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Abstract

The paper aims at investigating the role that one country’s position in the
international trade network has in attracting knowledge and technology flows
to it. By referring to “indirect” Research and Development (R&D) spillovers,
we argue that not only is this position responsible for the number of R&D
flows one country benefits from, but also for their economic impact to an
extent depending on the number of trade relationships which separate it from
its trade partners. This argument is developed by extending to trade-related
R&D spillovers the intersectoral “Average Propagation Length” (APL) of
exogenous shocks in sectoral final demand or value added. The inter-country
APL of foreign R&D is then used to weight the (total factor) productivity
impact of the foreign R&D stock available to one country, along with that
of the R&D stock produced domestically. Different specifications of such an
econometric model are estimated with respect to 21 OECD countries over
the decade 1995-2005. The results are consistent with those of the models
which explicitly recognize the role of indirect R&D spillovers: in particular,
the TFP elasticity of the foreign R&D available stock is greater than that
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of the foreign R&D produced stock. The APL based results are however
more robust, as they depend on the actual economic distance in trade of one
country from the others, rather than, as in previous models, on the (most
fitting) estimated value of its economic consequences.

Keywords: Average Propagation Length; International R&D spillovers; Inter-
national trade network; Total Factor Productivity.

JEL Classification: C23; F01; O30; O47.
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1 Introduction

The paper aims at investigating the role that one country’s position in
the international trade network has in allowing for foreign Research and
Development (R&D) spillovers. Referring to the literature stimulated by
Coe and Helpman (1995) on the role of trade in promoting knowledge and
technology flows between trading countries – i.e. “direct” R&D spillovers – we
draw on Lumenga-Neso et al. (2005) the extension according to which R&D
spillovers are also “indirect”, and taking place even between non-trading
partners. In brief, not only does country A benefit from the R&D produced
by its trade partner B. But also from that available in B because of its own
trade with C, even in the absence of trade between A and C.

In the paper, we argue that this amounts to recognizing the international
trade network, rather than international trade per se, a crucial role in con-
veying R&D spillovers between countries: not only is the size of international
trade between countries relevant, along with that of their R&D efforts, but
also the economic distance between them, in terms of direct and indirect
trade relationships.1

This argument requires a refinement of the methodology to capture foreign
R&D spillovers. On the one hand, Social Network Analysis (SNA) applied to
international trade turns out inescapable in order to get an accurate account
of one country’s weight in both producing and intermediating knowledge
flows, both directly and indirectly. On the other hand, Input-Output (IO)
analysis offers some tools that, even when applied at an aggregate level – the
inter-country level – are useful in building up a synthetic measurement of the
“length” trade takes in “propagating” direct and indirect knowledge flows.

In the paper, we start by using SNA in an illustrative way, and rather focus
on an econometric model which applies to trade-related R&D spillovers the
IO idea of Average Propagation Length (APL) put forward by Dietzenbacher
et al. (2005). In brief, the (weighted) average number of trade “rounds” it
takes one country’s produced R&D to become available in another one. A
more extensive application of SNA instruments, to the more familiar IO
domain of intersectoral domestic and foreign R&D spillovers will instead be
postponed to our future research agenda.2

The remainder of the paper is organized as follows. Section 2 reviews
the literature on trade-related R&D spillovers and distinguish direct from
indirect foreign R&D spillovers. Section 3 develops the conceptual relation-
ship between indirect R&D spillovers and international trade network, and
suggests the use of SNA and IO to account for it. Section 4 provides the
econometric model and its empirical specification, and Section 5 presents the

1The geographical distance between countries is also relevant in this last respect (e.g.
Keller, 2002a). However, this issue will not be addressed by the present paper, and rather
put on our research agenda.

2On the issue see, among the others, Keller (2002b) and Bitzer and Geishecker (2006).
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econometric results. Section 6 concludes.

2 Trade-related R&D spillovers: direct vs. indi-
rect

The idea that trade enables international knowledge flows and technology
transfer across countries and sectors has been elaborated theoretically and
supported empirically by an extended body of literature (for a survey see,
for instance, Keller, 2004; van Pottelsberghe de la Potterie, 1997).

The starting point is represented by Griliches’ (1979) famous distinction
between pure knowledge and rent spillovers from R&D. Rent spillovers are
those which accrue to the buyer/user of a certain (capital) innovated good
for the fact that such a good “embodies” new technological knowledge for
which the seller/producer is unable to charge him/her (for a survey, see Jaffe,
1986). As international trade is also made up of transactions of goods, which
the exporting country (or sector) can innovate before selling abroad, the
importing one can benefit from foreign spillovers, as it does from domestic
ones (Coe and Helpman, 1995), although possibly to a different extent.3

Once identified as a potential channel of international technology diffusion,
trade becomes also a potential driver of economic growth for countries. In
particular, in a global economy, it enables R&D to flow across countries and
to improve the quality of the intermediate inputs they produce (Grossman
and Helpman, 1991). Accordingly, the foreign R&D stock of a country can
be expected to impact on its Total Factor Productivity (TFP) as well as its
domestic one.

The issue then becomes an empirical one, in which an accurate index
of the foreign R&D stock has to be worked out and its impact on TFP
estimated along with that of other relevant explicative variables. This is
a research stream which Coe and Helpman (1995) (CH hereafter) initiated
by suggesting to equate the foreign R&D stock of a certain country to the
import-weighted sum of the R&D produced in each of its trade partners. In
so doing, they actually found for it a significant role in impacting on the
TFP of OECD countries vs. that of domestic R&D. That work was seminal
and stimulated a lot of reactions and extensions.

On the one hand, a number of papers have tried to extend the original
CH setting, both by including additional explicative variables – in particular,

3To be sure, the kind of trade which stimulates this foreign spillovers is mainly that of
capital goods. The scanty availability of data on these trade flows, however, has led the
literature to focus on trade of final goods in general. A relevant exception is represented
by Xu and Wang (1999), who refer to the imports of machinery and transport equipment.
While the inner mechanism is similar, a number of factors – first of all, the geographical
distance – suggest to look for, and expect to find, a different impact of within-country
with respect to between-country spillovers (on this crucial issue, see, for example, Eaton
and Kortum, 1999; Irwin and Klenow, 1994; Keller, 2002a).
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the role of human capital (Engelbrecht, 1997) and of the institutional set-up
(Coe et al., 2009) – and by enlarging the dataset of the application (Madsen,
2007). In general, these extensions confirm the CH thesis of the role of trade
in transmitting foreign knowledge.

On the other hand, less confirming is a thread of papers which have
concentrated on the sensitivity of the CH results to the measurement of
foreign R&D.4 Along this thread, the work by Keller (1998) (simply K,
hereafter) is particularly important. Not only because did he not obtain
worse results than CH by weighing their foreign R&D data with random,
rather than with observed trade shares.5 But also and above all because he
got an even better outcome by equating the foreign R&D of the importing
country to the simple sum of the domestic one produced by its trading
partners.

As Lumenga-Neso et al. (2005) (LOS hereafter) argued, rather than a
supposed proof of the trade irrelevance in conveying technological knowledge,
this latter application points to a different concept of foreign R&D stock,
which they call available, rather than produced in a foreign country. In brief,
by importing from a foreign country, not only does a domestic one benefit
from the investments in R&D of the former – direct foreign R&D spillovers.
But also from those R&D investments made by other foreign countries, with
which the initial foreign country only has traded, while the domestic one has
not – indirect foreign R&D spillovers.

This distinction between direct and indirect trade-related spillovers appear
to us extremely interesting and appealing. As we will argue in the next
section, it actually encapsulates the idea that trade-spillovers should be
related to the international trade network, rather than to the simple idea
of trade transactions. On the other hand, as we will also claim in the next
section, such a perspective can be addressed more convincingly than LOS
did.

4Lichtenberg and van Pottelsberghe de la Potterie (1998) identified in CH an
“aggregation-bias” due to mergers among foreign countries, and accordingly suggested
to correct the original CH weighting scheme of foreign R&D by dividing the CH weights
by the GDP of the exporting country. Casting doubts on the economic interpretation of
that, Lumenga-Neso et al. (2005) instead suggested to refer to the GDP of the importing
country.

5In fact, Coe and Hoffmaister (1999) replied to this test by showing how the weights he
used were not truly random.
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3 The implications of indirect trade-related R&D
spillovers

3.1 Foreign R&D spillovers and the international trade net-
work

Although they never used the expression “international trade network”, the
way LOS define the total foreign R&D stock (Sf

T ) of the investigated countries,
as a function of the domestic R&D capital stocks of their trade partners (Sd),
is nothing but a synthetic, matrix representation of the network the countries
determine by trading goods among them, both directly and indirectly. Indeed,
in the following expression (Eq. (4) in their paper):

Sf
T = [(I− ρM)−1 − I]Sd (1)

the generic element of N = [(I − ρM)−1 − I] – where M is the matrix
of bilateral import shares,6 I the identity matrix and ρ a parameter of
absorption capacity of foreign knowledge on which we will retun later – nij

stands for the share of imports country i makes from country j, both directly
and indirectly: that is, through the other trade partners of i of the network
which have in turn imported from j.

At first sight, referring to such an international trade network makes the
analysis of foreign R&D spillovers nearly impracticable. A graphical, SNA
inspection of the network constituted by the worldwide trade relationships
and R&D capital stocks for the year 2000 seems to confirm this suggestion
(Figure 1).7 Apart from the expected result of a larger stock of R&D
produced in the G7 countries, the only distinguishable outcome seems to
be that the larger foreign R&D spillovers should be found among the G7
themselves.8

The LOS perspective is much more complex than the CH and the K
perspectives. Extracting one node (country) from the correspondent network
and comparing its indegree centrality in the different perspectives – that is,
counting the number of trade flows (import/GDP) of a certain magnitude
(higher than a threshold of 0.01%) which reach the country – confirms this
case.

6Each element mij of M is the share of country i imports coming from country j. By
definition mii = 0 and

P
jmij = 1.

7For some countries, the R&D data were not available on a comparable basis. In the
majority of the cases, though with some relevant exceptions (e.g. Brasil), this is due to
their relatively negligible amount.

8Following the Fruchterman-Reingold algorithm and considering link values as a measure
of similarity among nodes, in fact, closer nodes correspond to countries with larger
connecting arcs. All the calculations were made using Pajek 1.23 (Batagelj et al., 2005).
As the application of SNA is not the direct focus of the present paper, this and other
definitions are kept at a merely intuitive level. The interest reader is referred to, among
the others, Batagelj et al. (2005).
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Notes – node size: R&D capital stock; edges threshold: import penetration ratio larger
than 0.01% (closer nodes corresponding to countries with larger connecting arcs); G7
countries in clear.

Figure 1: LOS R&D-worldwide trade network (2000)

For instance, focusing on Japan,9 the CH perspective would suggest that
foreign R&D spillovers are channeled to it by the relatively limited number
of countries from which it imports significantly (Figure 2). This makes
the R&D produced by China and Korea relevant for Japan, in addition
to the R&D stocks of the G7 and European countries from which Japan
imports significantly. On the contrary, the imports that, for example, China
and Korea receive from other countries which do not export to Japan, and
that are more than numerous (Figure 1), are totally irrelevant in inducing
Japanese foreign R&D spillovers.

A much more simpler network results from the K perspective, for which
the Rest of the World (RoW) would simply produce and build up a total
R&D “basket”, which is fully available to Japan, irrespectively from its
imports (Figure 3).

The LOS perspective stays somehow in the middle the previous two, and
gets into the “black box” of the RoW by K while looking for further indirect
linkages in addition to the direct CH ones.10 In so doing, SNA becomes

9Although still arbitrary, the choice has been driven by the search for a country with
an average indegree centrality.

10To be sure, LOS argue that their own approach is able to make CH and K consistent
between them.
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Notes – node size: R&D capital stock; edges threshold: import penetration ratio larger
than 0.01%; G7 countries in clear.

Figure 2: Japan in the CH R&D-worldwide trade network (2000)

Notes – node size: R&D capital stock.

Figure 3: Japan in the Keller R&D-worldwide trade network (2000)
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Notes – node size: betweenness centrality in trade flows; edges threshold: import
penetration ratio larger than 0.5%; G7 countries in clear.

Figure 4: Worldwide trade network (2000)

extremely important in suggesting the actual weight that the R&D produced
and available in a certain country has in stimulating R&D spillovers on the
others. For example, the so called betweenness centrality of a country in the
trade network – roughly defined as the average number of times it occurs to
be on the shortest trade paths between other countries – turns out useful in
detecting those countries which have a “bridging” role with respect to R&D
spillovers. Although sensible to the choice of the cut-off (here set at 0.5%
for the bilateral import penetration ratio), Figure 4 shows, for example, the
crucial role of the Netherlands in conducing indirect R&D spillovers to the
other countries. In other words, if we dropped from the network the position
of this country, the stock of R&D available to the others would diminish a
lot, and for Japan too. The same drop, would have been instead negligible
according to the CH (Figure 2) and the K (Figure 3) perspective.

Of course, betweenness centrality is simply one of the several SNA indi-
cators one can use. Rather than going further into the SNA implications
of the foreign R&D spillovers, in the remainder of the paper we focus on
what IO can do in the same respect. Without “unpackaging” the matrix
representation LOS use in accounting for direct and indirect, trade related
R&D spillovers, IO analysis provides us with an interesting way to retain
the economic distance between countries in terms of trade relationships. A
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point that we will develop in the next section.

3.2 Average propagation length of foreign R&D spillovers

According to LOS, in conveying foreign R&D, direct trade linkages are
attributed a different weight from indirect ones, which in turn are weighted
differently according to the number of intermediate trade relationships which
set in-between two trade partners. Such a weighting scheme is apparent
when the N matrix is developed into the series of trade “rounds” through
which the Sd of the foreign countries gets to the domestic one, that is (still
from their Eq.(4))

Sf
T = [(I− ρM)−1 − I]Sd = (ρM + ρ2M2 + ρ3M3 + ...)Sd (2)

In such a scheme, the R&D produced by country j (Sd
j ), which reaches

country i through direct imports is weighted according to ρmij ; that which
takes an intermediate country to the same destination, according to ρ2[M2]ij ;
that going though two intermediate countries, according to ρ3[M3]ij ; and so
on and so forth.11

The impact of trade intermediation on foreign R&D spillovers thus
depends, also and above all, on the parameter ρ that, according to the authors,
“captures the absorption capacity of foreign knowledge in the importing
country” (Lumenga-Neso et al., 2005, p.1787). Following this interpretation,
ρ should be defined on the domain [0, 1]: being ρ = 0 the case of no absorption
capacity, and ρ = 1 that of perfect absorption capacity (Lumenga-Neso et al.,
2005, p. 1790). Furthermore, trade intermediation would reduce the strength
of the international R&D spillovers, to an extent which exponentially declines
with the number of trade rounds (ρ > ρ2 > ρ3 > . . .).

However, such a conceptual rationale does not find confirmation in the
paper, where its use seems rather motivated by analytical convenience:
perfect absorption capacity is actually ruled out as ρ = 1 would make the
matrix (I − ρM) singular and thus non invertible. First of all, ρ is not a
country-specific parameter, while the different capabilities countries have
of tapping into the knowledge of the others is a notorious result in the
innovation literature: instead, the estimation of two different ρs, one for the
most and the other for the least developed countries of their application,
does not give significant results in LOS. Second, the value of ρ to be used in
their TFP regressions is estimated, by looking through grid-search the value
that maximizes the fitness (R2) of the different specifications. In so doing,
the conceptual boundaries of the parameter are in fact abandoned, such as
when in one of the specifications the grid search gives ρ > 1.12 Last, but not

11[Mk]ij is the generic element of the matrix Mk, which is different from mk
ij .

12While such a case allows for the theoretical possibility that trade intermediation
increases, rather than decreasing the strength of foreign R&D spillovers (ρ < ρ2 < ρ3 < . . .),
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least, a closer inspection of Eq. 2 would seem to suggest that, rather than
(or in addition to) the absorptive capacity of one country, ρ stands for a sort
of decay rate foreign R&D spillovers are subject to while passing (though
instantaneously) from one country to another: an issue that, rather than
on country-specific elements, would actually depend on its position in the
international trade network.

Given the crucial role of ρ, these flaws in its definition appear to us
particularly serious and stimulate the search of an alternative weighting
scheme. In looking for it, we found that the notion of Average Propagation
Length (APL), developed by Dietzenbacher et al. (2005) (DRB hereafter) to
measure the economic distance between sectors could actually fit our case of
an economic distance between countries (see also Dietzenbacher and Romero
(2007)).

The stepwise manner LOS address the direct and indirect import re-
quirements of a certain country is actually conceptually identical to the way
standard IO analysis deals with the effects of a demand pull occurring in
sector j (∆f) on the total sectoral output of i (∆x). By neglecting the
round-zero effects – amounting to the initial demand-led increase of output
(∆x = ∆f) – the direct and indirect effects of ∆f on x in the subsequent
rounds, that is the inputs needed to produce ∆f (round 1), the inputs for
these latter inputs (round 2), and so forth, can be written as:13

∆x = (A + A2 + A3 + ...)∆f (3)

where A is the input coefficient matrix, whose generic element is defined as
aij = xij/xj – where xij are the input deliveries of sector i to sector j and
xj the total output of the latter.

Mutatis mutandis, in an inter-country world, this is conceptually similar
to the effects that an increase of the R&D produced in a certain foreign
country (∆Sd) has on the R&D stock available in another domestic country
through trade (∆Sf

T ):

∆Sf
T = (M + M2 + M3 + ...)∆Sd (4)

which is precisely the definition of Sf
T put forward by LOS (Eq. (2)) once

the matrix M gets transformed in order to make the use of ρ analytically
unnecessary.14

for example by developing super-additive synergies through countries’ interactions, on
the other hand, it is inconsistent with the idea of absorptive capacity per se: how could
country i absorb more than the R&D available in country j?

13As we will see, the round-zero effects can be taken as correspondent to the domestic
R&D stock of a certain country in LOS, and are thus not relevant in the analogy.

14Indeed, if we take the suggestion by LOS themselves and redefine M in terms of
country-by-country import penetration ratios, even a ρ = 1 makes the relevant matrix
invertible, with no problem of singularity: the generic element of M, mij , is therefore the
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Having established such an analytical parallel, we can fruitfully pursue it
and extend to direct and indirect inter-country linkages of trade-embodied
R&D flows the matrix of Average Propagation Lengths (V) DRB have defined
with respect to direct and indirect intersectoral production flows between
sectors. In the standard Leontief model, ∆x = L∆f (with L = (I−A)−1),
the generic element of this matrix (vij) is an average of the different (and
infinite) production rounds linking sector i to sector j – i.e. round 1, 2, . . . –
which weighs each round according to the share of the correspondent total
effect on output (lij) conveyed in it, that is: the share aij/lij , in round 1;
the share [A2]ij/lij , in round 2; and so on.

By dropping the round 0 effects, which are independent from the industrial
structure, and referring to lij − δij (where δij is the Kronecker delta)15 rather
than to lij , the generic element of the APL matrix V can be defined as:

vij =
1aij + 2[A2]ij + 3[A3]ij + ...

lij − δij
(5)

After some matrix algebra, the previous expression can be re-written as:

vij =
hij

lij − δij
(6)

where hij is the generic element of the matrix H = L(L− I).16

Extending this idea of APL to the case of indirect foreign R&D spillovers,
v∗ij (where the star refers to our inter-country perspective) can be meant as the
average number of steps (i.e. trade relationships) it takes the R&D of a foreign
country j (Sd

j ) to affect the stock of R&D available to a domestic country i
through trade (Sf

T,i). By extending the previous analytical procedure, v∗ij
can be defined as:17

v∗ij =
1mij + 2[M2]ij + 3[M3]ij + ...

l∗ij − δij
=

h∗ij
l∗ij − δij

(7)

where l∗ij is a generic element of L∗:

L∗ = (I−M)−1 (8)

share of i’s imports from j of the domestic output of country i. Moreover, as noted by
LOS, this way we can also correct for the “aggregation bias” of the weighting scheme of
CH, a problem underlined by Lichtenberg and van Pottelsberghe de la Potterie (1998).

15δij = 1 if i = j, and 0 otherwise.
16As DRB shows, APL is the same in a cost-push IO model, where it measures the

weighted average number of steps it takes a cost-push in industry i to affect the price of
product j.

17Let us note that in M the generic element mij records the import flow from j to i
(over the GDP of i), whereas in the matrix A the element aij is the unit flow of inputs
from i to j. Therefore, for consistency, we must use the transpose of M and then transpose
the result accordingly.
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and h∗ij the generic element of H∗:

H∗ = (L∗ − I)L∗ (9)

Once defined as in Eq. 7, the elements of V∗ can be conceived as proxies
of the “economic distance” between countries in the international trade
network and thus used to weigh the R&D produced in the foreign countries
in order to obtain the foreign R&D stock available to a domestic one.18

Such a weighting scheme has a number of advantages when compared
with that proposed by LOS. First of all, it is more explicit than that of
absorptive capacity in accounting for the decay rate of international R&D
spillovers due to intermediation in trade.19

Second, unlike that based on ρ, which results bilateral as a consequence of
its combination with direct and indirect import coefficients – that is through
its pre-multiplication by M, M2, M3, ... and so on – the APL weighting
scheme is bilateral by definition.

Last, but not least, the same weighting scheme is calculated, rather than
estimated or searched for, and then actually the outcome of the structural,
latent characteristics of the data about the international trade network
itself, rather than of the stochastic properties of the latter in inducing R&D
spillovers and in affecting TFP.

In the light of these advantages, our expectations are that the APL
weighting scheme we propose perform at least as well as the traditional ones
in the research context in which trade-related, R&D spillovers have been
put forward: that is, in accounting for the TFP of the domestic country.
Without getting into the conceptual discussion of such TFP models, in the
next sections we will try to see if this is actually the case.

4 Empirical specification

Consistently with the literature on the issue (Section 2), in order to capture
the effect of foreign R&D spillovers on domestic TFP, we use the following,
log-linear form:

log TFPc,t = αc + βd logSd
c,t + βf logSf

c,t + εc,t (10)

18Let us note however that, unlike geographical distance, for the economic distance the
commutative property does not hold, cause in general v∗ij 6= v∗ji.

19Indeed, the APL traces the “economic miles” which are in between country i and
country j, rather than the share of R&D spillovers which could be estimated to be able
to drive trough them. Following and extending Keller (2002a), one could argue that, the
higher the economic, rather than geographical, distance k between country i and country
j, the higher the possibility that the R&D developed by j is overtaken in its physical
outcomes by that of closer countries, or by the domestic one. In this vein, the expected
impact of a higher APL between two countries would be that of a lower impact of the
R&D produced by the latter on that available to the former, and of its impact on the
relative TFP.
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where TFPc,t is the Total Factor Productivity of country c at time t, αc a
country dummy, Sd

c,t the domestic R&D capital stock, Sf the foreign R&D
stock and εc,t an error term.

By referring to LOS, CH and K (in this same order), we estimate five
specifications of Eq. (10), plus a sixth one in which we introduce our own
(FMV) APL-based notion of the foreign R&D stock.

In the first specification, as in LOS, we calculate the total foreign R&D
stock (Sf

LOS) according to Eq. (1) by using an estimated value of ρ. In
particular, Sf

LOS is generated for different values of ρ, starting from 0 and
increasing it by discrete changes of 0.005, up to 0.999. The actual ρ is then
chosen at the value which maximizes the overall fitness of the regression
(R2).

In the second specification, as also done by LOS, we calculate the total
foreign R&D stock (Sf

LOS2), still according to Eq. (1), but by defining M
as the matrix of bilateral import penetration ratios.20 The parameter ρ is
again estimated by means of a grid search, now searching in a larger range
and allowing for the possibility that it can in fact be greater than 1.21

In the third and fourth specifications, we replicate CH. In particular, in
the third specification we estimate Eq. (10) by constructing the foreign R&D
stock as Sf

CH = MSd, where M is the matrix of bilateral imports over each
and every country’s total imports.

In the fourth specification, we instead estimate the alternative specifica-
tion of CH:

log TFPc,t = αc+βd logSd
c,t+β

dG7G7·logSd
c,t+β

fωc,t logSf
CH c,t+εc,t (11)

where ωc,t is the share of country c’s imports on its GDP and G7 is a dummy
that takes value 1 for the countries belonging to the G7.

In the fifth specification, following K, we estimate Eq. (1) defining the
foreign R&D stock of each and every country (Sf

K) as the simple sum of the
correspondent Rest of the World’s R&D stock.

Finally, in the sixth specification, we estimate Eq. (1) by building up
the foreign R&D stock on the basis of the APL idea. In particular, relying
on the discussion of Section 3.2, we assume that, the larger the economic
distance between countries, the smaller the R&D spillovers conveyed by total
trade flows among them, and thus consistently use the following weighting
scheme:

W = [wij ] =

[
l∗ij − δij

v∗ij

]
where l∗ij is the generic element of the matrix L∗ (Eq. (8)), δij the Kronecker
delta and v∗ij the APL between j and i. In brief, we refer to our own (FMV)

20Therefore, mij measures country i’s imports from country j over the GDP of i.
21ρ is chosen in the range [0, 3], with ∆ρ = 0.005, as enlarging the set further would

have produced negative estimates of the foreign stock.
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account of the foreign R&D stock, defined as:22

Sf
FMV = WSd

We estimate all the six specifications over the period 1995-2005 for 20
countries. Although not very long, once compared with other works in the
same literature, such a temporal span is simultaneously the longest and the
most updated one can refer to by relying on officially available data (for a
discussion of the dataset, see Appendix A), and for which data inaccuracy is
thus minimized.

Following CH, and unlike LOS, we do not lag the stock of foreign R&D.
First, because we found no evidence of endogeneity of R&D stocks;23 second,
because the different lag time needed in equilibrium for the foreign R&d
stocks to affect TFP are already captured by the APL in our specification.

Finally, as homoskedasticity and zero serial correlation are firmly rejected
by the tests, in order to account for the presence of first-order panel-specific
autocorrelation and panel heteroscedasticity we estimate the models also
using a Feasible Generalised Least Square (FGLS) estimator.

5 Econometric results

Table 1 reports the estimation results of the six different specifications, carried
out by using, alternatively, the Fixed Effects (FE) model, the Random Effects
(RE) model and the Feasible Generalised Least Square (FGLS) estimator.
However, because of the first order serial correlation (Wooldridge test) and
groupwise heteroskedasticity (Breusch-Pagan test) of the residuals, in what
follows we will mainly discuss the estimates of the FGLS estimator.

At the outset, we should notice that, once replicated with respect to our
most recent period, 1995-2005, the estimated TFP elasticities of the R&D
capital stocks, both foreign and domestic, are lower than those obtained by
CH, LOS and K for the period 1971-1990, and this holds true across all the
different specifications and models. This would seem to suggest that, entering

22We also allowed for a more flexible form. In particular, we tried the following specifi-
cation:

W = [wij ] =
ˆ
(v∗ij)

γ(l∗ij − δij)
˜

and performed a grid search along the lines of LOS to find the value of γ maximizing the
fitness of the regression. We did this also in order to have some insights on the hypothesis
of a negative effect of the economic distance between countries on total R&D spillovers
(γ < 0) vs. the alternative hypothesis of a positive effect, because of synergies or other
super-additive factors (γ > 0). The grid search was performed from γ = −5 up to γ = 5
(∆γ = 0.005) and returned a value γ∗ = −0.145, thus providing support for the hypothesis
that an increasing APL makes spillovers decrease.

23All the different specifications have been estimated also using lagged values for foreign
and/or domestic R&D stocks, and the Hausman test never rejects the null hypothesis of
no endogeneity. Results are available from the authors on request.
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the most recent stage of the globalisation era, the “‘externalities” of R&D
investments have decreased, both within and across countries: a result that,
while apparently counterintuitive, is worthwhile investigating by controlling
for other explicatory variables and, in particular, for the institutional changes
(e.g. the IPR strength) occurred recently (Coe et al., 2009, e.g.).

Another important initial insight emerges by noticing that, over the 1995-
2005 period, the estimates with the worst fit among the six specifications are
the two given by CH and LOS (columns (i) and (iii)), which link the strength
of the foreign R&D spillovers to the simple composition of one (domestic)
country’s import flows (e.g. to its bilateral/total imports ratio). Moreover,
in these same specifications, the coefficients turn out to be all insignificant
(though in CH the elasticity of Sd is significant at the 10% level). From a
methodological point of view, this seems to suggest that, as Lumenga-Neso
et al. (2005) argue (p.1789), what matters more in measuring the impact of
technology embodied in imports on TFP is the intensity, rather than the
composition of bilateral imports: that is, the extent to which such bilateral
imports count on the GDP of the domestic country.

As for the other four specifications (LOS2, CH2, K, and FMV), the
parameter of interest is the TFP elasticity of the foreign R&D stock, which
is in fact the regressor that mostly differentiate them. Referring to FGLS,
the point estimates of the correspondent coefficient range from .0083 in CH2
to .0942 in K, whereas those attached to the domestic R&D stock range
from .0056 in K to .0266 in CH2. Above all, the specifications with the
highest fitness are those in-between, provided by LOS2 and FMV, where the
point estimates of the logSf coefficient are around .04 and those of logSd

around .013. This is an extremely interesting result. While considering
direct trade flows exclusively, though related to the GDP of the importing
country – that is CH2 – underestimates (overestimates) the productivity
impact of foreign (domestic) R&D spillovers, retaining direct and indirect
trade flows indistinguishably – as in K – overestimates (underestimates) the
same impact. Indirect trade flows should thus be retained, but appropriately:
a result that is not completely new, as it somehow confirms the rationale of
Lumenga-Neso et al.’s (2005) perspective.

In this last respect, let us notice that, in the estimates carried out with
the first and the second specification by LOS (columns (i) and (ii)), the grid
search for the most fitting ρ returns a value of 0.65 and 0.895, respectively.
That is, in both cases a lower than 1 value which apparently supports their
interpretation of an imperfect absorptive capacity of foreign R&D by the
domestic countries. On the other hand, however, allowing for asymmetric
deviations from the most fitting ρ value, in order to account for its variability
between countries or groups of countries (e.g. developed and developing
countries), does not improve the fitness, in any case and regardless of the
direction of the asymmetry. As its country invariability was also found by
Lumenga-Neso et al. (2005) themselves, and gets here confirmed, looking
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at ρ in terms of an absorptive capacity which is instead extremely variable
across countries appears to us misleading. Indeed, as we argued in Section
3, the ρ parameter rather accounts for the rate at which the productivity
impact of foreign technological knowledge decays with the increase of the
economic distance (i.e. trade rounds) among countries.

This is the rationale of our own specification (FMV), which accordingly
introduces in the model an “objective” measure of the economic distance
between countries such as the APL. In terms of FGLS, its estimation provides
results which are close to the ones of the LOS2 model, which are in turn
in between CH2 and K. On the one hand, this was expected and actually
confirms our interpretation: in fact, while the ρ of LOS2 can be interpreted
as the decay rate of knowledge during its “economic” international diffusion,
the APL of the FMV model can be seen as the prime reason of such a
decay, and thus necessarily consistent with the former. On the other hand,
however, there is a fundamental difference between our specification and
the ones by LOS. While in LOS the effects of the indirect nature of the
R&D spillovers are captured through an extra parameter, that is ρ, which is
estimated and chosen in order to maximize the fitness, in FMV the prime
cause of indirect R&D spillovers is calculated and enters directly in their own
definitions. Because of that, both in the TFP analysis and in other contexts,
our approach can be deemed to provide more precise estimates.24

6 Concluding remarks

Lumenga-Neso et al. (2005) argued that, by importing from a foreign country,
not only does a domestic one benefit from the R&D investments of the
former – that is, from direct foreign R&D spillovers. But also from the R&D
investments made by other foreign countries, with which the initial foreign
country only has traded, while the domestic one has not – that is, indirect
foreign R&D spillovers. Building on their approach, we incorporated in it a
different weighting scheme for the same spillovers, which better accounts for
the role of one country’s position in the international trade network. More
precisely, drawing on and extending the Dietzenbacher and Romero’s (2007)
notion of Average Propagation Length (APL), we defined the foreign R&D
capital stock available to a certain country by measuring the average length
trade takes in “propagating” direct and indirect knowledge flows across
countries: that is, the average number of steps (i.e. trade relationships) it
takes the R&D of a foreign country j to affect the stock of R&D available
to a domestic country i through trade. Finally, by referring to the decay

24As a matter of fact, the “real” standard errors of the coefficients in the LOS1 and
LOS2 specifications should be retained much higher than those reported. Indeed, the latter
do not properly take into account that all the estimates rely on another parameter which
is estimated from the data and enters in the equation in a quite complex way.
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rate foreign R&D could get through because of the economic, rather than
geographical, distance among countries (Keller, 2002a), we assumed that the
weight of foreign R&D spillovers in building up such a foreign R&D capital
stock, and in driving its economic impact – such as that on the domestic
TFP – is the larger, the shorter the correspondent APL.

In order to illustrate the interpretative power of this new methodology,
following the model put forward by Coe and Helpman (1995) (CH), and
extended by Keller (1998) (K) and Lumenga-Neso et al. (2005) (LOS), we
used it in estimating the TFP impact of the foreign R&D stock available
to one country, along with that of the R&D stock produced domestically.
In particular, we replicated the CH, K and LOS models, in almost all their
specifications, with respect to a more updated, though less extended dataset
– 20 countries, over the period 1995-2005 – and compared the relative results
with those obtained using the APL weighting scheme.

Our results lead us to the following conclusions. First, also once weighted
with the APL between countries, the role of indirect foreign R&D spillovers
is non negligible: as in LOS, the TFP elasticity of the R&D stock available
abroad through the APL is greater than that of the R&D stock produced
by direct trade partners, to which CH exclusively refer. Second, the trade
intermediation measured by APL leads to a foreign R&D stock whose TFP
impact is lower than that which does not discount for it, to which Keller
refers. In such a way, the APL-based results are consistent with those of
the models which explicitly recognize the role of indirect R&D spillovers
in impacting on TFP: for example, indirect R&D spillovers make the TFP
impact of the domestic R&D stock significant, but providing the incidence
of imports on the GDP of the domestic country is considered in conveying
foreign R&D.

Considering the nature of the APL based model that we propose, these
supporting results are of utmost importance. Indeed, rather than simply
supporting the conclusion reached by LOS that, especially because of indirect
trade-related R&D spillovers, trade matters as a transmission mechanism
of foreign knowledge, they add to it two important specifications. First,
the country position in the international trade network also matters in the
same transmission mechanism, as the economic distance between countries
in the network impacts on the weight of these spillovers. Second, rather than
estimated and thus arbitrary to a certain extent, such an economic distance
can be more robustly calculated by referring to the notion of APL of foreign
R&D spillovers.

As far as our future research agenda is concerned, following the more
recent literature (Keller, 2002b; Bitzer and Geishecker, 2006), we will start
by investigating the APL of foreign trade-related R&D spillovers at the
intersectoral level. Second, we will contrast the APL based weighting scheme
with other alternative schemes obtainable by applying SNA instruments to
the international trade network.
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A Data appendix

The database used in the paper covers 20 OECD countries (Australia, Austria,
Belgium-Luxembourg, Czech Republic, Denmark, Finland, France, Germany,
Hungary, Ireland, Italy, Japan, Korea, Netherlands, Portugal, Spain, Sweden,
United Kingdom, United States) plus Slovenia over the decade 1995-2005.25

It results from the matching of three different datasets.
The first one is the EU KLEMS Database (2008),26 from which we have

drawn the country TFP.
The second dataset is the IMF’s Direction of Trade Statistics, from

which we have obtained the value of bilateral imports (c.i.f.) in US dollars.
Because, when indirect foreign R&D is considered, imports from countries
not in the previous group can nevertheless convey indirect flows, as done by
Lumenga-Neso et al. (2005), we built up the M matrix enlarging the sample
and here including 90 countries. Still as in Lumenga-Neso et al. (2005), we
considered two alternative ways of building M: in the first, the elements of
the matrix are calculated as the share of bilateral imports in total imports
of each country, while, in the second, we considered the share of imports on
the GDP of the importing country. In the latter case, the value of the GDP
in US dollars is taken from the World Development Indicators of the World
Bank (WDI).

The third dataset is the OECD Main Science and Technology Indicators
(2008), from which we have taken the Gross Domestic Expenditures on
R&D (GERD) – valued at Purchasing Power Parities in constant 2000
US dollars – for all the OECD countries plus some non OECD ones, that
is: Argentina, China, Israel, Romania, Russian Federation, Singapore and
Slovenia. Following CH and LOS, missing R&D values have been made equal
to 0, as in the majority of the cases they refer to countries with relatively
negligible total R&D expenditure. As a consequence, out of the 90 countries
of the M matrix, only 35 have been retained to be source of produced R&D.
From these data, we calculated the correspondent R&D capital stocks by
using the perpetual inventory model (Griliches, 1979; Coe and Helpman,
1995). We assumed a 5% depreciation rate, and estimated the average
annual logarithmic growth of R&D expenditures by using the data for the
whole period for which R&D data were available (1981-2005). 1981 was the
benchmark year for the calculation of the stock for many countries in our
sample.

25Due to the lack of disaggregated data, we considered Belgium and Luxembourg as a
single country, adding up trade data and using GDP, R&D and TFP of Belgium.

26See Marcel Timmer, Mary O’Mahony and Bart van Ark, The EU KLEMS Growth
and Productivity Accounts: An Overview, University of Groningen and University of
Birmingham; downloadable at www.euklems.net.
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