j (31)

with u
00
j = uj+�1u

0
j . In this case the number of coe¢ cients in the reduced form (31) is not su¢ cient to

identify the coe¢ cients in the structural equation (29). Note that without group e¤ects (�1 = 
 = 0)
the reduced form simpli�es to the basic one-way error component model Yij = �0 + �1Xij + uj + eij .
In other words group e¤ects generate excess between group variance by, for instance, introducing
mean peer characteristics, �Xj ; as an e¤ect on outcomes.6

In the following section we will show how spatial models and multilevel models with group in-
teractions (�1 6= 0; 
 6= 0) can be connected and the relevant parameters identi�ed using simple
instruments for the endogenous e¤ects, �Yj .

6.1 Linking Spatial Models to Multilevel Models: Identifying Interaction E¤ects

Extending the work by Cohen-Cole (2006) to the area of modelling interaction e¤ects in a multilevel
setting we can rewrite (29) in a way that takes into account possible interdependencies across groups,
where a group may be those living in a speci�c district or region. We assume intra-group e¤ects
�Yj =

1
wj�1

Pwj
i=1 Yij where �Yj is an average of all wj unit responses within group j and out-groups

e¤ects �Yl = 1
wl�1

Pwl
l 6=j Yl where

�Yl is an average of the responses across all �neighbouring�groups,
except group j. Typically we might consider �Yl to be based only on those groups that are spatially
or socially proximate. Note that we implicitly assume that all surrounding groups enter with the
same weight, 1

wl�1 ; but we could also adopt other weighting schemes based on relative distance or
on other criteria as described in section 2.1. Similarly for the out-group contextual e¤ects we have
�Zl =

1
wl�1

Pwl
l 6=j Zl; leading to the model :

Yij = �0 + �1 �Yj + �2( �Yj � �Yl) + �1Xij+
(Zj � �Zl) + eij + uj ; (32)

in which the outcome of individual i in region j, Yij ; depends on the average outcome of group j,
where the implicit assumption is that unit i is a¤ected equally by all other units living in the same
location j. We also assume that the individual outcome depends on the average outcome, �Yl; and
average contextual e¤ects, �Zl; of other regions �surrounding�group j: We represent the endogenous
out-groups spillover variable in deviation form, as the mean within the group minus the mean in
regions �nearby�, hence the variable is �Yj � �Yl. Likewise the contextual spillover variable is speci�ed

6A simple way to detect the presence of group e¤ects is to measure the excess between-group variance (Graham
(2004)). If we denote the group size with wj then excess variance is de�ned as the ratio of unconditional (scaled)

between-group and within group variances EV =
E[wj(Y j��y)2]

E
h
(wj�1)

�1Pwj
i=1(Yij�Y j)

2
i :
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as Zj � �Zl: Spatial autocorrelation in the error term exists because Yij depends on uj which also
a¤ects �Yj and ( �Yj � �Yl) through the coe¢ cients �1 and �2.

In order to identify all the relevant parameters in the model we consider the instrumental rela-
tionship derived from (32):

�Yj =
1

1� �1 � �2
�
�0 + �1 �Xj+
(Zj � �Zl)� �2 �Yl

�
+ u

0
j (33)

where u
0
j =

�ej+uj
1��1��2

.
Replacing (33) in (32) gives:

Yij =
�0

1� �1 � �2
+ �1Xij �

�2
1� �1 � �2

�Yl +
(�1 + �2)

1� �1 � �2
�1 �Xj (34)

+



1� �1 � �2
Zj �




1� �1 � �2
�Zl + eij + u

00
j

and assuming re�ection �Xj = Zj :

Yij =
�0

1� �1 � �2
+ �1Xij +

�1(�1 + �2) + 


1� �1 � �2
�Xj (35)

� 


1� �1 � �2
�Zl �

�2
1� �1 � �2

�Yl + eij + u
00
j

where u
00
j = uj + (�1 + �2)u

0
j . It is clear from (35) that in the absence of collinearity we can identify

all the parameters in the structural equation (32) if the number of level-one units (typically number
of individual people) exceeds the number of groups and @Yij

@ �Yl
6= 0 i.e. if for some j 6= l agents in one

group are a¤ected by the value of Y or by contextual e¤ects Z in �neighbouring�groups.
Reparametrising, we obtain an equivalent multilevel model:

Yij =
�0

1� �1 � �2
+ (Xij � �Xj)

within-group
�1 +


 + �1
1� �1 � �2
between-group

�1 �Xj (36)

� �2
1� �1 � �2

�Yl

out-group endogenous

� 


1� �1 � �2
out-group contextual

�Zl + eij + u
00
j

So a MLM model with out-group e¤ects �Yl and �Zl facilitates identi�cation (c.f. Manski, 1993) of
the spatial model parameters in equation (32). This is a consequence of using the out-group e¤ects �Yl;
�Zl and the between-group e¤ects �Xj as internal instruments for the endogenous variable �Yj , which
maintains the assumption that Cov (uj ; Xij) = 0. Also centering the variables resolves the potential
correlation between the regressors and the individual error term Cov (eij ; Xij) = 0; again allowing
consistent estimation. Estimation is achieved via RIGLS/REML conditional on �Yl; �Zl and �Xj .

6.2 SARAR Models, GMM and FGS2SLS

We now consider alternative estimation routines for multilevel models with both endogenous spatial
lags and spatial e¤ects in the error process extending methods currently available with panel data.
To do this we start by considering a simple random e¤ects panel speci�cation for time t = 1; :::; T

and for individual i = 1; :::; N given by:
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Yit = �0t + �1Xit + �it

�0t = �0 + �i

with �it � iid(0; �2�) and �i � iid(0; �2�) which can be rewritten as:

Yit = �0 + �1Xit + �i + �it

where Yit is individual i�s response at time t; Xit is the exogenous variable, ui is an error speci�c to
each individual and �it is a transient error component speci�c to each time and each individual. We
can introduce spatial e¤ects both as an endogenous spatial lag:

Yit = �0 + �WYit + �1Xit + �i + �it

and as an autoregressive error process:

Yit = �0 + �WYit + �1Xit + eit

eit = �Meit + �t

and generalizing to k regressors in the panel context this becomes:

Y = �(IT 
W)Y +X� + e

in which Y is a TN�1 vector of observations obtained by stacking Yit for i = 1:::N and t = 1 : : : T , X
is a TN �k matrix of regressors and � is a k�1 vector of coe¢ cients. Note that in this speci�cation,
the autoregressive spatial dependence involving the dependent variable and the errors extends ad
in�nitum, rather than being con�ned by group boundaries.

Following Kapoor, Kelejian, and Prucha (2007) and Kelejian and Prucha (1998), all of the diagonal
elements ofW are zero, and I��W is non-singular. AlsoW is uniformly bounded in absolute value,
meaning that a constant c exists such that max1�i�N

PN
j=1 j Wij j� c � 1 and max1�j�N

PN
i=1 j

Wij j� c � 1: SimilarlyM is an N �N matrix with similar properties toW and the elements of X
are also uniformly bounded in absolute value.

In addition, given a TN � TN identity matrix with 1s, the NT � 1 vector e is

e = (INT � �IT 
M)�1�

in which � is an NT � 1 vector of innovations, � is a scalar parameter and M is an N � N matrix
with similar properties to W. Regarding the error components in space-time, time dependency is
introduced into the innovations via the permanent individual error component �, thus:

� � iid(0; �2�) (37)

� � iid(0; �2�) (38)

� = (�T 
 IN )�+ � (39)
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so that � is an N � 1 vector of random e¤ects speci�c to each individual, � is the transient error
component comprising an NT � 1 vector of errors speci�c to each individual and time, �T is a T � 1
matrix with 1s , and �T 
 IN is a TN �N matrix equal to T stacked matrices. The result is that the
TN �TN innovations variance-covariance matrix 
� is nonspherical. Also �21 = �

2
�+T�

2
�: Note that

this di¤ers from the speci�cations given by Anselin (1988a) and by Baltagi and Li (2006), where the
autoregressive error process is con�ned to �: In contrast the Kapoor, Kelejian, and Prucha (2007)
set-up assumes that the individual e¤ects � have the same autoregressive process.

In the multistage context, we cannot apply the Kronecker products because the data no longer
comprise the �same� individual i at T di¤erent time points. Hence matrix cells Wij and Mij no
longer de�ne the spatial connection between individuals�s i and j at time t, but simply the spatial
connection between individuals�s i and j: Given that time is now constant, with N individuals the
model becomes:

Y = �0 + �WY +X�1 + e (40)

in which Y is an N � 1 vector of observations, X is a N� k matrix of regressors, � is a scalar
parameter andWY is an N � 1 vector obtained as a result of the matrix product of N �N matrix
W and Y: In addition, given an N �N identity matrix with 1s, the N � 1 vector e is:

e = (IN � �M)�1�

in which � is an N � 1 vector of innovations.
We now consider the error components in which the N individuals are, for example, distributed

amongst G level two groups (say neighbourhoods) and these G neighbourhoods are nested within R
level three groups (regions), and the regions are nested within countries. Con�ning attention to the
G neighbourhoods and R regions, we envisage the random components thus.

� = G�+R� + � (41)

The random component representing the neighbourhood e¤ect is represented by G� in which
� � iid(0; �2�) is a G � 1 vector speci�c to the level 2 variable, and G is a N � G matrix of 1s and
0s, so that Gij = 1 indicates that individual i is a¤ected by the neighbourhood e¤ect �j . For the
level 3 (sub-region) component R�;there are r random draws from � � iid(0; �2�); and R is a N �R
matrix of 1s and 0s.

Returning to the panel model, Kapoor, Kelejian, and Prucha (2007) advocate feasible GLS plus
generalised moments (GM) as an approach to consistent estimation. A small step to extend this
(Fingleton (2008)) is feasible generalized spatial two stage least squares (FGS2SLS) to allow also the
endogenous spatial lag, in which case the �rst stage of estimation uses 2SLS to produce consistent
estimates of the residuals the presence of the endogenous variable �WY: In the second stage, the GM
estimator of �2� ; �

2
� and � is the solution to moments conditions based on the consistent residuals. In

the third stage, since these estimates lead to the estimate of the nonspherical error covariance matrix

� , and this is then used to produce robust IV estimates of �;�1 and their standard errors following
Bowden and Turkington (1984) and Greene (2003). However in the multistage context, a comparable
GM-based estimator of 
� is as far as we know not currently available. Evidently the FGS2SLS plus
GMM estimator outlined for panel data with spatial e¤ects is a special case of a multilevel model
with a level 2 variable replacing time, with each sub-sample at each value of the level 2 random e¤ect
being the same size (a balanced panel) and with spatial e¤ects operating via the endogenous spatial
lag �WY and via the error process e = �Me + � being con�ned only to those individuals within a
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speci�c level 2 group and not spilling across to all other individuals. Additionally, it presupposes
that there are no higher levels.

7 Conclusions

In multilevel modelling alongside the nested structure of the hierarchical data increasing attention
has been paid to di¤erent forms of interactions and spatial externalities in the hierarchical system.
Neglecting such interactions is likely to create problems of inference since the existence of spatial
dependence adds a common element to otherwise independent errors. The paper has critically re-
viewed several estimation methods to control for spatial dependence in a multilevel framework. A
�xed e¤ect speci�cation often modelled in the mean equation through additive and multiplicative
dummy variables may be appropriate when, for example, we have data grouped by area with all the
areas from the geographical populations represented in the sample. However, having controlled for
these measurable compositional e¤ects may not su¢ ce to have consistent estimates of the �xed and
random parameters since there may still be unobservable e¤ects due to a commonality of residence
or to neighborood e¤ects. The paper has illustrated several alternative estimation strategies such as
the within groups (CV) estimator which accommodate the correlation between predictors and spatial
random e¤ects.

The application of the IGLS method to multilevel models where the spatial dependence is modeled
as a �xed e¤ect may generate problems: for example even after controlling for correlation between
predictors and spatial random e¤ects, as in the CV method of Goldstein, Jones, and Rice (2002),
the group level coe¢ cients are now not identi�able and the estimates not fully e¢ cient. We have
therefore shown how spatial models and multilevel models with group interactions can be connected
and the relevant parameters for the random and spatial lag identi�ed using simple instruments for
the endogenous e¤ects. Since such models will be characterised by spatial autocorrelation in the
group random e¤ects an alternative route is to model spatial dependence through the error term by
allowing for an unrestricted non-diagonal covariance matrix as in the feasible generalized spatial two
stage least squares (FGS2SLS) method where the spatial dependence a¤ects both the endogenous
variable and the distribution of the random components. As the paper shows the latter strategy may
be superior since often spatial externalities at any level of the hierarchical model may render the
random components non-Gaussian.
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