
C E D E
Centro de Estudios

sobre Desarrollo Económico

Documentos CEDE

ABRIL DE 2011

17

The Difference Indifference Makes in Strategy-Proof
Allocation of Objects

Paula Jaramillo
Vikram Manjunath



 

 

 

 
 

 

 

Serie Documentos Cede, 2011-17  

Abril de 2011 
 
© 2011, Universidad de los Andes–Facultad de Economía–Cede 
Calle 19A No. 1 – 37, Bloque W. 
Bogotá, D. C., Colombia 
Teléfonos: 3394949- 3394999, extensiones 2400, 2049, 3233 
infocede@uniandes.edu.co 
http://economia.uniandes.edu.co 
 
Ediciones Uniandes 
Carrera 1ª Este No. 19 – 27, edificio Aulas 6, A. A. 4976 
Bogotá, D. C., Colombia 
Teléfonos: 3394949- 3394999, extensión 2133, Fax: extensión 2158 
infeduni@uniandes.edu.co 
 
 
Edición, diseño de cubierta, preprensa y prensa digital: 
Proceditor ltda. 
Calle 1ª C No. 27 A – 01 
Bogotá, D. C., Colombia 
Teléfonos: 2204275, 220 4276, Fax: extensión 102 
proceditor@etb.net.co 
 
 
Impreso en Colombia – Printed in Colombia 
 
El contenido de la presente publicación se encuentra protegido por las normas internacionales y nacionales 
vigentes sobre propiedad intelectual, por tanto su utilización, reproducción, comunicación pública, trans-
formación, distribución, alquiler, préstamo público e importación, total o parcial, en todo o en parte, en formato 
impreso, digital o en cualquier formato conocido o por conocer, se encuentran prohibidos, y sólo serán lícitos en 
la medida en que se cuente con la autorización previa y expresa por escrito del autor o titular. Las limitaciones y 
excepciones al Derecho de Autor, sólo serán aplicables en la medida en que se den dentro de los denominados 
Usos Honrados (Fair use), estén previa y expresamente establecidas; no causen un grave e injustificado perjuicio a 
los intereses legítimos del autor o titular, y no atenten contra la normal explotación de la obra. 

 
ISSN 1657-7191 



The difference indifference makes in strategy-proof
allocation of objects∗

Paula Jaramillo†and Vikram Manjunath‡

Abstract

We study the problem of allocating objects among people. We consider
cases where each object is initially owned by someone, no object is initially
owned by anyone, and combinations of the two. The problems we look at
are those where each person has a need for exactly one object and initially
owns at most one object (also known as “house allocation with existing
tenants”). We split with most of the existing literature on this topic by
dropping the assumption that people can always strictly rank the objects.
We show that, without this assumption, problems in which either some or all
of the objects are not initially owned are equivalent to problems where each
object is initially owned by someone. Thus, it suffices to study problems of
the latter type.

We ask if there are efficient rules that provide incentives for each person
not only to participate (rather than stay home with what he owns), but also
to state his preferences honestly. Our main contribution is to show that the
answer is positive. The intuitive “top trading cycles” algorithm provides
the only such rule for environments where people are never indifferent (Ma
1994). We generalize this algorithm in a way that allows for indifference
without compromising on efficiency and incentives.

∗We thank William Thomson for supervising our work. We express our gratitude to an
associate editor and two anonymous referees, Dolors Berga, Lars Ehlers, Aytek Erdil, Jay Sethu-
raman, Çağatay Kayı, Bettina Klaus, Fuhito Kojima, Rodrigo Velez, Alexander Westkamp, and
seminar/conference participants at Universidad de Los Andes, Universidad del Rosario, the 6th

meeting of the Society for Economic Design, the Hausdorff Institute for Mathematics, the 5th

Spain-Italy-Netherlands Meetings on Game Theory, and the Indian Statistical Institute, Delhi
for their helpful comments and discussions.
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La diferencia que hacen las indiferencias en la
asignación sin manipulación de objetos

Paula Jaramillo* y Vikram Manjunath**

Resumen

Estudiamos problemas de asignación de objetos entre personas. Conside-
ramos casos en los que cada persona es dueña de un objeto, nadie es dueño
de un objeto y combinaciones de los dos. Los problemas que estudiamos
son aquellos en que cada persona necesita un único objeto e inicialmente es
dueño de un objeto (también conocido como “house allocation with existing
tenants”). Nosotros nos diferenciamos de la mayoŕıa de la literatura, al re-
lajar el supuesto que cada persona puede ordenar estrictamente los objetos
según sus preferencias. Nosotros mostramos que, al considerar indiferencias
en las preferencias, problemas en el que algún o ningún objeto pertenece a
alguien son equivalentes a problemas en los que cada persona es dueña de
un objeto. Entonces, es suficiente trabajar con problemas del último tipo.

Nuestra mayor contribución es mostrar que hay reglas eficientes que
provean incentivos a cada persona no solo para participar (en vez de quedarse
en su casa con el objeto del que es dueño), si no para reportar sus preferen-
cias honestamente. El intuitivo algoritmo de “ciclos comercio en la cima”
provee la única regla cuando las personas nunca son indiferentes (Ma, 1994).
Nosotros generalizamos este algoritmo de forma que se permiten indiferen-
cias sin comprometer eficiencia e incentivos.

Clasificación JEL : C71, C78, D71, D78

Palabras claves: no manipulaicón, bienes indivisibles, indiferencias, mercado de casas, asignación

de casas, intercambio de riñones

*Universidad de Los Andes
**University of Rochester y Université de Montréal
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1 Introduction

Consider a setting where each person in a group has a need for a single object
(such as a seminar slot, an on-campus apartment, or an organ for transplant) and
may or may not be endowed with such an object. Further, suppose that there are
no divisible goods, such as money. Even when every person is endowed with an
object, the initial distribution is not necessarily efficient.

When people are never indifferent between objects, there are strategy-proof,
Pareto-efficient, and individually rational rules (Abdulkadiroğlu and Sönmez 1999).
In fact, a group of such rules is characterized by these three axioms with the help
of consistency and neutrality axioms (Sönmez and Ünver 2010). Moreover, the
class of rules satisfying group strategy-proofness and Pareto-efficiency has been
characterized (Pycia and Ünver 2009).

At one extreme of this class of problems are those where nobody is endowed
with an object and there is only a social endowment (Hylland and Zeckhauser
1979). At the other extreme are problems where everybody is endowed with an
object but there is no social endowment (Shapley and Scarf 1974). For these
problems, when people are never indifferent between objects, there are rules with
desirable efficiency and incentive properties. The core contains a unique allo-
cation which is also the unique competitive allocation (Roth and Postlewaite
1977). The rule that maps each problem with its unique core allocation is not
only strategy-proof (Roth 1982) but also group strategy-proof (Bird 1984). Fur-
ther, it is the only strategy-proof, Pareto-efficient, and individually rational rule
(Ma 1994, Sönmez 1999). It is also non-bossy and anonymous (Miyagawa 2002).

We argue that there are many real-world situations where people’s preferences
do exhibit indifference. For instance, if preferences are based on coarse descriptions
(say, from a housing brochure), there may be insufficient information to break ties.
Alternatively, if preferences are based on checklists of criteria (like blood and tissue
types for organ transplant), distinct objects satisfying exactly the same criteria are
equivalent.

Appropriate design of rules should take these indifferences into account since
breaking ties arbitrarily may lead to inefficiency.

We show that when we drop the assumption that people are never indifferent,
all of the problems mentioned above can be thought of as ones where every person
is endowed with an object. Thus, we study only such problems. Without strict
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preferences, many of the results mentioned above no longer hold. Though the
weak core is not empty, the a core allocation is no longer guaranteed to exist
(Shapley and Scarf 1974).1 The set of competitive allocations no longer coincides
with the core (Wako 1991). Group strategy-proofness and Pareto-efficiency are
incompatible (Ehlers 2002).

We show that there may not even be a competitive allocation that is Pareto-
efficient. We provide a direct proof that strategy-proofness, Pareto-efficiency, and
individual rationality are not compatible with non-bossiness.2 Further, we show
that, even when we drop individual rationality, they are not compatible with
anonymity.

Our main contribution is a novel algorithm that is associated with a strategy-
proof, Pareto-efficient, and individual rational rule. Moreover, the allocation se-
lected is in the “weak core”.

Recently, the assumption of strict preferences has received attention for various
matching models. Alcalde-Unzu and Molis (2011) have independently come up
with a different class of rules for the model studied in this paper. For the “two-sided
matching” model, the deferred acceptance algorithm can be adapted to preserve
“stability” and Pareto efficiency in the presence of indifference (Erdil and Ergin
2006). However, this adaptation does not preserve “one-sided” strategy-proofness,
which means that an application of this algorithm to our model does not satisfy
strategy-proofness.

The remainder of the paper is organized as follows. We present the model in
Section 2. We describe some desiderata of allocations and rules in Section 3 and
define our rules, along with some others, in Section 4. In Section 5 we present our
results. We show how the more general problems involving social endowments can
be encoded as problems with only private endowments in Section 6.

2 The Model

Let O be a set of distinct objects. Let N be a set of people. There are exactly as
many objects as people: |O| = |N |. An endowment is a bijection, ω : N → O,
that associates an object with each person. For each i ∈ N , i’s component of the
endowment is ω(i). Each person has a preference relation over O. Let the set of
all preference relations be R. A preference profile associates each individual
with a preference relation in R. Let RN be the set of all preference profiles. Given

1Quint and Wako (2004) provide necessary and sufficient conditions on preference profiles for
the core to be non-empty.

2Bogomolnaia, Deb and Ehlers (2005) show this by characterizing, for problems with no
private endowment, classes of strategy-proof and Pareto-efficient rules satisfying two different
forms of non-bossiness and some auxillary axioms.
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a profile R ∈ RN , for each i ∈ N , i’s preference relation is Ri. For each pair of
alternatives, a, b ∈ O, if i finds a to be at least as good as b, we write a Ri b. If
a is better than b, that is, a Ri b but not b Ri a, we write a Pi b. Similarly, if i
is indifferent between a and b, we write a Ii b. Let P ⊂ R be the set of “strict”
preference relations. That is, P ≡ {R0 ∈ R : for each a, b ∈ O, a I0 b ⇔ a = b}.

We use the notation R−i to denote the preference relations of everyone but i.
For each group S ⊆ N , we denote the preferences of all the people in S by RS,
and those not in S by R−S. We denote the set of all preferences for people in the
group S by RS.

LetA, the set of all bijections from N to O, be the set of all possible allocations.
For each α ∈ A, and each i ∈ N , let α(i) denote i’s component of α. Similarly,
for each S ⊆ N , let α(S) be the collective assignment to members of S under α.
That is, α(S) =

⋃
i∈S{α(i)}.

A problem consists of a preference profile and an endowment, (R, ω) ∈ RN×A.
A rule, ϕ : RN × A → A, selects an allocation for each problem.

3 Properties of allocations and rules

In this section, we list some desiderata of allocations and rules. Let ϕ be a rule.
The first requirement is that a rule respects each individual’s endowment. That

is, the allocation selected by the rule should not assign, to any person, an object
that he finds worse than his endowment.

For each (R, ω) ∈ RN × A and α ∈ A, we say that α is individually ra-
tional at (R,ω) if for each i ∈ N,α(i) Ri ω(i). Let IR(R,ω) be the set of all
individually rational allocations at (R, ω).

Individual Rationality: For each (R, ω) ∈ RN × A, ϕ(R, ω) ∈ IR(R, ω).

Before we state the next requirement, we define an efficiency relation between
allocations. For each α, β ∈ A and R ∈ RN , α Pareto dominates β at R if at
least one person is better off at α than at β and nobody is worse off. That is, for
some i ∈ N , α(i) Pi β(i) and for each i ∈ N,α(i) Ri β(i).

For each R ∈ RN , let the set of allocations that are not Pareto dominated by
any other allocation be PE(R).

Pareto-efficiency: For each (R, ω) ∈ RN × A, ϕ(R, ω) ∈ PE(R).

The next property says that unilaterally misreporting one’s preferences is never
beneficial.
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Strategy-proofness: For each (R, ω) ∈ RN × A, there is no i ∈ N for whom
there is R′

i ∈ R such that

ϕ( R′
i︸︷︷︸

lie

, R−i, ω)(i) Pi︸︷︷︸
truth

ϕ( Ri︸︷︷︸
truth

, R−i, ω)(i).

The following is the requirement that nobody can affect what the rule assigns
to others without affecting his own assignment.

Non-bossiness: For each (R, ω) ∈ RN×, there are no i ∈ N and R′
i ∈ R such

that
ϕ(R, ω)(i) = ϕ(R′

i, R−i, ω)(i) and ϕ(R, ω) �= ϕ(R′
i, R−i, ω).

The next desideratum is that the rule is a function of preferences and en-
dowments, but not identities. Let π : N → N be a permutation of N . For
each (R, ω) ∈ RN × A, define the permutation of (R,ω) with respect to π,
(Rπ, ωπ) ∈ RN × A, such that for each i ∈ N , Rπ

π(i) ≡ Ri and ωπ
π(i) ≡ ωi.

Anonymity: For each i, j ∈ N , each R ∈ RN , ω ∈ A, each π : N → N , and each
i ∈ N ,

ϕ(Rπ, ωπ)(π(i)) = ϕ(R, ω)(i).

The final requirement is that no group of people would rather re-allocate their
endowments among themselves than participate in the application of the rule. This
can be expressed in two ways. First, for each α ∈ A, (R, ω) ∈ RN ×A, and S ⊆ N ,
we say that α is blocked by S if members of S can re-allocate their endowments
in a way that makes each of them better off than at α. That is, there is β ∈ A
such that β(S) = ω(S) and for each i ∈ S, β(i) Pi α(i). Second, we say that α
is weakly blocked by S if members of S can re-allocate their endowments in a
way that makes at least one of them better off than at α, without making any of
the rest worse off than at α. That is, there is β ∈ A such that β(S) = ω(S), for
some i ∈ S, β(i) Pi α(i), and for each i ∈ S, β(i) Ri α(i).

The weak core, CW (R,ω), is the set of allocations that are not blocked by
any coalition and the core, C(R,ω), is the set of allocations that are not weakly
blocked by any coalition.

4 Rules

Let ≺ be a linear ordering of N .

Sequential priority rules: Let a tie-breaker θ : P(A) \ {∅} → A be such that
for each A′ ⊆ A, θ(A′) ∈ A′.3 The sequential priority rule with respect to
≺ and θ, SP≺,θ, is defined as follows. Suppose ≺ is such that 1 ≺ 2 ≺ · · · ≺ n.

3Given a set S, we denote the power set of S by P(S).
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For each (R, ω) ∈ RN × A, we define a sequence of subsets of A, {AR,ω
i }i=n

i=0 .
Let AR,ω

0 = A. For each i = 1, . . . n,

AR,ω
i = {α ∈ AR,ω

i−1 : for each β ∈ AR,ω
i−1 , α(i) Ri β(i)}.

Finally, define SP≺(R, ω) = θ(AR,ω
n ).4

Sequential priority rules are strategy-proof and Pareto-efficient (Svensson 1994).
But they are not individually rational.

Sequential priority selections from IR: Let θ be a tie-breaker. The sequen-
tial priority selection from IR with respect to ≺ and θ, SP -IR≺,θ, is
defined exactly as SP≺,θ except that AR,ω

0 = IR(R, ω).
Sequential priority selections from IR are not strategy-proof but are Pareto-

efficient and, by definition, individually rational.5

The notion of “most preferred” objects among a subset of O is critical for the
definition of our next rule. For each R ∈ RN , O′ ⊆ O, and i ∈ N , let i’s most
preferred objects, under Ri, among O′, be denoted by τ (Ri, O

′) ≡ {a ∈ A :
for each b ∈ O′, a Ri b}.

Gale’s “top trading cycles” algorithm (Shapley and Scarf 1974) is applicable
after breaking ties arbitrarily. The algorithm, defined for preferences in PN , pro-
ceeds by asking each person to point at the person endowed his most preferred
object. Since each person points, there is at least one cycle and the members
of such cycles exchange their objects accordingly. Once the objects have been
exchanged, these people are removed and the algorithm continues among those
remaining.

The associated rules are strategy-proof and individually rational but not Pareto-
efficient. To see this, consider the following example in which, no matter how ties
are broken, the result of the “top trading cycles” algorithm is not Pareto-efficient.

Example 1. Breaking ties.
Let N ≡ {1, 2, 3}, ω ≡ (a, b, c), and R ∈ RN be as follows.

R1 R2 R3

b c a a
a c b

b c

4This definition is taken from Svensson (1994).
5It is easy to show that the sequential priority selections from IR are Pareto-efficient and

individually rational. To see that they are not strategy-proof consider the following example.
Let N = {1, 2, 3}, ω = {a, b, c}, and the following preferences: P1 : c a b, P2 : a b c, and P3 : a b c.
Suppose that 1 ≺ 2 ≺ 3. Then, for each θ, SP -IR≺,θ(R,ω) = (c, a, b). If 3 reports P ′

3 : a c b
instead, for each θ, SP -IR≺,θ(R−3, R

′
3, ω) = (c, b, a) and 3 is better off.
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There are exactly two ways to break ties: P 1, P 2 ∈ PN :

P 1
1 P 1

2 P 1
3

b a a
c c b
a b c

P 2
1 P 2

2 P 2
3

c a a
b c b
a b c

But for (P 1, ω) the reccommendation is (b, a, c) and for (P 2, ω) it is (c, b, a). Neither
of these is Pareto-efficient.6

The next class of rules that we define are based on an adaptation of this al-
gorithm.7 Two questions need to be answered to adapt the top-trading cycles
algorithm:

1. When can a person be removed? In Example 1, if 2 gets a, 1 cannot leave
with b since that would violate Pareto-efficiency. Clearly, it is not enough for
a person to leave when he “holds” one of his most preferred objects. With
the description of our algorithm, we state a more sophisticated condition
that needs to be met for a person (or group of people) to be removed. This
aspect of our algorithm is crucial to achieving a Pareto-efficient allocation.

2. When a person is indifferent between objects, where does he point? This is
a more difficult question. We explain how to deal with this issue in a way
that does not compromise strategy-proofness. In addition, our condition
guarantees that the algorithm terminates.

Corresponding to the two questions that we have just raised, we change the
algorithm at each step in two significant ways:

i) Condition for departure: A group of people can leave only if there is no trade
with people outside of the group that can make someone outside the group
better off without hurting someone inside the group. This condition ensures
Pareto-efficiency of the final allocation. In Example 1, if 2 gets a, he can
leave with it since any further trade would make him worse off. However, 1
cannot leave with b: there is a trade, between 1 and 3 that would make 3
better off without hurting 1. Thus, 1 and 3 trade and 1 leaves with c and 3
with b.

6The reason for this is that regardless of how we break ties, the result of the top-trading cycles
algorithm is a “competitive allocation” (Shapley and Scarf 1974). In fact every competitive
allocation can be found in this way. However, as evidenced by the above example, for some
profiles of preferences, no competitive allocation is Pareto-efficient.

7However, we have the “departure phase” at the beginning of each step rather than at the end.
We have done this for expositional simplicity since it rules out people “pointing” at themselves.
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i i) Condition for pointing: A natural way to solve the problem is to use a
priority order over the people. However, näıvely breaking ties according to a
fixed priority order does not work. We illustrate this through the following
examples.

(a) Let N = {1, 2, 3}, ω = (a, b, c), and R ∈ RN be as follows.

R1 R2 R3

a b c a b c
c a b

Let 1 ≺ 2 ≺ 3. Suppose each person cannot point at himself when he
is indifferent between what he holds and what someone else holds.8 In
this case, 1 and 2 trade at each step between them and the condition
of departure is never satisfied. The algorithm does not terminate.

To guarantee that the algorithm terminates, the priority order defined
in the algorithm is updated at every stage to give higher priority to
people who do not hold one of their most preferred objects than to
people who hold one of their most preferred objects.

(b) Let N = {1, 2, 3, 4, 5}, ω = (a, b, c, d, e) and R ∈ RN be as follows.

R1 R2 R3 R4 R5

c d a d e b b a
a b a d e

c

Let 2 ≺ 3 ≺ 4 ≺ 5 ≺ 1. If we use a näıve pointing scheme, in the first
step, 1 points at 3 and 2 at 4. Then, 2 and 4 trade and 4 leaves with
b. In the second step, since 2 ≺ 3 and 5 ≺ 1, 1 points at 2 and 2 points
at 5. Then, 1, 2, and 5 trade. The algorithm terminates and the final

allocation assigns c to 3. However, if 3 reports
R′

3

a
c

, 3’s assignment is a.

Therefore, 3 is better off reporting the lie R′
3 when his true preference

relation is R3 and others’ preferences are R−3.

To guarantee that the rule is strategy-proof, at each step, each i points
at the same person that he pointed at in the previous step as long as
that person holds the same object (that is, he did not trade).

8Otherwise, 1 will point to himself at each step of the algorithm. Since the departure condition
is not met, the algorithm does not terminate.
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We bring these ideas together and define a modification of the top-trading cycles
algorithm.

Top cycles rules: For each (R, ω) ∈ RN × A, we define the allocation selected
by top cycles rule with priority ≺, TC≺(R,ω), via the following algorithm.

Each step of the algorithm proceeds in three phases: departure, pointing, and
trading. The goal of the algorithm is to enlarge, at each step, the set of “satisfied”
people: those holding one of their most preferred objects. However, we aim to do
this in a way that provides incentives for every person to report his true preferences.
To achieve this, the algorithm favors people who have higher priority by connecting
more people to them (via direct or indirect pointing) as compared to people with
lower priority.

In the first step, the set of remaining people is N and each i ∈ N holds ω(i).

1. Departure: A group of people is chosen to “depart” if two conditions are
met.

i) What each person in the group holds is among his most preferred objects
(among the remaining ones), and

ii) All of the most preferred objects (among the remaining ones) of the
group are held by them.

Once a group departs, each of them is assigned what he holds and removed
from the set of remaining people. In addition, their objects are removed
from the remaining objects. There may be another group that can be chosen
to depart. The process continues until there are no more groups that can
depart. If the two conditions are not met by any group, then nobody departs.

2. Pointing: Each person points at a person holding one of his top objects
(among the remaining ones). Since there may be more than one such person,
the problem of figuring whom each person points at is a complicated one.
We solve it in stages as follows:

Stage 1) For each remaining j such that j holds the same object that he held in
the previous step, each i that pointed at j in the previous step points
at j in the current step. Of course, this does not apply for the very first
step.

Stage 2) Each i with a unique top object (among the remaining ones) points at
the person holding it.

Stage 3) Each person who has at least one of his top objects (among the re-
maining ones) held by an unsatisfied person points at whomever has
the highest priority among such unsatisfied people.

9



Stage 4) Each person who has at least one of his top objects (among the remain-
ing ones) held by a satisfied person who points at an unsatisfied person
points at whomever points at the unsatisfied person with highest prior-
ity. If two or more of his satisfied “candidates” point at the unsatisfied
person with highest priority, he points at the satisfied candidate with
the highest priority.

Stage · · · ) And so on.

3. Trading: Since each remaining person points at someone, there is at least
one cycle of remaining people. For each such cycle, people trade according
to the way that they point and what they hold for the next step is updated
accordingly.

The algorithm terminates when everyone has departed.
To see that the algorithm terminates, note that at each step, since N is finite

and there is at least one cycle involving an unsatisfied person, either

1. At least one person departs with his holding, or

2. At least one person’s holding is switched to an object that he ranks highest
among those remaining. That is at least one person becomes satisfied.

Therefore, the algorithm terminates in a finite number of steps.9 Since the algo-
rithm terminates and provides a unique allocation for every problem, TC≺ is a
well-defined rule.

A rigorous formal description of the algorithm is in Appendix A.

To help illustrate the top cycles rule, we provide Example 2. First, we state
some useful definitions. In the tth step, after the departure phase, there is a set
of remaining objects, Ot ⊆ O, and remaining people, Nt ⊆ N . Each
remaining person, i ∈ Nt, holds the object ht(i).

10 For each i ∈ Nt, the person
whom i points at, pt(i). For notational convenience, for each i, j ∈ Nt, we use
i −→

t
j to denote pt(i) = j. If pt(pt(i)) = j, we write i −→

t
−→

t
j, and so on.

Given M ⊆ Nt, if pt(i) ∈ M , we write i −→
t

M . If pt(pt(i)) ∈ M , we write

i −→
t

−→
t

M , and so on.

At each step, the set of remaining people is partitioned into two sets: satisfied
people, St ≡ {i ∈ Nt : ht(i) ∈ τ(Ri, Ot)}, who hold an object that they rank

9The algorithm is polynomial time: O(|N |5) where |N | is the number of people in the problem.
10Note that for each i, ht(i) denotes the object that i holds at the beginning of Step t, while

ht+1(i) denotes the object i is holding at the end of Step t. If i trades in Step t, the object that
he holds in Step t, ht(i), is different from the one he has at the end of Step t and beginning of
Step t+ 1, ht+1(i). If i does not trade ht(i) = ht+1(i).
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at the top of the remaining objects, and the unsatisfied people who do not,
Ut ≡ Nt \ St.

Example 2. Top cycles rule.
Let O = {a, b, c, d, e, f, g, h, i, j, k}, and N = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}. Con-

sider (R, ω) ∈ RN × A such that ω = (a, b, c, d, e, f, g, h, i, j, k) and R ∈ RN as
follows:

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11

a a f c d e f d e g d e d d h i c i a b j e i k
... b

...
...

...
... g

...
...

...
...

...
...

Let ≺ be such that 1 ≺ 2 ≺ 3 ≺ 4 ≺ 8 ≺ 5 ≺ 6 ≺ 7 ≺ 9 ≺ 10 ≺ 11.
We start with O0 = O,N0 = N , and h1 = ω.

Step 1:

Departure phase:

The first group to depart is {1}. To see this, note that 1’s most preferred
object in O is the unique object a, his endowment. Given that 1 leaves
with a, the second group to departs is {2, 10}, 2’s most preferred object in
O \ {a} is the unique object b and 10’s most preferred objects in O \ {a} are
b and j. Now, TC≺(R, ω)(1) = a, TC≺(R, ω)(2) = b, and TC≺(R, ω)(10) =
j. Further, the remaining people are N1 = {3, 4, 5, 6, 7, 8, 9, 11}, and the
remaining objects are O1 = ω(N1). From this, the satisfied people are S1 =
{4, 5, 8, 9, 11}.

Pointing phase: This is illustrated in Figure 2.

Stage 1) Not applicable to the first step.

Stage 2) Each person with a unique most preferred object inO1 points at whomever
holds that object. In this case, 3 −→

1
6 and 7 −→

1
4.

Stage 3) Each person such that one of their most preferred objects is held by an
unsatisfied person points at an unsatisfied person. Such people are 4,
5, and 9. Since 5 and 9 have only one unsatisfied person to point at,
they point accordingly. That is, 5 −→

1
7 and 9 −→

1
3. However, 4 is

indifferent between the objects held by 3 and 6. In accordance with ≺,
4 −→

1
3.

Stage 4) Each person whose most preferred objects are held by satisfied people
pointing at an unsatisfied person. 6, 8, and 11 are such people. Since 4
and 5 hold 6’s most preferred objects, we consider who they are pointing
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at. Since 4 −→
1

3, 5 −→
1

7, and 3 ≺ 7, we have 6 −→
1

4 rather than

6 −→
1

5. 8’s preferred objects (among the remaining ones) are hold by

9 and 4. Note that both point at 3. Since 4 ≺ 9, 8 −→
1

4. Since 5 and 9

hold 11’s most preferred objects, 5 −→
1

7, 9 −→
1

3, and 3 ≺ 7, we have

11 −→
1

9
Trading phase:

We observe that there is only one cycle and it involves 3, 4, and 6. Thus,
h2 = (−,−, f, c, e, d, g, h, i,−, k).

Step 2:

Departure phase:
The only group satisfying the departure condition is {3}. From this, TC≺(R, ω)(3) =
f , N2 = {4, 5, 6, 7, 9, 11}, O2 = {c, d, e, g, h, i, k}, and S2 = {4, 5, 6, 8, 9, 11}.

Pointing phase: This is illustrated in Figure 2.

Stage 1) Note that 5 was pointing at 7 in Step 1 and 7 is holding the same object.
That is, 5 −→

1
7 ∈ N2 and h2(7) = h1(7). Then, we have 5 −→

2
7. In

addition, since 11 −→
1

9 ∈ N2 and h2(9) = h1(9), we have 11 −→
2

9.11

Stage 2) Since 7’s unique most preferred object is d, 7 −→
2

6.

Stage 3) No person, other than 5, most prefers g (7’s holding) among O2.

Stage 4) 4 and 6 point at 5 whose pointing to an unsatisfied person: 4 −→
2

5 and

6 −→
2

5.

Stage 5) 8 and 9 are pointing to someone that is pointing to 5. Thus, 8 −→
2

6

and 9 −→
2

4.

Trading Phase:

At the end of this Step, there is one cycle and it involves 5, 6, and 7. In the
trading phase, we get h3 = (−,−,−, c, g, e, d, h, i,−, k).

Step 3:

Departure phase:

We end after the departure phase of Step 3 since all the remaining people,
{4, 5, 6, 7, 8, 9, 11}, satisfy the conditions. Then, N3 = ∅ y O3 = ∅.

Thus, TC≺(R, ω) = (a, b, f, c, g, e, d, h, i, j, k).

11Without Stage 1, 11 would point to 5 whose pointing at an unsatisfied person.
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Figure 1: Pointing phase of Step 1: (a) Since 3 and 7 have unique most
preferred objects, they point at whoever holds those objects. (b) Next, we consider
4, 9 and 5: those who have a most preferred object that is held by an unsatisfied
person in the bubble. (c) Finally, we consider 6, 8, and 11: those who have a most
preferred object that is held by a member of the bigger bubble: people who can
point at an unsatisfied person.
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4 c
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4 c
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Figure 2: Pointing phase of Step 2: (a) Since 5 pointed at 7 in Step 1 and 7
has not traded, 5 points at 7 in Step 2 as well. Similarly, 11 points at 9 in Step 2
as well. Without Stage 1, 11 would point to 5 in Step 2. (b) 7 is the only person
with a unique most preferred object. (c) We now consider people who can point
at the only unsatisfied person, 7. However, there is no such person. (d) Next, we
consider 4 and 6 who point into the bubble containing 7 and 5. (e) Finally, 8 and
9 point into the biggest bubble.
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In the next section, we show that TC≺ is strategy-proof, Pareto-efficient, and
individually rational. We also show that TC≺ always picks an allocation from the
weak core.

When the input preference profile does not involve any indifference, the priority
order ≺ plays no role in the definition of TC≺ since for each i ∈ N and each t,
τ(Ri, Ot) is a singleton and pt(i) is defined in the first two stages of the pointing
phase. Thus, for each (P, ω) ∈ PN ×A and each pair of priority orders ≺ and ≺′,
TC≺(P, ω) = TC≺′

(P, ω).

Remark 1. It is natural to ask whether, for each (R, ω) ∈ RN × A, there is a
corresponding problem (P ′, ω) ∈ PN × A such that,

1. For each i ∈ N and each pair x, y ∈ O, if x P ′
i y, then x Ri y, and

2. TC≺(R, ω) = TC≺(P ′, ω).

However, this is not the case. Let us go back to Example 1. For each ≺ such
that 2 ≺ 3, TC≺(R, ω) = (c, a, b), and for each ≺′ such that 3 ≺′ 2, TC≺′

(R, ω) =
(b, c, a). But TC≺(P 1, ω) = (b, a, c) and TC≺(P 2, ω) = (c, b, a), neither of which
coincides with TC≺(R, ω) or TC≺′

(R, ω). 12 ◦

5 Results

We first show that strategy-proofness and Pareto-efficiency are incompatible with
anonymity. We also show that the additional requirement of individual rationality
leads to an incompatibility with non-bossiness. We then show that these incom-
patibilities are tight by proving that top cycles rules satisfy all three of our central
axioms. The proofs of these results are in the appendix D.

Proposition 1. If N > 2, no rule is strategy-proof, Pareto-efficient and anony-
mous.

Proposition 2. If N > 2, no rule is strategy-proof, Pareto-efficient, individually
rational, and non-bossy.13

Next, we show that both Propositions 2 and 1 are tight. When we drop non-
bossiness or anonymity from the list of requirements, the incompatibility does not
persist, as evidenced by top cycles rules.

By definition top cycles rules are not anonymous. To see that they are bossy,
consider the following example.

12As evidenced by the above example, TC≺(R,ω) need not to be a competitive allocation.
13This is a corollary of Theorem 2 in (Bogomolnaia et al. 2005). We provide a direct proof in

the appendix.

15



Example 3. Bossiness of top cycles rules: Let O = {a, b, c}, N = {1, 2, 3}, ω =
(a, b, c), and 1 ≺ 2 ≺ 3. Let R,R′ ∈ RN be such that,

R1 R2 R3

a b c© a© a
b b©
c c

R′
1 R2 R3

c© a a©
a b b© b

c c

.

Then, TC≺ selects the circled allocations above, showing that it is bossy. •
Proposition 3. For each priority order ≺, TC≺ is Pareto-efficient and individ-
ually rational. That is, for each (R, ω) ∈ RN × A and each ≺, TC≺(R, ω) ∈
PE(R) ∩ IR(R, ω).

Proof: By definition of TC≺, it is individually rational.
We show that it is Pareto-efficient using the conditions of the Departing Phase

in the algorithm. Consider the sequence of groups of people who leave at the first
step. By condition (i) of the Departure Phase, each member of the first group
leaves with one of his most preferred objects. By condition (ii) of the Departure
Phase, each of them can be made no better off. By the same reasoning, each
member of the second group leaves with one of his most preferred objects after
members of the first group have left and can be made no better off without hurting
at least one member of the first group. Continuing, each member of a group that
in Step 1 leaves with one of his most preferred objects after members of all the
previous groups have left and can be made no better off without hurting at least
one person who has left.

A similar argument applies to the subsequent steps. Those leaving in later
steps can be made no better off without hurting those who have left in prior steps.
Thus, TC≺ is Pareto-efficient. �

Proposition 4. For each priority order ≺, TC≺ selects an allocation from the
weak core. That is, for each (R, ω) ∈ RN×A and each ≺, TC≺(R, ω) ∈ CW (R, ω).

Proof: Suppose not. Then, there are (R, ω) ∈ RN × A and S ⊆ N such that S
blocks α ≡ TC≺(R, ω). That is, there is β ∈ A such that β(S) = ω(S) and for
each i ∈ S, β(i) Pi α(i).

For each t and each i ∈ S, if β(i) ∈ Ot, then there is no j ∈ N such that i
points at him in Step t (i �−→

t
j) and β(i) Pi ht(j).

Let t̂ be the first step at which there is i ∈ S such that i is part of a trading
cycle at the end of step t̂. Once i trades, his welfare is determined and he is made
neither better nor worse off during the remainder of the algorithm. Thus, he is
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indifferent between the object that makes his first trade for and the object he ends
up with. That is, ht̂+1(i) Ii α(i). So β(i) Pi ht̂+1(i). This implies that there is
j ∈ N such that i points at j in Step t̂ (i −→̂

t
j) and β(i) Pi ht̂(j) = ht̂+1(i). Thus,

β(i) /∈ Ot̂. However, since β(S) = ω(S), there is k ∈ S such that β(i) = ω(k) and
since ω(k) /∈ Ot̂, k is part of a trading cycle at some t̃ < t̂. This contradicts the
definition of t̂. �

In order to show that for each ≺, TC≺ is strategy-proof, we make a preliminary
remark and state two key lemmas.

For each problem (R, ω) ∈ RN × A, the “state” of the algorithm at Step t is
summarized by the tuple (Ot, Nt, ht+1, pt). Our remark and lemmas pertain to how
these tuples change in response to changes in the input problem. These lemmas
provide useful insight into the dynamics of the algorithm.

Remark 2. (Persistence) If i points at j at Step t, then he points at j as long
as j holds the same object. That is, if i −→

t
j, then for every t′ > t such that

ht′(j) = ht′−1(j) = ht′−2(j) = ... = ht(j), i −→
t′

j.

Before we proceed to our first lemma, we introduce some additional notation.
Let (R, ω) ∈ RN × A and i ∈ N . At the Step t of the algorithm, let the set of
people connected to i, CONN(i, R, t), be those, including i, connected to i
via pt. That is,

CONN(i, R, t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
j ∈ Nt :

j ≡ i, or
j −→

t
i, or

j −→
t
−→

t
i, or

. . .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

Fix ω ∈ A and priority order ≺. Let R ∈ RN , i ∈ N , and R′
i ∈ R. Let

R′ = (R′
i, R−i). For each t̂ = 0, 1, . . . , let ht̂ be the holding vector at Step t̂ of the

algorithm for the problem (R, ω). Similarly define h′
t̂
for the problem (R′, ω). We

also define, Ot̂, O
′
t̂
, Nt̂, N

′
t̂
, pt̂, p

′
t̂
, St̂, S

′
t̂
, Ut̂, and U ′

t̂
. Finally, for each i, j ∈ N , we

indicate pt̂(i) = j by i
R−→̂
t

j and p′
t̂
(i) = j by i

R′−→̂
t

j. We also use i � R−→̂
t

j to

indicate pt̂(i) �= j.
Let t be the step at which i either leaves or makes his first trade under R.

Define t′ similarly with respect to R′. Let t be the first step at which i is satisfied
for exactly one of the two problems if such a number exists, and ∞ otherwise.
That is, i ∈ St and i ∈ U ′

t
, i ∈ Ut and i ∈ S ′

t
, or t = ∞.14

14The last case, t = ∞, only occurs if t = t′.
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Let t ≡ min{t, t′, t}. Then, t determines the first period when i is satisfied
under R or R′.

Our first lemma states that up to Step t, there is no difference in the state of
the algorithm, regardless of whether i reports Ri or R

′
i.

Lemma 1. (t equality) At t, for both R and R′, the objects and people remaining,
as well as the holding vector and previous step’s pointing vector, except for i’s
component, are the same. That is,

Ot Nt ht

� � �

O′
t N ′

t h′
t

and for each j, k ∈ Nt such that j �= i,

j
R−→
t−1

k

�
j

R′−→
t−1

k.

While the formal proof is in appendix B, Example 4 should help the reader
build some intuition with regards to Lemma 1.

Example 4. Lemma t-equality.
Let N = {1, 2, 3, 4, 5, 6, 7, 8}, ω = (a, b, c, d, e, f, g, h), and R ∈ RN be as

follows.

R1 R2 R3 R4 R5 R6 R7 R8

c e a b c e b d b e f e d f g c h
f h

Let ≺ be such that 1 ≺ 2 ≺ 3 ≺ 4 ≺ 5 ≺ 7 ≺ 8. Figure 3. shows the pointing
stages of Step 1, 2, and 3. Notice that 1 does not trade until Step 3. Suppose
that, instead of R1, 1 reports R′

1 such that he is unsatisfied. We will show that
the departure, pointing, and trading stages remain unaffected until 1 trades under
one of the two announcements.

Since 1 is unsatisfied, no one leaves in the departure phase of Step 1 under
R′(≡ (R′

1, R−1)). Moreover, each person who points at 1 under R points at him
under R′. That is, only 2 points at 1. All but 1 point the same under R and
R′. Therefore, all the trading cycles not involving 1 that are realized under R are
also realized under R′. If 1 is not part of a cycle (then he does not trade) under
R′, then the objects, people, and holdings are the same under R and R′ at the
beginning of Step 2.

If 1 is unsatisfied under R′ in Step 2, the departure stage of Step 2 is the same
under R and R′. Since 1 is unsatisfied under R and R′, people who point at 1 do
not change. That is, 2 still points at 1. All but 1 again point in the same way. All
the trading cycles not involving 1 are realized. If 1 does not trade under R′ then
the objects, people, and holdings are the same under R and R′ at the beginning
of Step 3.
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Following the same argument as in the previous steps, we conclude that under
R and R′ the departure phase is the same. And until 1 trades, the objects, people,
and holdings are the same at the beginning of the the next Step. Note that the
t-equality Lemma does not say anything about the pointing phase and trading
phase of Step 3 when 1 trades. •

f

1 a2 b 8 h

6 f
3 c

5 e 7 g
4 d

1 a2 b

g7

4 d
5

Step 3:

f

1 a2 b 8 h

3 c

g7

4 d
5

Step 1: Step 2:

Figure 3: Example of t-equality Lemma. If 1 reports R′
1 rather than R1, then

each stage in Step 1 and Step 2 remain the same.

For each R0 ∈ R, and each a ∈ O, let the indifference class of a at R0,
I(a,R0), be

I(a,R0) = {b ∈ O | b I0 a}.
Given R0 ∈ R, and a ∈ O, let the local push-up of R0 at a,Ra↑

0 ∈ R be the
relation that differs from R0 only in that it ranks a above all objects in I(a,R0),
as shown in Figure 3. That is,

R0|O\{a} = Ra↑
0 |O\{a} and for each b ∈ O \ {a}, b P0 a ⇒ b P a↑

0 a and

a R0 b ⇒ a P a↑
0 b.

To prove that TC≺ is strategy-proof we will have to consider all possible prefer-
ence relations that a person can misreport. However, we can split all the available
misreports into two categories. The first category includes only preference relations
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a a

Ra↑
0R0

Figure 4: Local push-up of a preference relation: Given R0 ∈ R and a ∈ O,
the local push-up of R0 at a, Ra↑

0 is as shown above.

under which the person is not indifferent between the object that he is assigned
and any other object. The second category consists of all the remaining preference
relations. The following lemma implies that for each preference relation in the
second category, we can find a preference relation in the first category such that
the person is assigned the same object regardless of which of the two preference
relations he reports. We use this to prove that TC≺ is strategy-proof since it
means that we only need to rule out successful misreports from the first category.

Consider the case in which i’s preference relation changes from Ri to R′
i. More-

over, R′
i is a local push-up of Ri at a. Note that if t < min{t, t′}, i becomes

satisfied in only one of the two problems. Since the only difference between these
preference relations is that I(a,R′

i) ⊂ I(a,Ri), then, by the t equality lemma,
τi(R

′, O′
t
) ⊂ τi(R,Ot). Moreover, i ∈ St, i ∈ U ′

t
, and a ∈ τi(R,Ot) ∩ τi(R

′, O′
t
).

We use this fact to prove the following lemma. In the proof, we follow the same
structure as in the proof of the t equality lemma. That is, we establish the state
of the algorithm between t and min{t, t′}, and then between t and t′.

Lemma 2. (Invariance) If the preference relation of a person changes to a lo-
cal push-up of his original preference at his assignment, then his assignment is

unchanged. That is, if α = TC≺(R, ω), R′
i = R

α(i)↑
i , and α′ = TC≺(R′, ω), then

α(i) = α′(i).

Proof: By the t equality lemma and by the definition of Ri and R′
i, in each step

before t, i points to the same person (holding the same object) under R or R′.
Thus, Ot = O′

t, Nt = N ′
t , ht = h′

t, and for each j ∈ Nt \ {i}, pt−1(j) = p′t−1(j).
Since R′

i is a local push-up of Ri at αi, τ(R
′
i, Ot) = {α(i)} ⊆ τ(Ri, Ot).

The t equality lemma also implies that CONN(i, R, t− 1) = CONN(i, R′, t− 1).
The rest of the proof proceeds as follows. First we show that at min{t, t′}, any

person connected to i under R is connected to i under R′. Then, we show that i’s
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Figure 5: Pre-trade inclusion.

component of the allocation chosen under R is the same as his component of the
allocation chosen under allocation under R′: α′(i) = α(i).

Claim 1. (Pre-trade inclusion)15 For each ẗ = t, ...,min{t, t′},16

(i) The objects and people remaining at ẗ under R are a subset of those remaining
under R′. Further, those remaining under R′ but not under R are connected
to i. That is,

Oẗ ⊆ O′
ẗ
, Nẗ ⊆ N ′

ẗ

O′
ẗ
\Oẗ ⊆ hẗ(CONN(i, R′, ẗ− 1)), and N ′

ẗ
\Nẗ ⊆ CONN(i, R′, ẗ− 1).

(ii) Every person who is satisfied at ẗ under R′ is satisfied under R. Every person
who is not satisfied under R′ but is satisfied under R is connected to i under
R′. That is, S ′

ẗ
⊆ Sẗ and S ′

ẗ
\ Sẗ ⊆ CONN(i, R′, ẗ− 1).

(iii) Every person not connected to i at ẗ under R′ points at the same person under
R as under R′. That is, for each j ∈ N ′

ẗ
\ CONN(i, R′, ẗ), pẗ(j) = p′

ẗ
(j).

(iv) Every person not connected to i at ẗ under R′ holds the same object under R
as under R′. That is, for each j ∈ N ′

ẗ
\ CONN(i, R′, ẗ), hẗ+1(j) = h′

ẗ+1
(j).

(v) The set of people connected to i under R is a subset of the people connected
to i under R′. That is, CONN(i, R, ẗ) ⊆ CONN(i, R′, ẗ).

While the formal proof is in appendix C, Example 5 should help the reader
build some intuition with regards to Claim 1.

15As illustrated in Figure 5.
16If t = min{t, t′} statements (i) - (v) are implied by the t equality lemma.
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Example 5. Pre-trade Claim.
Let N = {1, 2, 3, 4, 5, 6, 7, 8}, ω = (a, b, c, d, e, f, g, h), and R ∈ RN be as

follows.

R1 R2 R3 R4 R5 R6 R7 R8 R′
1

a b c c e e a d e a f h e g h b
d a c

The Pre-trade Claim deals with situations where 1 reports, instead of R1, a
local push-up of R1 at his assignment TC≺(R, ω)(1) = b, R′

1. The Pre-trade Claim
says that at each step before 1 trades under R′(≡ (R′

1, R−1)), the set of people
who point at 1 under R is a subset of the set of people who point at 1 under R′.
Moreover, trades that do not involve 1 that occur under R occur under R′ as well.

In this example, the departure stage of Step 1 is the same under R and R′

(figure 6.) In the pointing stage, since 1 is satisfied under R but not under R′,
more people point at 1 under R′ than under R. Under R′, 5 points at 1. In
addition, note that since 6 points at 1 under R, where 1 is satisfied, he also points
at 1 under R′, where 1 is unsatisfied. Following this logic we can show that the
set of people who point at 1 under R is a subset of the set of people who point at
1 under R′. Moreover, trading cycles that do not involve 1 are the same under R
and R′. In this case, 7 points at 8 and 8 points at 7. Therefore, only trades that
involve 1 under R might not happen under R′. Since under R′ 1 trades in Step 1,
the Pre-trade Claim does not say anything about Step 2. •

If t′ ≤ t, by pre-trade inclusion, and the t equality lemma, Ot ⊆ O′
t and

O′
t ⊆ O′

t′ . Thus, α(i) ∈ O′
t′ . Since i is part of a trading cycle at Step t′ and by

definition of R′, i points in Step t′ at whoever holds α(i) at t. Then, i is assigned
one of his most preferred objects in O′

t′ which is uniquely α(i). Thus, α′(i) = α(i).
We only need to show that α(i) = α′(i) when t′ > t. We first state the following

claim.

Claim 2. (Post-trade inclusion) For each ẗ ∈ {t.., t′},

(i)
Oẗ ⊆ O′

ẗ
, Nẗ ⊆ N ′

ẗ
,

O′
ẗ
\Oẗ ⊆ hẗ(CONN(i, R′, ẗ− 1)), and N ′

ẗ
\Nẗ ⊆ CONN(i, R′, ẗ− 1)

,

(ii) S ′
ẗ
⊆ Sẗ and S ′

ẗ
\ Sẗ ⊆ CONN(i, R′, ẗ− 1),

(iii) For each j ∈ N ′
ẗ
\ CONN(i, R′, ẗ), pẗ(j) = p′

ẗ
(j), and

(iv) For each j ∈ N ′
ẗ
\ CONN(i, R′, ẗ), hẗ+1(j) = h′

ẗ+1
(j).
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Figure 6: Example of Pre-trade Claim. If 1 reports R′
1 rather than R1, the set

of people who point at 1 has under R′ is a superset of those who point at him under R.

Moreover, trades that do not involve 1 that are realized under R are also realized under

R′.

The proof of this claim is similar to that of pre-trade inclusion and is also
included in the appendix C, Example 6 should help the reader build some intuition
with regards to Claim 2.

Example 6. Post-trade Claim.
Let N = {1, 2, 3, 4, 5, 6, 7, 8}, ω = (a, b, c, d, e, f, g, h), and R ∈ RN be as

follows.

R1 R2 R3 R4 R5 R6 R7 R8 R′
1

b c a d g a c d e a d e f b d g h g c
b d a b

Like the Pre-trade Claim, the Post-trade Claim deals with situations where 1
reports R′

1, a local push-up of R1 at his assignment TC≺(R, ω)(1) = c, rather than
R1 (figure 7.) It provides us with a description of each step between the step at
which 1 trades under R and the step that he trades under R′(≡ (R′

1, R−1)). The
Post-trade Claim says that before 1 trades under R′, the set of people who point
at 1 under R is a subset of those who point at 1 under R′. Moreover, trades that
do not involve 1 that occur under R also occur under R′. Therefore, the people
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that trade under R is a superset of those who trade under R′. Finally, since there
is less trade under R, the sets of objects and people remaining at a particular step
under R are subsets of the objects and people remaining at the same step under
R′.

The claim does not say anything about Step 1 because 1 has not traded yet.
By the t-equality lemma, we know that the departure stage of Step 1 is the same
under R and R′ and in the pointing stage, everyone but 1 points in the same way
under R and R′. In this example, 1 trades under R but not under R′. In Step 2,
the departure phase is the same. In the pointing stage, since 1 is satisfied under R
but not under R′, 1 has more people who point at him under R′. Under R′, 4 and
5 point at 1. Therefore, the set of people who point at 1 under R is a subset of
those who point at 1 under R′. Even though it is not shown in this example, using
the same reasoning as in the Pre-trade Claim, trading cycles that do not involve 1
that occur under R also occur under R′ and at least as many people trade under
R as under R′. Since under R′ 1 trades in Step 2, the Post-trade Claim does not
say anything about Step 3. •

Suppose α′(i) �= α(i). Since i is assigned α(i) under R, there is t̃ such that
ht̃+1(i) = α(i). By post-trade inclusion, t̃ < t′. Since τ(R′

i, Ot̃) = {α(i)}, we have

i
R′−→̃
t

j ∈ N ′
t̃
such that h′

t̃
(j) = α(i). Since α′(i) �= α(i), h′

t̃+1
(i) �= α(i). Thus

j /∈ CONN(i, R′, t̃+1). Thus by post-trade inclusion, ht̃(j) = h′
t̃
(j) = α(i). Since

j /∈ CONN(i, R′, t̃), we have j
R′−→̃
t

j1( �= i)
R′−→̃
t

j2( �= i) . . .
R′−→̃
t

jr( �= i). Again, by

post-trade inclusion, j
R−→̃
t

j1( �= i)
R−→̃
t

j2( �= i) . . .
R−→̃
t

jr( �= i). This contradicts

ht̃(i) = α(i). ♣
We are now ready to show that TC≺ is strategy-proof.

Proposition 5. For priority order ≺, TC≺(R, ω) is strategy-proof.

Proof: Suppose that TC≺ is not strategy-proof. Then, there is (R, ω) ∈ RN ×A,
i ∈ N and R′

i ∈ R such that TC≺(R′
i, R−i, ω)(i) Pi TC≺(R, ω)(i). Let α ≡

TC≺(R, ω) and α′ ≡ TC≺(R′
i, R−i, ω). By the invariance lemma, we only need to

consider R′
i such that I(α′(i), Ri) = {α′(i)}. Otherwise, there is R

α′(i)↑
i ∈R such

that TC≺(Rα(i)↑
i , R−i, ω)(i) = α′(i) and thus, TC≺(Rα′(i)↑

i , R−i, ω)(i) Pi α(i).
Define t, t′, t, and t as in the proof of the invariance lemma. Since α′(i) �=

ω(i), α′(i) P ′
i ω(i) and for each ẗ ≤ t′, i ∈ U ′

ẗ
. We consider the following cases.

Case 1: t = t ≤ t′. In this case, i ∈ St. That is, ω(i) ∈ τ(Ri, Ot). By the t
equality lemma, Ot = O′

t
. Since α′(i) ∈ O′

t
, α′(i) ∈ Ot. Thus, ω(i) Ri α

′(i) and by
individual rationality, α(i) Ri α

′(i).
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4 d

5 e
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Step 1:

R R′

Step 2:

Step 3:

1 a

4 d

5 e

2 b

6 f

3 c

8 h

7 g

3 c4 d

5 e

6 f

1 b

2 a

1 a

4 d

5 e

2 b

6 f

3 c

5 e

6 f4 d

7 h

5 e

6 f

1 b

4 c

7 h

7 h

7 h
2 a

1 c3 b

3 d

Figure 7: Example of Post-trade Claim. If 1 reports R′
1 rather than R1, the

set of people who point at him has under R′ includes those who point at him under R.

Moreover, trades that do not involve 1 are realized under R are also realized under R′.
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Case 2: t = t′ < t. By the t equality lemma, Ot′ = O′
t′ , Nt′ = N ′

t′ , and for
each j ∈ N ′

t′ \ {i}, pt′(j) = p′t′(j) and ht′(j) = h′
t′(j). Since i trades under R′

at t′ and by definition of R′, I(α′(i), Ri) = {α′(i)}, then {h′
t′+1(i)} = {α′(i)} =

τ(R′
i, O

′
t′). Then, i leaves with α′(i). Therefore, there is {j1, j2, . . . , j3} ⊆ N ′

t such

that j1
R′−→
t

j2
R′−→
t

j3 . . .
R′−→
t

jr
R′−→
t

i and h′
t(j1) = α′(i). Then, by the t equality

lemma, j1
R−→
t

j2
R−→
t

j3 . . .
R−→
t

jr
R−→
t

i and ht(j1) = α′(i). By persistence,

ht+1(i) Ri α
′(i).

Case 3: t = t ≤ t′. Since ht+1(i) ∈ τ(Ri, Ot) and ht+1(i) Ii α(i), α(i) ∈ τ(Ri, Ot).
Since α′(i) ∈ O′

t and by the t equality lemma O′
t = Ot we have α′(i) ∈ Ot. Thus,

α(i) Ri α
′(i). �

6 Generality of our model

In this section, we show that the model that we have studied is general enough
to include the problems where there may or may not be a private endowment in
addition to a social endowment (Hylland and Zeckhauser 1979, Abdulkadiroğlu
and Sönmez 1999).

Let Õ be a set of objects and Ñ be a set of people. Let ∅ /∈ Õ be the null
object. The private endowment, ω̃ : Ñ → Õ ∪ {∅}, is such that for each
i, j ∈ Ñ , ω̃(i) �= ω̃(j) unless ω̃(i) = ∅. Let R̃ be the set of preference relations

over Õ. Let R̃ ∈ R̃Ñ . The tuple (Õ, Ñ , ω̃, R̃) defines a problem. We show how
this problem can be encoded as a problem in our original model without social
endowments.

Define (O,N, ω,R) as follows. For each a ∈ Õ \ ω̃(Ñ), we introduce ia, a
“dummy person” with degenerate preferences, Ria = I0. For each i ∈ Ñ such that
ω̃(i) = ∅, we introduce di, a “dummy object” which every person considers to be
worse than any object in Õ. For each person in Ñ , his preferences over Õ are
kept the same. That is,

O ≡ Õ ∪ {di : for each i ∈ Ñ such that ω̃(i) = ∅},
N ≡ Ñ ∪ {ia : for each a ∈ Õ \ ω̃(Ñ)},

For each i ∈ N,ω(i) ≡
⎧⎨
⎩

ω̃(i) if i ∈ Ñ and ω̃(i) �= ∅

di if i ∈ Ñ and ω̃(i) = ∅

a if i = ia, and

R ∈ RN is such that for each i ∈ Ñ , Ri|Õ = R̃i|Õ, and for each dj ∈ O \ Õ and
each a ∈ Õ, a Pi dj.

When the preferences are strict and the problem includes private endowment,
the top cycles rule associated with a priority coincides with the house for turn rule
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associated with the same priority.17 For the same domain of preferences with no
public endowment, our family of rules collapses to the core. Moreover, when there
is no private endowment, the top cycles rule associated with a priority coincides
with the serial dictatorship rule associated with the same priority.

We also point out that the top cycles rules described in this paper can be
generalized to problems in which each person may be endowed with any number
of objects (Pápai 2000).

For school choice problems, the objects that have to be allocated among stu-
dents are seats at schools. These problems have three important characteristics:
First, each seat at a school can be modeled as a copy of the same objects. Second,
students are indifferent between seats at the same school, but not between seats
at different schools. Finally, schools have weak priorities over students. An adap-
tation of the top trading algorithm can be used in this environment by treating
each school’s priority as an “inheritance heirarchy”(Pápai 2000, Kesten 2006).

Appendices

A A formal definition of the Top Cycles algo-

rithm

For t = 0, 1, 2, . . . , in Step t, we define the Ot ⊆ O, the Nt ⊆ N , and
ht+1 : Nt → Ot. We also define, for each i ∈ Nt, the pt(i).

Let O0 ≡ O, N0 ≡ N , and h1 ≡ ω.
At step t = 1, 2, . . . , we get (Ot, Nt, ht+1, pt) as follows.

Departure phase:

To determine who leaves we use an iterative procedure. Let G1
t be the largest

group in Nt−1 such that:

i) What each i ∈ G1
t holds is among his most preferred objects:

ht(i) ∈ τ(Ri, ht(Nt−1))

ii) The most preferred objects of the group are hold by them:

τ(Ri, ht(Nt−1)) ⊆ ht(G
1
t )

17This rule is known in the literature as You request my house I get your turn rule
(Abdulkadiroğlu and Sönmez 1999).
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Among the remaining people, Nt−1 \ G1
t we determine G2

t using the same
conditions. We continue until we find K ∈ {1, ..., |Nt−1|} such that GK

t = ∅

and for each k < K, Gk
t �= ∅. Then, each i ∈ ∪K

k=1G
k
t , departs with ht(i).

That is, TC≺(R, ω)(i) ≡ ht(i). Further,

Nt ≡ Nt−1 \ ∪K
k=1G

k
t and

Ot ≡ ht(Nt).
18

Note that the if K = 1 the set of people departing is empty, then Nt = Nt−1

and Ot = Ot−1.

Pointing phase:

We determine pt in stages, as follows: For each i ∈ Nt, let i’s candidate
pointees, Ci,t≡ {j ∈ Nt : ht(j) ∈ τ(Ri, Ot)}, be the people that hold one
of i’s most preferred objects.

Stage 1) If t �= 1, we first consider i ∈ Nt such that i’s pointee in Step t− 1 has
not departed and holds the same object as he did at Step t− 1. Then,
i points at the same person in Step t as well. That is, if t �= 1, for each
i ∈ Nt such that i −→

t−1
j ∈ Nt, and ht(j) = ht−1(j), we have i −→

t
j.

Stage 2) We consider i ∈ Nt that has only one candidate pointee. He points
at his unique candidate pointee. That is, for each i ∈ Nt such that
Ci,t = {j}, we have i −→

t
j.

Stage 3) We consider i ∈ Nt with at least one unsatisfied candidate pointee. He
points at the unsatisfied candidate pointee with highest priority.19 That
is,

pt(i) ≡ arg ≺ -max
j∈Ci,t\St

j.20

Stage 4) We consider i ∈ Nt with only satisfied candidate pointees, at least one
of whom has an unsatisfied pointee, C1

i,t ≡ {j ∈ Ci,t : j −→
t

Ut} ⊆ St.

Then i points at the satisfied candidate whose unsatisfied pointee has
highest priority (breaking ties with respect to ≺). That is, pt(i) = Jt(i),
where Jt(i) ≡ arg ≺ -max

j∈C1
i,t

pt(j) and |Jt(i)| = 1. In case two or more

19The order within a stage is unimportant. In addition, since stages are performed sequentially,
if pt(i) is defined at Stage k, then pt(pt(i)) is defined at Stage k′ < k. Further, pt(i) is independent
of pt(j) if pt(j) is defined at Stage k′′ ≥ k.

20We define arg ≺ -max
j∈Ci,t\St

j as the person that maximizes the priority ≺. In general, for each

f : X → N and each X ′ ⊆ X, we define arg ≺ -max
j∈X′

f(j) ≡ i ∈ X ′ such that for each

j ∈ X ′ \ {i}, f(i) ≺ f(j).
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of these satisfied candidates points at the unsatisfied pointee with the
highest priority (|Jt(i)| > 1), i points at the satisfied candidate with
the highest priority. That is, pt(i) ≡ arg ≺ -max

j∈Jt(i)
j.

Stage 5) We consider i ∈ Nt whose candidate pointees are all satisfied and have
satisfied pointees, at least one of whom has an unsatisfied pointee. He
points at the candidate who points at the person who points at the
unsatisfied person with highest priority (again, breaking ties with ≺).
That is,

C2
i,t ≡ {j ∈ Ci,t : j −→

t
−→

t
Ut} ⊆ St,

Jt(i) ≡ arg ≺ -max
j∈C2

i,t

pt(pt(j)), and

pt(i) ≡ arg ≺ -max
j∈Jt(i)

j.

Stage . . . ) The process is repeated until for each i ∈ Nt, pt(i) is defined.

By definition of the departure phase, each i ∈ Nt points, directly or indirectly,
at an unsatisfied person.21 Thus, the pointing phase terminates in a finite
number of stages.

Trading phase:

There is at least one cycle C ≡ {i1, i2, . . . , is} such that i1 −→
t

i2 −→
t

. . . −→
t

is −→
t

i1. Further, each i ∈ Nt is a member of at most one cycle. We get ht+1

by performing the trades prescribed by each cycle. That is, for each cycle,
{i1, i2, . . . , is}, and each k = 1, . . . s, ht+1(ik−1) = ht(ik). For each i ∈ Nt

who is not in a cycle, ht+1(i) = ht(i).

The algorithm terminates at Step t̊ such that Nt̊ = ∅.

B Proofs of the t-equality Lemma

Lemma 1: (t equality) At t, for both R and R′, the objects and people remaining,
as well as the holding vector and previous step’s pointing vector, except for i’s
component, are the same. That is,

Ot Nt ht

� � �

O′
t N ′

t h′
t

and for each j, k ∈ Nt such that j �= i,

j
R−→
t−1

k

�
j

R′−→
t−1

k.

21This condition implies that each cycle includes at least one unsatisfied person.
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Proof: Note that if in Step 1, i ∈ S1 and i ∈ S ′
1, the statement of this Lemma is

vacuously satisfied. Then, assume i ∈ U1 and i ∈ U ′
1.

Step 1: Since i ∈ U1 and i ∈ U ′
1, and for each j ∈ N \ {i}, Rj = R′

j and h1(j) =
h′
1(j) = ω(j), we have S0 = S ′

0. Thus, O1 = O′
1 and N1 = N ′

1. Therefore, for
each j ∈ N1 \ {i}, p1(j) = p′1(j).

If 1 < t, i does not trade at Step 1 under either R or R′. Therefore, the
cycles formed under p1 and p′1 are the same and do not involve i. Then, for
each j ∈ N1, h2(j) = h′

2(j).

Step 2: Since i ∈ U1 and i ∈ U ′
1, and for each j ∈ N1 \ {i}, Rj|O1 = R′

j|O1 and
h2(j) = h′

2(j), we have S1 = S ′
1. Thus, O2 = O′

2 and N2 = N ′
2.

As an induction hypothesis, suppose that for some ẗ < t, Oẗ = O′
ẗ
, Nẗ = N ′

ẗ
,

hẗ = h′
ẗ
, and for each j ∈ Nẗ \ {i}, pẗ−1(j) = p′

ẗ−1
(j).

Step ẗ+ 1:

We show that for ẗ < t, Oẗ+1 = O′
ẗ+1

, Nẗ+1 = N ′
ẗ+1

, hẗ+1 = h′
ẗ+1

, and for each
j ∈ Nẗ \ {i}, pẗ(j) = p′

ẗ
(j).

Since ẗ < t, i ∈ Uẗ and i ∈ U ′
ẗ
. In addition, by our induction hypothesis,

Oẗ = O′
ẗ
, Nẗ = N ′

ẗ
, hẗ = h′

ẗ
and Rj|Oẗ

= R′
j|Oẗ

. Thus, for each j ∈ Nẗ \ {i},
pẗ(j) = p′

ẗ
(j).

Since ẗ < t, i does not trade under R or R′ at ẗ. Therefore, the cycles formed
by pẗ and p′

ẗ
are the same and do not involve i. Thus, for each j ∈ Nẗ,

hẗ+1(j) = h′
t+1(j). Also, Oẗ+1 = O′

ẗ+1
and Nẗ+1 = N ′

ẗ+1
.

C Proof of the “inclusion” Claims

Claim 1: (Pre-trade inclusion) For each ẗ = t, ...,min{t, t′},
(i) The objects and people remaining at ẗ under R are a subset of those remaining

under R′. Further, those remaining under R′ but not under R are connected
to i. That is,

Oẗ ⊆ O′
ẗ
, Nẗ ⊆ N ′

ẗ

O′
ẗ
\Oẗ ⊆ hẗ(CONN(i, R′, ẗ− 1)), and N ′

ẗ
\Nẗ ⊆ CONN(i, R′, ẗ− 1).

(ii) Every person who is satisfied at ẗ under R′ is satisfied under R. Every person
who is not satisfied under R′ but is satisfied under R is connected to i under
R′. That is, S ′

ẗ
⊆ Sẗ and S ′

ẗ
\ Sẗ ⊆ CONN(i, R′, ẗ− 1).
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(iii) Every person not connected to i at ẗ under R′ points at the same person under
R as under R′. That is, for each j ∈ N ′

ẗ
\ CONN(i, R′, ẗ), pẗ(j) = p′

ẗ
(j).

(iv) Every person not connected to i at ẗ under R′ holds the same object under R
as under R′. That is, for each j ∈ N ′

ẗ
\ CONN(i, R′, ẗ), hẗ+1(j) = h′

ẗ+1
(j).

(v) The set of people connected to i under R is a subset of the people connected
to i under R′. That is, CONN(i, R, ẗ) ⊆ CONN(i, R′, ẗ).

Proof: Suppose t �= min{t, t′}. Then t = t. Since τ(R′
i, Ot) = {α(i)}, t < t′, and

by definition of t, i ∈ U ′
t
and i ∈ St.

Let ẗ = t. Statements (i) and (ii), for t, are implied by the t equality lemma.
Further, St = S ′

t
∪ {i}.

We now prove statement (iii), for t, by following the progression of the pointing
phase.22 By the t equality lemma, each j ∈ Nt \ {i} pointed at the same person
under R as he did under R′ at step t− 1.

Stage 1) At the beginning of the pointing phase we consider people who were pointing
at someone who remains in Nt̄ and holds the same object. In particular, we

consider j ∈ N ′
t
\CONN(i, R′, t) such that j

R′−→
t−1

k ∈ N ′
t
and h′

t
(k) = h′

t−1
(k).

Then, j
R′−→
t

k. By the t equality lemma, j
R−→
t−1

k and ht(k) = ht−1(k) =

h′
t−1

(k) . Thus j
R−→
t

k.

j

R′R

k kj

Stage 2) Now we consider people who have a unique most preferred object. They
point at the same person under R as under R′.

Stage 3) Next, we consider the people who point at unsatisfied people under R′. In

particular, j ∈ N ′
t
\ CONN(i, R′, t) such that j

R′−→
t

k ∈ U ′
t
. Since j /∈

CONN(i, R′, t), k /∈ CONN(i, R′, t). Since k ∈ U ′
t
and St = S ′

t
∪ {i},

k ∈ Ut. Further, ht(k) = h′
t
(k) = ω(k). Suppose j

R−→
t

m �= k. Then,

m ∈ Ut ⊆ U ′
t
and so ht(m) = h′

t
(m) = ω(m) and m ≺ k. This contradicts

j
R′−→
t

k.

22We provide a graphical illustration of the argument following each stage of the pointing
phase.
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U ′
t

R′R

jj k ∈ U ′
t

k ∈ Ut

m ≺ k∈
Ut

m ≺ k∈

Stage 4) We now consider the people who point at satisfied people with unsatisfied
pointees, under R′. In particular, we consider j ∈ N ′

t
\ CONN(i, R′, t) such

that j
R′−→
t

j1 ∈ S ′
t

R′−→
t

k ∈ U ′
t
. Then, by (ii), j1 ∈ St.

By the preceding arguments, j1
R−→
t

k and k ∈ Ut. Suppose j
R−→
t

m1 �= j1. If

m1 ∈ Ut, then ht(m1) = h′
t
(m1) = ω(m1) and m1 ∈ U ′

t
. But this contradicts

j
R′−→
t

S ′
t
. So m1 ∈ St and m1

R−→
t

m2 such that m2 ∈ Ut and m2 ≺ k. Then,

m2 ∈ U ′
t
and thus m1

R′−→
t

m′
2 ∈ U ′

t
such that m′

2 � m2 ≺ k. 23 By the t

equality lemma, ht(m1) = h′
t
(m1). This contradicts j

R′−→
t

j1.

∈

R′R

j1 k ∈ Ut k ∈ Ut

j j

m1

m2 ≺ k∈

Ut

St

m1

S ′
t
� j1

∈

m2 ≺ k

U ′
t

m′
2 � m2 ≺ k

U ′
t

∈

Stage 5) Now we consider the people who point at satisfied people with satisfied
pointees whose pointees are unsatisfied, under R′. Particularly, consider

j ∈ N ′
t
\ CONN(i, R′, t) be such that j

R′−→
t

j1 ∈ S ′
t

R′−→
t

j2 ∈ S ′
t

R′−→
t

k ∈ U ′
t
.

Then, j1, j2 ∈ St.

By the preceding arguments, j1
R−→
t

j2
R−→
t

k ∈ Ut. Suppose j
R−→
t

m1 �= j1.

If m1 ∈ Ut, then ht(m1) = h′
t
(m1) = ω(m1) and m1 ∈ U ′

t
. But this contra-

23We use the notation i � j to indicate i ≺ j or i = j.
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dicts j
R′−→
t

S ′
t
. So m1 ∈ St. By the t equality lemma, ht(m1) = h′

t
(m1).

Let m1
R−→
t

m2. If m2 ∈ Ut, then ht(m2) = h′
t
(m2) = ω(m2) and m2 ∈ U ′

t
.

So m1
R′−→
t

U ′
t
. But this contradicts j

R′−→
t

S ′
t

R′−→
t

S ′
t
. So m2 ∈ St. By the

t equality lemma, ht(m2) = h′
t
(m2). Since k ∈ Ut, m2

R−→
t

m3 ∈ Ut and

m3 ≺ k. Then, m3 ∈ U ′
t
and so m2

R′−→
t

m̂3 ∈ U ′
t
such that m̂3 � m3 ≺ k.

If m1
R′−→
t

m2, this contradicts j
R′−→
t

j1. Then m1
R′−→
t

m′
2 �= m2 and

m′
2

R′−→
t

m′
3. Note that m′

2 ∈ S ′
t
, otherwise this contradicts j

R′−→
t

S ′
t

R′−→
t

S ′
t
.

In addition, sincem1 � R
′−→
t

m2 andm1
R′−→
t

m′
2, we havem

′
3 ∈ U ′

t
andm′

3 ≺ m̂3.

Then, m3 ≺ k, which contradicts j
R′−→
t

j1.

m′
2

R′R

m1 m2 m3 ≺ k

kj2j1

j j

j2 kj1

m1 m2 m3

m̂3 � m3

m′
3 � m̂3 � m3 ≺ k

Stage . . . ) Repeating this argument for the rest of the pointing phase, we show (iii).

We show that (v) CONN(i, R, t) ⊆ CONN(i, R′, t) is a consequence of (iii). To
see this, suppose j ∈ CONN(i, R, t) \ CONN(i, R′, t). Then, there is a sequence

{j1, j2, ..., jr, i} ⊂ Nt, such that j
R−→
t

j1
R−→
t

j2
R−→
t

...
R−→
t

jr
R−→
t

i. Since

j /∈ CONN(i, R′, t), then by (iii), j
R′−→
t

j1. Then, j1 /∈ CONN(i, R′, t). Again,

by (iii), j1
R′−→
t

j2 and j2 /∈ CONN(i, R′, t). Repeating the argument r times,

jr /∈ CONN(i, R′, t). By (iii), jr
R′−→
t

i, and this contradicts j /∈ CONN(i, R′, t).
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R

i

jr

j2

j1
j

i

jr

j2

j1
j

R′

Finally, we prove (iv) for Step t. We show that for each j ∈ N ′
t
\CONN(i, R′, t),

ht+1(j) = h′
t+1

(j). Note that since at t < t′, i does not trade. Then, no trad-
ing cycle under R′ involves i. So, no trading cycle involves any member of
CONN(i, R′, t). That is, for each trading cycle C ′ ⊂ N ′

t
, CONN(i, R′, t)∩C ′ = ∅.

By (iii) and since Nt = N ′
t”, we have C ′ ⊂ Nt is also a trading cycle under R.

Therefore, for each j ∈ N ′
t
\CONN(i, R′, t), h′

t+1
(j) = ht+1(j). Moreover, for each

j ∈ CONN(i, R′, t), h′
t+1

(j) = h′
t
(j).

As an induction hypothesis, suppose that for some ẗ ∈ {t, ...,min{t, t′}−1},

(i)
Oẗ ⊆ O′

ẗ
, Nẗ ⊆ N ′

ẗ

O′
ẗ
\Oẗ ⊆ hẗ(CONN(i, R′, ẗ− 1)), and N ′

ẗ
\Nẗ ⊆ CONN(i, R′, ẗ− 1),

(ii) S ′
ẗ
⊆ Sẗ and S ′

ẗ
\ Sẗ ⊆ CONN(i, R′, ẗ− 1),

(iii) For each j ∈ N ′
ẗ
\ CONN(i, R′, ẗ), pẗ(j) = p′

ẗ
(j),

(iv) For each j ∈ N ′
ẗ
\ CONN(i, R′, ẗ), hẗ+1(j) = h′

ẗ+1
(j), and

(v) CONN(i, R, ẗ) ⊆ CONN(i, R′, ẗ).

We prove that these statements are true of ẗ+1. To prove (i) and (ii) for ẗ+1,
note that by (iv) and (v) of the induction hypothesis, if C ∈ Nẗ is a trading cycle
under R and is not a trading cycle under R′, then C ⊆ CONN(i, R′, ẗ). Thus, at
Step ẗ+ 1, we have statements (i) and (ii).

We now prove (iii), for ẗ+1, by following the progression of the pointing phase
just as in the case of t.

Stage 1) We consider people whose pointee at ẗ remains at ẗ + 1 and holds the same
object under R as R′. In particular, we consider j ∈ N ′

ẗ+1
\CONN(i, R′, ẗ+1)

such that j
R′−→̈
t

k ∈ N ′
ẗ
and h′

ẗ+1
(k) = h′

ẗ
(k). Then, j

R′−→
ẗ+1

k. By the

induction hypothesis, j
R−→̈
t

k and hẗ+1(k) = hẗ(k) = h′
ẗ
(k) . Thus j

R−→
ẗ+1

k.
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Stage 2) Now we consider people who have a unique most preferred object. For each
j ∈ N ′

ẗ+1
\ CONN(i, R′, ẗ + 1), if τ(Rj, O

′
ẗ+1

) = {a}, then by the induction

hypothesis, h−1
ẗ+1

(a) = h
′−1
ẗ+1

(a) /∈ CONN(i, R′, ẗ+ 1). Thus, a ∈ Oẗ+1 and so
pẗ+1(j) = p′

ẗ+1
(j).

Stage 3) Next, we consider the people with unsatisfied pointees under R′. In par-

ticular, j ∈ N ′
ẗ+1

\ CONN(i, R′, ẗ + 1) such that j
R′−→
ẗ+1

k ∈ U ′
ẗ
. Since j /∈

CONN(i, R′, ẗ+1), k /∈ CONN(i, R′, ẗ+1). Since k ∈ U ′
ẗ+1

and Sẗ+1\S ′
ẗ+1

⊆
CONN(i, R′, ẗ + 1), k ∈ Uẗ+1. Further, hẗ+1(k) = h′

ẗ+1
(k) = ω(k). Suppose

j
R−→
ẗ+1

m �= k. Then, m ∈ Uẗ+1 ⊆ U ′
ẗ+1

and so hẗ+1(m) = h′
ẗ+1

(m) = ω(m)

and m ≺ k. This contradicts j
R′−→
ẗ+1

k.

U ′
t

R′R

jj k ∈ U ′
t

k ∈ Ut

m ≺ k∈
Ut

m ≺ k∈

Stage 4) We now consider the people who point at satisfied people with unsatisfied
pointees, under R′. In particular, we consider j ∈ N ′

ẗ+1
\CONN(i, R′, ẗ+1)

such that j
R′−→
ẗ+1

j1 ∈ S ′
ẗ+1

R′−→
ẗ+1

k ∈ U ′
ẗ+1

. Then, by (ii), j1 ∈ Sẗ+1.

By the preceding arguments, j1
R−→
ẗ+1

k and k ∈ Uẗ+1. Suppose j
R−→
ẗ+1

m1 �= j1.

We consider the following two cases.

h′
ẗ+1

(m1)

�

hẗ+1(m1)

: If m1 ∈ Uẗ+1, then m1 ∈ U ′
ẗ+1

and hẗ+1(m1) = h′
ẗ+1

(m1) = ω(m1).

Then, j
R′−→
ẗ+1

m1, which contradicts j
R′−→
ẗ+1

j1 ∈ S ′
ẗ+1

. Thus, m1 ∈ Sẗ+1.

Suppose m1
R−→
ẗ+1

m2. Since j
R−→
ẗ+1

m1 and k ∈ Uẗ+1, then m2 ∈ Uẗ+1 and

m2 � k. Then, m2 ∈ U ′
ẗ+1

. Further, either [m2 ≺ k] or [m2 = k and

m1 ≺ j1]. Since j � R′−→
ẗ+1

m1, we have m1 � R
′−→

ẗ+1
m2. Let m1

R′−→
ẗ+1

m′
2. Since
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m2 ∈ U ′
ẗ+1

, we have m′
2 ∈ U ′

ẗ+1
and m′

2 ≺ m2. Then, m′
2 ≺ k, which

contradicts j
R′−→
ẗ+1

j1.

∈

R′R

j1 k ∈ Ut k ∈ Ut

j j

m1

m2 ≺ k∈

Ut

St

m1

S ′
t
� j1

∈

m2 ≺ k

U ′
t

m′
2 � m2 ≺ k

U ′
t

∈

h′
ẗ+1

(m1)

�

hẗ+1(m1)

: Let a ≡ hẗ+1(m1). By the induction hypothesis, since h′
ẗ+1

(m1) �= a,

m1 ∈ CONN(i, R′, ẗ). Thus, m1 ∈ CONN(i, R′, ẗ+ 1). Further, m1 ∈
Sẗ+1. Since Oẗ+1 ⊆ O′

ẗ+1
, there is m̂ ∈ N ′

ẗ+1
such that h′

ẗ+1
(m̂) = a.

Suppose m1
R−→
ẗ+1

m2. Since j
R−→
ẗ+1

m1, we have m2 ∈ Uẗ+1 ⊆ U ′
ẗ+1

and

m2 ≺ k.

Since j � R′−→
ẗ+1

m̂, m̂ ∈ S ′
ẗ+1

. Since hẗ+1(m̂) �= a, by the induction hy-

pothesis, m̂ ∈ CONN(i, R′, ẗ + 1). So there is a first t̂ such that
m̂ ∈ CONN(i, R′, t̂). Then, ht̂(m̂) = h′

t̂
(m̂) = a, and m̂ ∈ S ′

t̂
⊆ St̂.

Now we consider the first ť, which is between t̂ and ẗ + 1, such that

hť(m1) = a. Then, m1
R−→
ť−1

Sť−1 which contradicts m2 ∈ Uẗ+1 ⊆ Uť−1.
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(between t̂ and ẗ + 1)

Step ẗ+ 1:

R′R

m̂(a)

i

m2 ∈ Uť−1m1

m̃2 ∈ St̂ ⊆ Sť−1

j

j1 kk

j

j1

m1 m2
(a)

R′R

R′R

Step t̂:

Step ť− 1:

i

m̂(a)

m̂ ∈ St̂

(a)

. . .

. . .

. . .

. . .

. . .

(a)

Stage 5) Next we consider the people who point at satisfied people whose pointees
satisfied and have unsatisfied pointees, under R′. Particularly, consider j ∈
N ′

ẗ+1
\ CONN(i, R′, ẗ + 1) be such that j

R′−→
ẗ+1

j1 ∈ S ′
ẗ+1

R′−→
ẗ+1

j2 ∈ S ′
ẗ+1

R′−→
ẗ+1

k ∈ U ′
ẗ+1

. Then, j1, j2 ∈ Sẗ+1.

By the preceding arguments, j1
R−→
ẗ+1

j2
R−→
ẗ+1

k ∈ Uẗ+1. Suppose j
R−→
t

m1 �= j1.

Let m1
R−→
ẗ+1

m2
R−→
ẗ+1

m3. We consider the following cases.

h′
ẗ+1

(m1)

�

hẗ+1(m1)

: If m1 ∈ Uẗ+1, then m1 ∈ U ′
ẗ+1

and hẗ+1(m1) = h′
ẗ+1

(m1) = ω(m1).

Then, j
R′−→
ẗ+1

m1, which contradicts j
R′−→
ẗ+1

j1 ∈ S ′
ẗ+1

. Thus, m1 ∈ Sẗ+1.

Two sub-cases are as follows:

h′
ẗ+1

(m2) = hẗ+1(m2): If m2 ∈ Uẗ+1, then m2 ∈ U ′
ẗ+1

and hẗ+1(m2) =

h′
ẗ+1

(m2) = ω(m2). Then, m1
R−→
ẗ+1

U ′
ẗ+1

and j
R′−→
ẗ+1

m1, which contra-

dicts j
R′−→
ẗ+1

j1 ∈ S ′
ẗ+1

. Thus, m2 ∈ Sẗ+1.
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Since j
R−→
ẗ+1

m1 �= j1, m3 ∈ Uẗ+1. Further, m3 ∈ U ′
ẗ+1

and either

[m3 ≺ k] or [m3 = k and m1 ≺ j1]. Since, j � R
′−→

ẗ+1
m1, then either,

(a) m1
R′−→
ẗ+1

m2
R′−→
ẗ+1

m′
3 �= m3: Since m3 ∈ U ′

ẗ+1
, m′

3 ∈ U ′
ẗ+1

and

m′
3 ≺ m3 ≺ k. This contradicts j

R′−→
ẗ+1

j1.

(b) m1
R′−→
ẗ+1

m′
2 �= m2: Since j

R′−→
ẗ+1

j1 �= m1, we have m′
2 ∈ S ′

ẗ+1
.

Suppose m2
R′−→
ẗ+1

m̂3 and m′
2

R′−→
ẗ+1

m′
3. Since m3 ∈ U ′

ẗ+1
, m̂3 ∈ U ′

ẗ+1

and m̂3 � m3. Since m′
2 ∈ S ′

ẗ+1
, m1

R′−→
ẗ+1

m′
2, and m̂3 ∈ U ′

ẗ+1
, we

have m′
3 ∈ U ′

ẗ+1
and m′

3 � m̂3. Thus, m′
3 ≺ k which contradicts

j
R′−→
ẗ+1

j1.

m′
2

R′R

m1 m2 m3 ≺ k

kj2j1

j j

j2 kj1

m1 m2 m3

m̂3 � m3

m′
3 � m̂3 � m3 ≺ k

h′
ẗ+1

(m2) �= hẗ+1(m2): Let a ≡ hẗ+1(m2). By the induction hy-

pothesis, since h′
ẗ+1

(m2) �= a, we have m2 ∈ Sẗ+1. Since j
R−→̈
t

m1,

m3 ∈ Uẗ+1 ⊆ U ′
ẗ+1

.

Since Oẗ+1 ⊆ O′
ẗ+1

, there is m̂ ∈ N ′
ẗ+1

such that h′
ẗ+1

(m̂) = a and by

the induction hypothesis, m̂ ∈ CONN(i, R′, ẗ+ 1).

Since a Im1 hẗ+1(m1), and j � R′−→
ẗ+1

m1, we have that m1 ∈ S ′
ẗ+1

, m1
R′−→
ẗ+1

S ′
ẗ+1

, and m̂ ∈ S ′
ẗ+1

.

Since hẗ+1(m̂) �= a and since there is a first t̂ such that m̂ ∈ CONN(i, R′, t̂),
ht̂(m̂) = h′

t̂
(m̂) = a, and m̂ ∈ S ′

t̂
⊆ St̂.
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Now consider the first ť, which is between t̂ and ẗ + 1, such that

hť(m2) = a. Then, m2
R−→
ť−1

Sť−1 which contradicts m3 ∈ Uẗ+1 ⊆ Uť−1.

(a)

i

m̂(a)

i

m̂(a)

m3 ∈ Uť−1m2

m̃3 ∈ St̂ ⊆ Sť−1

jj

j1

m1 m2

R′R

R′R

Step t̂:

Step ť− 1:

m̂ ∈ St̂

(a)

. . .

. . .

. . .

. . .

. . .

(a)

j1

Step ẗ+ 1:

R′R

kk

m3

j2 j2

(between t̂ and ẗ + 1)

h′
ẗ+1

(m1)

�

hẗ+1(m1)

: Let a ≡ hẗ+1(m1). Since h′
ẗ+1

(m1) �= a, m1 ∈ Sẗ+1. Since Oẗ+1 ⊆ O′
ẗ+1

,

there is m̂ ∈ N ′
ẗ+1

such that h′
ẗ+1

(m̂) = a. Since j
R′−→
ẗ+1

j1, we have

that m̂ ∈ S ′
ẗ+1

and m̂
R′−→
ẗ+1

S ′
ẗ+1

. Since hẗ+1(m̂) �= a, by the induction

hypothesis, m̂ ∈ CONN(i, R′, ẗ + 1) and there is a first t̂ such that
m̂ ∈ CONN(i, R′, t̂). Since m̂ ∈ S ′

ẗ+1
and p′

ẗ+1
(m̂) = p′

t̂
(m̂), we have

that m̂ ∈ S ′
t̂
. This implies that m̂ ∈ St̂ and ht̂(m̂) = a. Since m̂

R′−→̂
t

S ′
t̂
,

then m̂
R−→̂
t

St̂. And for each ˆ̂t > t̂, we have m̂
R−→̂̂
t

Sˆ̂t
. Now consider

the first ť, which is between t̂ and ẗ + 1, such that hť(m1) = a. Then,

m1
R−→
ť−1

Sť−1
R−→
ť−1

Sť−1. However, if m2 ∈ Uẗ+1 ⊆ Uť, then m1
R−→
ẗ+1

Uẗ+1 ⊆ Uť and if m2 ∈ Sẗ+1, then m3 ∈ Uẗ+1 and m1
R−→
ẗ+1

Sẗ+1
R−→
ẗ+1

Uẗ+1.

In either case, we have reached a contradiction.
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(between t̂ and ẗ + 1)

i

m̂(a)

m̈ ∈ S ′
ẗ+1

i

m̂(a)

m̈ ∈ S ′
t̂

jj

j1

m1 m2
(a)

R′R

R′R

Step t̂:

. . .. . .

j1

Step ẗ+ 1:

R′R

kk

m3

j2 j2

. . .

. . .
m̌ ∈ St̂

m2 m∗
3 ∈ Uť−1

Step ť− 1:
. . .

m̃2 ∈ St̂ ⊆ Sť−1

m̃3 ∈ St̂ ⊆ Sť−1

(a)

m̂(a)

m1

Stage . . . ) Repeating this argument for the rest of the pointing phase we show (iii).

Now, we prove (v) for ẗ+1. Suppose j ∈ CONN(i, R, ẗ+1) \CONN(i, R′, ẗ+1).

Then, there is {j1, j2, ..., jr, i} ⊂ Nẗ+1 ⊆ N ′
ẗ+1

, such that j
R−→
ẗ+1

j1
R−→
ẗ+1

j2
R−→
ẗ+1

...
R−→
ẗ+1

jr
R−→
ẗ+1

i. Since j /∈ CONN(i, R′, ẗ + 1), by (iii), j
R′−→
ẗ+1

j1. Then, j1 /∈

CONN(i, R′, ẗ + 1). Again, by (iii), j1
R′−→
ẗ+1

j2 and j2 /∈ CONN(i, R′, ẗ + 1).

Repeating the argument r times, jr /∈ CONN(i, R′, ẗ + 1). By (iii), jr
R′−→
ẗ+1

i, and

this contradicts j /∈ CONN(i, R′, ẗ+ 1).
Finally, we prove (iv) for Step ẗ + 1. We show that for each j ∈ N ′

ẗ+1
\

CONN(i, R′, ẗ + 1), hẗ+1(j) = h′
ẗ+1

(j). By (iii) each trading cycle that does not
involve people connected to i under R′ is also a trading cycle under R. Therefore,
for each j ∈ N ′

ẗ+1
\ CONN(i, R′, ẗ + 1), h′

ẗ+2
(j) = hẗ+2(j). Moreover, for each

j ∈ CONN(i, R′, ẗ+ 1), h′
ẗ+2

(j) = h′
ẗ+1

(j). �
Claim 2: (Post-trade inclusion)

For each ẗ ∈ {t.., t′},
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(i)
Oẗ ⊆ O′

ẗ
, Nẗ ⊆ N ′

ẗ
,

O′
ẗ
\Oẗ ⊆ hẗ(CONN(i, R′, ẗ− 1)), and N ′

ẗ
\Nẗ ⊆ CONN(i, R′, ẗ− 1)

,

(ii) S ′
ẗ
⊆ Sẗ and S ′

ẗ
\ Sẗ ⊆ CONN(i, R′, ẗ− 1),

(iii) For each j ∈ N ′
ẗ
\ CONN(i, R′, ẗ), pẗ(j) = p′

ẗ
(j), and

(iv) For each j ∈ N ′
ẗ
\ CONN(i, R′, ẗ), hẗ+1(j) = h′

ẗ+1
(j).

Proof: Let ẗ = t + 1. First, we prove statements (i) and (ii) for t + 1. At
t, i is a member of a trading cycle under R, but not under R′. By pre-trade
inclusion, each trading cycle that does not involve people connected to i under R′

is also a trading cycle under R. In addition, for each j ∈ N ′
t \ CONN(i, R′, t),

ht+1(j) = h′
t+1(j). Thus, if C ∈ Nt is a trading cycle under R but not under R′,

then C ⊂ CONN(i, R′, t). Therefore, at Step t + 1, Ot+1 ⊂ O′
t+1, O

′
t+1 \ Ot+1 ⊆

ht+1(CONN(i, R′, t)), Nt+1 ⊂ N ′
t+1, and N ′

t+1 \Nt+1 ⊆ CONN(i, R′, t). Further,
S ′
t+1 ⊂ St+1 and St+1 \ S ′

t+1 ⊆ CONN(i, R′, t).
We now prove (iii) for t+1, by following the progression of the pointing phase.

Stage 1) We first consider people whos pointee in Step t remains in N ′
t+1 and holds

the same object. In particular, we consider j ∈ N ′
t+1 \ CONN(i, R′, t + 1)

such that j
R′−→
t

k ∈ N ′
t+1 and h′

t+1(k) = h′
t(k). Then, j

R′−→
t+1

k. By pre-trade

inclusion, j
R−→
t

k and ht+1(k) = ht(k) = h′
t(k). Thus, by (ii), j

R−→
t+1

k.

Stage 2) Now we consider people who have a unique most preferred object. For each
j ∈ N ′

t+1 \ CONN(i, R′, t + 1), if τ(Rj, O
′
t+1) = {a}, then by pre-trade

inclusion, h−1
t+1(a) = h

′−1
t+1(a) /∈ CONN(i, R′, t + 1). Thus, a ∈ Ot+1 and so

pt+1(j) = p′t+1(j).

Stage 3) Next, we consider the people with unsatisfied pointees under R′. In partic-

ular, we consider j ∈ N ′
t+1 \ CONN(i, R′, t + 1) such that j

R′−→
t+1

k ∈ U ′
t+1.

Since j /∈ CONN(i, R′, t + 1), k /∈ CONN(i, R′, t + 1). Since k ∈ U ′
t+1

and St+1 \ S ′
t+1 ⊂ CONN(i, R′, t + 1), k ∈ Ut+1. Further, ht+1(k) =

h′
t+1(k) = ω(k). Suppose j

R−→
t+1

m �= k. Then, m ∈ Ut+1 ⊂ U ′
t+1 and so

ht+1(m) = h′
t+1(m) = ω(m) and m ≺ k. This contradicts j

R′−→
t+1

k.

Stage 4) We now consider the people who point at satisfied people with unsatisfied
pointees, under R′. In particular, we consider j ∈ N ′

t+1 \CONN(i, R′, t+1)

such that j
R′−→
t+1

j1 ∈ S ′
t+1

R′−→
t+1

k ∈ U ′
t+1. Then, by (ii), j1 ∈ St+1.
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By the preceding arguments, j1
R−→
t+1

k and k ∈ Ut+1. Suppose j
R−→
t+1

m1 �= j1.

We consider the following cases.

h′
t+1(m1)

�

ht+1(m1)
: If m1 ∈ Ut+1, then m1 ∈ U ′

t+1 and ht+1(m1) = h′
t+1(m1) = ω(m1).

Then, j
R′−→
t+1

m1, which contradicts j
R′−→
t+1

j1 ∈ S ′
t+1. Thus, m1 ∈ St+1.

Suppose m1
R−→
t+1

m2. Since j
R−→
t+1

m1 and k ∈ Ut+1 and m2 � k. Then,

m2 ∈ U ′
t+1. Further, either [m2 ≺ k] or [m2 = k and m1 ≺ j1]. Since

j � R′−→
t+1

m1, we have m1 � R′−→
t+1

m2. Let m1
R′−→
t+1

m′
2. Since m2 ∈ U ′

t+1,

we have m′
2 /∈ S ′

t+1 and m′
2 ≺ m2. Then, m′

2 ≺ k, which contradicts

j
R′−→
t+1

j1.

h′
t+1(m1)

�

ht+1(m1)
: Let a ≡ ht+1(m1). By pre-trade inclusion, since h′

t+1(m1) �= a, m1 ∈

CONN(i, R′, t). Thus, m1 ∈ CONN(i, R′, t + 1). Further, m1 ∈ St+1.
Since Ot+1 ⊆ O′

t+1, there is m̂ ∈ N ′
t+1 such that h′

t+1(m̂) = a. Suppose

m1
R−→
t+1

m2. Since j
R−→
t+1

m1, we have m2 ∈ Ut+1 ⊆ U ′
t+1 and m2 ≺ k.

Since j � R′−→
t+1

m̂, m̂ ∈ S ′
t+1.

Since ht+1(m̂) �= a, by pre-trade inclusion, m̂ ∈ CONN(i, R′, t+1). So
there is a first t̂ such that m̂ ∈ CONN(i, R′, t̂), ht̂(m̂) = h′

t̂
(m̂) = a,

and m̂ ∈ S ′
t̂
⊆ St̂.

Now we consider the first ť, which is between t̂ and t + 1, such that

hť(m1) = a. Then, m1
R−→
ť−1

Sť−1, which contradicts m2 ∈ Ut+1 ⊆ Uť−1.

Stage 5) Now we consider the people who point at satisfied people whose pointees are
satisfied people with unsatisfied pointees under R′. Particularly, we consider

j ∈ N ′
t+1 \ CONN(i, R′, t + 1) such that j

R′−→
t+1

j1 ∈ S ′
t+1

R′−→
t+1

j2 ∈ S ′
t+1

R′−→
t+1

k ∈ U ′
t+1. Then, by (ii), j1, j2 ∈ St+1.

By the preceding arguments, j1
R−→
t+1

j2
R−→
t+1

k ∈ Ut+1. Suppose j
R−→
t

m1 �= j1.

Let m1
R−→
t+1

m2
R−→
t+1

m3. We consider the following cases.
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h′
t+1(m1)

�

ht+1(m1)
: If m1 ∈ Ut+1, then m1 ∈ U ′

t+1 and ht+1(m1) = h′
t+1(m1) = ω(m1).

Then, j
R′−→
t+1

m1, which contradicts j
R′−→
t+1

j1 ∈ S ′
t+1. Thus, m1 ∈ St+1.

Two sub-cases are as follows:

h′
t+1(m2) = ht+1(m2): If m2 ∈ Ut+1, then m2 ∈ U ′

t+1 and ht+1(m2) =

h′
t+1(m2) = ω(m2). Then, ma

R′−→
t+1

U ′
t+1 and j

R′−→
t+1

m1, which contra-

dicts j
R′−→
t+1

j1 ∈ S ′
t+1. Thus, m2 ∈ St+1.

Since j
R−→
t+1

m1 �= j1, m3 ∈ Ut+1. Further, m3 ∈ U ′
t+1 and either

[m3 ≺ k] or [m3 = k and m1 ≺ j1]. Since, j � R
′−→

t+1
m1, then either,

(a) m1
R′−→
t+1

m2
R′−→
t+1

m′
3 �= m3: Since m3 ∈ U ′

t+1, m′
3 ∈ U ′

t+1 and

m′
3 ≺ m3 ≺ k. This contradicts j

R′−→
t+1

j1.

(b) m1
R′−→
t+1

m′
2 �= m2: Since j

R′−→
t+1

j1 �= m1, we have m′
2 ∈ S ′

t+1.

Suppose m2
R′−→
t+1

m̂3 and m′
2

R′−→
t+1

m′
3. Since m3 ∈ U ′

t+1, m̂3 ∈ U ′
t+1

and m̂3 � m3. Since m′
2 ∈ S ′

t+1, m1
R′−→
t+1

m′
2, and m̂3 ∈ U ′

t+1, we

have m′
3 ∈ U ′

t+1 and m′
3 ≺ m̂3. Thus, m′

3 ≺ k which contradicts

j
R′−→
t+1

j1.

h′
t+1(m2) �= ht+1(m2): Let a ≡ ht+1(m2). By pre-trade inclusion,

since h′
t+1(m2) �= a, we have m2 ∈ St+1. Since j

R−→̈
t

m1, m3 ∈ Ut+1 ⊆
U ′
t+1.

Since Ot+1 ⊆ O′
t+1, there is m̂ ∈ N ′

t+1 such that h′
t+1(m̂) = a and by

pre-trade inclusion, m̂ ∈ CONN(i, R′, t+ 1).

Since a Im1 ht+1(m1), and j � R′−→
t+1

m1, we have that m1 ∈ S ′
t+1, m1

R′−→
t+1

S ′
t+1, and m̂ ∈ S ′

t+1.

Since ht+1(m̂) �= a and since there is a first t̂ such that m̂ ∈ CONN(i, R′, t̂),
ht̂(m̂) = h′

t̂
(m̂) = a, and m̂ ∈ S ′

t̂
⊆ St̂.

Now consider the first ť, which is between t̂ and t + 1, such that

hť(m2) = a. Then, m2
R−→
ť−1

Sť−1 which contradicts m3 ∈ Uẗ+1 ⊆ Uť−1.
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h′
t+1(m1)

�

ht+1(m1)
: Let a ≡ ht+1(m1). Subce h′

t+1(m1) �= a, m1 ∈ St+1. Since Ot+1 ⊆ O′
t+1,

there is m̂ ∈ N ′
t+1 such that h′

t+1(m̂) = a. Since j
R′−→
t+1

j1, we have

that m̂ ∈ S ′
t+1 and m̂

R′−→
t+1

S ′
t+1. Since ht+1(m̂) �= a, by pre-trade

inclusion, m̂ ∈ CONN(i, R′, t + 1) and there is a first t̂ such that
m̂ ∈ CONN(i, R′, t̂). Since m̂ ∈ S ′

t+1 and p′
t̂
(m̂) = p′t+1(m̂), we have

that m̂ ∈ S ′
t̂
. This implies that m̂ ∈ St̂ and ht̂(m̂) = a. Since m̂

R′−→̂
t

S ′
t̂
,

then m̂
R−→̂
t

St̂. And for each ˆ̂t > t̂, we have m̂
R−→̂̂
t

Sˆ̂t
. Now consider

the first ť, which is between t̂ and t + 1, such that hť(m1) = a. Then,

m1
R−→
ť−1

Sť−1
R−→
ť−1

Sť−1. However, if m2 ∈ Ut+1 ⊆ Uť, then m1
R−→
t+1

Ut+1 ⊆ Uť and if m2 ∈ St+1, then m3 ∈ Ut+1 and m1
R−→
t+1

St+1
R−→
t+1

Ut+1.

In either case, we have reached a contradiction.

Stage . . . ) Repeating this argument for the rest of the pointing phase we show (iii).

Now, we prove (iv) for t+1. That is, we show that for each j ∈ N ′
t+1\CONN(i, R′, t+ 1),

ht+1(j) = h′
t+1(j). Note that since at t + 1 < t′, i is not part of any trading cycle

under R′. Thus is, no trading cycle under R′ involves people connected to i under
R′. That is for each trading cycle C ′ ⊂ N ′

t+1, CONN(i, R′, t + 1) ∩ C ′ = ∅. By
(iii), each trading cycle that does not involve people connected to i under R′ is
also a trading cycle under R. Therefore, for each j ∈ N ′

t+1 \ CONN(i, R′, t + 1),
h′
t+2(j) = ht+2(j). Moreover, for each j ∈ CONN(i, R′, t+ 1), h′

t+2(j) = h′
t+1(j).

As an induction hypothesis, suppose that for some ẗ ∈ {t, ..., t′ − 1},

(i)
Oẗ ⊆ O′

ẗ
, Nẗ ⊆ N ′

ẗ

O′
ẗ
\Oẗ ⊆ hẗ(CONN(i, R′, ẗ− 1)), and N ′

ẗ
\Nẗ ⊆ CONN(i, R′, ẗ− 1),

(ii) S ′
ẗ
⊆ Sẗ and S ′

ẗ
\ Sẗ ⊆ CONN(i, R′, ẗ− 1),

(iii) For each j ∈ N ′
ẗ
\ CONN(i, R′, ẗ), pẗ(j) = p′

ẗ
(j), and

(iv) For each j ∈ N ′
ẗ
\ CONN(i, R′, ẗ), hẗ(j) = h′

ẗ
(j), and

Now we prove that these statements are true of ẗ+ 1. To prove (i) and (ii) for
ẗ+ 1 note that by (iv) and (v) of the induction hypothesis, if C ∈ Nẗ is a trading
cycle under R and is not a trading cycle under R′, then C ⊆ CONN(i, R′, ẗ).
Thus, at Step ẗ+ 1, we have statements (i) and (ii).

44



We now prove (iii), for ẗ+1, by following the progression of the pointing phase
just as in the case of t+ 1.

Stage 1) At the beginning of the pointing phase we consider people who were pointing
at someone who remains in N ′

ẗ+1
and holds the same object. In particular,

we consider j ∈ N ′
ẗ+1

\ CONN(i, R′, ẗ + 1) such that j
R′−→̈
t

k ∈ N ′
ẗ
and

h′
ẗ+1

(k) = h′
ẗ
(k). Then, j

R′−→
ẗ+1

k. By the induction hypothesis, j
R−→̈
t

k and

hẗ+1(k) = hẗ(k) = h′
ẗ
(k) . Thus j

R−→
ẗ+1

k.

Stage 2) Now we consider people who have a unique most preferred object. For each
j ∈ N ′

ẗ+1
\ CONN(i, R′, ẗ + 1), if τ(Rj, O

′
ẗ+1

) = {a}, then by the induction

hypothesis, h−1
ẗ+1

(a) = h
′−1
ẗ+1

(a) /∈ CONN(i, R′, ẗ+ 1). Thus, a ∈ Oẗ+1 and so
pẗ+1(j) = p′

ẗ+1
(j).

Stage 3) Next, we consider the people with unsatisfied pointees under R′. In par-

ticular, j ∈ N ′
ẗ+1

\ CONN(i, R′, ẗ + 1) such that j
R′−→
ẗ+1

k ∈ U ′
ẗ
. Since j /∈

CONN(i, R′, ẗ+1), k /∈ CONN(i, R′, ẗ+1). Since k ∈ U ′
ẗ+1

and Sẗ+1\S ′
ẗ+1

⊆
CONN(i, R′, ẗ + 1), k ∈ Uẗ+1. Further, hẗ+1(k) = h′

ẗ+1
(k) = ω(k). Suppose

j
R−→
ẗ+1

m �= k. Then, m ∈ Uẗ+1 ⊆ U ′
ẗ+1

and so hẗ+1(m) = h′
ẗ+1

(m) = ω(m)

and m ≺ k. This contradicts j
R′−→
ẗ+1

k.

Stage 4) We now consider the people who point at satisfied people with unsatisfied
pointees, under R′. In particular, we consider j ∈ N ′

ẗ+1
\CONN(i, R′, ẗ+1)

such that j
R′−→
ẗ+1

j1 ∈ S ′
ẗ+1

R′−→
ẗ+1

k ∈ U ′
ẗ+1

. Then, by (ii), j1 ∈ Sẗ+1.

By the preceding arguments, j1
R−→
ẗ+1

k and k ∈ Uẗ+1. Suppose j
R−→
ẗ+1

m1 �= j1.

We consider the following two cases.

h′
ẗ+1

(m1)

�

hẗ+1(m1)

: If m1 ∈ Uẗ+1, then m1 ∈ U ′
ẗ+1

and hẗ+1(m1) = h′
ẗ+1

(m1) = ω(m1).

Then, j
R′−→
ẗ+1

m1, which contradicts j
R′−→
ẗ+1

j1 ∈ S ′
ẗ+1

. Thus, m1 ∈ Sẗ+1.

Suppose m1
R−→
ẗ+1

m2. Since j
R−→
ẗ+1

m1 and k ∈ Uẗ+1, then m2 ∈ Uẗ+1 and

m2 � k. Then, m2 ∈ U ′
ẗ+1

. Further, either [m2 ≺ k] or [m2 = k and
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m1 ≺ j1]. Since j � R′−→
ẗ+1

m1, we have m1 � R
′−→

ẗ+1
m2. Let m1

R′−→
ẗ+1

m′
2. Since

m2 ∈ U ′
ẗ+1

, we have m′
2 ∈ U ′

ẗ+1
and m′

2 ≺ m2. Then, m′
2 ≺ k, which

contradicts j
R′−→
ẗ+1

j1.

h′
ẗ+1

(m1)

�

hẗ+1(m1)

: Let a ≡ hẗ+1(m1). By the induction hypothesis, since h′
ẗ+1

(m1) �= a,

m1 ∈ CONN(i, R′, ẗ). Thus, m1 ∈ CONN(i, R′, ẗ+ 1). Further, m1 ∈
Sẗ+1. Since Oẗ+1 ⊆ O′

ẗ+1
, there is m̂ ∈ N ′

ẗ+1
such that h′

ẗ+1
(m̂) = a.

Suppose m1
R−→
ẗ+1

m2. Since j
R−→
ẗ+1

m1, we have m2 ∈ Uẗ+1 ⊆ U ′
ẗ+1

and

m2 ≺ k.

Since j � R′−→
ẗ+1

m̂, m̂ ∈ S ′
ẗ+1

.

Since hẗ+1(m̂) �= a, by the induction hypothesis, m̂ ∈ CONN(i, R′, ẗ+
1). So there is a first t̂ such that m̂ ∈ CONN(i, R′, t̂). Then, ht̂(m̂) =
h′
t̂
(m̂) = a, and m̂ ∈ S ′

t̂
⊆ St̂.

Now we consider the first ť, which is between t̂ and ẗ + 1, such that

hť(m1) = a. Then, m1
R−→
ť−1

Sť−1 which contradicts m2 ∈ Uẗ+1 ⊆ Uť−1.

Stage 5) Next we consider the people who point at satisfied people whose pointees
satisfied and have unsatisfied pointees, under R′. Particularly, consider j ∈
N ′

ẗ+1
\ CONN(i, R′, ẗ + 1) be such that j

R′−→
ẗ+1

j1 ∈ S ′
ẗ+1

R′−→
ẗ+1

j2 ∈ S ′
ẗ+1

R′−→
ẗ+1

k ∈ U ′
ẗ+1

. Then, j1, j2 ∈ Sẗ+1.

By the preceding arguments, j1
R−→
ẗ+1

j2
R−→
ẗ+1

k ∈ Uẗ+1. Suppose j
R−→
t

m1 �= j1.

Let m1
R−→
ẗ+1

m2
R−→
ẗ+1

m3. We consider the following cases.

h′
ẗ+1

(m1)

�

hẗ+1(m1)

: If m1 ∈ Uẗ+1, then m1 ∈ U ′
ẗ+1

and hẗ+1(m1) = h′
ẗ+1

(m1) = ω(m1).

Then, j
R′−→
ẗ+1

m1, which contradicts j
R′−→
ẗ+1

j1 ∈ S ′
ẗ+1

. Thus, m1 ∈ Sẗ+1.

Two sub-cases are as follows:

h′
ẗ+1

(m2) = hẗ+1(m2): If m2 ∈ Uẗ+1, then m2 ∈ U ′
ẗ+1

and hẗ+1(m2) =

h′
ẗ+1

(m2) = ω(m2). Then, m1
R−→
ẗ+1

U ′
ẗ+1

and j
R′−→
ẗ+1

m1, which contra-

dicts j
R′−→
ẗ+1

j1 ∈ S ′
ẗ+1

. Thus, m2 ∈ Sẗ+1.
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Since j
R−→
ẗ+1

m1 �= j1, m3 ∈ Uẗ+1. Further, m3 ∈ U ′
ẗ+1

and either

[m3 ≺ k] or [m3 = k and m1 ≺ j1]. Since, j � R
′−→

ẗ+1
m1, then either,

(a) m1
R′−→
ẗ+1

m2
R′−→
ẗ+1

m′
3 �= m3: Since m3 ∈ U ′

ẗ+1
, m′

3 ∈ U ′
ẗ+1

and

m′
3 ≺ m3 ≺ k. This contradicts j

R′−→
ẗ+1

j1.

(b) m1
R′−→
ẗ+1

m′
2 �= m2: Since j

R′−→
ẗ+1

j1 �= m1, we have m′
2 ∈ S ′

ẗ+1
.

Suppose m2
R′−→
ẗ+1

m̂3 and m′
2

R′−→
ẗ+1

m′
3. Since m3 ∈ U ′

ẗ+1
, m̂3 ∈ U ′

ẗ+1

and m̂3 � m3. Since m′
2 ∈ S ′

ẗ+1
, m1

R′−→
ẗ+1

m′
2, and m̂3 ∈ U ′

ẗ+1
, we

have m′
3 ∈ U ′

ẗ+1
and m′

3 � m̂3. Thus, m′
3 ≺ k which contradicts

j
R′−→
ẗ+1

j1.

h′
ẗ+1

(m2) �= hẗ+1(m2): Let a ≡ hẗ+1(m2). By the induction hy-

pothesis, since h′
ẗ+1

(m2) �= a, we have m2 ∈ Sẗ+1. Since j
R−→̈
t

m1,

m3 ∈ Uẗ+1 ⊆ U ′
ẗ+1

.

Since Oẗ+1 ⊆ O′
ẗ+1

, there is m̂ ∈ N ′
ẗ+1

such that h′
ẗ+1

(m̂) = a and by

the induction hypothesis, m̂ ∈ CONN(i, R′, ẗ+ 1).

Since a Im1 hẗ+1(m1), and j � R′−→
ẗ+1

m1, we have that m1 ∈ S ′
ẗ+1

, m1
R′−→
ẗ+1

S ′
ẗ+1

, and m̂ ∈ S ′
ẗ+1

.

Since hẗ+1(m̂) �= a and since there is a first t̂ such that m̂ ∈ CONN(i, R′, t̂),
ht̂(m̂) = h′

t̂
(m̂) = a, and m̂ ∈ S ′

t̂
⊆ St̂.

Now consider the first ť, which is between t̂ and ẗ+1, such that hť(m2) =

a. Then, m2
R−→
ť−1

Sť−1 which contradicts m3 ∈ Uẗ+1 ⊆ Uť−1.

h′
ẗ+1

(m1)

�

hẗ+1(m1)

: Let a ≡ hẗ+1(m1). Since h′
ẗ+1

(m1) �= a, m1 ∈ Sẗ+1. Since Oẗ+1 ⊆ O′
ẗ+1

,

there is m̂ ∈ N ′
ẗ+1

such that h′
ẗ+1

(m̂) = a. Since j
R′−→
ẗ+1

j1, we have

that m̂ ∈ S ′
ẗ+1

and m̂
R′−→
ẗ+1

S ′
ẗ+1

. Since hẗ+1(m̂) �= a, by the induction

hypothesis, m̂ ∈ CONN(i, R′, ẗ + 1) and there is a first t̂ such that
m̂ ∈ CONN(i, R′, t̂). Since m̂ ∈ S ′

ẗ+1
and p′

ẗ+1
(m̂) = p′

t̂
(m̂), we have

that m̂ ∈ S ′
t̂
. This implies that m̂ ∈ St̂ and ht̂(m̂) = a. Since m̂

R′−→̂
t

S ′
t̂
,
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then m̂
R−→̂
t

St̂. And for each ˆ̂t > t̂, we have m̂
R−→̂̂
t

Sˆ̂t
. Now consider

the first ť, which is between t̂ and ẗ + 1, such that hť(m1) = a. Then,

m1
R−→
ť−1

Sť−1
R−→
ť−1

Sť−1. However, if m2 ∈ Uẗ+1 ⊆ Uť, then m1
R−→
ẗ+1

Uẗ+1 ⊆ Uť and if m2 ∈ Sẗ+1, then m3 ∈ Uẗ+1 and m1
R−→
ẗ+1

Sẗ+1
R−→
ẗ+1

Uẗ+1.

In either case, we have reached a contradiction.

Stage . . . ) Repeating this argument for the rest of the pointing phase we show (iii).

Finally, we prove (iv) for Step ẗ + 1. That is, we show that for each j ∈ N ′
ẗ+1

\
CONN(i, R′, ẗ + 1), hẗ+1(j) = h′

ẗ+1
(j). By (iii) each trading cycle that does not

involve people connected to i under R′ is also a trading cycle under R. Therefore,
for each j ∈ N ′

ẗ+1
\ CONN(i, R′, ẗ + 1), hẗ+1(j) = h′

ẗ+1
(j). Moreover, for each

j ∈ CONN(i, R′, ẗ+ 1), h′
ẗ+2

(j) = h′
ẗ+1

(j). �

D Proof of Propositions 1 and 2

Proposition 1: If N > 2, no rule is strategy-proof, Pareto-efficient and anony-
mous.
Proof: Let ϕ by a rule satisfying the axioms. We prove this for the case of N = 3.

Suppose ϕ is a strategy-proof and Pareto-efficient. Let O = {a, b, c}, N =
{1, 2, 3}, and let ω = (a, b, c). Consider the following preference profile:

R1 R2 R3

a b c a a©
b c b c

By efficiency, ϕ(R, ω)(1) �= a. Thus, either ϕ(R, ω)(2) = a or ϕ(R, ω)(3) = a.
Suppose ϕ(R, ω)(3) = a.

Claim (Limited favoritism): If 1 is indifferent between all three objects, and
if 3’s unique most preferred object is a, it is assigned to him. That is, for each
R′ ∈ RN ,24

R′
1 = I0, and

τ(R′
3, O) = {a}

}
⇒ ϕ(R′, ω)(3) = a.

24I0 is indifference between all objects.
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Proof: By strategy-proofness, for each R′
3 ∈ R \ {R3} such that τ(R′

3, O) = {a},
ϕ(R′

3, R−3, ω)(3) = a. Otherwise,

ϕ( R3︸︷︷︸
lie

, R−3, ω)(3) P ′
3︸︷︷︸

truth

ϕ( R′
3︸︷︷︸

truth

, R−3, ω)(3).

Also by strategy-proofness, there is no R′
2 ∈ R, such that ϕ(R′

2, R−2, ω)(2) = a.
Otherwise,

ϕ( R′
2︸︷︷︸

lie

, R−2, ω)(2) P2︸︷︷︸
truth

ϕ( R2︸︷︷︸
truth

, R−2, ω)(2).

Thus, for any R′ ∈ RN such that R′
1 = I0 and τ(R′

3, O) = {a}, ϕ(R′, ω)(3) = a.�
Since ϕ exhibits limited favoritism, it cannot be anonymous. �

Proposition 2: If N > 2, no rule is strategy-proof, Pareto-efficient, individually
rational, and non-bossy.
Proof: Suppose ϕ is strategy-proof, Pareto-efficient, individually rational, and
non-bossy. We begin by noting that it satisfies limited favoritism as in the proof
of the previous proposition.

Claim (General favoritism): If a is not assigned to 1, then 3 finds his assign-
ment to be at least as good as a. That is, for each R ∈ RN ,

ϕ(R, ω)(1) �= a ⇒ ϕ(R, ω)(3) R3 a.

Proof: Suppose not. Then, there is R ∈ RN such that ϕ(R, ω)(1) �= a and
a P3 ϕ(R, ω)(3). Let α ≡ ϕ(R, ω). Since α(1) �= a and α(3) �= a, we have
α(2) = a.

Case b P3 a: Since α(1) �= a, by individual rationality, there is x ∈ {b, c} such that x R1 a.
Since b P3 a, α(3) �= b. Thus, by Pareto-efficiency, α(1) = b. Further, by
Pareto-efficiency, b P1 c and by individual rationality, b R1 a. There are four
possible configurations for the preference profile:

R1 R2 R3

b© a© b
...

... a
c©

,

R1 R2 R3

b© a© b b
... c a

c©
,

R1 R2 R3

b© a a© b

c
... a

c©
or

R1 R2 R3

b© a a© b b
c c a

c©
.
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The circled allocation in each of the above is α. By strategy-proofness, if α
is chosen at any one of the four configurations, it is chosen at the first. Thus,
it is suffices to show that α cannot be chosen for the first configuration.

Consider the following preference profile:

R′
1 R2 R3

b© a© b

a c
... a

c©

By strategy-proofness, b is assigned to 1. By non-bossiness, a is assigned
to 2 and c is assigned to 3.

Now, consider another preference profile:

R′
1 R2 R′

3

b© a© a

a c
... b c©

At (R′
1, R2, R

′
3), by strategy-proofness, c is assigned to 3 and by Pareto-

efficiency, b is assigned to 1 and a is assigned to 2. By strategy-proofness
and non-bossiness the allocation is unchanged for the following profile.

R′
1 R′

2 R′
3

b© a© a
a c c b c©

b

Now suppose 1 reports I0,

R̄1 R′
2 R′

3

a b© c a a©
c© b c
b

At (R̄1, R
′
2, R

′
3), by limited favoritism, a is assigned to 3 and by Pareto-

efficiency c is assigned to 2, leaving b for 1. But by strategy-proofness, b is
assigned to 1 at (R′

1, R
′
2, R

′
3). By non-bossiness, the circled allocation cannot

be chosen.
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Case a P3 b: This case is similar. �

Now, we show that general favoritism is incompatible with individual rationality
and Pareto-efficiency. Consider the following profile.

R̃1 R̃2 R̃3

b a a
a b b c
c c

By Pareto-efficiency and individual rationality, b is assigned to 1 and a is assigned
to 2. This violates general favoritism.
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E List of abbreviations

Abbrev. Description
O Set of distinct objects.
N Set of people.

ω : N → O List of endowments.
ω(i) i’s component of the endowment.
Ri i’s weak preference relation over O.
R Set of all preference relations over O.
R A preference profile.
RN Set of all preference profiles.
P Set of strict preference relations.
R−i Preference relation of everyone but i.
RS Preference profile of people in S ⊆ N .
R−S Preference profile of people not in S ⊆ N .
A Set of allocations.
α(i) i’s component of α ∈ A.

α(S) =
⋃

i∈S{α(i)} Collective assignment to members of S ∈ N under α.
ϕ : RN × A → A A rule that selects an allocation for each problem.

Ot ⊆ O Remaining objects determined after the departure phase
in Step t of the top cycles algorithm.

Nt ⊆ N Remaining preople determined after the departure phase
in Step t of the top cycles algorithm.

ht+1 : Nt → Ot Holding vector determined after the trading phase in Step t
of the top cycles algorithm.

pt(i) Person whom i points at.
i −→

t
j i points at j in Step t of the top cycles algorithm.

i −→
t
−→

t
j i points at someone who is pointing at j in Step t of the

top cycles algorithm.
i −→

t
M , M ⊂ Nt i points at someone in M ∈ Nt in Step t of the top cycles

algorithm.
St Set of satisfied people who hold one of their most preferred

objects among Ot

Ut = Nt \ St Set of unsatisfied people.
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Pycia, Marek and Utku Ünver (2009) “A Theory of House Allocation and Exchange
Mechanisms,” MIMEO.

Quint, Thomas and Jun Wako (2004) “On houseswapping, the strict core, seg-
mentation, and linear programming.,” Mathematics of Operations Research,
Vol. 29, pp. 861–877.

Roth, Alvin E. (1982) “Incentive compatibility in a market with indivisible goods,”
Economics Letters, Vol. 9, No. 2, pp. 127–132.

53



Roth, Alvin E. and Andrew Postlewaite (1977) “Weak versus strong domination
in a market with indivisible goods,” Journal of Mathematical Economics,
Vol. 4, No. 2, pp. 131–137, August.

Shapley, Lloyd and Herbert Scarf (1974) “On cores and indivisibility,” Journal of
Mathematical Economics, Vol. 1, pp. 23–37.

Sönmez, Tayfun (1999) “Strategy-Proofness and Essentially Single-Valued Cores,”
Econometrica, Vol. 67, No. 3, pp. 677–690, May.
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