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1

Introduction

Individuals and institutions (e.g. pension funds) invest financial wealth in assets to

meet a long-term goal. Individuals might want to save money for retirement or for

the education of their children. Pension funds invest on behalf of their participants to

provide them with retirement income. The funds want to guarantee a safe pension to

them at the lowest cost (in terms of contributions). Given a set of long-term preferences,

the investor determines the allocation of financial wealth to different asset classes,

such as stocks, bonds, short-term deposits, real-estate, commodities and hedge funds.

Strategic asset allocation is the choice how to invest in these broad asset classes to meet

ones long-term goal. The allocations will vary over time due to changes in investment

opportunities, the investment horizon, and the long-term macro-economic risk factors

like inflation and interest rates.

Already 40 years ago, Merton (1969,1971) showed that long-term investors should

hold hedge portfolios that anticipate future changes in the investment opportunities.

At the end of the 1990s, early 2000s there was a huge surge in popularity of the strategic

asset allocation literature due to the finding that stock returns might be predictable

(by e.g. the dividend-to-price ratio and interest rates) and due to the large increase in

computer power.

Campbell and Viceira (2002) provide an overview of the advancements of the liter-

ature in the early 2000s. Empirically, the fact that the dividend-to-price ratio might

predict stock returns leads to mean-reversion in stock returns. It means that lower

than expected stock returns are followed by higher future expected stock returns. This

negative autocorrelation in stock returns makes stocks safer (in terms of variance) and

1



1. INTRODUCTION

therefore more attractive in the long-run. The mean-reversion is also the most impor-

tant driver of the hedge portfolio of long-term investors. Such investors want to invest

in a security whose return is high when future stock returns are expected to be low.

Stocks turn out to be such a security. Another important consideration for long-term

investors is inflation and interest rate risk. The riskfree asset of a long-term investor

is a long-term inflation-indexed bond. Short-term T-bills are not the riskfree asset,

since they must be rolled over repeatedly. Furthermore, the long-term real returns of

nominal bonds are also not save, since they are subject to inflation risk which makes

them unattractive in the long-run. Long-term investors need to take these risks into

account in their hedge portfolio.

The results above are obtained using stylized models in which the true parameters

and the true model are assumed to be known. Clearly, any form of model misspecifi-

cation can have a large impact on the composition of the calculated portfolios. In the

2000s a new branch of the literature emerged that analyzes the quality of the models

and the sensitivity of the results to changes in the setting. Barberis (2000) dropped the

common assumption that investors know the true set of parameters by incorporating

parameter uncertainty in the decision process of the investor. He finds that stocks are

still more attractive in the long-run, although the difference between long-term and

short-term stock allocations is reduced by the incorporation of parameter uncertainty.

Xia (2001) and Brandt, Goyal, Santa-Clara, and Stroud (2005) add learning about pre-

dictability and find that ignoring learning may lead to a portfolio with a lower utility

for the investor. Guidolin and Timmermann (2007) and Pettenuzzo and Timmermann

(2010) consider the effects of model instability by considering regime-switching models

and conclude that ignoring structural breaks can also lead to substantial utility costs.

There are many reasons to be skeptical about the predictions of the strategic asset

allocation literature. Firstly, optimal portfolios turn out be extreme, unrealistic and

very sensitive to changes in predictor variables. As an example, in Campbell, Chan,

and Viceira (2003) stock weights vary between -1000% and 1000% and yearly changes of

500% are not uncommon. Secondly, Goyal and Welch (2008) document the poor out-of-

sample predictability of stock returns by showing that the historical average of returns

predicts stock returns equally well as all considered predictors. This casts doubt on the

mean-reversion in stock returns and the time-variation of optimal portfolios. Thirdly,

strategic asset allocation is even more complicated than myopic asset allocation due

2



1.1 Strategic asset allocation: The effect of uncertainty on portfolio choice

to the presence of the hedge component. While myopic portfolios are only affected by

estimation error in the myopic component, strategic portfolios are effected by errors in

both the myopic and hedge component.

A rich literature documents the poor performance of myopic portfolios. The rea-

son why short-term portfolios perform so badly is error maximization. The inputs of

portfolio optimizers (means, variances etcetera) are estimated with error and optimizers

overweight (underweight) securities with large (small) returns. These are the ones most

likely to have large estimation errors as argued in Michaud (1989). DeMiguel, Garlappi,

and Uppal (2009) analyze 14 different models to calculate the inputs of mean-variance

optimization and show that none of them consistently outperforms a simple 1/N rule

(equal weight in all assets). Since strategic portfolios are even more susceptible to

errors, they might even perform worse.

1.1 Strategic asset allocation: The effect of uncertainty

on portfolio choice

The literature cited suggests that it is unclear whether the potential gains from strate-

gic asset allocation can be realized in practice. On one hand the bad (out-of-sample)

performance of (simpler) myopic portfolios does not bode well, but on the other hand

recent advancements such as the incorporation of parameter uncertainty in decision

making might improve performance considerably. The review also suggests that con-

structing myopic portfolios consisting of many individual stocks leads to highly unstable

portfolios.

In this thesis, our main objective is to analyze whether the premises of the strategic

asset allocation literature hold in realistic settings that include potential parameter

uncertainty, model uncertainty and model instability. As a side objective we also inves-

tigate whether we can construct robust myopic portfolios (i.e. portfolios that are stable

over time) consisting of almost 2,000 individual stocks that are able to generate large

expected returns with minimal risk. This thesis addresses (and answers) the following

research questions:

• How can we set-up a panel data model to explain individual stock returns us-

ing multiple firm characteristics and can we use this model to construct robust

portfolios?
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• Can the potential gains from the strategic asset allocation literature be realized

in an out-of-sample test and how can the performance be improved?

• How can we develop a methodology to incorporate model uncertainty regarding

long-term predictions and what is the impact of model uncertainty on long-term

investors?

• How can we set-up and estimate a rich time-varying parameter model and what

kind of time-variation should long-term investors take into account?

Firstly, we analyze how to set-up a model to explain the cross-section of individual

stock returns using multiple firm characteristics. The standard sorting methodology

does not work in such a setting and therefore we develop a panel data model that

is able to handle many different characteristics jointly. Secondly, we investigate the

performance of the strategic portfolios out-of-sample. Even though the out-of-sample

performance is very relevant for long-term investors, such an out-of-sample test has

not been done. Thirdly, we document the impact of model uncertainty on the predic-

tive distribution of stock returns and the decisions of long-term investors. Although

different models could lead to completely different predictions of future stock returns,

model uncertainty is almost always ignored in the strategic asset allocation literature.1

Fourthly, we use a time-varying parameter model to analyze the impact of model in-

stability on the predictive distribution and asset allocations of long-term investors and

to get insights in the importance of time-variation of parameters. Other papers (e.g.

Pettenuzzo and Timmermann (2010), Guidolin and Timmermann (2007)) use regime-

switching models instead and can therefore not distinguish between the importance of

the different parameters.2

The concepts parameter uncertainty, model uncertainty and model instability play

an important role in this thesis. In order to explain these concepts, we consider an

example. Suppose we use the following model for stock returns yt

yt = μ+ εt,

1An exception is Avramov (2002), but his setting is not appropriate for long-term predictions as

we argue in chapter 4.
2It is well-known in the literature that the (error) volatility of stock returns changes considerably

and persistently over time. By letting all parameters change jointly in a regime-switching model, it is

unclear whether the documented model instability just reflects these well-known changes in volatility

or changes in other parameters such as intercepts or slopes.
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with

εt ∼ N(0, σ2),

where μ is the expected return, εt is the error term and σ2 is the variance of the error

term. Usually, historical data is used to estimate parameters μ and σ2.

It is instructive to make a distinction between a model and the data-generating

process (DGP). The DGP is the unknown mechanism that actually generated the data.

A model is a set of data-generating processes (different parameters lead to different

DGPs) and is correctly specified when the true DGP belongs to the model under study.

Note however that a correctly specified model can still be useless in practice, think

for example about models with a very large number of parameters that have to be

estimated.

Let us consider the equation above. The first cause of uncertainty is called ”error

uncertainty”. It reflects the fact that the error term εt is unknown a priori, since it

captures unexpected events (e.g. unexpected major news about interest rates). The

second determinant of uncertainty is coined ”parameter uncertainty”. It is present due

to the fact that μ and σ2 are unknown and need to be estimated using historical data.

A slightly different sample might already lead to very different parameter estimates

and therefore return predictions. A third cause for uncertainty is called ”model un-

certainty”. Model uncertainty is present, since we do not know the ”best” model.1

Instead we select a model (often using data) and our choice can be wrong. Another

model that says that stock returns are a function of the interest rate might be equally

likely. A final determinant of uncertainty is model instability. It captures the fact that

model parameters might change over time in a partly unpredictable way. For example,

it could be the case that μ decreased from 8% several decades ago to 4% more recently.

One might argue that model instability is a proof of model misspecification. After

all, it could be an indication for missing variables. We provide two answers. Firstly, it is

an implausible assumption anyway that there exists a correct model, i.e. all models are

wrong. Some models however are actually useful. A time-varying parameter model is a

very flexible and therefore useful model. Secondly, there is no reason why there cannot

be any time-varying parameters (latent variables) in a particular parametrization of

1The term ”best” is of course quite general. It depends on the criteria one uses. In chapter 4, we

use posterior model probabilities.
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the DGP. Features such as regulatory regimes might cause the parameters of the DGP

to change over time.

1.2 Outline

Before assessing long-term strategies, chapter 2 first shows how to construct portfolios

consisting of individual stock returns for short investment horizons. Here, we ignore

parameter uncertainty, since it is well-known (e.g. Barberis (2000)) that parameter

uncertainty plays only a minor role at short horizons. The chapter constructs a panel

data model that is able to explain the cross-section of expected stock returns incor-

porating multiple explanatory variables, multiple (short) forecast horizons, industry

effects, several alternative factor structures and unobserved heterogeneity at the firm

level. The chapter shows that the predictive power increases if multiple firm character-

istics are combined. The most important predictor variables are size, dividend-to-price

and turnover, followed by earnings revisions and momentum. We obtain portfolios by

sorting on expected returns and find that these are well-diversified, only have moderate

risk exposures and have high risk-adjusted returns. Longer forecast horizons hardly

have an effect on abnormal returns, but strongly reduce portfolio turnover and hence

transaction costs.

In chapter 3 we analyze whether the expected potential gains from strategic asset

allocation can be realized in an out-of-sample test. We find that risk-averse investors

should time the market if they use a shrinkage prior to downplay predictability. It

reduces the losses in extreme events and is therefore very valuable for risk averse in-

vestors. The inclusion of the hedge component of long-term strategies hardly affects

performance due to estimation error, since repeated myopic strategies approximate the

true unknown optimal dynamic portfolio equally well as estimated dynamic strategies.

We also find that the incorporation of parameter uncertainty leads to a small perfor-

mance improvement and that portfolio weight restrictions hurt the good models but

help the bad models.

Chapter 4 extends the basic strategic asset allocation framework by incorporating

model uncertainty in investment decisions. We develop a method to take model uncer-

tainty into account with respect to a series of Vector Autoregressions by using Bayesian

Model Averaging techniques. We find that the dividend-to-price ratio and the credit
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spread are the most important predictors at short horizons, but that almost all consid-

ered predictors play a role at longer horizons by either predicting stock returns directly

or by predicting the predictors of stock returns. Stocks mean-revert but are at least as

risky at long horizons as at short horizons due to the model and parameter uncertainty

effect. Stock returns are even riskier in the long-run in crisis periods due to model

uncertainty, since the different models strongly disagree about future stock returns in

such periods. The incorporation of model uncertainty has a large impact on the asset

allocations of long-term investors, since its inclusion lowers the mean, increases the

variance, leads to more negative skewness and increases the kurtosis of future stock

returns. Investors with horizons of 20 years or more should invest as much in the

stock market as short-term investors. Again, these effects are especially strong in crisis

periods.

In chapter 5, we analyze the effect of model instability on long-term investor deci-

sions by developing a specification that is able to handle time-varying intercepts and

slopes, time-varying error volatility and correlation, the leverage effect and fat-tailed

error distributions. We find that the persistence of time-varying parameters plays a

large role. The time-variation in the mean equation (intercepts and slopes) is not per-

sistent enough to have an effect on long-term investors, while the time-variation in the

error covariance matrix (volatility and correlation) is very persistent and very relevant

for long-term investors. The fat tails of the error distributions disappear once investors

take time-varying volatility into account. In this time-varying setting, stocks can ei-

ther be riskier/safer and stock allocations can either be higher/lower in the long-run

than in the short-run. We also find that random walk or pooled specifications for the

time-varying parameters lead to a large overestimation of stock market risk and a large

underinvestment in stocks.

Finally, chapter 6 provides the conclusion and some directions for future research.
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2

Firm Characteristics, Industry,

Horizon and Time Effects, in the

Cross-Section of Expected Stock

Returns1

We construct a panel data model to explain the cross-section of individual stock re-

turns, using monthly data for 1,880 large US firms for 1985–2005. Model specification

is geared towards multiple explanatory variables, poolability across industries, multiple

forecast horizons, alternative factor structures and the effects of unobserved hetero-

geneity among firms. We find that combining multiple firm characteristics increases

the predictive power. High expected returns are mostly related to size, dividend-to-

price and turnover, and somewhat to earnings revisions and momentum. Diversified

portfolios sorted on expected returns have moderate risk exposures and generate sig-

nificant risk-adjusted returns over all horizons. Longer forecasting horizons drastically

reduce portfolio turnover and hence lower costs.

2.1 Introduction

A huge body of empirical research has found that various firm characteristics help to

explain the cross section of stock returns. Prominent explanatory variables are size,

1This chapter is based on Bauer, Diris, Pavlov, and Schotman (2011).
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valuation ratios, momentum, liquidity and industry classification.1 Most empirical

studies have considered one or two predictors in isolation. The typical statistical pro-

cedure for documenting return predictability starts with the construction of portfolios.

Stocks are first sorted according to a particular firm characteristic, and then allocated

to portfolios. If the average returns of the portfolios are significantly different, the

characteristic has predictive power. With multiple characteristics the stocks are sorted

along different dimensions. The best known two-dimensional sort is the Fama and

French (1995) procedure, which sorts portfolios with respect to five size and five book-

to-market categories.2 With only one or two characteristics this methodology is simple

and statistically powerful.

Much less is known about the combined effect of multiple characteristics. When

the number of explanatory variables grows, the portfolio formation methodology is

bound to become problematic, since the number of portfolios grows exponentially with

the number of characteristics. With ten different firm characteristics and just two

categories per characteristic, we would already need 210 different portfolios. Adding

the industry dimension multiplies the number of portfolios even further.

An alternative approach is to use the full cross-section of individual stocks in a mul-

tivariate context. Although firm characteristics are correlated and sometimes interact,

these instruments clearly contribute to the overall cross-sectional prediction of stock

returns. Haugen and Baker (1996), Brennan, Chordia, and Subrahmanyam (1998) and

more recently Fama and French (2008) and Ang, Liu, and Schwarz (2010) are among

the few multivariate studies in which a large set of predictive variables is analyzed.

Instead of sorting stocks in portfolios according to a particular firm characteristic, they

work with cross-sectional regressions in a panel of individual stock returns.

In this paper we extend this literature in several directions. Our first extension

deals with the interaction between industry effects and firm characteristics. Fama and

1The literature is so large that it will be impossible to cite more than a few books and empirical

studies. Some book references are Bodie et al. (2007, ch. 12, 13), Cochrane (2005, ch. 20) and

Campbell, Lo, and MacKinlay (1997). Important empirical studies include De Bondt and Thaler

(1985), Fama and French (1992, 1996, 1997), Daniel and Titman (1997), Davis, Fama, and French

(2000), Jegadeesh and Titman (1993, 2001).
2The returns of these portfolios are used in many empirical studies. Some examples are Fama and

French (1996), Hodrick and Zhang (2001) and Campbell and Vuolteenaho (2004)
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French (1997) show that only a part of the cross-sectional return differences can be at-

tributed to risk factors. Interaction between firm characteristics and industries occurs

in various forms. For example, Moskowitz and Grinblatt (1999) and Lewellen (2004)

study the interaction between industries and the momentum effect. Both report evi-

dence that industry portfolios exhibit strong momentum. In our analysis, we employ

a methodology in which we allow for the inclusion of a set of firm characteristics and

industry-specific intercepts and time effects, as well as industry-specific slope coeffi-

cients. This setup enables us to shed new light on the relevance of industries in the

cross-section of expected stock returns.

As a second extension, we consider the return predictability over longer horizons.

In the cross-sectional regressions of Haugen and Baker (1996), Avramov and Chordia

(2006) and Brennan, Chordia, and Subrahmanyam (1998) the dependent variable is

without exception the monthly (excess) return. Instead, we consider the cumulative

returns over one, three and six months as dependent variables. Longer holding periods

are common in many studies using the portfolio sorting methodology, but do not seem

to have been considered in panel regression models. If we can predict firm returns

over longer periods, given a firm’s current characteristics, portfolios sorted on expected

returns will be much more stable in terms of turnover. Eventually, this will improve

the net returns of managed portfolios in practice.

Thirdly, we introduce firm-level individual effects as a diagnostic check. The inclu-

sion of individual effects implies even more heterogeneity than adding industry effects.

In a specification with individual effects, each stock has its own unconditional expected

return, irrespective of its average characteristics. Adding the individual effects is inter-

esting for two reasons. First, the amount of unobserved cross-sectional heterogeneity

in average stock returns is a measure of the fit of the cross-section of expected returns.

Important unobserved heterogeneity at the level of individual firms is an indication for

missing predictive variables. Second, if the individual effects are correlated with one or

more firm characteristics, this will affect estimates of the slope parameters in the panel.

In our panel structure, we formally test whether firm characteristics have significantly

different effects in models with and without individual effects.

Finally, in order to model the cross-sectional dependence between stock returns,

we estimate several factor models to assess the robustness of our results. We consider

basic specifications that either correct for one common factor in total or one common
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factor per industry, but we also look at more sophisticated specifications that correct

for multiple observed and unobserved factors.

Our predictive variables (size, value, momentum and turnover) have featured in

many previous studies. These variables have been subjected to predictability tests for

different countries and sample periods. As such, it is not surprising that many show

up statistically significant in our panel regressions. More interesting is the result that

almost all characteristics interact with industry effects, meaning that their effect is

heterogeneous across industries.

When we sort stocks on the predicted returns, we find the largest dispersion in

average returns for models with heterogeneous slope coefficients. Portfolios of stocks

in the bottom 30% have returns that are on average about 1.8% per month below the

return of portfolios of stocks in the top 30%. Moreover, we find that the characteristics

in these models have persistent predictive power. Extending the horizon to six months

hardly has a negative effect on the predictive power, but stabilizes the composition of

the portfolios considerably. At the six months horizon, more than 95% of the stocks in

both the bottom and top 30% remain in that portfolio from one month to the other.

Our results are robust to the different factor specifications.

The remainder of the paper is organized as follows. Section 2.2 discusses the spec-

ification, estimation and testing of the panel model. Section 2.3 describes the data.

Section 2.4 reports estimation results for the different panel specifications. Section 2.5

explores the portfolio implications of the models. We sort portfolios on expected returns

and test if standard asset pricing models can explain the average returns. In section 2.6

we discuss the impact of individual effects. Next, section 2.7 looks at alternative factor

models as a robustness check. Finally, Section 2.8 concludes.

2.2 Panel Model

We consider panel regressions for returns over holding periods from one to six months.

For these regressions the dependent variable R
(J)
i,t+J is the cumulative return over a

period of J months, following month t,

1 +R
(J)
i,t+J =

J∏
j=1

(1 +Ri,t+j), (2.1)
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with Rit the single period return for firm i. Our interest is in explaining the cross

sectional variation of the returns R
(J)
i,t+J of individual stocks usingK firm characteristics

in a vector x
(J)
it observed in month t. The characteristics x

(J)
it are the same for each J

in the empirical application.

2.2.1 Specification

The basic model is the panel

R
(J)
i,t+J = β′Jx

(J)
it + v

(J)
i,t+J , i = 1, ....., N, t = 1, .....T, (2.2)

where βJ is aK-vector of parameters and v
(J)
i,t+J is an error term, the properties of which

we will discuss in the next subsection. We consider four types of firm characteristics:

size, measured as the logarithm of market value; various valuation ratios like earnings-

to-price and book-to-price; momentum, measured as various functions of past returns;

and turnover, measured as the logarithm of trading volume in previous months. In

addition we use dummies for the industry classification of each firm and also consider

interactions between the industry dummies and the other characteristics.

Panels of individual stock returns are inherently unbalanced. In each period t

complete data for returns and characteristics are observed for Nt firms. Return data

are observed for T months. A total of N different firms are observed. The total

number of data points is n =
∑

tNt. In our application the cross-sectional dimension

Nt ranges between 238 and 1185 companies, while T = 248 months. We make the

usual assumption that observations are missing at random and not triggered by events

related to returns themselves. Missing data are indicated by the dummy variable Iit,

which is equal to one if firm i has complete data for period t, and is equal to zero

otherwise. Complete data for the entire J-month horizon are observed if

I
(J)
i,t+J =

J∏
j=1

Ii,t+j = 1.

For ease of notation we will generally suppress the missing value dummy I
(J)
i,t+J and the

J index for the horizon to write yit = I
(J)
i,t+JR

(J)
i,t+J and thus yit = 0 for missing data.

Similarly we use β instead of βJ and define vit = I
(J)
i,t+Jvit,J , xit = I

(J)
i,t+Jx

(J)
it to include
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the missing data.1 We write

yit = β′xit + vit. (2.3)

Even though the firm characteristics remain the same for all horizons, different values

of J give rise to different dependent variables yit, different parameters β and differ-

ent errors vit. When returns are measured over a horizon longer than the sampling

interval (J = 3, 6), the panel regression uses overlapping data. We will take the result-

ing autocorrelation in the errors into account in computing standard errors and test

statistics.2

Model (2.3) has been specified without reference to an asset pricing model. Any

predictable component β′xit can, however, be consistent with an asset pricing model.

As an example, suppose that excess returns are generated by the factor model

yit = δ′itft + eit, (2.4)

ft = π + ut, (2.5)

with ft a vector of unobserved common factors, δit the factor risk loadings, eit idiosyn-

cratic shocks with variance σ2 unrelated to ft, π the factor risk premia and ut the factor

risk. All that is needed to obtain the link with asset pricing is a relation between factor

loadings and firm characteristics. For example, assume the following relation between

δit and xit

δit = Axit. (2.6)

Substituting (2.5) and (2.6) in (2.4) gives

yit = x′itA
′π + x′itA

′ut + eit (2.7)

which has the same form as (2.3) with β = A′π and vit = x′itA
′ut + eit.

1Here, yit and xit share the same time index. Note however that there is no simultaneity issue,

since the firm characteristics are known at least one period in advance (refer to 2.2).
2Here, we use direct forecasts, i.e. we regress R

(J)
i,t+J directly on x

(J)
it . Alternatively, we could set-up

an auxiliary model for the conditioning variables and iterate the one-period forecasts forward as we do

in the next three chapters. However, although Marcellino, Stock, and Watson (2006) find that direct

forecasts perform poorly at forecast horizons of several years (also refer to chapter 4), they find that

direct forecasts work well at short forecast horizons such as in our setting. Therefore, we only consider

direct forecasts in this chapter.
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Consequently, β can be interpreted as a function of the factor risk premia. Without

further restrictions on the factors ft or factor loadings δit, it is not possible to separately

identify risk premia δ′itπ = x′itA
′π or cross-sectional mispricing.

Our methodology is to construct portfolios based on (2.3) and subsequently test

how well standard asset pricing models can explain the returns. In the first stage the

panel (2.3) is estimated and stocks are sorted into portfolios with maximally different

predicted returns according to the fitted values β̂′xit. This procedure is closest to the

Fama-French type portfolio sorting methodology, where stocks are sorted on one or

more characteristics like size, value, momentum and liquidity. In a second stage the

focus will be on exposures to risk factors and evaluation of abnormal returns.

2.2.2 Cross-sectional dependence

There is strong cross-sectional dependence between individual stock returns. A first

method to correct for this dependence is by using a simple common time fixed effect,

vit = λt + eit, (2.8)

where the time effects are fully unrestricted parameters. One way to interpret these

effects is that λt is an unobserved common factor against which all stocks have a beta

equal to one. The time effects are a crude way to adjust for systematic risk. Since not

all beta’s are equal to one, and returns are generated by multiple factors, considerable

cross-sectional covariance among the returns will remain. Still, time effects take out a

large common noise component from the returns, and thus reduce the cross-sectional

correlation of the errors. This improves the efficiency of the estimator.1

The cross-sectional effects of firm characteristics are our main focus. Time series

effects are eliminated by the fixed time effect λt, which implies that all data are taken

in deviation of the cross-sectional average. Being an unrestricted parameter the time

effect λt accounts for a possible aggregate effect on all stocks, for example the effect of

a historically low EP ratio on all returns. As a common factor the time effect cancels

in ranking stocks on their predicted returns, since return differences yit − yjt do not

depend on λt.

1The predictor variables are persistent. By taking the factor structure in the error terms into ac-

count, we remove common components from the predictor variables and reduce therefore the persistency

of the predictor variables.

15



2. FIRM CHARACTERISTICS, INDUSTRY, HORIZON AND TIME
EFFECTS, IN THE CROSS-SECTION OF EXPECTED STOCK
RETURNS

The second method we use is to perform a risk adjustment prior to constructing

portfolios. In that case the panel specification becomes

vit = δ′ift + eit, (2.9)

where δi are constant factor loadings and ft is a set of M common risk factors. The

factors are measured over the same period as the returns yit. We consider two spec-

ifications for the common factors. In the first specification the vector ft is observed

and consists of the three Fama-French factors plus a momentum factor.1 In the sec-

ond specification the vector of observed common factors is augmented by unobserved

common factors. We use the fitted value β̂′xit to rank stocks into portfolios. An alter-

native method would have been to predict and time the factors. We do not pursue this

alternative, because (i) we want to focus on the predictive power of firm characteristics

and industry-effects and (ii) it would make a transparent comparison between both

methods difficult.

There are two important differences relative to specification (2.8). First, the com-

mon factor components δ′ift can explain a large part of the cross sectional correlation

in the error terms vit in (2.3). Second, asset pricing theories imply that the δi should

explain most of the cross-sectional dispersion in expected returns. If the factors are

returns, the term β′xit in (2.9) can be interpreted directly as abnormal returns, and

directly match the object of interest. A test of the null hypothesis β = 0 is then

a test of asset pricing restrictions. After correcting for the common factors, the re-

maining cross-sectional correlation in eit will be very limited and therefore leads to

more efficient estimates. This alternative approach is pursued in Brennan, Chordia,

and Subrahmanyam (1998), Avramov and Chordia (2006) and Ang, Liu, and Schwarz

(2010).

The approach, however, also brings significant costs. Interpretation of β relies

on the specification of the common factors and the factor loadings. Factor loadings

vary over time with macro-economic variables and cross-sectionally with some of the

1Recent results in Kleibergen (2010) cast some doubt on the added value of momentum. He finds

that there is no factor structure left in the residuals once the three Fama-French factors are taken into

account. However, this depends on the particular data-set at hand (particularly on the way stocks are

sorted in portfolios). In the empirical section 2.5 we find that momentum has additional explanatory

power (besides the three Fama-French factors) as a factor for some of our sorted portfolios.
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same characteristics xit as used for the expected returns.1 Choice of factors can range

from only the market portfolio, the three Fama-French factors and other factors like

momentum, liquidity and volatility. The approach also requires estimates of conditional

factor loadings of individual firms, which is a major challenge by itself.2 Tests of the

asset pricing implications are thus always subject to the joint hypothesis problem.

2.2.3 Industry effects

Define industry dummies Di� that take the value one if firm i belongs to industry 	

(	 = 1, . . . , L). Industry effects are introduced in three ways. First, we add them to

the characteristics and augment the panel model to

yit =
L∑
�=1

Di�τ� + x′itβ + vit, (2.10)

where τ� is a fixed industry specific effect. Industry-specific intercepts are less re-

strictive than a single pooled intercept, and yet allow for considerable cross-sectional

heterogeneity.

Second, we introduce a vector of L industry-specific time effects λ�t instead of the

single time effect λt. This generalizes (2.3) to

yit =

L∑
�=1

Di�λ�t + β′xitβ + eit. (2.11)

We do not augment the second factor specification in subsection (2.2.2) with industry-

specific time effects in order to avoid overfitting due to an abundance of factors.

As for the single time effect, we will assume that all industry-specific λ�t are un-

restricted parameters. They can be interpreted as industry risk factors. A direct

consequence is that cross-sectional predictions will be made only within the same in-

dustry. For firms i and j that belong to the same industry 	 the relative return yit−yjt
does not involve the industry time effects. For firms in separate industries the industry

1The results in Kleibergen (2010) also cast some doubt on the asymptotics one should use when

macro-economic factors are incorporated.
2In order to reduce the total number of parameters, we do not allow for time-varying factor loadings.

Ang and Kristensen (2009), Christoffersen, Jacobs, and Vainberg (2008), Ghysels and Jacquier (2007),

and Jacquier, Titman, and Yaçın (2010) are part of a growing research effort aimed at improving the

measurement of individual beta’s that may be varying over time. Dealing with the measurement error

in factor loading estimates is an issue that is far from being settled.
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time-effect will not disappear and would require a separate time series model for λ�t.

To avoid this in the portfolio sorts, we first sort firms into industries, and then use firm

characteristics to find the best stocks within each industry. Trading strategies with

industry-specific time effects thus imply picking the best stocks within each industry

in every period.

Industry-specific time effects can change the estimates of some of the slope param-

eters in β. A typical example is the Moskowitz and Grinblatt (1999) hypothesis that

momentum is actually an industry effect. They find that momentum does not help

predict the relative returns of individual firms, but rather the relative performance of

entire industries. If the hypothesis of Moskowitz and Grinblatt (1999) is correct, and

we estimate the panel with industry-specific time effects, we should expect that the

momentum parameters will become smaller and less significant. Otherwise we would

be able to predict the relative returns within the same industry using individual firm

momentum.

The third way of accounting for industry effects is by allowing separate slope pa-

rameters β� for each industry. We extend both factor specifications by these separate

slope parameters. If we allow for industry-specific intercepts, slopes and time-effects,

we get the following model

yit =
L∑
�=1

Di�

(
λ�t + β′�xit

)
+ eit. (2.12)

In this model industries are completely separated and firm characteristics are only

valuable for within industry prediction. Without any pooling on either λ�t or β� we

have L separate panel data models.

2.2.4 Estimation of β

The following two subsections explain the estimation of β and its standard errors in

respectively the standard panel model and in the augmented factor model.

2.2.4.1 Standard panel model

Let ỹit and x̃it be the transformed data after partialling out the time and firm dummies,

and collect all elements at time t in the N -vector ỹt and the (N ×K) matrix X̃t. For

an unbalanced panel the transformation is somewhat more complicated than the usual
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correction for the cross-sectional and time series averages. Exact formulas are derived

in Wansbeek and Kapteyn (1989). Estimation of the alternative specification with

industry time dummies λ�t involves a minor adjustment in the data transformation,

where cross-sectional averages must be replaced by industry-specific averages. After

the transformation the pooled OLS estimator of β is

β̂ =

(
T∑
t=1

X̃ ′
tX̃t

)−1( T∑
t=1

X̃ ′
tỹt

)
. (2.13)

Our panel contains lagged returns as momentum variables. It is well-known that lagged

dependent variables cause biases in dynamic panel data models with individual effects

μi. In case of cross-section dependence, Phillips and Sul (2007) show that the bias is

random and hence could potentially be large. The bias disappears when T is large, as

we assume.1

We use a robust estimator of the covariance matrix of β̂ proposed by Driscoll and

Kraay (1998) that is valid for arbitrary cross-sectional correlation and heteroscedasticity

to calculate standard errors and test statistics. The basic set-up of Driscoll and Kraay

(1998) is quite general, but does not allow for individual effects. Goncalves (2010)

shows that the Driscoll and Kraay (1998) covariance estimator is also valid in settings

with individual effects allowing for any level of remaining cross-sectional dependence

(including strong dependence, i.e. an error factor structure is for example allowed).

Vogelsang (2008) extends this result and shows that the Driscoll and Kraay (1998)

covariance matrix for β̂ is valid even when time fixed effects and/or more general time

trends are included.2

As in Driscoll and Kraay (1998) define the time series of K-vectors ht as

ht =
1√
N t

X̃ ′
tet, (2.14)

where et is the N -vector of errors, i.e. including the zeros for the N −Nt missing data

at time t. The cross-sectional sum is scaled by Nt to account for the unbalancedness

1In this chapter, we use a frequentist perspective. It allows us to be robust to unknown forms of

cross-sectional correlation. We could have approached the problem as well in a Bayesian way. This

would however complicate inference in this particular case, because it would have required us to take a

stance on the form (or different forms) of cross-sectional correlation in the error terms. Therefore, we

do not pursue this alternative here.
2Note that Vogelsang (2008) derives results for the more general fixed-b asymptotics. Standard

asymptotics can be obtained by letting b go to 0 in his setting.
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of the panel. We estimate the covariance matrix of ĥt using the Newey-West weights

on the first m autocorrelations,

Ŝ =
N̄

T

m∑
s=−m

(
1− |s|

m+ 1

) T∑
t=1

ĥt−sĥ
′
t, (2.15)

where ĥt uses the estimated residuals êt and N̄ is the average number of firms in the

sample. The autocorrelation lag (m) in the Newey-West estimator depends on the

forecast horizon of the model and is as big as the number of months over which the

cumulative returns yit are computed. The final expression for the standard errors is

V ar
(
β̂
)
=

1

T
V −1ŜV −1, (2.16)

where V = 1
T

∑
t X̃tX̃t.

The parameter β is affected by heterogeneity assumptions on the intercepts. Both

with individual effects μi as well as industry time dummies λ�t a Hausman test is used

to check if β is the same in different specifications. We use a version of the Hausman

test similar to Pesaran, Smith, and Im (1996) and Pesaran and Yamagata (2008) to

check if estimates of β differ significantly between these models.1

The fixed effect estimator of a model with individual effects is denoted β̂I . The es-

timator for the restricted specification without individual effects is denoted β̂P . Under

the null hypothesis both estimators are consistent, with β̂P likely to be more efficient,

as it omits the unnecessary individual effects. Under the alternative, β̂P will be incon-

sistent. Therefore the difference β̂I − β̂P can tell us if individual effects have an effect

on the slope coefficients β.

From the expression of the standard errors in (2.16) we know that we can write the

difference between the two estimators as

√
T (β̂I − β̂P ) =

1√
T

∑
t

(V −1
II hIt − V −1

PPhPt) =
1√
T

∑
t

gt, (2.17)

where VII and VPP are the relevant matrices corresponding to the general V in (2.16),

hIt and hPt the relevant time series related to ht in equation (2.14), and gt is defined

as

gt = V −1
II hIt − V −1

PPhPt. (2.18)

1It is well-known (e.g. Pesaran and Yamagata (2008)) that the Hausman test has low power in a

setting such at the ours. However, in the empirical analysis, we reject the null hypothesis that both

sets of coefficients are equal. Therefore, the power issue does not have an impact on our results.
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Having constructed gt, the covariance matrix of
√
T (β̂I − β̂P ) follows as

SIP =
N̄

T

m∑
s=−m

(
1− |s|

m+ 1

) T∑
t=1

ĝt−sĝ
′
t, (2.19)

We use this covariance matrix to compute the Hausman test statistic

WH = T (β̂I − β̂P )
′S−1
IP (β̂I − β̂P ). (2.20)

2.2.4.2 Panel with Common Factors

We use the three Fama-French factors plus a momentum factor as observed factors. In

order to model the unobserved factors, we make the following assumptions

1. We augment the set of observed factors with the cross-sectional averages of yit or

the cross-sectional averages of yit and xit as suggested in Pesaran (2006);

2. We augment the common factors with the principal components of yit as suggested

in Kapetanios and Pesaran (2007).

In all specifications the factor loadings δi are assumed constant over time. In all cases

we estimate β by pooled OLS and use the Driscoll and Kraay (1998) estimator of the

previous subsection for the covariance matrix. In this way our standard errors are still

robust to any remaining cross-sectional correlation.

Firstly, we consider a specification with observed factors. Define the (T ×K) data

matrix Xi as

Xi =

⎛⎜⎝ Ii1x
′
i1

...
IiTx

′
iT

⎞⎟⎠ , (2.21)

where Iit is a dummy equal to one if firm i has complete observations at time t and

zero otherwise. Similarly define the T -vectors

yi =

⎛⎜⎝ Ii1yi1
...

IiT yiT

⎞⎟⎠ , (2.22)

the (T ×M) matrices of common factors

Fi =

⎛⎜⎝ Ii1f
′
1

...
IiT f

′
T

⎞⎟⎠ , (2.23)

21



2. FIRM CHARACTERISTICS, INDUSTRY, HORIZON AND TIME
EFFECTS, IN THE CROSS-SECTION OF EXPECTED STOCK
RETURNS

and the transformation matrices MFi

MFi = I − Fi(F
′
iFi)

−1F ′
i . (2.24)

For specifications involving common factors, we only consider firms with at least 30

observations in order to make sure that all transformation matrices are properly defined.

With this notation the pooled OLS estimator of β follows as

β̂F =

(∑
i

X ′
iMFiXi

)−1(∑
i

X ′
iMFiyi

)
. (2.25)

Next, consider specifications with unobserved factors. With unobserved factors we

partition the vector ft as

ft =

(
fobs,t
fun,t

)
.

We consider two different estimation techniques to estimate β in such a model.

Pesaran (2006) proposes the Common Correlated Effects Pooled (CCEP) estimator.

The idea of this estimator is to ”filter the individual-specific regressors by means of

cross-section averages such that asymptotically as the cross-section dimension (N) tends

to infinity, the differential effects of unobserved factors are eliminated”. Define the

(T × (K + 1)) matrix Zwi as

Zwi =

⎛⎜⎝ Ii1Yw1, Ii1Xw1
...

IiTYwT , IiTXwT

⎞⎟⎠ ,

where Ywt and Xwt are respectively the cross-sectional averages of the dependent vari-

able and the independent variables at time t. Alternatively, matrix Zwi only contains

the cross-sectional average Ywt.

Next define the matrix Hwi as

Hwi = (Fi Zwi)

with Fi already defined in (2.23), and the (T × T ) transformation matrix Mwi

Mwi = I −Hwi(H
′
wiHwi)

−1H ′
wi.

This results in the following pooled OLS estimator which is shown to be consistent in

Pesaran (2006)

β̂P =

(∑
i

X ′
iMwiXi

)−1(∑
i

X ′
iMwiyi

)
(2.26)
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According to assumption (3) in Pesaran (2006) this estimator is only valid when the

risk-loadings on the unobserved factors are uncorrelated with the explanatory variables.

This can potentially lead to problems since it is likely that firm characteristics influence

risk loadings.

The second class of estimators is the Principal Components augmentation approach

(PC), explained in Kapetanios and Pesaran (2007). This estimator uses the principal

components of yit to approximate the unobserved factors. We use the observed common

factors and the principal components to account for the common factor structure of

the error terms.

Bai and Ng (2002) explain an estimation method to obtain the principal components

in a balanced panel. Define the N × T matrix Y as

Y =

⎛⎜⎝ I11y11 . . . . . .
...

. . .
...

. . . . . . INT yNT

⎞⎟⎠ . (2.27)

Bai (2003) shows that the first p principal components of this matrix are the eigenvec-

tors corresponding to the p largest eigenvalues of matrix Y ′Y multiplied by
√
T . As in

Kapetanios and Pesaran (2007) we firstly standardize the elements in yit. Greenaway-

McGrevy, Han, and Sul (2010) show that these principal components can be used

instead of the true (unknown) factors as long as asymptotically T
N → 0 and N

T 3 → 0.

Since our panel is unbalanced we have to modify the estimation procedure slightly.

We use an iterative algorithm proposed by Stock and Watson (2002) that works in

unbalanced panels. This algorithm uses the estimation technique of Bai (2003) but

replaces the missing values in Y by estimates and updates these estimates until con-

vergence is reached. We determine the number of principal components p by using the

information criterion of Bai and Ng (2002). Define P as the T × p matrix of principal

components and let p′t be the t
th row of P . Subsequently define the (T × p) matrix ZPi

as

ZPi =

⎛⎜⎝ Ii1p
′
1

...
IiT p

′
T

⎞⎟⎠
and Hpi as

Hpi = (Fi ZPi)
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This allows us to define the T × T transformation matrix Mpi as

MPi = I −Hpi(H
′
piHpi)

−1H ′
pi.

The consistent pooled OLS estimator becomes

β̂PC =

(
N∑
i=1

X ′
iMPiXi

)−1( N∑
i=1

X ′
iMPiyi

)
. (2.28)

Pesaran (2006) shows that his estimator is
√
N consistent (in the general case),

whereas Greenaway-McGrevy, Han, and Sul (2010) show that the Principal Compo-

nents augmentation approach is
√
NT consistent under the regularity conditions given

above. The latter has (even) the same asymptotic distribution as the infeasible estima-

tor that uses the true (unknown) factors. Therefore, we expect that the PC approach

is more efficient, both asymptotically and most likely in our sample as well.

We use a similar Hausman test as above to compare estimates in models with

different factor structures.

2.3 Data

Our data set is the Morgan Stanley Capital International (MSCI) US data universe.

It covers the investable universe for most institutional investors. As such it contains

relatively few small cap stocks. We include all US firms explicitly followed by MSCI.

Some of them are the constituents of the well-known published MSCI US index. Others

are followed by MSCI because of their size or relevance. We include companies in the

data set only when investors were able to obtain the information provided by MSCI in

real time. The MSCI index covers about 70% of the US stock market capitalization.

The sample period ranges from February 1985 until September 2005.

We include eleven regressors that have been widely used over the last fifteen years,

have proved to contribute to the prediction of stock returns, and are likely to capture

different aspects of a company. The explanatory variables are classified into five groups:

size, valuation ratios, momentum, turnover and industries.

Size: Size (MV ) is defined as the logarithm of the market capitalization of firm i in

month t. The relation between size and stock returns is known since the early

1980’s. It is one of the main characteristics on which stocks are sorted into

portfolios in Fama and French (1992).
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Valuation ratios: We include the ratios book-to-price (BP), earnings-to-price (EP),

dividend-to-price (DP), cashflow-to-price (CP) and sales-to-price (SP). Valuation

ratios are the second standard characteristic on which stocks are sorted. A few

of the many studies analyzing the link between valuation ratios and stock return

are Rosenberg, Reid, and Lanstein (1985), Fama and French (1992), Lakonishok,

Shleifer, and Vishny (1994), and Daniel and Titman (1997). Cochrane (2005)

discusses the use of valuation ratios like EP and DP for the prediction of stock

returns. Vuolteenaho (2002) finds that cashflow news influences stock returns.

Momentum: We include two types of momentum variables. Short-term price mo-

mentum (R2-7 ) is defined as the cumulative return over the last six months. As

common, the variable is lagged by an additional month to avoid any spurious

relation between the current month return and the future month return caused

by bid-ask spread effects and thin trading. Long-term price momentum is de-

fined as the cumulative return over the six months prior to the last six months

(R7-12 ). The second type of momentum is earnings momentum (analyst earn-

ings revisions), denoted by CFY1. It reflects the expectation revisions of financial

analysts about the next year’s earnings of the stock, and is computed as the num-

ber of positive revisions minus the number of negative revisions, divided by the

total number of revisions. The original source of this data is I/B/E/S. Momen-

tum variables are used in Jegadeesh and Titman (1993) and Rouwenhorst (1998).

Chan, Jegadeesh, and Lakonishok (1996) discuss both earnings momentum and

price momentum. Frankel and Lee (1998) focus on earnings momentum.

Turnover: We use two turnover variables. The first one (VOL) is the log of monthly

turnover volume. The second variable (52W ) is the log of average turnover volume

for the last 52 weeks. Stoll (1978), among others, finds that volume is the most

important determinant of the bid-ask spread, while Brennan and Subrahmanyam

(1995) find that it is a basic determinant of liquidity. Koski and Michaely (2000)

discuss the relation between liquidity and stock prices and returns.1

1Brennan, Chordia, and Subrahmanyam (1998) recommend defining separate liquidity variables

for NYSE and NASDAQ stocks, since trading volume is measured differently between NYSE and

NASDAQ. On the other hand, the stocks traded at NASDAQ are concentrated in a small number of

industries. Since our general model in equation (2.12) includes industry-specific coefficients and time

effects, we do not split the turnover variables.
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Industries: Each company belongs to a specific industry.1 The total number of in-

dustries is 22.

The raw data set contains 2913 companies. For the econometric analysis we delete

all data points that contain incomplete or missing data. This reduces the data set to

1,880 companies and 153,380 data points. Table 2.1 reports the number of companies

per industry in the data set. Some industries contain only a few firms, indicating that

we should be careful in interpreting their industry-specific parameters.2

Fama and French (2008) warn for two potential drawbacks in cross-sectional re-

gressions: the dominance of very small stocks of which there are so many, and the

influence of extreme outliers. We avoid the first problem by using the MSCI database,

which does not contain many microcaps. Since some firm characteristics, especially the

valuation ratios, have extreme outliers, we trimmed all valuation ratio outliers to the

lower and upper 1% tail of the distribution. Descriptive statistics of the final data set

are reported in Table 2.2.

There are two sources of multicollinearity related to the valuation ratios. First, their

numerators contain accounting information and are updated only quarterly. The de-

nominator is the stock market capitalization and is the same for all ratios. The monthly

change in the valuation ratios could be mostly due to price changes, and therefore might

be correlated with short-term momentum. Yet the degree of multicollinearity seems to

be limited. The strongest correlation between short-term momentum and a valuation

ratio is -0.25. The maximum correlation among the five valuation ratios is 0.49. As

we are mostly interested in the joint effect of the predictors, we keep all five ratios as

regressors.

1We use the MSCI industry classification that was used before April 1999. In April 1999 MSCI

and S&P 500 introduced the Global Industry Classification System (GICS). Using the new industry

classification in all periods would result in a look ahead bias, while using it only after April 1999 would

lead to unreliable results due to the short time series April 1999 - September 2005.
2These industries are Power Producers, Data Processing and Computer Services. The low number of

firms in the last two industries can be explained by the high number of firms in the industry Technology

Hardware.
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Table 2.1: Summary Statistics by Industry

The summary statistics are based on 1,880 US firms observed over 248 months from February

1985 until September 2005. The number of firms per industry is the sample size remaining

after deletion of incomplete data points. Average returns (R̄) and standard deviations (s(R)),

measured in percentage points per month, are for equally weighted (EW) and value weighted

(VW) industry portfolios.

Data EW port. VW port.

Industry firms points R̄ s(R) R̄ s(R)

1 Basic Materials 109 12357 1.24 5.71 1.14 5.86

2 Automobiles 31 3592 1.25 7.05 1.00 7.16

3 Consumer 74 7829 1.29 5.44 1.18 5.37

4 Retail 140 10933 1.55 6.81 1.51 6.55

5 Commercial 57 2828 1.23 7.16 0.70 6.66

6 Food and Consumer 107 11140 1.65 4.64 1.40 4.70

7 Specialty 13 1797 1.30 5.54 1.32 5.93

8 Services 42 3682 1.55 5.84 1.37 5.39

9 Health Care 203 12370 1.78 6.16 1.54 5.08

10 Oil and Gas 87 8040 1.64 7.05 1.43 4.91

11 Banking and Insurance 204 15064 1.77 5.57 1.47 5.79

12 Diversified Financials 135 7043 1.37 5.04 1.50 5.91

13 Capital Goods 66 6245 1.41 6.24 1.33 5.59

14 Machinery-Diversified 85 7615 1.53 6.09 1.24 5.75

15 Technology Hardware 331 21526 1.53 9.88 1.12 7.88

16 Semiconductors 16 1353 1.97 17.02 2.07 15.89

17 Computer Services 15 1120 1.90 9.22 1.44 8.91

18 Data Processing 11 1014 2.01 6.82 1.60 6.25

19 Telecom 39 3300 1.44 8.28 1.15 5.85

20 Utilities 72 9634 1.21 4.47 1.13 4.57

21 Power Producers 4 364 0.87 13.76 0.97 13.91

22 Transport 39 4534 1.39 6.38 1.21 5.67
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Table 2.2: Summary Statistics of All Firm Characteristics

The table reports descriptive statistics for the set of complete data points, and after all valuation

ratios were trimmed to the lower and upper 1% tail of the distribution. A data point is considered to

be complete if all variables are available for that particular data point. The data contain 1,880 US

firms observed over 248 months from February 1985 until September 2005. Variables are monthly

return (RET ), log of the market capitalization (MV ), book-to-price (BP), cashflow-to-price (CP),

dividend-to-price (DP), earnings-to-price (EP), sales-to-price (SP), analyst earnings revisions

(CFY1 ), short-term momentum (R2-7 ), long-term momentum (R7-12 ), log of the monthly volume

(VOL) and log of the average volume over the last 52 weeks (52W ). Returns are measured in

percentage points. The variables R2-7 and R7-12 are cumulative six-month returns.

Std. 1st 99th

Variable Avg. dev. Min perc. Median perc. Max

RET 1.46 13.76 -92.10 -34.50 1.16 41.93 640.74

MV 7.85 1.53 1.30 4.64 7.86 11.61 13.31

BP 0.51 0.36 -0.13 -0.13 0.44 2.00 2.00

CP 0.12 0.12 -0.26 -0.26 0.09 0.65 0.65

DP 0.02 0.02 0.00 0.00 0.01 0.09 0.09

EP 0.02 0.12 -0.75 -0.75 0.05 0.18 0.18

SP 1.29 1.52 0.03 0.03 0.80 9.17 9.17

CFY1 -0.06 0.74 -1.00 -1.00 0.00 1.00 1.00

R2-7 7.85 34.06 -96.83 -64.36 6.03 117.33 985.96

R7-12 8.52 36.33 -96.43 -63.19 6.25 125.67 1597.39

VOL 16.31 1.48 4.79 12.94 16.27 20.00 22.40

52W 13.27 1.43 6.36 10.11 13.21 16.90 18.46

2.4 Results

This section reports the estimation results for the specifications that are considered

above.

2.4.1 Univariate sorts

As a benchmark for the predictive power of firm characteristics we first construct port-

folios that are sorted on a single characteristic. At the beginning of each month t, we

construct a high and a low portfolio based on sorting of the stocks by each character-
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Table 2.3: Summary statistics of simple sorted portfolios

The table reports the average returns of high and low portfolios based

on sorting of all stocks by each characteristic. We form a long portfolio

of the top 30% of the sorted stocks and a short portfolio of the bottom

30% of the sorted stocks. The table reports results for simple high minus

low portfolios and for industry neutral portfolios. The latter are first

constructed within each industry as described above and then aggregated

with weights proportional to the number of firms in the industry. Each

month we observe the returns of the high and low portfolios, constructed in

the previous month. Entries report the difference of average returns and a

t-statistic for testing the equality of the mean returns of the long and short

portfolios. The t-statistics are adjusted for autocorrelation.

Simple Industry neutral

Variable Avg t-stat Avg t-stat

MV -0.37 -1.30 -0.32 -1.42

BP 0.43 1.65 0.41 2.28

CP 0.35 1.10 0.37 2.03

DP -0.01 -0.03 0.11 0.74

EP 0.17 0.50 0.32 1.74

SP 0.48 1.58 0.41 1.96

CFY1 0.42 2.57 0.39 3.59

R2-7 0.04 0.11 0.01 0.05

R7-12 0.56 2.13 0.41 2.26

VOL 0.54 3.05 0.39 2.88

52W 0.48 2.67 0.40 2.92

istic and buying the top 30% of the sorted stocks (the high portfolio), while selling the

bottom 30% of the sorted stocks (the low portfolio).1 The next month (t+1) we record

the returns of the high and low portfolios.

The resulting returns for each characteristic separately are reported in Table 2.3.

When significant, the return differences between high and low portfolios are in the

order of 0.5% per month. Although the negative sign for size corroborates the small

1All portfolios are equally weighted. We considered a variety of weighting schemes, like character-

istic based weighting according to xit or value weighting. These produce very similar results.
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firm effect, it is not statistically significant in a univariate context. This might be due

to the low number of small firms in the MSCI universe. Surprising is the low predictive

power of all valuation ratios.

Two strong predictive variables are long-term price momentum (R7-12 ) and analyst

earnings revisions CFY1. Their effect is significant, while short-term price momentum

(R2-7 ) has low predictive power. The turnover variables VOL and 52W have positive

and significant effects. Other studies, e.g. Brennan, Chordia, and Subrahmanyam

(1998), find a negative and significant effect in a multivariate setting. We expect that

this is related to our universe of stocks which is geared towards the investable universe

of institutional investors that includes relatively more large cap and liquid stocks and

very few micro-caps.

Industry-neutral sorts produce almost the same average return differences. The

main difference with the full sort is that t-statistics are mostly larger due to increased

diversification. As a result, several of the valuation ratios (BP, CP and SP) become

significant.1

2.4.2 Multivariate regressions

Table 2.4 reports the pooled estimates of β for different models. The dependent vari-

ables are one-, three- or six-month returns respectively. The models also differ in the

structure of the intercepts and time effects. The first column for each horizon consid-

ered reports coefficients for a specification with industry-specific intercepts and pooled

time effects; the second column contains industry-specific time effects; the third column

contains industry-specific intercepts and the Fama and French and Momentum factors

as a proxy for time effects. In subsection 2.7 we reports results for specifications that

additionally correct for unobserved factors.

Multivariate regression results are very different from those in simple univariate

sorts. Size (MV ) is now significant irrespective of forecasting horizon and interaction

with industry effects. Its coefficient is stable across specifications and has the expected

negative sign. In a similar way, the dividend-to-price ratio (DP) becomes significant.

Valuation ratios can be expected to be important for the forecasting of three and six

1 We also investigated the power of monthly firm characteristics to forecast cumulative returns over

three and six months. In general the t-statistics are similar to those reported in Table 2.3.

30



2.4 Results

Table 2.4: Pooled Parameter Estimates

The table reports estimation results for the pooled coefficient model

yit = β′xit + vit

under different assumptions about industry dummies on intercepts and time effects. Each

column contains model coefficients and the respective t-statistics in parentheses. For

convenient scaling all entries for R2-7 and R7-12 are multiplied by six. Returns are either

measured over a one month, three month or six month period. Models are indicated in the

header row by the coefficients that are pooled or industry-specific. The specification with

(τ�, λt) is a model with industry intercepts and pooled time effects, the model λ�t contains

industry-specific time effects and the model (τl, FF4) contains industry intercepts and the

Fama French and Momentum factors as proxy for the time-effects. Absolute t-statistics

are reported in parentheses. The standard errors have been computed using the robust

estimator of the covariance matrix in (2.16). The Wald statistic is a test statistic

against the null hypothesis that the industry-specific intercepts in model (τ�, λt) are all

equal. The 5% critical value of the chi-square distribution with 21 degrees of freedom is

32.67. The Hausman statistics in the last row compare estimates of β in models (τ�, λt)

and (λ�t) and estimates of β in models (τ�, λt) and (τ�, FF4). Its 5% critical value is 19.68.

One Month Three Months Six Months

τ�, λt λ�t τl, FF4 τ�, λt λ�t τl, FF4 τ�, λt λ�t τl, FF4

MV -0.66 -0.60 -0.52 -1.91 -1.72 -1.56 -3.77 -3.38 -3.62

(4.91) (4.50) (7.62) (5.46) (5.10) (7.49) (5.68) (5.40) (8.75)

BP 0.55 0.33 0.48 1.36 0.80 1.68 2.45 1.37 2.80

(1.74) (1.50) (2.47) (2.17) (1.62) (3.37) (3.20) (1.88) (2.70)

CP 0.75 0.66 0.73 2.36 2.25 1.83 5.00 5.24 4.09

(1.23) (1.21) (1.51) (1.31) (1.40) (1.47) (1.13) (1.34) (1.45)

DP 8.85 9.07 10.48 25.65 23.39 31.42 48.79 42.35 61.65

(2.22) (2.74) (2.98) (2.48) (2.69) (2.98) (2.25) (2.30) (2.91)

EP 0.00 0.39 -0.36 -0.48 0.04 -2.58 1.43 1.57 -2.21

(0.00) (0.34) (0.40) (0.14) (0.01) (1.37) (0.22) (0.29) (0.65)

SP 0.07 0.08 0.00 0.18 0.22 -0.01 0.39 0.43 0.15

(0.94) (1.30) (0.04) (1.05) (1.29) (0.09) (1.38) (1.45) (0.57)

CFY1 0.19 0.24 0.08 0.10 0.25 0.10 0.44 0.79 -0.10

(1.92) (3.96) (1.31) (0.53) (1.89) (0.71) (1.76) (4.24) (0.48)

R2-7 0.03 0.02 -0.03 0.18 0.16 -0.04 0.38 0.35 -0.03

(0.66) (0.64) (1.28) (2.12) (2.93) (0.75) (3.13) (4.31) (0.29)

R7-12 0.03 0.03 0.06 -0.01 0.00 0.11 -0.19 -0.16 0.14

(1.17) (1.90) (3.04) (0.09) (0.02) (1.71) (1.16) (1.71) (1.20)

VOL 0.40 0.43 0.35 -0.19 -0.06 -0.31 -0.51 -0.26 -0.52

(2.15) (2.81) (2.23) (0.56) (0.22) (1.03) (0.87) (0.60) (1.51)

52W 0.27 0.20 0.22 2.19 1.89 2.05 4.63 4.04 4.30

(1.46) (1.33) (1.41) (5.77) (5.60) (5.79) (6.44) (6.11) (7.32)

τ� = 0 34.06 46.46 44.42 78.73 6911 244.65

Hausman 20.62 20.51 34.51 29.94 76.11 41.04
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month returns because their numerators are announced quarterly. Indeed, the book-

to-price variable (BP) increases in significance for three and six month horizons. The

other valuation ratios are insignificant in all specifications.

Earnings momentum (CFY1 ) is only significant in models with industry time dum-

mies λ�t. Contrary to the univariate sorts, long term price momentum (R7-12 ) is

not significant across horizons; only in the one-month horizon specification for the

FF4 model it is statistically significant. Short term price momentum (R2-7 ) now is

significant at longer horizons, consistent with the results in Rouwenhorst (1998). In-

terestingly, all momentum effects are estimated more precisely in models with industry

time dummies. Hence, momentum can be interpreted as a significant intra-industry

return predictor.

The effect of trading volume is generally significant. The short term volume measure

(VOL) has predictive power at the one month horizon, while the trend in volume (52W )

is significant for the three and six months horizons. However, again all significant

estimates have unexpected positive signs.

Industry time effects λ�t have very little effect on the β estimates in table 2.4.

The importance of industry time effects will become important later on when we sort

portfolios on expected returns and consider the effects of industry neutral sorts.

The Wald test statistics in the bottom of the table shows that industry-specific

intercepts are not equal. Moreover, the Hausman statistic shows that the β estimates

differ between the three specifications.

Next, we consider the pooling hypotheses β� = β, i.e. whether firm characteristics

have the same effect in all industries. For all models in Table 2.4 we estimate a version

with industry-specific coefficients β�. We formally test whether coefficients are indeed

industry-specific or whether these can be pooled.

We test whether each firm characteristic has the same coefficients across industries.

Table 2.5 reports the test statistics of the null hypothesis βj� = βj for each characteristic

j separately. The null hypothesis is rejected at the 5% significance level in all model

specifications, for all horizons, and for all characteristics with the exception of DP and

R2-7 at the one month horizon (in two out of three specifications). Interestingly, the

heterogeneity across industries is more pronounced for longer forecast horizons as all

coefficients vary across industries.
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2.5 Portfolio Management Implications

Table 2.5: Industry-Specific Slope Parameters

The table shows Wald-statistics for the null hypothesis

H0 : β� = β (� = 1, . . . , L)

in the model

yit =
L∑

�=1

Di�

(
τ� + β′

�xit
)
+ vit

under different assumptions about the error term. Columns (τ�, λt) relate to pooled time effects and

industry intercepts with λ�t = λt; the columns (λ�t) refer to industry-specific time effects in which λ�t are

unrestricted; finally the model (τ�, FF4) consists of industry intercepts and the Fama-French factors and

Momentum factor as proxy for the time-effects. The 5% critical value of the chi-square distribution with

21 degrees of freedom is 32.67. The forecasting horizons are one, three and six months.

One month Three months Six months

τ�, λt λ�t τ�, FF4 τ�, λt λ�t τ�, FF4 τ�, λt λ�t τ�, FF4

MV 59.29 72.32 63.66 78.86 75.93 85.48 111.07 93.82 105.22

BP 50.86 46.91 56.89 102.41 83.76 92.62 158.61 82.93 175.71

CP 41.57 52.57 63.66 59.27 62.11 89.76 116.38 144.77 196.16

DP 32.48 36.56 27.00 48.39 60.12 65.24 60.87 97.82 101.31

EP 43.21 48.09 51.39 75.97 91.60 93.82 139.94 280.80 273.47

SP 47.02 50.51 68.26 93.16 71.51 134.98 131.63 82.25 149.96

CFY1 61.52 72.30 40.76 52.22 50.97 45.67 79.83 118.90 61.42

R2-7 30.38 20.91 33.74 74.38 61.01 70.36 84.91 126.43 148.55

R7-12 56.69 60.85 66.69 155.70 82.84 137.89 140.48 106.61 233.28

VOL 54.09 49.87 58.94 64.91 70.71 104.45 79.94 79.17 105.93

52W 47.12 46.96 55.20 69.50 70.37 154.53 97.32 89.44 199.24

From these results we conclude that industry-specific coefficients are very important

in cross-sectional prediction strategies.

2.5 Portfolio Management Implications

We follow the standard empirical methodology to define a trading strategy with large

predicted returns. Subsequently, we check whether the returns of the strategy can be

explained by an asset pricing model. To investigate the asset pricing implications of

the multivariate models, we consider the time series returns for a number of long-short

portfolios. For each model we construct the fitted values

ŷi,t+J =
∑
�

(
Di�τ̂� + β̂′lxit

)
(2.29)

Each period t, the expected returns for the next one, three and six months ŷi,t+J are

sorted in a decreasing order. We construct equally weighted portfolios in which we
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allocate the top (bottom) 30% of the sorted stocks to a long (short) portfolio.

Portfolios based on models that predict cumulative returns for J months follow

the overlapping portfolio methodology advocated by Fama (1998). Each month t,

we predict the returns for the following J months and construct a long and a short

portfolio as described above. The portfolios are kept for the following J months and

are liquidated at the end of month t+ J . In month t+ 1 we repeat this procedure and

construct new long and short portfolios. These portfolios are liquidated at the end of

month t+ J + 1. Therefore, after the start-up period, the aggregate portfolio consists

of J overlapping long-short portfolios.

In models with industry-specific time effects λ�t, we sort stocks separately within

each industry and construct industry-specific long and short portfolios. We add all

industry-specific long and short portfolios, weighted by the number of stocks in the

industry, to obtain the aggregate portfolio. Consequently, the aggregate portfolio is

industry neutral. The selection of stocks based on sorted expected returns is performed

within industries only.

Let RL,t be the return on the long portfolio in period t, RS,t the return on the

short portfolio and let yLS,t = RL,t − RS,t be the return differential. The performance

of the portfolios is evaluated using the standard performance attribution regression of

managed portfolios,

yLS,t = α+ δ′t−1ft + εt, (2.30)

where ft is the set of common factors (market return, SMB, HML, UMD) and δt−1 a

vector of conditional or unconditional factor loadings for the portfolio. We report ab-

normal returns (α) with both unconditional and conditional factor loadings. Following

Avramov and Chordia (2006) and Jagannathan and Wang (1996) we use the default

spread as conditioning variable. This implies the specification

δt = d0 + d1zt (2.31)

with z equal to the default spread.

The exposure to the factors will be different depending on the structure of the errors

in the panel specification. If the panel has a single time effect λt, the cross-sectional

predictions have not been risk-adjusted in the panel model. If the multi-factor asset

pricing model with factors ft would be correct, the expected returns could thus be
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2.5 Portfolio Management Implications

Table 2.6: Portfolio Performance

The table shows the performance of the long-short portfolios at different prediction horizons, alternative specifications

of the intercepts, and for different risk adjustments. Long-short portfolios are formed by selecting at each t the 30%

stocks for which
∑L

�=1Di�

(
τl + β′

lxit
)
is largest; short portfolios contain the 30% stocks with the lowest predicted

returns
∑L

�=1Di�

(
τl + β′

lxit
)
. All returns are equally weighted.

Panel A The table reports the intercept α in the performance regressions

yLS,t = α+ δ′t−1ft + ut

where ft is a set of common risk factors and δt−1 are risk factor loadings that are either constant or conditional. The

first row of results (δt = 0) refers to the raw average returns. The second row (FF4) includes the Fama-French market

(RMRf ), size (SMB), value (HML) and momentum (UMD) factors with constant factor loadings. In the third row

(Cond FF4) the conditional risk loadings are specified as

δt = d0 + d1zt,

with zt equal to the default spread.

Panel B reports the coefficients δt = d0 and t-statistics for the FF4 model.

Models are indicated in the header row by the coefficients that are pooled or industry-specific. Intercepts are

always industry specific (τ�). The columns labelled λt have a single time effects and pooled slope coefficients β; the

specification with (β�, λt) has industry-specific slopes; the model (β�, λ�t) contains industry-specific time effects and

slopes; finally the specification (β�, F ) contains industry-specific slopes and the Fama-French and Momentum factors

as proxy for the time-effects

One Month Three Months Six Months

λt β�, λt β�, λ�t β�, F λt β�, λt β�, λ�t β�, F λt β�, λt β�, λ�t β�, F

A: Intercepts (α)

0 1.56 2.02 1.63 1.84 1.43 1.92 1.48 1.70 1.39 1.80 1.40 1.57

(6.28) (10.23) (10.16) (7.62) (5.56) (9.39) (9.24) (7.62) (6.13) (9.71) (9.50) (7.98)

FF4 1.45 1.93 1.60 2.09 1.30 1.78 1.37 1.92 1.17 1.58 1.28 1.68

(5.71) (7.84) (8.63) (7.66) (5.58) (7.47) (7.78) (7.87) (5.89) (7.21) (7.42) (7.38)

CFF4 1.40 1.87 1.57 2.03 1.24 1.71 1.33 1.85 1.09 1.49 1.23 1.61

(5.75) (7.51) (7.50) (8.05) (5.76) (8.01) (7.73) (8.55) (5.93) (7.30) (7.12) (8.36)

B: Factor loadings FF4 (d0)

bM 0.32 0.24 0.19 0.22 0.30 0.24 0.17 0.19 0.27 0.21 0.16 0.15

(4.64) (4.25) (5.11) (3.44) (4.25) (5.16) (4.75) (3.85) (3.96) (3.81) (4.02) (2.83)

bs 0.59 0.34 0.34 0.23 0.69 0.42 0.40 0.25 0.58 0.34 0.35 0.33

(7.77) (4.75) (6.39) (3.12) (8.56) (6.37) (6.80) (3.72) (6.57) (4.85) (5.98) (5.64)

bh -0.01 0.16 0.03 -0.21 0.06 0.21 0.07 -0.09 0.19 0.31 0.09 -0.03

(0.12) (1.57) (0.45) (2.17) (0.54) (1.68) (0.94) (0.80) (1.21) (1.85) (0.95) (0.33)

bu -0.15 -0.16 -0.14 0.38 -0.15 -0.14 -0.07 -0.39 -0.05 -0.03 -0.03 -0.26

(1.63) (1.76) (1.94) (3.85) (1.67) (1.53) (1.17) (4.35) (0.55) (0.32) (0.55) (2.97)

R2 0.51 0.27 0.42 0.42 0.52 0.31 0.42 0.43 0.42 0.22 0.38 0.38
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strongly related to risk exposures and we would see significant elements in δ, while α

would be close to zero.

Table 2.6 reports average returns (α) of long-short portfolios at different prediction

horizons, alternative model specifications and risk-adjustment procedures. All models

have industry-specific intercepts (τ�). The first model in the first column of Table 2.6

is specified with a single time effect (λt) and pooled slope coefficients β. The second

model additionally has industry specific slopes (β�). The third specification contains

industry specific time effects (λ�t) and slopes (β�) and the fourth has industry-specific

slopes and the Fama-French and Momentum factors as proxies for the time effects.

For all combinations of model specifications and forecast horizons, α is considerably

larger than 1% per month. Risk adjustment hardly affects the average returns of the

portfolios. Analysis of the exposures to the common factors reveals that the long-

short portfolios, irrespective of the model specification and horizon, have significant

exposures to the market return and the SMB factor, but not to the HML and UMD

factor. Only for the fourth specification we find a significant exposure to UMD. Note

that industry neutral portfolios also have sizable alpha’s of comparable magnitude. The

industry neutrality rule in the specification with industry-specific time effects provides

a powerful and well-diversified portfolio.

The next step is to analyze the portfolio turnover. The lower the turnover, the

lower the transaction costs of a particular trading strategy. Table 2.7 reports the

transition frequencies among the long (L), neutral (N) and short (S) portfolios that are

constructed using the cross-sectional expected returns from the model specifications in

Table 2.6. Again, we provide information for the three forecasting horizons. The left

panel reports transition frequencies of stocks going from one portfolio to another in the

case of monthly forecasting. Table 2.7 shows that 83% of the stocks that are in the

long portfolio based on the first specification in month t, remain there in month t+ 1.

The same holds for stocks in the short portfolio: 83% of the stocks that are in the short

portfolio in month t remain there in month t+ 1. The three other specifications have

slightly higher turnover levels, which is most likely related to the increased relevance

of industries in the portfolio selection procedure. New (N) and exiting (EX) stocks are

equally distributed among the long, neutral and short portfolios.

The middle and right panels of Table 2.7 report the transition frequencies in the

case of three and six month forecasting horizons. A striking difference with the monthly
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2.5 Portfolio Management Implications

Table 2.7: Portfolio Turnover

The table reports transition frequencies among the long, neutral and short portfolios

that are constructed using the cross-sectional expected returns from different models.

The long portfolios contain the 30% stocks with the highest expected returns, the short

portfolios the 30% with the lowest expected returns, and the neutral portfolios the

remaining 40%. All stocks are equally weighted. Transition frequencies for portfolios

P and Q are the average percentages of stocks that go from P to Q through time.

The portfolio categories ”New” and ”EX” refer to stocks that were not in the data

set in period t and appeared in period t + 1, and that left the data set in period

t + 1, respectively. The table consists of four panels that show transition frequencies

for portfolios based on forecasting for one, three and six months. The panels refer to

models with a pooled time-effect and pooled slope β; with a pooled time effect and

industry-specific slopes β�; with industry-specific time-effects λ�t and slopes β�; and

finally (β�, F ) with industry-specific slope coefficients and the four Fama-French and

Momentum factor as proxy for the time-effects.

One month Three months Six months

To To To

Model From L N S EX L N S EX L N S EX

β, λt Long 83 16 0 1 94 5 0 1 96 2 1 1

Neutral 12 75 12 1 6 88 5 1 7 86 7 1

Short 0 16 83 0 0 4 95 0 1 2 96 1

New 40 39 21 - 39 39 22 - 38 38 24 -

β�, λt Long 78 19 2 1 92 5 2 1 95 2 2 1

Neutral 14 69 16 1 8 82 9 1 6 87 7 1

Short 2 21 76 1 2 5 92 1 2 2 95 1

New 37 35 27 - 37 35 28 - 36 34 30 -

β�, λ�t Long 75 22 2 1 92 5 2 1 95 2 2 1

Neutral 18 63 19 1 11 77 12 1 8 82 10 1

Short 3 22 75 1 2 5 92 1 2 2 95 1

New 38 35 28 - 37 34 29 - 34 37 29 -

β�, F Long 80 18 2 1 92 5 2 0 95 2 2 0

Neutral 13 70 16 0 8 82 10 0 6 86 8 0

Short 2 21 77 0 2 6 92 0 2 3 95 0

New 36 35 29 - 35 34 31 - 37 33 30 -
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results is the sharply reduced turnover. The persistence of the long portfolio, for exam-

ple, increases from 83% to 94% when the forecasting horizon grows from one to three

months. Longer forecasting horizons do not deteriorate returns, while simultaneously

drastically decreasing portfolio turnover. This result is found for all four specifications.

The turnover results clearly have important implications for portfolio managers

employing models that are of the same family of those presented in this paper. Re-

balancing strategies based on monthly expected return estimates result in a turnover

of 20% to update the long portfolios and 20% to update the short portfolios. This

implies a yearly turnover of 500%, which is far beyond the turnover thresholds used

in professional portfolio management. A strategy based on a six-month horizon would

imply a yearly turnover of just 100% and hence lower trading costs. At the same time,

expected returns are hardly influenced.

2.6 Individual effects

Adding individual effects, the basic panel model (2.3) becomes

yit = μi + β′xit + vit, (2.32)

Relative returns of stocks i and j now depend on the difference μi − μj , imply-

ing that expected returns on stocks i and j differ for some unobserved reason. The

cross-sectional variation in μi does tell us a lot about the unmodeled systematic cross-

sectional variation in the data, and thus about the goodness of fit. When the individual

effects μi make a significant contribution to the cross-sectional variation of expected

returns, there is much scope for improvement of the model. The larger the variance of

μi, the more scope for improvement.

Individual effects μi serve as a diagnostic, but not as a practical means for sorting

stocks. In searching for stocks with high expected returns, we would need to take into

account the estimates of μi for i = 1, . . . , N . These are likely to be poorly estimated,

as information on them can only come from the time-series dimension of the data.

Firms without a long history will have especially poorly determined individual effects.

Furthermore, individual firm returns are very noisy – that is exactly what usually

motivates portfolio formation – and the forecasting performance of the model will be

negatively affected by the noisy estimates of μi.
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2.6 Individual effects

Table 2.8: Individual Effects

The table reports estimation results for firstly a model with individual effects μi, pooled time effects λt and pooled slope

coefficients β and secondly a model with individual effects, pooled slope coefficients and the four Fama-French and momemtum

factors as proxy for the time effects. T-statistics are in parenthesis. The bottom line of the table reports a Hausman test for the

hypothesis that all slope coefficients in the models are equal to the slope coefficients in models where the individual effects are

replaced by industry dummies. The hypothesis is also tested for each firm characteristic separately with the t-test reported in

columns t.

One Month Three Months Six Months

(λt) t (F ) t (λt) t (F ) t (λt) t (F ) t

MV -2.90 6.85 -1.24 5.41 -8.30 8.17 -3.63 5.22 -15.81 8.59 -7.42 4.74

(8.70) (7.95) (9.65) (8.10) (9.19) (7.73)

BP 1.60 3.12 1.47 4.62 4.05 3.33 4.46 4.83 7.42 3.58 8.40 4.93

(2.65) (4.15) (3.22) (5.61) (4.24) (7.02)

CP 1.52 1.27 1.49 2.22 4.19 1.10 3.02 1.32 7.82 1.13 4.59 0.34

(1.71) (2.29) (1.89) (1.75) (1.92) (1.45)

DP -18.57 4.21 -18.60 6.45 -48.99 4.92 -55.41 7.27 -102.15 5.36 -116.21 6.59

(2.13) (-3.28) (2.44) (-4.25) (2.80) (4.40)

EP -1.81 2.35 -1.73 3.15 -6.17 2.67 -6.81 3.37 -10.70 2.98 -10.63 4.01

(1.35) (-1.88) (2.27) (3.56) (2.27) (3.09)

SP 0.07 0.01 0.21 3.13 0.18 0.03 0.60 3.73 0.54 0.40 1.52 4.47

(0.48) (2.17) (0.65) (2.55) (1.24) (3.45)

CFY1 0.15 1.61 0.07 0.38 -0.04 1.89 -0.12 0.41 0.10 1.85 -0.11 0.10

(1.64) (1.12) (0.26) (0.76) (0.48) (0.44)

R2-7 0.02 1.80 -0.03 0.39 0.13 1.90 -0.03 0.48 0.27 1.68 0.01 0.97

(0.42) (1.25) (1.88) (0.62) (3.04) (0.06)

R7-12 0.05 2.36 0.06 2.00 0.04 1.85 0.12 0.97 -0.09 1.45 0.16 0.70

(2.15) (3.47) (0.59) (1.96) (0.72) (1.34)

VOL 0.33 1.37 0.41 1.89 -0.57 2.54 -0.24 0.75 -1.24 2.55 -0.36 0.92

(1.65) (2.48) (1.83) (0.74) (2.85) (0.88)

52W -0.53 6.01 -0.26 4.19 -0.34 5.75 0.28 4.57 -0.72 4.63 0.29 4.49

(2.37) -1.25 (0.67) (0.48) (0.68) (0.21)

Ha 432.82 184.35 502.25 169.20 499.71 139.29

Because of the possible interaction between the individual effects and the explana-

tory variables, we will treat the μi’s as fixed effects and examine their effect on estimates

of the slope coefficients β. From the panel data literature it is known that random ef-

fects estimation is inconsistent if μi and the time-series averages of the characteristics

xit are correlated.

Correlation between the characteristics and μi arises for example with the momen-

tum effect. Since momentum is a function of lagged returns of stock i, it will be

positively correlated with μi. The larger the dispersion in μi, the bigger the effect on

the momentum coefficients in β, and the more likely it is to wrongly conclude that

momentum is significant when instead individual effects should have been included.

Conrad and Kaul (1998) and Jegadeesh and Titman (2002) both estimate how much

of the momentum profits can be explained by the cross-sectional variation of the un-
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conditional expected returns (the cross-sectional variance of μi).

Table 2.8 shows that individual effects have a significant impact on the parameter

estimates for some of the characteristics. In a specification with individual effects and

pooled slope coefficients (first column), the size effect becomes much more pronounced

in models with μi. The same results can be found in a specification with the Fama-

French and Momentum factor as a proxy for the time effect. The positive covariance

between MV and μi implies that big firms which have been big during the entire sample

period, do not perform much worse than small firms that have been small during the

entire sample period. Firms that were big for a long time, but have fallen in size

however, perform very well. Apparently, the size effect picks up some long-term return

reversal. Again, these results are robust to the forecasting horizon.

The dividend-to-price effect completely disappears and even obtains the opposite

sign. A similar sign change occurs for the long-term volume characteristic, which

becomes significantly negative, as we would expect from the literature on turnover.

Moreover, the Hausman test indicates that the two sets of parameters are indeed

significantly different if individual effects μi are included. Not surprisingly, the t-

statistics for the differences between the individual elements of β are especially large

for MV, DP and 52W. The momentum variables are generally not affected by the

inclusion of individual effects. This result is consistent with Jegadeesh and Titman

(2002), who also find that cross-sectional differences in expected return cannot explain

profits from momentum strategies.

2.7 Alternative factor specifications

Above, we correct for cross-sectional correlation in the error terms by either using

pooled time effects λt, industry-specific time-effects λ�,t or observed factors. In this

section, we consider specifications that additionally correct for unobserved factors by

either adding the cross-sectional average of stock returns, the cross-sectional averages

of stock returns and explanatory variables or the principal components of individual

stock returns to the three Fama French factors and the momentum factor. Details on

the estimation procedures are given in section 5.4.1.1

1We also considered taking the principal components of yit and xit as recommended in Kapetanios

and Pesaran (2007). We do not report this specification here, since the outcomes are very similar to

the specification that uses cross-sectional averages of both yit and xit.
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Table 2.9: Pooled Parameter Estimates: alternative specifications

The table reports estimation results for the pooled coefficient model

yit =

L∑

�=1

Di�τl + β′xit + δ′ift + εit

using different specifications to correct for the (un)observed factors ft. Each column

contains model coefficients and the respective absolute t-statistics in parentheses. For

convenient scaling all entries for R2-7 and R7-12 are multiplied by six. Returns are

either measured over a one month, three month or six month period. All models contain

industry-specific intercepts. The specification with Y uses the three Fama-French factors,

the momentum factor and the cross-sectional average of stock returns to correct for

factors. Model Y X adds the cross-sectional average of xit. Finally, specification PY

uses the principal components of individual stock returns instead of the cross-sectional

averages. Absolute t-statistics are reported in parentheses. The standard errors have

been computed using the robust estimator of the covariance matrix in (2.16).

One Month Three Months Six Months

Y Y X PY Y Y X PY Y Y X PY

MV -0.50 -6.46 -0.55 -1.40 -17.07 -1.70 -3.10 -29.31 -3.57

(7.06) (15.24) (9.07) (6.55) (13.18) (11.18) (7.51) (11.10) (10.54)

BP 0.46 4.95 0.26 1.87 13.39 1.69 4.62 19.85 3.72

(2.46) (10.83) (1.42) (2.79) (12.92) (3.46) (2.86) (12.31) (4.21)

CP 0.69 2.71 1.15 2.39 5.00 3.29 5.40 9.67 7.14

(1.38) (2.88) (2.65) (1.74) (2.31) (2.60) (2.00) (3.03) (2.43)

DP 12.60 -25.06 6.07 35.36 -55.17 3.99 56.80 -63.75 -19.91

(4.01) (2.98) (2.04) (4.00) (2.92) (0.50) (2.82) (1.86) (0.98)

EP -0.32 -0.33 -0.73 -3.36 -3.82 -4.61 -7.96 -9.30 -8.59

(0.50) (0.38) (1.02) (2.16) (1.86) (2.82) (2.22) (4.06) (2.68)

SP 0.04 0.43 0.01 0.23 1.26 0.06 0.67 2.25 0.67

(0.69) (3.27) (0.11) (1.75) (3.14) (0.44) (2.37) (2.82) (2.33)

CFY1 0.14 0.07 0.13 0.05 -0.28 -0.04 0.04 -0.31 -0.06

(2.52) (1.29) (2.46) (0.41) (2.90) (0.36) (0.18) (2.66) (-0.31)

R2-7 -0.02 -0.10 -0.03 -0.05 -0.15 -0.07 -0.14 -0.18 -0.23

(1.19) (5.48) (2.40) (1.07) (3.88) (1.80) (2.04) (2.28) (3.01)

R7-12 0.03 0.07 0.02 0.04 0.12 0.00 0.07 0.10 -0.06

(2.11) (4.16) (1.86) (0.88) (2.92) (0.01) (0.76) (1.61) (0.70)

VOL 0.20 0.24 0.21 -0.35 -0.53 -0.45 -0.90 -0.82 -0.37

(1.75) (1.79) (1.86) (1.60) (2.53) (2.55) (3.08) (3.13) (1.23)

52W 0.37 0.23 0.36 1.93 0.49 2.32 4.25 -0.32 4.28

(2.85) (0.98) (3.08) (7.74) (0.91) (10.50) (8.41) (0.35) (8.55)
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Table 2.9 shows the results. We find that yit contains three principal components.

In general, the results for the models that use the cross-sectional averages of yit (first

column at every horizon) or the principal components of yit (third column) give similar

results as above. Size has again a negative coefficient of similar magnitude. DP is again

an important predictor. However, it is remarkable that its coefficient is much smaller

for the third specification. Another difference is that 52W is suddenly also significant

for both specifications at the shortest horizon. The similarity of the results suggests

that the estimated firm-specific factor loadings have some, but limited, correlation with

the characteristics. Overall standard errors of the augmented factor models are smaller

than in the benchmark models as a result of the increased fit due to the common factors.

The estimates for the model that uses the cross-sectional averages of both the

dependent as well as the explanatory variables (second column) are completely different

from all the other models considered. In general, estimated coefficients are much larger

than before. The amount of KN additional nuisance parameters seems to produce

exceptionally noisy estimates of β. Therefore, we conclude that this specification is

misspecified.

Finally, table 2.10 shows the portfolio performance for the alternative factor spec-

ifications. The table indicates that the results for the first and third specification are

again very similar to previously reported results. Abnormal returns are of similar mag-

nitude. Interestingly, the first column shows that the addition of the cross-sectional

average of stock returns leads to a portfolio with large abnormal returns, but without

a strong factor structure at the one month horizon. It only loads on the momentum

factor and its R2 in the performance regression is only 20%. At longer horizons, the

factor structure is however more pronounced.

The second specification is not able to generate significant abnormal returns and

loads heavily on the market, the size and the momentum factor. This confirms our

suspicion that this model is misspecified.

We conclude that our results are robust to changes in factor specifications. Es-

timated coefficients, abnormal returns and factor loadings are very similar to results

reported in previous sections.
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Table 2.10: Portfolio Performance: alternative specifications

The table shows the performance of the long-short portfolios at different prediction horizons

for different methods to correct for (un)observed factors. Long-short portfolios are formed by

selecting at each t the 30% stocks for which
∑L

�=1Di�

(
τl + β′

lxit
)
is largest; short portfolios

contain the 30% stocks with the lowest predicted returns
∑L

�=1Di�

(
τl + β′

lxit
)
. All returns are

equally weighted.

Panel A The table reports the intercept α in the performance regressions

yLS,t = α+ δ′t−1ft + ut

where ft is a set of common risk factors and δt−1 are risk factor loadings that are either constant

or conditional. The first row of results (δt = 0) refers to the raw average returns. The second

row (FF4) includes the Fama-French market (RMRf ), size (SMB), value (HML) and momentum

(UMD) factors with constant factor loadings. In the third row (Cond FF4) the conditional risk

loadings are specified as

δt = d0 + d1zt,

with zt equal to the default spread.

Panel B reports the coefficients δt = d0 and t-statistics for the FF4 model. All models contain

industry-specific intercepts and industry-specific slope coefficients. The specification with Y

uses the three Fama-French factors, the momentum factor and the cross-sectional average of

stock returns to correct for factors. Model Y X adds the cross-sectional average of xit. Finally,

specification PY uses the principal components of individual stock returns instead of the

cross-sectional averages.

One Month Three Months Six Months

Y Y X PY Y Y X PY Y Y X PY

A: Intercepts (α)

0 1.83 0.30 1.69 1.63 0.34 1.57 1.42 0.31 1.44

(10.42) (1.15) (7.27) (8.30) (1.21) (6.50) (7.45) (1.23) (6.65)

FF4 1.95 0.42 1.92 1.73 0.55 1.73 1.49 0.46 1.51

(8.57) (1.65) (8.35) (8.37) (1.88) (7.21) (7.85) (1.85) (7.19)

CFF4 1.91 0.35 1.87 1.66 0.48 1.67 1.42 0.38 1.44

(8.64) (1.38) (8.61) (9.26) (1.74) (7.77) (8.76) (1.56) (8.27)

B: Factor loadings FF4 (d0)

bM 0.08 0.35 0.24 0.12 0.26 0.26 0.13 0.23 0.19

(1.76) (5.87) (5.32) (3.04) (3.16) (6.45) (3.11) (3.07) (5.13)

bs 0.02 0.39 0.26 0.10 0.43 0.20 0.20 0.40 0.16

(0.27) (5.33) (3.21) (1.33) (6.35) (1.92) (3.14) (6.14) (1.85)

bh 0.13 -0.16 -0.05 0.35 -0.29 0.16 0.37 0.15 0.36

(1.59) (1.64) (0.51) (3.37) (2.48) (1.21) (4.01) (1.56) (2.21)

bu -0.25 -0.35 -0.43 -0.36 -0.36 -0.48 -0.35 0.31 -0.39

(3.16) (3.74) (5.14) (4.37) (3.39) (5.08) (4.41) (3.08) (3.93)

R2 0.20 0.52 0.47 0.40 0.49 0.45 0.43 0.43 0.41
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2.8 Conclusion

We use a panel data model to explain the cross-section of individual stock returns.

Our models introduce industry-specific slope coefficients and time effects, and multiple

forecasting horizons extending to six months.

Combining firm characteristics based on a multivariate prediction model clearly

enhances the predictive power compared to univariate sorting methods. Size, dividend-

to-price and turnover are the most powerful predictors in a multivariate context. Short-

term momentum is mainly significant for longer forecasting horizons consistent with the

holding periods in portfolio-based momentum strategies.

The main result of the empirical analysis is that industry effects are important in

cross-sectional prediction strategies. These effects can be best captured by industry-

specific coefficients and intercepts. Simulations of long-short portfolio strategies result

in portfolios with a low turnover and substantial abnormal returns. These portfolios

have significant exposures to the market and the size factor, but virtually no exposure

to the value and momentum factor.

Another contribution of this paper is the introduction of forecasting horizons ex-

ceeding the one-month frequency typically used in previous studies on the cross-section

of stock returns. Longer forecasting horizons drastically reduce the portfolio turnover

and hence transaction costs, do not deteriorate alpha’s, while having the same risk ex-

posures as one month horizon strategies. Some portfolios are characterized by high and

significant abnormal returns and very low turnover. Finally, we consider several speci-

fications to model the cross-sectional dependence of the error terms and conclude that

our results are robust. This holds for specifications that contain pooled time-effects,

industry-specific time effects and factor models with/without unobserved factors.

Whereas we emphasized specification issues of the panel, ultimately, the predictive

implications of the model should be subjected to an out-of-sample test. A precise out-

of-sample analysis of the performance of various portfolio strategies is outside the scope

of the present paper. Since we selected firm characteristics that the previous literature

has identified as significant predictors in univariate or bivariate portfolio strategies, we

ex ante know that the variables in our panel have predictive power. But this predictive

power was established in very much the same sample period as we have used to develop
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our multivariate model. Another possible extension could be to use a conditional model.

We have not used time-varying slopes in order to limit the in-sample data snooping.

Finally, the inclusion of individual effects in the models shows that some explanatory

variables are still missing in our analysis. Consequently, this strand of the literature

should continue to explore other characteristics and specifications.
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3

Long-term strategic asset

allocation: an out-of-sample

evaluation1

The objective of this paper is to find out whether the expected potential gains from

strategic asset allocation can be realized in an out-of-sample test. Firstly, we find that

long-term investors should time the market if they use our proposed shrinkage prior.

This prior downplays the predictability of asset returns and leads to superior out-of-

sample results compared to a standard uniform prior. Important is the use of a utility

metric to evaluate prediction models. Shrinkage limits the losses in extreme negative

events and this is what risk-averse investors value the most. Secondly including the

hedge component of strategic portfolios only leads to a modest performance improve-

ment out-of-sample. Repeated myopic strategies perform almost as well as a dynamic

asset allocation strategy. Monte Carlo simulations relate this finding to estimation er-

ror, i.e. the estimated repeated myopic and dynamic portfolios approximate the true

unknown optimal dynamic portfolio equally well. Next, our paper shows that incor-

porating parameter uncertainty leads to a small performance improvement. Finally,

portfolio weight restrictions improve performance for bad models and hurt the good

models.

1This chapter is based on Diris, Palm, and Schotman (2011).
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3. LONG-TERM STRATEGIC ASSET ALLOCATION: AN
OUT-OF-SAMPLE EVALUATION

3.1 Introduction

Individuals and institutions (e.g. pension funds) invest financial wealth in different

asset classes to meet their long-term goal. Individuals save money for retirement.

Pension funds invest on behalf of their participants to provide them with retirement

income. Merton (1969, 1971) showed that under changing investment opportunities,

the optimal portfolios of these long-term investors (their strategic asset allocations)

differ from the ones of short-term investors. Long-term investors hold hedge portfolios

that anticipate future changes in the investment opportunities. Empirically, the main

driving force in these hedge portfolios is the mean reversion of stock returns, which

implies that equity is less risky for long-term investors than other types of assets. A

second element of the strategic portfolios is inflation and interest rate risk. Long-term

real returns from nominal bonds are subject to inflation risk, making them unattractive

for long-term investors. Similarly short-term T-bills are not risk-free in the long-run,

because they must be rolled over repeatedly. Long-term investors have to take these

risks into account in their hedge portfolios. If investment opportunities are changing,

optimal long-term portfolio allocation requires that investors dynamically adjust the

portfolio weights every period.1

By now, there exists a rich literature (e.g. Campbell, Chan and Viceira, 2003

and Brandt, Goyal, Santa-Clara and Stroud, 2005) that shows how to calculate the

hedge portfolio and investigates the utility gains from these long-term strategic asset

allocations in-sample. However, there are reasons to doubt the utility gains from strate-

gic portfolio choice in practice, since the models of asset returns might be subject to

substantial estimation error. First, Goyal and Welch (2008) document the poor out-

of-sample predictability of equity returns, thus casting doubt on the mean reversion of

stock returns. If returns are indeed nearly unpredictable, the optimal portfolio com-

position should not exhibit much time variation.2 Secondly, strategic asset allocation

is even more demanding than myopic portfolio choice. The strategic portfolio consists

of a speculative component that depends on the predictions of single period returns

and a hedge component that is sensitive to the long-run predictions of returns and

1See Campbell and Viceira (2002) for a broad overview of strategic asset allocation.
2Formally, returns are unpredictable when the conditional distribution of future returns at time

t is equal to the unconditional distribution for all t. It is common in the literature to focus on

(un)conditional means when assessing predictability. We follow this convention here.
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their covariance with current returns. The strategic portfolio is affected by estimation

error in both components, whereas the myopic portfolio is only affected by errors in

the speculative component. Therefore, the strategic portfolio is more susceptible to

estimation error and might not perform very well in an out-of-sample test. Thirdly,

unrestricted optimized portfolios for long-term investors based on estimates of the un-

derlying dynamics show wildly fluctuating portfolio weights. The portfolio composition

is even more extreme than the portfolio for short-term investors. This phenomenon is

acknowledged by Campbell, Chan and Viceira (2003) among others. These extreme

weights are subject to what is called ”error maximization” and magnify any small

misspecification in the return prediction model.

The performance measurement of strategic portfolios is still an open question in

the academic literature, despite the relevance for (institutional) investors and the is-

sues raised above. Therefore, our main objective in this paper is to find out whether the

potential gains from strategic portfolios can be realized in an out-of-sample test. Be-

cause the gains from hedge demands apply to long investment horizons, performance

evaluation of strategic portfolio choice requires long-term returns. Existing studies,

however, use a single period return metric and thus cannot evaluate the out-of-sample

utility gains from hedge demands.1

Our long-term investor optimizes the expected utility of wealth at a five year horizon

using power utility. She is allowed to invest in a real T-bill, a stock index and a 5-year

government bond. The predictive state variables are the price-earnings ratio, yield

spread, and three-months T-Bill rate.2 We measure the portfolio performance using

the certainty equivalent returns based on the average realized utility over repeated five

year horizons. In our analysis, we look at both the certainty equivalent return and the

hedge component.

We use Bayesian time-series methods to estimate a model of investment opportu-

nities.3 We use a general Bayesian shrinkage prior advocated by Berger and Straw-

dermann (1996) and adapted to vector autoregressions by Ni and Sun (2003). Such a

1Some recent examples containing short-term out-of-sample results are Campbell and Thompson

(2008), Goyal and Welch (2008) and Wachter and Warusawitharana (2009).
2As a robustness test, we also consider the dividend-yield as a predictor instead of the price-earnings

ratio
3Some example from the growing Bayesian literature include Merton (1980), Cremers (2002),

Wachter and Warusawitharana (2008), Jorion (1986), Black and Litterman (1992), Avramov (2002)

and Pastor and Stambaugh (2000).
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Bayesian prior provides more plausible parameter estimates than a uniform prior such

that optimal portfolio strategies become less aggressive (risky) and therefore avoid im-

plausible extreme positions. More specifically, the prior shrinks slope coefficients in the

predictive regressions for excess returns on stocks and bonds to zero, and shrinks the

coefficients of the state variables to a random walk. It downplays the predictability in

the data and therefore corresponds to the prior information of an investor who is skep-

tical with respect to the predictability of returns. Its generality allows for applications

in larger systems than the setting in Wachter and Warusawitharana (2009).

We analyze the performance of this shrinkage prior, in particular whether it out-

performs a standard uniform prior and whether these differences are robust to changes

in the set-up. Much of the portfolio choice literature (e.g. Barberis, 2000) advocates

the use of Bayesian decision-theory to account for parameter uncertainty. Supposedly,

it leads to more robust portfolios and is another way to avoid the extreme ”wacky”

weights (Cochrane, 2007). The second method we use, called plug-in method, ignores

parameter uncertainty and conditions on a given set of estimated parameters (using the

posterior mean). A third way to stabilize portfolio weights are short-sell constraints as

argued in Jagannathan and Ma (2003). We consider specifications with and without

constraints on the portfolio weights.

For the set-up that ignores parameter uncertainty (with unrestricted weights), Ju-

rek and Viceira (2006) derive closed form solutions for the optimal strategic portfolios.

For the version of the model that accounts for parameter uncertainty as well as the

plug-in version that uses restricted portfolio weights we need numerical optimization.

Our performance analysis requires a fast and stable numerical algorithm. We succeed in

accelerating the method of Brandt, Goyal, Santa-Clara and Stroud (2005) by introduc-

ing a quadratic interpolation step that dramatically reduces the grid size of portfolios

that must be evaluated. This makes our extensive out-of-sample analysis feasible.

Not surprisingly we find that a naive implementation of strategic asset allocations

that uses a uniform prior can lead to disastrous performance in terms of certainty

equivalence returns. Weights are wildly fluctuating and this leads to periods with badly

performing portfolios. More interestingly, we find that using Bayesian shrinkage priors

leads to superior out-of-sample performance for long-term investors. Both the strategic

as well as repeated myopic portfolios substantially and significantly outperform an

unconditional strategy that ignores predictability and hedging. Changing portfolio
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allocations over time pays off for a long-term investor. Results are robust to small

changes in the setup (such as different predictor variables) and the optimization as

long as we use the shrinkage prior.

It turns out that it is very important to use a utility metric for assessing the per-

formance of a prediction model. Risk averse investors evaluate big gains and big losses

differently, since they want to avoid big losses at all costs. Due to this asymmetry

in the utility function the best return prediction model for a risk averse investor is

not necessarily the one that that has the lowest prediction error. It is the model that

helps the investor avoid the big extreme (negative) events. It turns out that prediction

models based on the shrinkage priors are best at avoiding these extreme events.

In terms of expected utility, the strategic portfolio performs only marginally better

than the repeated myopic portfolio, even though both portfolios differ most of the time

in terms of their asset mix. We conduct a Monte Carlo study to analyze the perfor-

mance of the myopic and strategic portfolios rules. In simulated data, containing some

predictability, the estimated myopic rule is more aggressive/riskier than the true my-

opic portfolio rule. By being more aggressive, the estimated myopic rule moves towards

the optimal strategic rule. The estimated strategic rule is also too aggressive, thereby

overshooting the true optimal rule. Compared to the truly optimal strategic portfolio,

the estimated myopic rule is not aggressive enough, whereas the estimated strategic

rule is too aggressive. In the end the estimated myopic and strategic rules produce

almost the same average realized utility. Both rules suffer from estimation error, but

the strategic rule is hurt more by estimation error than the (repeated) myopic rule.

The hedge component of the strategic portfolio only marginally improves performance

compared to a repeated myopic strategy that ignores this hedge component.

Accounting for parameter uncertainty improves performance slightly. Brandt, Goyal,

Santa-Clara, and Stroud (2005) show that parameter uncertainty mainly has an impact

on the weights of the hedge portfolio. As this hedge component does not have a big

impact on performance (positively or negatively) in general, it is not surprising that

parameter uncertainty does not have a large impact on performance. Portfolio weight

restrictions have a larger impact on results. If portfolio weights are restricted, the best

models perform worse and the bad models perform better.

The remainder of this article is organized as follows. Section 2 presents the data we

use. Sections 3-5 describe respectively the general methodology, the modeling frame-
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work and the solution method. Section 6 consists of the out-of-sample results. Section

7 provides some robustness tests and finally section 8 concludes. The appendix con-

tains technical details on the estimation techniques and the numerical optimization

algorithm.

3.2 Data

Our empirical analysis is based on monthly data for the US stock and bond market.

We use data on three assets and two sets of three predictor variables; i.e. the nominal

yield, the yield spread and either the price-earnings ratio or the dividend yield.

The monthly data set starts in February 1954 and ends in December 2006. The first

three variables are log returns on different types of assets.1 The first variable is the

ex post real T-bill rate which is the difference between the log return (or lagged yield)

on the 3-month T-bill, obtained from the FRED website2, and log inflation, obtained

from the Center for Research in Security Prices (CRSP). The second variable is the

excess log stock return, which is defined as the difference between the value weighted

log return on the NYSE, NASDAQ and AMEX market (including dividends) and the

log return on the 3-month T-bill. The third variable, the excess log bond return, is

defined in a similar way, but it uses the five-year bond return from CRSP.

The sets of predictor variables have been shown to predict stock and/or bond returns

in-sample. However, their out-of-sample predictive power is doubtful as argued in

Goyal and Welch (2008) for stock return predictability. Fama and Schwert (1977) and

Campbell (1987) among others show that the log nominal yield on the 90-day T-Bill

predicts both stock and bond returns. Next, the log dividend-to-price ratio is defined

as the log of the ratio of the sum of dividend payments over the past year divided by the

current stock price. Dividend payouts are extracted from stock data by combining the

value-weighted return including dividends and the index level excluding dividends of

the NYSE, NASDAQ and AMEX market. Campbell and Shiller (1998) show that this

ratio predicts stock returns. The log yield spread is defined as the difference between

the log yield on a 5-year bond obtained from the FRED site and the log yield on

the 90-day T-Bill. This spread forecasts stock returns and bond returns according to

1We use log asset returns when estimating our econometric model. However, we transform the log

asset returns into simple returns when evaluating portfolio performance.
2http://research.stlouisfed.org/fred2
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Table 3.1: Summary Statistics

This table reports the means, standard deviations, minima, maxima and AR(1) coefficients

for the ex post T-bill rate (Rtbill), the excess stock return (Xs), the excess bond return

(Xb), the nominal yield (Ynom), the dividend-to-price ratio (DP ), the price-earnings ratio

(PE) and the yieldspread (Yspr). The monthly data set starts in February 1954 and ends

in December 2006. Percentages are given as fractions.

Rtbill Xs Xb Ynom DP PE Yspr

Mean 0.0010 0.0048 0.0011 0.0501 -3.5339 2.8565 0.0112

Std dev. 0.0030 0.0428 0.0148 0.0261 0.3820 0.4141 0.0091

Min -0.0112 -0.2607 -0.0692 0.0058 -4.5637 1.8929 -0.0160

Max 0.0112 0.1483 0.0898 0.1443 -2.8452 3.7887 0.0421

AR(1) 0.3831 0.0722 0.1089 0.9837 0.9930 0.9968 0.9193

Campbell (1995) and Fama and French (1989). The log of the price-earnings ratio is

obtained from the Irrational Exuberance data, available from the website of Professor

Shiller.1 It is defined as the log of the current price over the lagged sum of earnings

over the past 10 years. Campbell and Shiller (1998) show that this yield is a predictor

of stock returns. In section 3.6, we use the the nominal yield, the price-earnings ratio

and the yield spread. As a robustness check, we replace the price-earnings ratio by the

dividend-to-price ratio in section 3.7.

These asset return and predictor variables are commonly used in the strategic asset

allocation literature, see e.g. Campbell, Chan, and Viceira (2003) and Jurek and Viceira

(2010). Table 4.1 provides summary statistics of our monthly data.

3.3 Methodology

This section describes the methodology we use in this paper. The first subsection

explains the general set-up of our out-of-sample analysis. The second subsection ex-

plains the difference between the plug-in and decision-theoretic method. For the plug-

in method, estimates are substituted for the unknown parameters in the predictive

distribution function. The last subsection gives some intuition about the relative per-

formance of different strategies.

1http://www.econ.yale.edu/ shiller/data.htm
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3.3.1 General set-up

Define the n× 1 vector yt as follows

yt =

⎛⎝ rtbill,t
xt
st

⎞⎠ , (3.1)

where rtbill,t is the real return on the T-bill, xt is a vector of excess returns on stocks

and bonds, and st is a vector of predictor variables. Vector st either consists of the

nominal yield Ynom,t, the price-earnings ratio PEt and the yield spread Yspr,t or the

nominal yield, the dividend-yield DPt and the yield spread. Hence, n = 6.

We consider investors who start with initial wealth normalized to 1 and maximize

expected utility over terminal wealth K periods in the future by investing in the real T-

bill, a stock index and a government bond. We choose power utility for preferences. We

consider both restricted and unrestricted portfolio weights. Restricted weights impose

short-sell constraints.

More formally, the investor has power utility with γ > 1 and chooses portfolio

weights wt, ......wt+K−1 such that the value function at time point t is maximized

Vt(K,Zt,Wt) = max
wt,...,wt+K−1

E

(
W 1−γ
t+K

1− γ

∣∣∣∣Zt
)

(3.2)

subject to the budget constraint

Ws+1 =Ws

(
1 + w′

sRs+1

)
, s = t, ....t+K − 1, (3.3)

where Zt are conditioning variables that summarize all information available at time t,

Wt is the wealth at time t, γ is a constant relative risk aversion parameter and Rs+1 is

the vector of simple returns on the assets in period s+ 1. Portfolio weights add up to

1. Section 3.3.2 explains that the conditioning variables Zt are equal to vector yt under

our assumptions and therefore we replace Zt by yt in the following.

Since initial wealth is 1, the following equality holds

Wt+K =

t+K−1∏
s=t

(
1 + w′

sRs+1

)
. (3.4)

We consider two types of strategies: a dynamic strategy and a myopic strategy. The

dynamic strategy is the optimal solution to the long-horizon problem in equation (3.2)
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and contains both a myopic as well as a hedging component, defined as the difference

between the dynamic and the myopic strategy. The myopic strategy ignores the long

horizon, sets portfolio weights as if the remaining horizon is only one period and hence

ignores the hedging part. More formally, the dynamic wt,D and myopic strategies wt,M

are defined as follows

{wt,D, ..., wt+K−1,D} = argmaxE

⎧⎪⎨⎪⎩
(∏t+K−1

s=t (1 + w′
s,DRs+1)

)1−γ
1− γ

| yt

⎫⎪⎬⎪⎭ (3.5)

{ws,M} = argmaxE

⎧⎪⎨⎪⎩
(
1 + w′

s,MRs+1

)1−γ
1− γ

| ys

⎫⎪⎬⎪⎭ , s = t, ., t+K − 1. (3.6)

If horizon K = 1, the two strategies are obviously identical.

An econometric model is needed to evaluate the conditional expectation in equation

(3.2). Following among others Campbell, Chan, and Viceira (2003) and Jurek and

Viceira (2010), the dynamics of asset returns and state variables are assumed to follow

a VAR(1)

yt+1 = B0 +B1yt + εt+1, (3.7)

where B0 is a vector of intercepts, B1 is a matrix of slope coefficients and εt+1 is a

vector of errors for which we make the following common assumption

εt+1 ∼ N(0,Σ). (3.8)

For future reference, it is useful to introduce the following decomposition for Σ, consis-

tent with equation (3.1)

Σ =

⎛⎝ σ2tbill σ′tbill,x σ′tbill,s
σtbill,x Σx Σ′

x,s

σtbill,s Σx,s Σs

⎞⎠ . (3.9)

We take a Bayesian perspective and obtain posterior distributions for the parameters

for various prior distributions. We either use a uniform prior or a shrinkage prior,

details are explained below.

In the portfolio choice literature, there are two methods that prescribe how to use

these estimation results. The plug-in method substitutes parameter estimates for the
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true parameters. A second method acknowledges that there might be parameter uncer-

tainty which can be taken into account by the posterior distribution of the parameters.

This is the decision-theoretic method.

When making decisions, investors need to translate data into an econometric model

and the econometric model into portfolio allocation rules. Different choices in this

process lead to different portfolio weights. We mainly focus on whether investors should

actively time the stock and bond market, whether they should incorporate the hedge

portfolio and whether the shrinkage prior leads to improved results over the uniform

prior. In order to tackle these issues, we consider the following choices for investors

with risk aversion level γ ranging from 2 to 5 to 10:

• Uniform or shrinkage prior (2 choices)

• Dynamic or myopic strategy (2 choices)

• Plug-in or decision-theoretic method (2 choices)

• Restricted or unrestricted portfolio weights (2 choices).

We have to be careful in calculating and evaluating portfolio strategies for all com-

binations above. Firstly, although an investor with power utility can go short if she

would be able to trade in continuous time, this is not possible in discrete time. Her

expected utility is not finite in the latter case. However, many papers (e.g. Campbell,

Chan, and Viceira (2003), Jurek and Viceira (2010)) that use the plug-in method still

consider shortselling in a discrete time setting by using solution methods that approxi-

mate the continuous time solution. We follow this standard in the literature and report

results for the plug-in method using unrestricted weights. Branger, Breuer, and Schlag

(2010) analyze this common practice and conclude that a naive implementation of a

continuous time strategy in discrete time is viable as long as derivatives are not part

of the asset menu.

Secondly, the tails of the posterior predictive distribution of asset returns are fatter

than the tails of the normal distribution if parameter uncertainty is incorporated. Since

all assets, even the T-bill, are risky in our setting, this implies that the expected utility

of all portfolio strategies is minus infinity unless we make a slight modification.1 We

1The T-bill is risky due to inflation risk.
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solve this problem by imposing a lowerbound of -20% on the monthly return on the real

T-bill rate. This guarantees that at least some portfolios have finite expected utility

under the decision-theoretic approach. However, portfolios that involve short-selling

do not have finite expected utility under the decision-theoretic method. The optimal

portfolio in such a setting therefore exactly coincides with the optimal portfolio in a

setting with restricted portfolio weights. Therefore, we do not report these results

separately.

Hence, for all three risk aversion levels we consider 12 different specifications. Fur-

thermore, we also calculate five benchmark specifications. Firstly, the 1/N rule that

invests one third of the wealth in each asset. This fixed rule does not depend on

data. Next, we consider rules that dogmatically impose that excess stock and bond

returns are unpredictable, either combined with restricted or unrestricted weights and

a myopic or dynamic strategy.1 Investors that follow these rules do not actively time

the stock and bond market. In order to limit the total number of specifications, we

combine the latter rules only with the plug-in method. The solution method we use

depends on whether weights are (un)restricted, what kind of strategy we use (myopic

or dynamic) and how we use the econometric estimation results (plug-in method or

decision-theoretic method).

In the out-of-sample analysis, our first investor has an investment horizon of K

months and uses all data available until period tstart to choose her first portfolio weights

wtstart . In the next period tstart+1, her investment horizon is K−1 and she updates her

information set to choose portfolio weights wtstart+1 etcetera. In period tstart +K − 1,

her investment horizon is 1 period and she uses all data until that period to choose

her last portfolio weights wtstart+K−1. This sequence of K portfolio weights results in

exactly one terminal wealth value at time tstart +K, the end of the horizon. The next

investor follows a similar strategy but she starts in period tstart +1 and ends in period

tstart + K + 1 with again exactly one terminal wealth value. We repeat this analysis

for many investors, all with horizon K, who start their strategies one month after each

other. The last investor starts in T − K and ends in T , the end of our sample. In

this way, we obtain a time series of terminal wealth values and a time series of realized

utility values. This sample of realized utility values is used to measure performance.

1The dynamic and myopic specifications are not equal in this setting, since the expected real T-Bill

rate is assumed to vary over time.
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It provides a measure of out-of-sample performance of investors, since we only use

information that is available to investors in real time.

In setting up the out-of-sample experiment, we need to make several choices. Firstly,

we choose our starting date tstart to be equal to February 1974 in order to have enough

initial observations (20 years) to estimate a model and to have a representative out-of-

sample period. This choice is identical to the choice made in Wachter and Warusaw-

itharana (2009). Secondly, we choose the investment horizon K = 60 months. This is a

medium to long-term horizon and gives us almost 7 non-overlapping out-of-sample in-

vestment periods. Next, every month we allow investors to use all available information

up to this month to update their portfolio holdings. This means that we re-estimate

our models every month to include the newest observations using an expanding data

window. Finally, we use the certainty equivalence return (CER) as performance cri-

terium. It is the riskfree return that would make investors indifferent between following

a strategy or accepting this riskfree real return. The CER is a monotone transforma-

tion of average utility values U realized over the out-of-sample investment periods and

is given as follows

CER =
(
Ū(1− γ)

) 1
1−γ − 1. (3.10)

In the tables, we report the annualized certainty equivalence returns (1 + CER)
1
5 − 1.

A small note on methodology. The strategic asset allocation literature uses both

Bayesian and frequentist methods for inference. The former are mainly combined with

the decision-theoretic method while the latter are usually combined with the plug-in

method. We choose the Bayesian perspective. Two important practical reasons are

that it is conceptually (more) straightforward (i) to include parameter uncertainty

(the decision-theoretic method) in the decision process and (ii) to set-up a shrinkage

estimator. It would however also have been possible to use frequentist techniques. A

frequentist econometrician could use a bootstrap to incorporate estimation uncertainty

in finite samples and could choose from a large array of shrinkage estimators (e.g. ridge

regression) to estimate the models.1

1On a deeper more philosophical level, the methodology in our paper combines the Bayesian way

for inference and making predictions with some frequentist elements (repeated out-of-sample strategies,

significance tests as a robustness check in section 3.7.1) when evaluating predictions (portfolios) out-

of-sample. In fact, many papers use such a combination implicitly, e.g. Avramov (2002), Wright

(2008), Cremers (2002) etcetera. We view our out-of-sample set-up as the best approximation of the

environment a long-term investor faces in real-time.
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3.3.2 Plug-in method versus decision-theoretic method

In this section, we explain how to use the results from the econometric model. The first

method is the plug-in method that treats the parameter estimates as the true values,

ignoring any form of parameter uncertainty. This gives the following result for the

conditional distribution of future values yt+1 for asset returns and state variables given

their current values,

P
(
yt+1|B̂, Σ̂, yt

)
, (3.11)

where B̂, Σ̂ are estimates for B and Σ. In other words, the pdf of returns and state vari-

ables 1 period in the future is conditioned on estimated values. From the VAR(1) model

defined in equations (3.7) and (3.8), returns are conditionally lognormally distributed.

The current values of asset returns and state variables summarize the conditioning

space (next to the parameter estimates). This approach is adopted by Campbell and

Viceira (2002) and Jurek and Viceira (2010).

The second method is the decision-theoretic method. It uses the following condi-

tional predictive probability density function for asset returns and state variables

P
(
yt+1|{ys}ts=1,

)
=

∫
P (yt+1|B,Σ, yt)P

(
B,Σ|{ys}ts=1

)
dΣdB. (3.12)

Hence, a (posterior) distribution for parameters (B,Σ) is used to integrate over the

parameters, i.e. parameter uncertainty is taken into account.

The advantage of this method is that it takes both parameter uncertainty and

uncertainty due to the stochastic nature of the variables into account. The disadvantage

is that it is difficult to specify a posterior distribution that accurately describes what

we really know about the parameters. Another disadvantage is that the posterior

predictive distribution of returns in (3.12) is not lognormal anymore. This implies that

we have to rely on numerical simulation methods for portfolio construction. Analytical

properties of returns L > 1 periods in the future are not known anymore, but we can

simulate them. References for this method are Barberis (2000) and Brandt, Goyal,

Santa-Clara, and Stroud (2005).

The dynamic strategy is equal to the myopic strategy plus a term that hedges

against changes in the investment opportunity set. In case of the plug-in method,

the investment opportunity set is completely determined by the current value of the

vector yt. However, if we use the decision-theoretic method, this is not necessarily
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true. An investor learns more about the true unknown values of the parameters over

time. This implies that her investment opportunity set also changes over time since the

posterior parameter distribution is updated over time. In other words, hedging against

a changing investment set means hedging against the changing posterior distribution

due to learning as well when we consider the decision-theoretic approach. We ignore

this learning aspect however, because it is unfeasible given the size of our VAR(1)

system. Since the VAR(1) system is of dimension n = 6, introducing this aspect would

mean that we need 69 conditioning variables in vector Zt to describe the investment

opportunity set.1 This is infeasible as the numerical methods that are used in the

portfolio literature currently only solve problems up to 11 conditioning variables (see

e.g. Brandt, Goyal, Santa-Clara, and Stroud (2005)).

We follow Barberis (2000) and assume that investors take parameter uncertainty

into account, but ignore the impact of changing beliefs on today’s asset allocation.

They invest as if they only learn about the parameters at the end of their investment

horizon. Under this assumption, the values of yt summarize the conditioning space at

time t (next to the posterior distribution at time t). Note that our investors still learn

about the true parameter values through time if new observations become available.

The simplification we make is that they do not hedge against this learning. Brandt,

Goyal, Santa-Clara, and Stroud (2005) show by means of simulations that incorporating

parameter uncertainty while ignoring learning leads to improved performance relative

to the case without parameter uncertainty. They show that the losses, that are incurred

because learning is ignored, are cut in half if parameter uncertainty is incorporated.

3.3.3 Comparison of strategies

One of the aims of this paper is to investigate whether investors should take the hedge

component of strategic portfolios into account in an out-of-sample test. In order to

answer this question we analyze whether a dynamic strategy outperforms repeated

myopic strategies. In case we would know the process that generates asset returns and

state variables perfectly, this would be a trivial question to answer. A dynamic strategy

would be superior to repeated myopic strategies, since the former strategy encompasses

the latter (for the same investment horizon).

1All distinct parameters plus the values of the variables.
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As we do not know the true data generating process (DGP), we have to select

and estimate a model. This model is however by definition misspecified and estimates

suffer from sampling errors. For the myopic portfolio, the errors are only related to

estimation error in the single period expected returns. The hedge component however

is also sensitive to the long-run predictions of returns and their covariance with current

returns. Out-of-sample, it is therefore far from trivial which strategy works best.

3.4 Empirical modeling

This section describes how we model the time-varying investment opportunity set and

gives estimation results for these models.

3.4.1 Econometric model and estimation

In order to facilitate the prior choice, we firstly re-parametrize the VAR(1) model by

transforming the state variables into

ytrans,t =

⎛⎝ rtbill,t
xt
Δst

⎞⎠ (3.13)

and use the following transformed auxiliary model in the estimation stage

ytrans,t+1 = B0 +B∗
1yt + εt+1. (3.14)

We are mainly interested in the posterior distributions for B0 and B1. Therefore,

we generally first obtain the posterior distribution for coefficients B0 and B∗
1 in the

auxiliary model and subsequently add 1 to the diagonal elements in B∗
1 that correspond

to the predictor variables to obtain the posterior distribution for B1. We only report

and use the latter.

In order to estimate the VAR(1) model in equation (3.14), provide inference and

make forecasts, we use, in line with most of the literature, a conditional likelihood

function that conditions on the first observation. The conditional likelihood function is

P (Y ∗|B,Σ) ∝ |Σ|−T/2 exp
{
−1

2
tr
[
(Y ∗ −XB∗′)′(Y ∗ −XB∗′)Σ−1

]}
, (3.15)

where T is the number of observations, Y ∗ is the T × n matrix of observations on

ytrans,t, Y−1 is the T × n matrix of lagged observations on yt, X is the T × (n + 1)
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matrix X = [ι, Y−1] and B∗ is the n × (n + 1) matrix B∗ = [B0, B
∗
1 ]. We are both

interested in the posterior distribution of the parameters and in their point estimates.

For point estimates we use the posterior means.

Our first prior is a uniform prior on B∗ and a Jeffrey’s prior on Σ,

p(B∗,Σ) ∝ |Σ|−(n+1)/2. (3.16)

We refer to this prior as the uniform prior. It is the most commonly used prior for VAR

models. The corresponding posterior is given in equation (3.18) in the appendix. The

posterior mean of B∗ is equal to the OLS/ML estimator B̂∗′ = (X ′X)−1X ′Y ∗ and the

posterior mean of Σ is equal to S/(T−2n−2), where S = (Y ∗−XB̂∗′)′(Y ∗−XB̂∗′). For

the decision-theoretic approach, we need to simulate from the full posterior distribution

of the parameters and the predictive distribution of the variables yt+1. We explain this

in the appendix.1

We consider a second Bayesian estimator which is used among others in Ni and Sun

(2003) in the context of a similar VAR model. We refer to this prior as the shrinkage

prior. This estimator shrinks the coefficients towards zero. The prior is given as

p(B∗,Σ) ∝
(
b∗

′

b∗
)−(n(n+1)−2)

2 |Σ|−(n+1)/2, (3.17)

where b∗ = vec(B∗). The exponent is exactly equal to the exponent that Ni and Sun

(2003) propose. It is the product of a shrinkage prior for B∗ and the Jeffrey’s prior

on Σ. The prior itself is not proper, but Ni and Sun (2003) show that the posterior

is proper in a VAR model when the ML estimator exists, which holds in our setting.

Note that the prior has a negative exponent. This means that prior draws of large

parameter values are relatively improbable. Shrinking the coefficients in the auxiliary

model (3.14) towards a zero matrix implies that we are shrinking the coefficients in the

original model towards zero except for the predictor variables which we shrink towards

a random walk.2

This particular shrinkage prior has several advantages. Firstly, since the prior is

improper, it is relatively uninformative. The likelihood dominates the prior quickly

1Results using the uniform prior are equivalent for the original and the auxiliary model.
2Note that if we would have combined the shrinkage prior with the original model, we would have

shrunk the autocorrelation coefficients of the highly persistent state variables to 0 instead. This would

have resulted in a misspecified model.
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once there is sufficient data. If the data shows a lot of predictability, the posterior will

reflect this. Secondly, the prior does not depend on any tuning constants. This avoids

all kind of calibration issues that could arise. Finally, the prior leads to a posterior

that is relatively easy to calculate using Gibbs sampling. The sampling algorithm is

fast and stable, even for large VAR models.

Our shrinkage prior has a clear economic interpretation. It reflects the beliefs of an

investor who is very skeptical about predictability of asset returns. As a result such

an investor downplays all the predictability that is found in the data. However, the

investor does not dogmatically ignore predictability. If there is sufficient evidence in

the data that asset returns are predictable, this investor will take (some) asset return

predictability into account.

The kernel of the posterior density is given in equation (3.21) of the appendix. The

shrinkage prior is not conjugate, and hence does not lead to a known posterior density

for the parameters. However, as Ni and Sun (2003) show, a straightforward MCMC

sampler exists to draw from the posterior. The simulation algorithm is explained in

appendix A.

If the lagged asset returns and predictor variables are not able to predict stock and

bond returns, the second and third rows of B∗
1 in model (3.14) are both equal to zero. As

a benchmark, we consider specifications that dogmatically set these coefficients equal

to zero and leave the coefficients in other equations equal to the posterior mean under

the uniform prior.1 We refer to this specification as the no-predictability prior.

The VAR(1) model introduced in equations (3.7) and (3.8) is restrictive in two ways.

First, it is unlikely that all dynamics in the data are modeled by using only one lag.

Second, it is unlikely that the covariance matrix of the error terms is homoscedastic,

i.e. that risk is constant over time.2.

However, if we add extra lags and model the time-variation in the variance of

the error terms, we would end up with an enormous increase in the total number

of estimated parameters. One extra lag already means n2 = 36 extra parameters.

1Results are similar if we additionally assume that the real T-Bill rate is unpredictable.
2Actually, we can confirm these suspicions using results from later chapters. If we apply the method-

ology developed in the next chapter allowing for a maximum of two lags (using the prior distributions

explained in that chapter), we indeed find that the second lags of some variables (particularly the

second lag of PE in the PE equation) have posterior probabilities near 1. The conclusion from chapter

5 that error volatility varies persistently over time confirms the second suspicion.
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Modeling the time-variation in all 21 unique elements of the covariance matrix leads to

even more additional parameters. Since estimation efficiency is an important issue, we

choose not to add extra lags and assume homoscedastic errors. This probably leads to

a (slightly) misspecified, but also to a much more efficiently estimated model.1

Another way to put it is that we have a strong prior that incorporating extra lags

and heteroscedasticity are not helpful in forecasting (we dogmatically exclude these

aspects using our prior). It is quite common in the forecasting literature to shrink the

coefficients of lags larger than 1 strongly towards 0, refer for example to the well-known

Litterman (1986) prior. The impressive predictive performance of this Litterman prior

suggests that the effect of the misspecification is usually more than offset by the larger

estimation efficiency in settings such as the ours.

The state variables in the model are highly autocorrelated and close to a unit root.

This does not pose a problem for inference, because (possible) non-stationarity does

not require specific Bayesian methods (refer to Sims and Uhlig (1991)). Nevertheless, it

is common in the strategic asset allocation literature to impose the assumption of sta-

tionarity (e.g. Campbell and Viceira (2002) and Stambaugh (1999)). For the decision-

theoretic approach, we indeed impose stationarity. Since the mode of the likelihood

function is generally within the stationary region, we do not impose this assumption

when using the plug-in approach. This only slightly changes the point estimates, has

a minor impact on the out-of-sample results, but saves on computation time.

3.4.2 Estimation results

Table 3.2 reports posterior moments for B and Σ for the model where the price-earnings

ratio is one of the state variables using the uniform and shrinkage prior. The table shows

that the state variables are highly autocorrelated under both priors. Furthermore, we

see that the nominal yield and the price-earnings ratio have a negative effect on stock

return predictions and that the yield spread has a positive impact on bond returns

predictions. There is also a large positive correlation between shocks to the price-

earnings ratio and excess stock returns, which means that unexpected positive shocks

1In other words, even if the true model is a VAR(2) model with heteroscedastic errors, we do not

expect this model to give the best forecasting performance in the sample that we consider due to the

large number of estimated parameters relative to the sample size.
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Table 3.2: Estimation results PE model

This table reports estimates for the VAR(1) model based on the full

data-set where we use PE among the state variables. Panel A gives

results for the uniform prior and panel B for the shrinkage prior. In each

panel, columns 2-7 show the posterior mean of the slope coefficients

and their posterior standard deviations. The last column shows the

implied R2 (implied by the the posterior mean). Finally, the correlation

matrix of the error terms is given. The elements on the diagonal are the

standard deviations(x100) of the error terms, the off-diagonal elements

are the correlations.

Panel A: Uniform prior

rtbill xs xb sy sPE sspread R2

Parameter estimates

rtbill 0.3242 0.0027 0.0078 0.0276 0.0011 0.0412 0.1808

0.0383 0.0026 0.0076 0.0058 0.0003 0.0136

xs 1.6434 0.0240 0.3249 -0.3521 -0.0180 -0.0822 0.0579

0.5972 0.0400 0.1181 0.0897 0.0054 0.2117

xb 0.4215 -0.0569 0.0787 0.0410 0.0017 0.3127 0.0764

0.2040 0.0137 0.0401 0.0308 0.0019 0.0723

sy -0.0813 0.0144 -0.0652 0.9855 -0.0001 0.0206 0.9730

0.0615 0.0041 0.0120 0.0093 0.0006 0.0217

sPE 1.3611 0.4168 0.3114 -0.1423 0.9917 0.1227 0.9954

0.4025 0.0269 0.0790 0.0602 0.0036 0.1421

Sspread 0.0056 -0.0048 -0.0650 0.0070 -0.0002 0.9503 0.8541

0.0497 0.0033 0.0098 0.0075 0.0005 0.0176

Error correlation matrix

rtbill 0.2702 0.1052 0.0757 -0.0805 0.1727 0.0560

xs 4.2049 0.1128 -0.0487 0.7746 -0.0331

xb 1.4400 -0.6237 0.0557 0.2208

sy 0.4328 -0.0494 -0.8516

sPE 2.8249 -0.0219

Sspread 0.3503

Panel B: Shrinkage prior

Parameter estimates

rtbill 0.2730 0.0029 0.0068 0.0297 0.0012 0.0414 0.1782

0.0371 0.0026 0.0075 0.0057 0.0003 0.0134

xs 0.0099 0.0261 0.1481 -0.2037 -0.0121 -0.0039 0.0381

0.1173 0.0374 0.0840 0.0673 0.0048 0.0978

xb 0.1061 -0.0537 0.0775 0.0410 0.0016 0.2487 0.0705

0.1054 0.0135 0.0377 0.0285 0.0018 0.0631

sy -0.0173 0.0137 -0.0650 0.9854 -0.0001 0.0314 0.9729

0.0456 0.0041 0.0117 0.0089 0.0005 0.0202

sPE 0.1038 0.4144 0.2031 -0.0564 0.9950 0.1360 0.9953

0.1132 0.0257 0.0610 0.0469 0.0033 0.0792

Sspread -0.0086 -0.0046 -0.0644 0.0066 -0.0002 0.9480 0.8541

0.0428 0.0033 0.0097 0.0074 0.0004 0.0170

Error correlation matrix

rtbill 0.2706 0.1110 0.0792 -0.0828 0.1783 0.0566

xs 4.2400 0.1195 -0.0535 0.7789 -0.0316

xb 1.4432 -0.6247 0.0647 0.2209

sy 0.4331 -0.0552 -0.8511

sPE 2.8541 -0.0202

Sspread 0.3503
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Figure 3.1: Overview of (xs,sPE) and (xb,sspread) coefficients over time
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This figure plots the posterior mean of the coefficients (xs,sPE) and (xb,sspread) (y-axis)

against time (x-axis) for the uniform and shrinkage prior. The model is estimated from

February 1954 until the date on the x-axis.

to stock returns lead to negative future investment opportunities. This result implies

that there is mean-reversion in stock returns.

Comparing the posterior means for both priors, we clearly see that the posterior

mean for the return prediction coefficients are shrunk towards zero by the shrinkage

estimator except for the autocorrelation coefficients which are shrunk to one. The

shrinkage estimator downplays the predictability of asset returns. One way to see this

is to look at the lower R2 values under the shrinkage prior, especially for excess stock
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returns. The lower R2 values lead to less aggressive investment strategies.1

In the following sections, we re-estimate our models on larger and larger data-sets

that include the newest observations. Since our data set starts in February 1954 and our

empirical analysis in February 1974, we estimate models for which the last observation

ranges from January 1974 until November 2006. Table 3.2 shows that the price-earnings

ratio and the yield spread are among the most important predictors for respectively

excess stock and bond returns. Therefore, we present time series plots of the estimates

of the slope coefficients of (xs,sPE) and (xb,sSPR) in figure 3.1.

From the figure it is clear that the posterior means for the shrinkage prior are closer

to 0 than those for the uniform prior. There seems to be a lot of uncertainty about

the estimated values, since the parameters are very variable over time. However, the

estimated values for the shrinkage estimator are less variable. Finally, note that the

values for the two estimators slowly converge to each other once more observations are

available, since the likelihood dominates when the sample size grows.

3.5 Solution method

This section explains the solution methods we use in this paper. This choice depends on

whether we condition on parameter estimates (plug-in approach) or use the posterior

distribution of the parameters in a decision-theoretic approach and whether we restrict

portfolio weights or not. We use the semi-analytical method in Jurek and Viceira (2010)

for calculating the unrestricted plug-in strategies. We have to use numerical methods

for all other strategies. We propose a refinement of the method of Brandt, Goyal,

Santa-Clara, and Stroud (2005) and van Binsbergen and Brandt (2007) by relying on

an important observation made by Koijen, Nijman, and Werker (2010).

3.5.1 Analytical method

Given the VAR(1) model in equation (3.7), returns are lognormally distributed con-

ditional on the parameter values. Jurek and Viceira (2010) use this fact to derive

approximate-analytical solutions for the unrestricted plug-in model for the myopic and

the dynamic strategy. These solutions are all based on the Campbell and Viceira (2002)

1The R2 values we provide are implied by the posterior mean of the parameters. The mean of the

posterior distribution of R2 values does not exist when allowing for non-stationary draws.
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approximation to log-portfolio returns. This approximation, and therefore Jurek and

Viceira (2010)’s method, is exact in continuous time and accurate on short time inter-

vals. Jurek and Viceira (2010) show that portfolio weights on risky assets are affine

functions of the conditioning variables yt.

3.5.2 Numerical method

There is no analytical solution available for the plug-in model combined with restricted

portfolio weights. Furthermore, the predictive distribution of returns is not lognormal

if parameters are integrated out and therefore there is no analytical solution available

for the restricted decision-theoretic model. In these cases we have to use numerical

methods.

Firstly, we consider the dynamic strategy. We solve the sequence of one-period

problems by backward induction, i.e. start in period K−1 and iterate to period 0. We

follow Brandt, Goyal, Santa-Clara, and Stroud (2005) and simulate many trajectories of

asset returns and state variables and approximate the conditional expectations we need

to evaluate by regressions of the value function at time t+ 1 on conditioning variables

that summarize the information set at time t. Furthermore, we follow van Binsber-

gen and Brandt (2007) and set-up a grid of portfolio weights, evaluate the conditional

expectation for the grid points and pick the maximum. Since we have to re-calculate

dynamic strategies almost 400 times, computation time is an important issue. There-

fore, we use a refinement by Koijen, Nijman, and Werker (2010) and parameterize the

regression coefficients in regressions that approximate conditional utility by a quadratic

function of portfolio weights.1 This allows us to find the optimal weights along each

path analytically by optimizing a quadratic function on a restricted set which can be

done analytically. It means that we do not have to use a very fine grid since the

parametrization regressions are very accurate.

This gives the following algorithm:

1. Generate N sample paths of length K of asset returns and state variables from

the conditional prediction model (”plug-in”) or from the predictive distribution

(”decision-theory”).

1Note that Koijen, Nijman, and Werker (2010) solve a life-cycle model with intermediate con-

sumption and parametrize the first order conditions by an affine function in the portfolio weights. We

parametrize the value function instead.
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2. Set-up a grid of portfolio weights.

For period K − 1 until period 0 repeat steps 3, 4 and 5.

3. Pick one set of portfolio weights from the grid and calculate the realized utility

values for all simulated paths. Hence: use the chosen portfolio weights together

with the optimal portfolio weights chosen in previous steps to calculate the real-

ized terminal wealth values for every path. Calculate the realized utility values

for all paths.

4. Regress the N realized utility values on a constant and functions of the condition-

ing variables in order to calculate regression coefficients and conditional utility

values.

Repeat step 3 and 4 for all portfolio weights on the grid.

5. Parametrize the regression coefficients in a quadratic function of the portfolio

weights. This critical improvement allows us to express conditional utility as a

function of constants, conditioning variables and portfolio weights. Along each

path, constants and conditioning variables are known and hence along each path

conditional utility is only a function of the unknown portfolio weights. For every

path, choose the portfolio weights that maximize this approximate quadratic

function. This can be done analytically.

The calculation of the myopic strategy is similar with K = 1. Appendix B gives

more details on the parameterization of regression coefficients and the accuracy of the

algorithm.

The decision-theoretic method combined with restricted portfolio weights gives some

problems as indicated above. We guarantee that at least some portfolios have an ex-

pected utility value greater than minus infinity by imposing that the return on the real

T-Bill rate is always larger than -20%.1

1In our numerical algorithm, we re-sample draws that would violate this boundary.
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3.6 Out-of-sample performance

We investigate the out-of-sample performance of strategic asset allocations. The follow-

ing subsections cover respectively benchmark results, results using the plug-in method

and results using the decision-theoretic method.

3.6.1 Results for the benchmark specifications

We report results for five benchmark specifications in table 3.3. We show their certainty

equivalence return (CER), their average terminal wealth and the standard deviation of

terminal wealth. The first specification is the 1/N strategy. It invests 33% in stocks,

bonds and T-bills irrespective of the data. The next four specifications are based on

the no-predictability prior either combined with a dynamic or myopic strategy and

Table 3.3: Benchmark Results

This table gives benchmark results for the 1/N , the unrestricted no predictability and

the restricted no predictability strategies (NP ). We either calculate a dynamic or a

myopic strategy for the latter two. Specifications are based on the plug-in method. We

show annualized certainty equivalence returns (CER), average terminal wealth (TW ) and

the standard deviation of terminal wealth (σ(TW )) for three different risk aversion levels γ.

Unrestricted Weights Restricted Weights

CER TW σ(TW ) CER TW σ(TW )

Panel A: γ = 2

1/N 0.0466 1.2885 0.2069

NP Dyn 0.0886 1.8030 0.8159 0.0706 1.5444 0.4731

Myop 0.0855 1.7859 0.8251 0.0706 1.5444 0.4731

Panel B: γ = 5

1/N 0.0386 1.2885 0.2069

NP Dyn 0.0478 1.3678 0.2503 0.0450 1.3560 0.2540

Myop 0.0443 1.3475 0.2571 0.0439 1.3586 0.2686

Panel C: γ = 10

1/N 0.0273 1.2885 0.2069

NP Dyn 0.0265 1.2355 0.1457 0.0279 1.2350 0.1452

Myop 0.0247 1.2151 0.1463 0.0258 1.2253 0.1519
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unrestricted or restricted portfolio weights. The no-predictability prior imposes that

excess stock and bond returns are not predictable.

The certainty equivalence returns (CER) in table 3.3 are all positive. This means

that investors are willing to follow these simple strategies unless they are paid a positive

risk-free real return. Interestingly, the dynamic strategy outperforms the repeated

myopic strategy for all specifications. This implies that hedging (real) interest rate

risk boosts performance for long-term investors as argued in Campbell and Viceira

(2001). This is also reflected in the slightly higher average terminal wealth values

and the slightly lower standard deviation of terminal wealth values. The performance

difference is small however. The performance improvement is relatively more important

for investors with higher risk aversion levels. Campbell and Viceira (2001) show that

the hedge component for such investors is larger than for investors with lower risk

aversion.

Remarkably, for a conservative investor with γ = 10, both the 1/N strategy and

the restricted no-predictability strategies outperform the unrestricted no-predictability

strategy. This suggests that imposing restrictions might improve out-of-sample per-

formance and that non-data based methods are not necessarily inferior to data-based

strategies. The former is consistent with results in Jagannathan and Ma (2003) who

show that imposing weights restrictions is a form of shrinkage that boosts performance.

The latter is consistent with DeMiguel, Garlappi, and Uppal (2009), who show that a

1/N strategy is tough to beat out-of-sample.

Figure 3.2 plots a histogram of realized utility values for the unrestricted no-

predictability strategy. We set γ = 5. The figure shows that the utility value distribu-

tion is very left skewed. Most values are near zero but there are some large negative

outliers (corresponding to low terminal wealth values). However, these negative outliers

are the most important values for risk-averse investors. Risk averse investors want to

avoid extreme negative events at all costs and will heavily weight every extreme event

in their utility function. This suggests that specifications that limit the number and/or

size of extreme events are the ones with the highest certainty equivalence returns (and

equivalently highest average realized utility). The outliers are further emphasized when

γ = 10, but are less severe when γ = 2.
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Figure 3.2: Histogram of realized utility values for benchmark strategy with

γ = 5
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This figure gives a histogram of realized utility values for the unrestricted dynamic no-

predictability strategy with γ = 5. We use the plug-in method.

3.6.2 Results for the plug-in method

Next, we show results based upon the plug-in method. We report results for dynamic

and myopic strategies either using the uniform or shrinkage prior and either using

restricted or unrestricted portfolio weights. Investors who use these specifications time

the stock and bond market actively, since the specifications allow for predictable stock

and bond returns. Results are given in table 3.4.

Firstly, we consider specifications using the uniform prior and unrestricted weights.

Remarkably, the performance of an investor with low risk aversion (γ = 2) is disastrous

under the standard uniform prior when weights are unrestricted. She is willing to pay

a risk-free return of up to -100% to avoid adopting this strategy. The average terminal

wealth and its standard deviation show why. The strategy leads to a very high average

terminal wealth but with extremely high risk. Due to this risk, at least one of the

terminal wealth values in our sample turns out to be zero which means that at least
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one investor loses all her money during her 5-year investment period. Such an investor

obtains a realized utility value of −∞, since this is the outcome that such a risk-averse

investor desperately wants to avoid.

The performance is better for higher γ values. These investors are less aggressive

and avoid the strategies that lead to disaster for the γ = 2 investor. CERs are positive

and higher than the ones for the benchmark strategies. Differences turn out to be

economically important. For very risk averse investors, it pays off to time the bond

and stock market.

Table 3.4: Plug-in approach - PE model

This table gives the results for the dynamic (Dyn) and myopic (Myop) strategies using the

plug-in method. The results are based on a VAR(1) model with PE as one of the predictors.

We report results under the uniform and shrinkage prior, either using restricted or unrestricted

portfolio weights. We report annualized certainty equivalence returns (CER), average terminal

wealth (TW ) and the standard deviation of terminal wealth (σ(TW )) for three different risk

aversion levels γ.

Unrestricted Weights Restricted Weights

Panel A: γ = 2

CER TW σ(TW ) CER TW σ(TW )

Uniform Dyn -1.0000 23.7044 68.0114 0.0821 1.5796 0.4544

Myop -1.0000 20.7321 56.5669 0.0814 1.5683 0.4351

Shrinkage Dyn 0.2961 10.1712 8.9929 0.0815 1.5617 0.3935

Myop 0.2752 8.7933 8.0463 0.0808 1.5539 0.3881

Panel B: γ = 5

Uniform Dyn 0.0769 6.3876 6.8324 0.0645 1.5260 0.4046

Myop 0.0785 4.5576 4.2663 0.0643 1.5137 0.3901

Shrinkage Dyn 0.1231 3.3727 1.6823 0.0670 1.5222 0.3468

Myop 0.1164 2.8407 1.2112 0.0659 1.4967 0.3320

Panel C: γ = 10

Uniform Dyn 0.0430 2.9673 2.0021 0.0492 1.4826 0.3568

Myop 0.0552 2.3598 1.2337 0.0452 1.4421 0.3235

Shrinkage Dyn 0.0661 2.0022 0.6181 0.0500 1.4405 0.2747

Myop 0.0622 1.7870 0.4561 0.0489 1.4000 0.2421
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Another important finding is that repeated myopic strategies outperform the the-

oretically optimal dynamic strategies. Although the average terminal wealth is higher

for dynamic strategies, the risk more than proportionally increases. This result implies

that the hedging components of dynamic strategies are misspecified and only deteriorate

performance. Dynamic strategies are more sensitive to misspecification of any form,

since they do not only require us to model the evolution of asset returns correctly, but

also of state variables. It is apparently sufficient to only focus on short-term changes in

investment opportunities and ignore long-term changes when using the uniform prior.

Secondly, for the shrinkage prior combined with unrestricted weights, a completely

different picture arises. The performance for all strategies and all risk aversion levels

increases substantially and is much better than for the benchmark strategies. For all

risk aversion levels, it pays off to time the bond and stock market. The shrinkage

prior makes sure that investors do not take excessive risk. Although the use of the

shrinkage estimator reduces average terminal wealth compared with the uniform prior,

its standard deviation is more than proportionally reduced. For example, compare the

dynamic strategies for an investor with γ = 2. Although average terminal wealth is

reduced with a factor 2.5, its standard deviation is reduced with a factor 8. The result

is that the CER for an investors with γ = 2 is not equal to -100% anymore.

It also turns out that dynamic strategies outperform myopic strategies. Apparently,

we are better able to model the hedge component of strategic asset allocations when

using the shrinkage prior. The risk for dynamic strategies is still higher but the extra

average terminal wealth more than offsets this. In terms of economic performance, the

differences between a dynamic and myopic strategy are relatively modest. Different

estimation techniques lead to larger performance differences than different strategies.

In order to understand how the shrinkage model works, we plot the realized utility

values for risk aversion γ = 5 using both the shrinkage and the uniform prior against

time in panel A of figure 3.3. The figure shows that both series are heavily autocorre-

lated due to overlapping intervals and that there is a positive correlation between the

series. In general, both strategies perform similarly except for a couple of extremely

low realized utility values. The shrinkage prior manages to substantially reduce these

losses compared to the uniform prior. Hence, the shrinkage prior improves performance

by avoiding extreme losses. This is exactly why risk averse investors value this model

the most.
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Figure 3.3: Realized utility values and stock weights against time for different

priors
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This figure plots realized utility values and stock weights against time for the uniform and

shrinkage prior using the plug-in method. We consider a dynamic strategy, γ = 5 and

unrestricted portfolio weights. The x-axis is indexed by the time at which the investors

start investing. The second plot shows the stock weights the investors use at the beginning

of their investment period.

How does the use of the shrinkage estimator reduce losses? In order to answer this

question, we plot the corresponding stock weights of investors against time in panel B

of figure 3.3. We plot the weights for investors with a remaining horizon of 60 months.

The picture shows that the average weights for both strategies are more or less equal.

The weights for the shrinkage prior are, however, much less variable and the portfolio
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holdings are much less extreme. An investor who uses the shrinkage prior is still able to

time the market. She can still go long in stocks or bonds if market conditions are good

and short in stocks or bonds if market conditions are bad. However, the weights are not

as extreme anymore and make more sense intuitively. By avoiding overly aggressive

market timing, the investor using the shrinkage prior avoids the important extreme

events.

The dynamic strategy outperforms the myopic strategy using the shrinkage prior.

In order to illustrate this, consider panel A in figure 3.4 which plots the histogram of

differences in realized utility values between a dynamic investor and a myopic investor

with γ = 5. Positive values indicate outperformance by the dynamic model. The figure

shows that both strategies perform similarly in general. The mass to the right of 0

indicates that most observations give a slight edge to the dynamic strategies. The

figure also shows that there are more outliers on the right than on the left. However,

differences are not very large.

Finally, let us consider what happens if portfolio weights are restricted to lie between

0 and 1 for all three assets. Restricting portfolio weights leads to a substantial reduction

in risk and terminal wealth values for investors using either the uniform or shrinkage

prior. It helps to avoid CERs of -100%. This is consistent with results in the previous

section and with Jagannathan and Ma (2003). The latter show that restrictions are

a form of shrinkage. Hence, in this light it is not surprising that portfolio weight

restrictions can improve performance. Note that using shrinkage is substantially better

than restricting portfolio weights in order to avoid extreme events.

However, imposing restrictions hurt performance for better performing specifica-

tions as it limits the possibilities of investors and leads to much lower CERs. Appar-

ently, going short and very long in assets pays off for long-term investors, especially

for those that use the shrinkage prior. Portfolio weight restrictions hurt specifications

using the shrinkage prior more than specifications using the uniform prior. On av-

erage, the shrinkage prior still outperforms the uniform prior slightly when imposing

portfolio restrictions. In all cases, dynamic strategies outperform myopic strategies

when restricting portfolio weights. However, differences are smaller than before. The

hedge component of strategic asset allocations improves performance only slightly in

this setting.
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Figure 3.4: Histogram of difference in realized utility: dynamic versus myopic

and decision-theory vs plug-in
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The first figure is a histogram of the difference in realized utility values between a dynamic

and myopic strategy, using the unrestricted shrinkage model combined with the plug-in

method for an investor with γ = 5. The second figure gives a histogram of the difference in

realized utility values between the decision-theory method and the plug-in method using a

restricted dynamic strategy combined with the uniform prior for an investor with γ = 5.

We conclude that it might not be optimal to time the stock and bond market unless

investors use the shrinkage prior. Empirically, differences turn out to be economically

important. Using shrinkage avoids extreme portfolio weights and therefore extreme
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events. Such a specification is heavily favored by risk-averse investors. Dynamic strate-

gies only work satisfactorily in all cases when using the shrinkage estimator, since

shrinkage leads to a better modeling of the hedge component. However, differences

are economically relatively modest. The effect of the shrinkage prior is the largest

when portfolio weights are unrestricted. Such investors can still go short and very

long in assets without taking excessive risk. When portfolio weights are restricted to

be non-negative, the effect of the shrinkage prior is modest but still positive. Finally,

portfolio weight restrictions help the worse performing specifications, but hurt the best

performing specifications.

3.6.3 Results for the decision-theoretic approach

We consider dynamic and myopic strategies either combined with the uniform or shrink-

age prior. We only report results for restricted portfolio weights as explained in section

3.3.1. Results are given in table 3.5.

Firstly, we compare results with these in previous sections. If we consider dynamic

strategies, the CERs increase slightly when taking parameter uncertainty into account.

Results for myopic strategies are more mixed, but on average results improve when

considering parameter uncertainty. Differences however are again very small. Brandt,

Goyal, Santa-Clara, and Stroud (2005) show by means of simulation that parameter

uncertainty mainly has an impact on the hedging component of a dynamic strategy.

Since this hedging component does not have an important impact on performance

according to results in the previous subsection, it is not surprising that there is only

a small performance difference between the plug-in method and the decision-theoretic

method. The specifications that we consider in this section outperform the benchmark

strategies that ignore predictability by economically important margins, especially for

higher risk aversion levels. This implies that actively timing the bond and stock market

also pays off when taking parameter uncertainty into account.

We illustrate the performance of the decision-theoretic approach in panel B of figure

3.4. This figure plots a histogram of differences in realized utility values between

dynamic strategies using the decision-theoretic and plug-in approach. We set γ = 5

and use the uniform prior. Positive values indicate outperformance by the decision-

theoretic method. The figure shows that the plug-in approach performs better in most

cases, i.e. the median is slightly negative. However, if the decision-theoretic model
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outperforms the plug-in model, the difference is relatively big, illustrated by larger

positive values. On average, the decision-theoretic method slightly outperforms the

plug-in method. Overall differences are negligible.

Secondly, the table shows that in terms of performance dynamic and myopic strate-

gies are again close to each other with a slight edge for the dynamic strategy. This is

again related to a finding in Brandt, Goyal, Santa-Clara, and Stroud (2005) who show

Table 3.5: Decision-theoretic approach - PE model

This table gives the results for the dynamic (Dyn) and

myopic (Myop) strategies using the decision-theoretic

approach. The results are based on a VAR(1) model

with PE as one of the predictors. We report results

under the uniform and shrinkage priors and use

restricted portfolio weights. We report annualized

certainty equivalence returns (CER), average terminal

wealth (TW ) and the standard deviation of terminal

wealth (σ(TW )) for three different risk aversion levels γ.

Restricted Weights

Panel A: γ = 2

CER TW σ(TW )

Uniform Dyn 0.0830 1.5770 0.4312

Myop 0.0826 1.5722 0.4227

Shrinkage Dyn 0.0831 1.5647 0.3729

Myop 0.0825 1.5596 0.3731

Panel B: γ = 5

Uniform Dyn 0.0650 1.5313 0.4119

Myop 0.0652 1.5127 0.3814

Shrinkage Dyn 0.0682 1.5220 0.3483

Myop 0.0656 1.4911 0.3255

Panel C: γ = 10

Uniform Dyn 0.0516 1.4723 0.3372

Myopic 0.0483 1.4441 0.3182

Shrinkage Dyn 0.0509 1.4238 0.2571

Myopic 0.0486 1.4038 0.2565
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that the hedge component is relatively small when parameter uncertainty is taken into

account. Portfolio weights for dynamic and myopic strategies are therefore close to

each other.

Finally, the certainty equivalence returns for specifications involving the shrinkage

prior are very close now to specifications using the uniform prior. Apparently, restrict-

ing portfolio weights, incorporating parameter uncertainty and using the shrinkage prior

leads to portfolios that are a bit too conservative. However, on average the use of the

shrinkage prior still outperforms the uniform prior slightly.

We conclude that most results from the previous section stand. Timing the stock

and bond market pays off for risk-averse investors. Differences are also economically

important. Furthermore, the performance of dynamic and myopic strategies are close

to each other with a slight advantage for the dynamic strategies. The performance

difference between specifications involving the shrinkage and uniform prior becomes

smaller when incorporating parameter uncertainty. Shrinkage is economically less im-

portant in such a setting where we also restrict portfolio weights. Finally, incorporating

parameter uncertainty leads to specifications with slightly higher certainty equivalence

returns.

3.7 Robustness analysis

In this section, we perform some additional robustness tests. In the first subsection, we

perform classical tests on the performance differences between different specifications.

The second subsection investigates the performance differences between myopic and

dynamic strategies. The last subsection considers a model with the dividend-to-price

ratio as one of the predictor variables.

3.7.1 Classical significance tests

We investigate the classical statistical significance of the results by comparing the

strategies of sections 3.6.2 and 3.6.3 with the benchmark strategies in section 3.6.1

in a repeated samples context. We test whether the difference in average realized util-

ity between a strategy and its benchmark is statistically different from zero. As a

benchmark, we take the no-predictability strategies of section 3.6.1 either unrestricted

or restricted and either dynamic or myopic, depending on the context. In other words,
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we test whether the extra value of market timing we find in previous sections might be

spurious.

We use utility as the loss function of forecasts (after implementing strategies). In

the forecasting literature, tests of equal forecasting performance are standard and we

use the Diebold and Mariano (1995) test on the utility series. Diebold and Mariano

(1995) generate the difference series of two forecasts and test whether this difference is

equal to zero by means of a standard t-ratio. They show that this test statistic has a

standard normal distribution. We estimate the covariance matrix of average realized

utility non-parametrically by means of the Newey and West (1987) HAC estimator. In

order to choose the lag length, we use the Newey and West (1994) lag length selection

criterium.

Table 3.6 presents results. The performance of unrestricted plug-in strategies based

on the uniform prior is only significantly different from its benchmark in one case. If

we use the shrinkage prior instead, we see that these strategies become significant.

Hence, the impressive performance for the unrestricted plug-in methods based on the

shrinkage prior is not spurious. It is statistically different from its benchmark. Results

Table 3.6: Classical significance tests

This table presents classical t-statistics to test whether the performance of the portfolio

strategy and its benchmark are statistically significant from each other. We give results

for the plug-in approach, the decision-theoretic approach, different risk aversion levels,

different types of strategies and for different weight restrictions.

γ = 2 γ = 5 γ = 10

Unr Restr Unres Restr Unr Restr

Panel A: plug-in approach

Uniform Dyn n/a 0.9208 1.1372 2.7858 1.1683 3.7736

Myopic n/a 0.8615 1.7996 2.6184 2.5115 3.4862

Shrinkage Dyn 4.3796 0.7716 3.6705 2.4392 2.6949 3.5770

Myopic 4.2474 0.7136 3.9038 2.2459 3.4290 3.5485

Panel B: decision-theoretic approach

Uniform Dyn 0.9757 2.7631 3.7395

Myopic 0.9476 2.6611 3.7302

Shrinkage Dyn 0.8541 2.4885 3.4696

Myopic 0.8039 2.2149 3.5315
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Table 3.7: Monte Carlo simulation without predictability

This table gives results for 100 Monte Carlo simulations assuming no predictabil-

ity. The specifications differ in the strategy (dynamic or myopic) and in the

risk aversion level. The entries in panel A and B are respectively defined as

CERUni − CERNopred and CERShr − CERNopred. Data indicates the result

found in the actual data-set (based on table 3.4). Mean, median, min, 1st, 5th,

95th, 99th and max respectively indicate the average difference in CERs, median

difference, minimum difference, 1st percentile of differences, 5th percentile

of differences, 95th percentile of difference, 99th percentile of difference and

maximum difference in the Monte Carlo simulations.

Dynamic Myopic

γ = 2 γ = 5 γ = 10 γ = 2 γ = 5 γ = 10

Panel A: Uniform prior

Data -1.0886 0.0291 0.0165 -1.0855 0.0342 0.0305

Mean -0.1965 -0.0567 -0.0264 -0.1325 -0.0387 -0.0176

Median -0.1397 -0.0524 -0.0237 -0.1090 -0.0339 -0.0154

Min -1.2249 -0.2571 -0.1394 -1.0669 -0.1481 -0.0745

1st -1.1952 -0.2559 -0.1337 -0.7526 -0.1477 -0.0732

5th -0.8486 -0.1782 -0.0840 -0.3667 -0.1171 -0.0556

95th 0.0062 0.0242 0.0162 0.0079 0.0108 0.0069

99th 0.0828 0.0438 0.0243 0.0956 0.0535 0.0298

Max 0.1101 0.0456 0.0283 0.1455 0.0649 0.0314

Panel B: Shrinkage prior

Data 0.2075 0.0753 0.0396 0.1897 0.0721 0.0375

Mean -0.0720 -0.0261 -0.0121 -0.0576 -0.0186 -0.0084

Median -0.0629 -0.0227 -0.0109 -0.0589 -0.0181 -0.0061

Min -0.3270 -0.1586 -0.0820 -0.2227 -0.0896 -0.0458

1st -0.3070 -0.1453 -0.0737 -0.2178 -0.0855 -0.0434

5th -0.2081 -0.1035 -0.0543 -0.1614 -0.0647 -0.0317

95th 0.0392 0.0284 0.0159 0.0413 0.0213 0.0116

99th 0.1045 0.0419 0.0248 0.1151 0.0539 0.0294

Max 0.1265 0.0422 0.0261 0.1540 0.0620 0.0297
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are different for specifications that restrict portfolio weights. Results for the dynamic

and myopic strategies are significant except for low risk aversion levels. Apparently, a

low risk averse investor is especially hurt when weights are restricted.

In order to take issues such as autocorrelation and skewness in the realized utility

series into account as well as to correct for the fact that the benchmark strategies are

based on nested models, we also perform an additional Monte Carlo simulation. We

generate 100 time-series of asset returns and predictor variables under the null of no

predictability. The DGP is based on the parameter estimates obtained using the no-

predictability prior on the full data-set. In every Monte Carlo simulation, we generate

a time-series of 52 years of asset returns and state variables and perform the same out-

of-sample analysis as on the real data-set. In order to make the Monte Carlo analysis

feasible, we only consider specifications with unrestricted portfolio weights.1

Table 3.7 shows the results. Panel A reports the difference in CERs between the

uniform prior and the no-predictability prior in the simulations. A positive difference

implies outperformance by the uniform prior. We find that the average difference is

negative which means that the no-predictability strategies perform better on average.

This is not surprising, since the data is generated using the no-predictability prior on

the full data-set. When comparing the differences found in the data with the different

percentiles in the simulations, the results in the data are not significantly different from

the results in the simulations that are generated under the null of no predictability.

Panel B shows the difference in CERs between the shrinkage prior and the no-

predictability prior. The average difference is negative, but less negative than the

average difference for the uniform prior. The table shows that the positive differences

in the data are in all cases larger than the maxima in the 100 Monte Carlo simulations.

Hence, the largest performance difference in the DGP without predictability is less than

we find in the data. Therefore, the data contains predictability.

3.7.2 Difference between dynamic and myopic strategies

The results in previous sections show that there is hardly a difference in CERs between

dynamic and (repeated) myopic strategies. In order to understand this result, figures 3.5

and 3.6 plot the posterior distribution of stock weights for respectively the uniform and

1Specifications involving restricted portfolio weights take approximately half a day to calculate.

Repeating this 100 times is not feasible.
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Figure 3.5: Posterior distribution of stock weights using the uniform prior
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The figure shows the posterior distribution of stock weights for the dynamic strategy, the

myopic strategy and the hedge component of the dynamic strategy. The horizon is 60

months, γ = 5 and state variables are equal to their values at the end of the sample.

The figure is obtained by drawing 50,000 times from the posterior distribution using the

uniform prior. Stock weights are calculated for every draw using the Jurek and Viceira

(2010) solution.

shrinkage prior at the end of the sample for the dynamic strategy, the myopic strategy

and the hedge component. We consider an investor with γ = 5 and an investment

horizon of 60 months.

Figure 3.5 shows that estimation uncertainty plays a large role for the specification

based on the uniform prior even when using the full sample. The standard deviation

of dynamic weights (myopic weights) is 52% (43%). In other words, parameter draws

that are almost as likely as the posterior mean could lead to completely different asset

weights. Figure 3.6 indicates that the use of the shrinkage prior reduces the standard

deviation to 41% (35%). However, it also shows that there is still a large amount of

estimation uncertainty left.1 Both figures suggest that estimation uncertainty is the

1At the end of the sample, the data dominates the prior and therefore the specifications based on

different priors are relatively close to each other. If we would only use say 20 years of data, the impact
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3.7 Robustness analysis

Figure 3.6: Posterior distribution of stock weights using the shrinkage prior
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The figure shows the posterior distribution of stock weights for the dynamic strategy, the

myopic strategy and the hedge component of the dynamic strategy. The horizon is 60

months, γ = 5 and state variables are equal to their values at the end of the sample.

The figure is obtained by drawing 50,000 times from the posterior distribution using the

shrinkage prior. Stock weights are calculated for every draw using the Jurek and Viceira

(2010) solution.

highest for the dynamic strategy.

Next, we perform a Monte Carlo simulation under the null of predictability. The

DGP is based on the parameter estimates obtained using the uniform prior on the full

data-set. In every simulation, we generate 52 years of data and perform the same out-

of-sample analysis as on the real data-set. We base the portfolio weights on the true

parameters that we use to simulate the data (this is obviously infeasible in reality) or on

estimated parameters based on either the uniform prior or on the shrinkage prior. To

make the analysis feasible, we only consider specifications with unrestricted portfolio

weights. We use 100 simulations.

The differences in CERs between a dynamic strategy and a myopic strategy are

of the prior and therefore the difference in estimation uncertainty would be much larger.
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Table 3.8: Monte Carlo simulation with predictability

This table gives results for 100 Monte Carlo

simulations assuming predictability. We com-

pare (CERdyn − CERmyop) for specifications

using either the true parameters (panel A),

the estimated parameters under a uniform

prior (Panel B) or the estimated parameters

under a shrinkage prior (Panel C). Secondly,

we give the average differences (over the

simulations) in root mean squared portfolio

weight error between the dynamic and myopic

strategies: ΔRMSPEws = RMSPEws,dyn −

RMSPEws,myopic and ΔRMSPEwb
=

RMSPEwb,dyn − RMSPEwb,myopic. Specifi-

cations differ in their risk aversion level. Data

indicates the result found in the actual data-set.

γ = 2 γ = 5 γ = 10

Panel A: True

Mean 0.0146 0.0179 0.0111

Median 0.0200 0.0231 0.0124

Min -0.2904 -0.1237 -0.0551

1st -0.2654 -0.0717 -0.0335

5th -0.0275 -0.0072 -0.0013

95th 0.0541 0.0386 0.0225

99th 0.0696 0.0475 0.0290

Max 0.0785 0.0508 0.0311

Panel B: Uniform

Data 0.0000 -0.0016 -0.0122

Mean -0.1649 -0.0037 0.0023

Median -0.0171 0.0100 0.0098

Min -2.0126 -0.1805 -0.1062

1st -1.9797 -0.1794 -0.1057

5th -1.4106 -0.1057 -0.0609

95th 0.0723 0.0547 0.0375

99th 0.1548 0.0790 0.0479

Max 0.1878 0.0842 0.0498

ΔRMSPEws 0.2113 0.2232 0.1628

ΔRMSPEwb
0.3210 0.3321 0.2442

Panel C: Shrinkage

Data 0.0209 0.0067 0.0039

Mean -0.0041 -0.0006 0.0002

Median 0.0084 0.0075 0.0043

Min -0.2320 -0.1430 -0.0857

1st -0.2265 -0.1362 -0.0773

5th -0.0940 -0.0740 -0.0413

95th 0.0443 0.0352 0.0228

99th 0.0656 0.0499 0.0307

Max 0.0730 0.0546 0.0339

ΔRMSPEws 0.0029 0.0040 0.0422

ΔRMSPEwb
-0.2874 -0.2454 -0.1641
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given in table 3.8. A positive difference implies that the dynamic strategy outperforms

the repeated myopic strategy. In panel A, we give results for strategies that are based on

the true parameters. The average difference is positive, which indicates outperformance

by the dynamic strategy. This is not surprising, since the dynamic strategy should be

the optimal strategy when the investor knows the true DGP exactly. Remarkably, in

some simulations the difference is negative even if true parameter values are used.

Panel B shows results for an investor who has to estimate the parameters using the

(simulated) data and the uniform prior. The performance differences that we find in the

data are in line with the differences in the Monte Carlo simulations. For investors with

low risk aversion, the dynamic strategy is on average inferior to the myopic strategy.

Apparently, even if the true DGP contains predictability, a dynamic strategy is not

necessarily better than a myopic strategy when the parameters need to be estimated.

Panel C gives similar results using the shrinkage prior. These results are in line with

the results in panel B.

Why do the estimated myopic strategies perform as well as the estimated dynamic

strategies? In every simulation and in every period, we can calculate the difference

between the optimal dynamic portfolio weights (based on the true parameters) and the

estimated portfolio weights (either myopic or dynamic). This allows us to calculate

the root mean squared portfolio weight error (RMSPE) for both the stock weights as

well as the bond weights for every simulation. We calculate the average RMSPE over

all simulations. This is a measure of how far the estimated portfolio weights are from

the true optimal dynamic portfolio weights. We compare both the estimated myopic

and estimated dynamic weights with the true optimal dynamic weights. We do this for

investors with a remaining investment horizon of 60 months.

Lines 10 and 11 of panel B and C show the differences in average RMSPE be-

tween the estimated dynamic and myopic weights. A positive number implies that the

estimated myopic weight is closer to the optimal dynamic portfolio weight. For the

uniform prior, the estimated myopic portfolio weights are indeed closer to the opti-

mal dynamic portfolio weights. This holds for both stocks and bonds. The estimated

myopic weights approximate the optimal portfolio better than the estimated dynamic

weights due to the large estimation error in the long-run predictions of returns and in

the covariances with current returns. This explains why the repeated myopic weights

outperform dynamic strategies in the data when using the uniform prior.
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A closer look at terminal wealth values shows that the portfolio weights using the

uniform prior are too aggressive, i.e. the portfolios are too risky. For example consider-

ing γ = 5, the average (over the simulations) of the average terminal wealth (standard

deviations of terminal wealth) is 7.81 (5.90) for the dynamic and 7.02 (5.08) for the

myopic strategy using the true parameters. Using the estimated parameters under the

uniform prior, we respectively get 8.76 (8.39) and 7.01 (5.76). These results show that

both the estimated myopic as well as the estimated dynamic strategy are (way) too

risky and aggressive. However, by being too aggressive, the estimated myopic portfolio

weights move towards the optimal dynamic weights and approximates the true optimal

dynamic strategy better.

Panel C shows that results are more mixed for the shrinkage prior. The estimated

myopic strategy approximates the optimal dynamic strategy slightly better for stock

weights, but much worse for bond weights. A closer look at terminal wealth values

shows that portfolio weights based on the shrinkage prior are more conservative than

weights based on the true parameters or on the uniform prior, since investors that use

the shrinkage prior are more skeptical about predictability.

3.7.3 Using dividend-to-price ratio as a predictor

In section 3.6, we use the price-earnings ratio as one of the predictor variables. Another

commonly used predictor variable is the dividend-to-price ratio. In this section, we

give results for the plug-in and the decision-theoretic approach for a model in which

the dividend-to-price ratio replaces the price-earnings ratio.

Table 3.9 shows results for the plug-in method. Firstly, we consider the plug-in

method combined with unrestricted weights. Again, the performance for an investor

with low risk aversion (γ = 2), unrestricted portfolio weights and the uniform prior

is very bad with a CER of -100%. This time, however, the performance for higher

risk aversion levels is very bad as well, i.e. CERs are often negative and are substan-

tially lower than the ones for the benchmark models. The DP model is apparently

misspecified.

Under the shrinkage prior, results substantially improve. Negative CERs become

positive and benchmark models are outperformed. Investors should again time the stock

and bond market when using the shrinkage prior. Despite the misspecified DP model,

differences are still economically important. Next, dynamic strategies still outperform
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myopic strategies when using the shrinkage prior. However, the performance differences

is quite small.

The table shows that we could have restricted portfolio weights as well, instead of

shrinkage, to improve out-of-sample performance for all risk aversion levels. Apparently,

the misspecified DP model only gives acceptable out-of-sample results when using some

form of shrinkage: either by using a shrinkage prior or by restricting portfolio weights.

The results in table 3.9 indicate that double shrinkage does not work well for the DP

model. Combining the shrinkage estimator with restricted portfolio weights deteri-

Table 3.9: Plug-in approach - DP model

This table gives the results for the dynamic (Dyn) and myopic (Myop) strategies using the

plug-in method. We use a VAR(1) model with DP as one of the predictors for a robustness

check. We report results under the uniform and shrinkage priors and either use restricted or

unrestricted portfolio weights. We report annualized certainty equivalence returns (CER),

average terminal wealth (TW ) and the standard deviation of terminal wealth (σ(TW )) for

three risk aversion levels γ.

Unrestricted Weights Restricted Weights

Panel A: γ = 2

CER TW σ(TW ) CER TW σ(TW )

Uniform Dyn -1.0000 22.7307 58.7851 0.0755 1.4929 0.3081

Myop -1.0000 17.7485 42.5112 0.0758 1.4941 0.3061

Shrinkage Dyn 0.2192 4.5321 3.1417 0.0682 1.4351 0.2661

Myop 0.2041 4.0242 2.7603 0.0683 1.4357 0.2647

Panel B: γ = 5

Uniform Dyn -0.0857 5.5379 5.4991 0.0661 1.5109 0.3324

Myop 0.0010 3.9889 3.5361 0.0647 1.5024 0.3532

Shrinkage Dyn 0.0946 2.1192 0.6630 0.0588 1.4420 0.2827

Myop 0.0883 1.9085 0.5513 0.0552 1.3956 0.2449

Panel C: γ = 10

Uniform Dyn -0.0500 2.7785 1.8400 0.0499 1.4814 0.3335

Myop 0.0139 2.2197 1.1653 0.0474 1.4365 0.3177

Shrinkage Dyn 0.0521 1.5547 0.2946 0.0414 1.3587 0.2241

Myop 0.0482 1.4506 0.2403 0.0376 1.3080 0.1914
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orates results for all cases. Again, portfolio weight restrictions help bad-performing

specifications but hurt good-performing specifications.

Table 3.10 shows analogous results for the decision-theoretic method. Incorporating

parameter uncertainty improves performance for the least risk-averse investors using

the uniform prior and for all investors using the shrinkage prior. Performance however

deteriorates for more risk-averse investors that use the uniform prior. Again, dynamic

Table 3.10: Decision-theoretic approach - DP model

This table gives the results for the dynamic (Dyn) and

myopic (Myop) strategies using the decision-theoretic

approach. We use a VAR(1) model with DP as one

of the predictors as a robustness check. We report

results under the uniform and shrinkage priors and

use restricted portfolio weights. We report annualized

certainty equivalence returns (CER), average terminal

wealth (TW ) and the standard deviation of terminal

wealth (σ(TW )) for three risk aversion levels γ.

Restricted Weights

Panel A: γ = 2

CER TW σ(TW )

Uniform Dyn 0.0756 1.4939 0.3084

Myop 0.0759 1.4947 0.3041

Shrinkage Dyn 0.0723 1.4620 0.2655

Myop 0.0730 1.4680 0.2726

Panel B: γ = 5

Uniform Dyn 0.0647 1.5085 0.3448

Myop 0.0636 1.4923 0.3443

Shrinkage Dyn 0.0599 1.4446 0.2778

Myop 0.0570 1.4102 0.2530

Panel C: γ = 10

Uniform Dyn 0.0476 1.4732 0.3434

Myop 0.0471 1.4320 0.3142

Shrinkage Dyn 0.0413 1.3515 0.2191

Myop 0.0382 1.3181 0.2039
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strategies marginally outperform myopic strategies in this setting.

We conclude that results from previous sections are confirmed. Investors should

actively time the stock and bond market, including hedging components only marginally

improves performance and the shrinkage prior leads to superior results. However, using

double shrinkage deteriorates results in this section.

3.8 Conclusion

We investigate the out-of-sample performance of strategic asset allocations. Our aim is

to evaluate if the potential gains from strategic portfolios can be realized out-of-sample.

Optimal strategic portfolios are time-varying and include a hedge component. We ana-

lyze the importance of both aspects. Furthermore, we introduce a shrinkage prior that

downplays the predictability of asset returns and shrinks the model for the predictor

variables to a random walk. We investigate whether the shrinkage prior leads to better

results for long-term investors. In our analysis, we consider several specifications. We

vary the method (plug-in or decision-theoretic), the estimator (uniform prior or shrink-

age prior), the strategy (myopic or dynamic) and the portfolio constraints (constrained

or unconstrained) for risk aversion levels γ is 2, 5 or 10.

The first important characteristic of optimal strategic portfolios is that they are

time-varying. We find that this potential gain can be realized out-of-sample. Long-

term investors should let their asset allocations depend on market conditions when

they use our proposed shrinkage prior. Their allocations outperform strategies that

ignore asset return predictability by margins that are economically (and statistically)

significant. The shrinkage prior makes sure that weights are not wildly fluctuating

and not too extreme. The standard uniform prior on the other hand does not give

satisfactory results. An investor with low risk aversion would have lost all her money

if she would have relied on a VAR model estimated with a uniform prior.

Our analysis shows that it is very important for investors to evaluate a prediction

model using an asymmetric utility metric. Risk-averse investors value models by their

capability of avoiding a disaster (the extreme negative events). It turns out that the

shrinkage prior does exactly this. Investors that use the shrinkage prior can still time

the market and benefit from good market conditions. However, what distinguishes the
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shrinkage prior from the standard uniform prior is that it is capable of limiting the

losses in extreme negative events.

The second important characteristic of optimal strategic portfolios is the hedge

component. We argue that this component is sensitive to estimation error in both long-

run predictions of returns and in their covariance with current returns. Our analysis

shows that its potential gain translates into only a modest extra performance out-

of-sample. In some cases dynamic portfolios outperform repeated myopic portfolios

by economically relevant margins (especially if the shrinkage prior is used), but in

general differences are not very large. Monte Carlo simulations show that this result is

indeed caused by estimation error. Estimated portfolios are more aggressive than their

population counterparts. By being more aggressive, the estimated myopic portfolio

moves towards the true (unknown) optimal dynamic portfolio. The estimated dynamic

portfolio on the other hand moves away from the optimal portfolio. In the data, both

rules approximate the true optimal portfolio almost equally well.

The specifications we consider in the paper also differ in the method and in the

restrictions imposed. Some additional results are the following. Taking parameter

uncertainty into account leads to very modest improvements over methods that only

condition on parameter estimates. Brandt, Goyal, Santa-Clara, and Stroud (2005)

among others show that incorporating parameter uncertainty does not significantly

alter the weights for myopic portfolios. It has a much bigger impact on weights of the

hedge component. Our analysis shows that this hedge component only leads to a modest

improvement over myopic portfolios in general. In this light, it it not surprising that

the incorporation of parameter uncertainty does not lead to a much better performance

in this particular case. The effect of weight restrictions on performance is ambiguous.

Badly performing specifications perform better if weights are restricted. However, the

best performing specifications are hurt if weights are restricted. Hence, restrictions

help bad models and hurt the good models as is commonly the case.

A risk-averse investor should combine the shrinkage prior with the plug-in method

and unrestricted weights to maximize her expected utility. She should time the stock

and bond market. Such an investor increases performance slightly by combining the

shrinkage prior with a dynamic strategy in order to take the hedge component into

account.
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We can further extend our paper in several directions. Firstly, we do not take

model uncertainty into account. We assume that investors only use one set of predictor

variables. An alternative would be to use model selection criteria or Bayesian model

averaging (see Cremers (2002) and Avramov (2002)). We do however investigate the

sensitivity of performance with respect to the choice of another predictor variable. Sec-

ondly, the data generating process (DGP) of asset return and state variable dynamics

is assumed not to change over time. We do not consider time-varying parameters or

regime-switching models. Next, we ignore realistic aspects such as labor income, lia-

bilities or transaction costs that matter in reality. Finally, we ignore hedging against

learning due to infeasibility of the computations involved. Brandt, Goyal, Santa-Clara,

and Stroud (2005) show that incorporating learning might improve certainty equiva-

lence returns even further. A challenging task for future research will be to develop a

solution method that is capable of incorporating learning in a large VAR model such

as ours.
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3.9 Appendix

3.9.1 Posterior distribution and MCMC algorithm

This section gives details on how we simulate from the posterior and predictive dis-

tribution for both the uniform prior, introduced in equation (3.16), and the shrinkage

prior, introduced in equation (3.17). The posterior mean for the no-predictability prior

is derived from the results for the uniform prior.

We first consider the uniform prior given in equation (3.16). The posterior distri-

bution is as follows

P (B∗,Σ|Y ) ∝ |Σ|−(T+n+1)/2 exp

{
−1

2
tr
[
(Y ∗ −XB∗′)′(Y ∗ −XB∗′)Σ−1

]}
. (3.18)

It is well-known in the literature (e.g. Zellner (1971) ) that the above posterior is

the product of the marginal posterior distribution for Σ and the conditional posterior

distribution for B∗. These distribution functions look as follows

P (Σ|Y ) = iWishart (S, T − n− 1) (3.19)

P (β∗
′ |Σ, Y ) = N

(
β̂∗

′

,Σ ⊗ (X ′X)−1
)
, (3.20)

where β∗
′

and β̂∗
′

are equal to vectorized B∗′ and B̂∗′ = (X ′X)−1X ′Y ∗ respectively,

and S = (Y ∗ −XB̂′)′(Y ∗ −XB̂′). We can simulate from the above posterior by first

drawing Σ from the inverse Wishart distribution and then drawing β∗
′

given Σ from

the multivariate normal distribution.

If we impose the assumption of stationarity, it is not possible to derive an analytical

expression for the marginal posterior for Σ by integrating with respect to B∗ over its

stationarity region. This implies that we have to rely on a Gibbs sampler with the

conditional posteriors β∗
′ |Σ, given in equation (3.20), and Σ|β∗′ . The latter distribution

is an inverted Wishart distribution where S in equation (3.19) depends on B∗ instead

of B̂∗ and the degrees of freedom are equal to T instead of T − n− 1. We use rejection

sampling in order to impose stationarity, i.e. we reject draws for B∗ that would result

in a non-stationary model.

Secondly, consider the shrinkage prior given in equation (3.17). The posterior dis-

tribution is given in the following equation

P (B∗,Σ|Y ) ∝ (b∗′b∗)−(n(n+1)−2)
2 |Σ|−(T+n+1)/2 exp

{
−1

2
tr
[
(Y ∗ −XB∗′)′(Y ∗ −XB∗′)Σ−1

]}
,

(3.21)
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The above posterior does not belong to a known distribution class. Ni and Sun (2003)

develop an algorithm that allows us to simulate from the posterior distribution. In

order to do so, they introduce a latent variable δ which is needed to simulate B∗. We

use a Gibbs sampler, where the following conditional distributions are important

P (Σ|B∗, Y ) = iWishart
(
(Y ∗ −XB∗′)′(Y ∗ −XB∗′), T

)
(3.22)

P (δ|B∗, Y ) = iGamma

(
J/2− 1,

1

2
β∗

′

β∗
)

(3.23)

P (B∗|δ,Σ, Y ) = N

(
δ(Σ ⊗ (X ′X)−1 + δIJ )

−1β̂∗, (Σ−1 ⊗X ′X +
1

δ
IJ)

−1

)
(3.24)

with J = n(n+1) and IJ the identity matrix of dimension J . We can simply impose the

assumption of stationarity by rejecting non-stationary draws as explained above. In or-

der to increase the accuracy of point estimates, we use Rao-Blackwellization techniques

if possible. This means that we average conditional means of the parameter draws in

order to obtain the (un)conditional posterior means instead of averaging drawn param-

eter values.

No matter whether we use the uniform or shrinkage prior, we can simulate from

the predictive distribution once we have a sample of simulated parameter values. This

conditional distribution is given as follows

P (yt+1|yt, B(i),Σ(i)) = N(B
(i)
0 +B

(i)
1 yt,Σ

(i)), (3.25)

where B
(i)
0 , B

(i)
1 and Σ(i) are drawn parameter values. Note that we first have to

transform B
∗(i)
1 into B

(i)
1 before we are able to simulate future values of yt. We use

antithetic sampling. This means that we simulate two antithetic scenarios of future

returns and state variables for each parameter draw. It is a more efficient and accurate

way to simulate from the predictive distribution.

We use the ML estimates for the initialization of the Gibbs samplers. We draw

25,000 parameter estimates in total, but discard the first 5,000 draws. This results

in 40,000 asset return and state variable paths. Increasing the burn-in phase or the

number of simulations does not significantly impact the results. Visual inspection of

the posterior draws, CUMSUM statistics proposed in Bauwens, Lubrano, and Richard

(1999) and the equality of means test proposed in Geweke (2005) suggest that estimates

converge.
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3.9.2 Numerical method

This section elaborates on the numerical methods used in this paper. We show how the

parametrization of regression coefficients works and give an indication of the accuracy

of our methods. Our method is based on the observation made in Koijen, Nijman, and

Werker (2010) in a different setting that the regression coefficients in step 4 of section

3.5.2 have to be a function of portfolio weights and can be parameterized. This works

extremely well in our setting. For the empirical illustrations in this section, we estimate

the PE model on the full data-set and assume that the estimates are the true values.

Allowing for parameter uncertainty does not change conclusions in this section.

For simplicity, assume that we want to maximize power utility over terminal wealth

one month in the future

max
wt

E

(
W 1−γ
t+1

1− γ

∣∣∣∣Zt
)
. (3.26)

In the main paper, the conditioning variables in Zt are equal to the asset returns and

predictor variables in yt. For illustration purposes, we set the conditioning variables

equal to their historical average in this section. The standard approach for solving

this problem is to set up a portfolio weight grid and simulate N asset return paths.

Then, take a grid point, calculate realized utility for all paths and calculate conditional

expected utility for this grid point by averaging the realized utility values. Finally,

repeat this for all grid points and pick the portfolio weight that maximizes conditional

expected utility.

Since different portfolio weights lead to different conditional utilities, conditional

utility obviously has to be a function of portfolio weights. We illustrate this fact in figure

3.7 where we plot conditional utility versus the portfolio weights. The picture clearly

shows a quadratic relation. In fact, if we regress conditional utility on a quadratic

function of portfolio weights we get an R2 near 1. Hence, the following holds

max
wt

E

(
W 1−γ
t+1

1− γ

∣∣∣∣Zt
)

= max
wt

f(wt), (3.27)

where f(wt) is a quadratic function in the portfolio weight wt.

In other words, maximizing conditional expected utility on a constrained set is

equivalent to maximizing a quadratic function on this same set. This can be done

analytically. Since the R2 in the parametrization regression is almost 1, we do not have
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Figure 3.7: Conditional utility versus portfolio weights
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This figure plots conditional utility over terminal wealth against the portfolio weight in

stocks and the portfolio weight in bonds. We impose short-selling constraints which implies

that only the subregion for which weights add up to 1 is feasible.

to estimate this parametrization regression on a very fine grid: knowing a couple of

points is enough. Hence, the high R2 of 1 is the crucial here.

The figure above clearly illustrates the general idea. However, the method is much

more general. We can easily generalize the above to a dynamic setting where the

conditional utility depends on conditioning variables. As an illustration, assume that

the conditional expectation of the value function at time t depends on one conditioning

variable Zt:

E {Vt+1 (K − 1,Wt+1, Zt+1) | Zt} = α0wt + α1wtZt, (3.28)

where α0wt and α1wt are coefficients depending on portfolio weights wt. If we parame-

terize both coefficients in a quadratic function of portfolio weights wt,s for stocks and
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wt,b for bonds depending on coefficient vectors γ0 and γ1, we get

E(.. | Zt) = (γ00 + γ10wt,s + γ20wt,b + γ30w
2
t,s + γ40w

2
t,b + γ50wt,swt,b)+

(γ01 + γ11wt,s + γ21wt,b + γ31w
2
t,s + γ41w

2
t,b + γ51wt,swt,b)Zt

(3.29)

E(.. | Zt) = (γ00 + γ01Zt) + (γ10 + γ11Zt)wt,s + (γ20 + γ21Zt)wt,b+

(γ30 + γ31Zt)w
2
t,s + (γ40 + γ41Zt)w

2
t,b + (γ50 + γ51Zt)wt,bwt,s,

(3.30)

where the second equality follows after collecting terms. Along each path, the condi-

tioning variables are known. Therefore, maximizing the above conditional expectations

boils down to maximizing a quadratic function in portfolio weights where conditioning

variables can be treated as constants.

The quality of the quadratic approximation depends crucially on the fit of the

parametrization regressions. If one of the coefficients cannot be accurately parameter-

ized in the portfolio weights, the approximation would already break down. Fortunately,

this second-order approximation of the regression parameters on the portfolio weights

is very accurate, i.e. the R2’s of these parametrization regressions are all larger than

0.999 for all coefficients. This holds for settings with and without parameter uncer-

tainty, for γ = 2, γ = 5 and γ = 10, for short and for long horizons and does not

depend on how we select the initial grid points. The fact that the R2 are near one is

the main motivation why we can use a global quadratic approximation.

It is important to note that the rebalancing frequency should be sufficiently high

to obtain accurate results. In our setting, where investors have to choose portfolio

weights every month, the method gives extremely accurate results. However, if we do

not consider any intermediate rebalancing (a buy-and-hold strategy with an investment

horizon of 5 years), the R2 of the parametrization regressions decreases considerably

to around 80% and the quadratic approximation breaks down. Note that there is some

equivalence with the method of Campbell, Chan, and Viceira (2003) and Jurek and

Viceira (2010). Firstly, the method they use is mainly accurate for high rebalancing

frequencies due to - in their case - the lognormal approximation of portfolio returns.

Secondly, they find that the - in their case - log of the (optimal) value function is

quadratic in optimal portfolio weights.

In the empirical section in the paper we use 6 conditioning variables. The grid

size is only 10 and the number of paths is equal to 40,000. We use a first order

polynomial of the conditioning variables, refer to step 4 in section 3.5.2, and a second
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order approximation in the parametrization regressions, refer to step 5. Note that this

numerical method is very fast, since we only have to consider a grid size of 10 instead

of more than 5,000.1 Larger grid sizes do not influence the results because of the high

R2.

Van Binsbergen and Brandt (2007) show that their method is accurate by comparing

their method with the method of Barberis (2000). Their results are similar and therefore

these authors conclude that their method is accurate. We provide additional evidence

that our method is accurate by comparing our numerical method with the one used in

van Binsbergen and Brandt (2007). We report results in table 3.11.2

From the table it is clear that the two methods are equally accurate, i.e. the impact

on accuracy of using our method is negligible. However, our method is around 500

times faster since we only have to consider a grid of 10 points instead of more than

5,000!

1Portfolio weights for the stock index, government bond and real T-bill rate should all be non-

negative and add up to 1.
2We also performed additional tests including parameter uncertainty. In such a setting, both

methods are also equally accurate.
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Table 3.11: Comparison accuracy numerical methods

This table compares the portfolio weights obtained by

the simulation method in van Binsbergen and Brandt

(2007)(BB2007) with the portfolio weights obtained

by using the refined method of this paper (DPS2011).

We give the portfolio weights for a dynamic strategy

with K periods remaining for stocks, ws, and bonds,

wb. Results are based on the plug-in method. We

vary parameter K and risk aversion γ. State variables

are set to their historical average.

BB2007 DPS2011

K γ ws wb ws wb

1 2 1.0000 0.0000 1.0000 0.0000

5 0.5600 0.4400 0.5644 0.4356

10 0.3000 0.4400 0.2974 0.4428

4 2 1.0000 0.0000 1.0000 0.0000

5 0.6000 0.4000 0.5959 0.4041

10 0.3100 0.2900 0.3110 0.2853

8 2 1.0000 0.0000 1.0000 0.0000

5 0.6200 0.3800 0.6185 0.3815

10 0.3200 0.2700 0.3198 0.2736

15 2 1.0000 0.0000 1.0000 0.0000

5 0.6500 0.3500 0.6530 0.3470

10 0.3400 0.3000 0.3420 0.2963

30 2 1.0000 0.0000 1.0000 0.0000

5 0.6900 0.3100 0.6923 0.3077

10 0.3700 0.3100 0.3651 0.3150

60 2 1.0000 0.0000 1.0000 0.0000

5 0.7500 0.2500 0.7469 0.2531

10 0.4100 0.2000 0.4097 0.2013
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4

Model uncertainty for long-term

investors1

We develop a method to incorporate model uncertainty with respect to restricted

VAR(1) models using Bayesian Model Averaging (BMA) and apply our method to

analyze the long-run predictability (forecast horizons up to 30 years) of asset returns.

We find that only the dividend yield and credit spread are important predictors of

stock returns in the short-run, but that almost all considered predictors are important

for long-run predictability. Despite clear evidence of mean-reversion in stock returns,

we show that stocks are in general at least as risky in the long-run as in the short-run

if model uncertainty is incorporated and that stocks are even riskier in the long-run in

case of an economic crisis such as the recent subprime mortgage crisis. Single models

however underestimate the long-run riskiness of stock returns considerably. Finally, the

strategic asset allocations for long-term investors using BMA are substantially different

from investors that use the highest posterior probability model. Our analysis relates

this finding to a lower mean, higher variance, more negative skewness and a higher kur-

tosis of the predictive distributions of excess stock returns when incorporating model

uncertainty. Differences are especially large when the economy deviates substantially

from its steady state value.

1This chapter is based on Diris (2011b).
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4.1 Introduction

Merton (1969, 1971) showed that under changing investment opportunities, the optimal

portfolios of long-term investors differ from the ones of short-term investors. Long-

term investors hold hedge portfolios that anticipate future changes in the investment

opportunities. Empirically, the main driving force in these hedge portfolios is the mean

reversion of stock returns, which implies that equity is less risky for long-term investors

than other types of assets. The main implication is that long-term investors in general

hold more equity than short-term investors. The standard methodology in the strategic

asset allocation literature is to select one model and to use its predictions to calculate

the optimal portfolios of long-term investors. Prominent examples are Barberis (2000) -

who considers a small asset menu, but includes parameter uncertainty - and Campbell,

Chan, and Viceira (2003) - who consider a larger asset menu, but ignore parameter

uncertainty.1

Long-term investors face substantial uncertainty about how to model the predictive

distribution of future asset returns. The reason is that they face uncertainty about

whether stock returns are predictable in the long-run and if so, which predictor vari-

ables they should include. Firstly, there is no consensus in the literature on whether

stock returns are predictable in the short-run.2 On one hand, Goyal and Welch (2008)

show that none of the predictor variables they consider consistently outperforms the

historical average of stock returns, but on the other hand Campbell and Thompson

(2008) show that some of the predictor variables outperform the sample mean if one

adds extra information to the regressions. Secondly, there is hardly any research on the

long-run predictability of asset returns despite the fact that its presence or absence is

very important for long-horizon investors. Taken together this means that long-term

investors face substantial uncertainty about how to model the predictive distribution

of future asset returns.

We take the perspective of such a long-term investor who explicitly acknowledges

that she is uncertain about the econometric model she should use to model the distribu-

tion of future asset returns and about the values of the parameters in the econometric

1Campbell and Viceira (2002) and Brandt (2010) provide an extensive survey of the strategic asset

allocation literature.
2Refer for example to the special issue (number 21) on stock return predictability of The Review

of Financial Studies in 2008.
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model. She considers models that differ in the predictor variables that are included.

As a first step we develop an estimation framework that is able to include model uncer-

tainty over long-term predictions using Bayesian Model Averaging (BMA). Secondly,

we analyze empirically whether model uncertainty is present and relevant for investors

with long investment horizons (up to 30 years). To the best of our knowledge we are the

first ones to consider (the implications of) model uncertainty for long-horizon investors.

We find that model uncertainty is not important at short horizons, but that it is very

important at long horizons.

The models we consider all specify how to predict a set of twelve dependent vari-

ables. We include three asset returns - the real T-bill rate, excess stock returns and

excess bond returns - and nine predictor variables - the default premium, the dividend-

to-price ratio, the book-to-market ratio, the price-earnings ratio, the nominal yield on

the 90-day T-bill, the yieldspread, the credit spread, a measure for newly issued stocks

and a proxy for the stock return variance as dependent variables. Every model specifies

the set of right-hand-side variables to include in the twelve different equations. This

set is a subset of the first lag of the dependent variables and can differ across the equa-

tions. The model that nests all other models is a VAR(1) model. The other models are

restricted VAR(1) models, where some (or all) of the lagged dependent variables are

excluded in some (or all) of the equations. In order to obtain long-horizon predictions,

we iterate the model forward.

The distinguishing feature of our specification is the fact that it allows us to in-

corporate model uncertainty in both the prediction of asset returns (which is usually

done in the literature) and the prediction of the predictor variables (which is usually

ignored in the literature). Since it is essential at long horizons to accurately predict

the predictors of asset returns, the latter effect is at least as important as the former

effect and therefore needs to be taken into account when considering the impact of

model uncertainty on the long-run predictability of asset returns. Ignoring this effect

will significantly underestimate the importance of model uncertainty at long horizons.

To give an example, a long-term investor cannot use the information that the dividend-

to-price ratio predicts next period’s stock returns if she does not know how to predict

the dividend-to-price ratio itself.

An essential difference between our specification and the set-ups in Avramov (2002)

and Cremers (2002) is that their set-ups are not suited for analyzing the impact of model
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uncertainty on long-horizon predictability. Avramov (2002) briefly considers long-run

predictions, but the posterior model probabilities in his analysis are only based on

the equation for stock returns and are not based on the prediction equations for the

predictor variables. Therefore, his set-up considerably underestimates the true impact

of model uncertainty at long horizons.1

The estimation results show that the credit spread and the dividend-to-price ratio

are the most important predictors of stock returns at short horizons. However, at long

horizons all variables are important predictors of long-horizon stock returns either by

predicting stock returns directly or by predicting the predictors of stock returns. Model

uncertainty is clearly present, since none of the models receives a high posterior model

probability.

We find that model uncertainty is very relevant for long-term investors, but rela-

tively unimportant at short horizons. Firstly, our results show that the incorporation

of model uncertainty increases the risk of stock returns - measured by the variance of

the predictive distribution - considerably at long horizons. The reason is that the BMA

specification averages over models that predict very different future trajectories of stock

returns. Therefore, the variance of the (mean) forecasts of all these different models

becomes an important component of the total predictive variance of stock returns. The

impact is especially large when the predictor variables deviate substantially from their

historical average, since the differences in predictions across models is especially large in

that case. The predictive variance of stock returns changes over time, because predic-

tors change over time, even though the considered models are homoscedastic. However,

the incorporation of model uncertainty only has a minor effect at short horizons, since

the different models predict very similar future stock returns for short horizons.

These results are partially related to recent findings in Pastor and Stambaugh

(2010). They find that the annualized predictive variance of stock returns is much

higher at long horizons than at short horizons. Our results only partially confirm Pas-

tor and Stambaugh (2010). We find that the (annualized) predictive variance at a

30-year horizon was much higher than at a 1-quarter horizon during financial crises

1A related paper is Wright (2008). He applies a similar methodology as Avramov (2002) to forecast

exchange rates at longer horizons using a BMA specification. Both use an auxiliary model for the

prediction of predictor variables. However, in their setting the fit of the auxiliary model does not

impact the model probabilities although it is essential for long-horizon predictability.
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such as the great depression in 1929 and the subprime mortgage crisis in 2008. How-

ever, during the 1960s and 1970s, stocks turned out to be much safer at long horizons.

Our results contradict some of the results in Avramov (2002). He finds that model

uncertainty has the biggest impact at short horizon. On the contrary we show that

model uncertainty is mainly important at long horizons, since both the prediction of

asset returns and the prediction of the predictors of asset returns is important at longer

horizons.

Secondly, we find that the incorporation of model uncertainty leads to very different

strategic asset allocations at long horizons using buy-and-hold strategies. The incor-

poration of model uncertainty decreases stock allocations by up to 35% for investment

horizons up to 20 years relative to a setting where we select the model that obtains

the highest posterior probability. Empirically, we find that the stock allocation is so

much lower, because the inclusion of model uncertainty lowers the mean, increases the

variance, leads to (more) negative skewness and increases the kurtosis of the predictive

distribution of stock returns. Note that all four moments of the predictive distribution

depend on the values of predictor variables and therefore change substantially over

time. We also find that the incorporation of model uncertainty has an important im-

pact on the utility that long-term investors expect to receive from the strategic asset

allocations. At the longest horizons, the certainty equivalent can be lower than 1 even

when an investor follows the optimal strategy. This implies (since all returns are in

real terms) that an investor is willing to pay a lot for an inflation-indexed bond to

avoid following (optimal) buy-and-hold strategies. Furthermore, the results again show

that model uncertainty only has a minor impact on short horizons. Its incorporation

hardly changes the predictive moments, asset allocations and expected utility at short

horizons.

These results partially contradict results in Barberis (2000) and Campbell, Chan,

and Viceira (2003). They find that long-term investors should invest more in equity

than short-term investors even when parameter uncertainty is included. However, we

find that this is not the case when model uncertainty is also incorporated. Our results

show that investors with a horizon of 20 years should invest as much in the stock market

as short-term investors.

Thirdly, we show that our results are robust to changes in our specification. Firstly,

we find that a different prior distribution leads to very similar posterior results. Sec-
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ondly, we show that the estimation results are very stable over time by estimating our

specification on smaller subsamples.

A final important contribution of our paper is that we succeed in efficiently estimat-

ing the BMA specification. Although we cannot calculate the posterior moments ana-

lytically, our refined Markov Chain Monte Carlo (MCMC) technique converges quickly

to the stationary distribution of the Markov chain. The Monte Carlo technique is based

on results in Godsill (2001) and only requires us to know the marginal likelihood con-

ditional on the covariance matrix of the error term. Standard techniques to estimate

BMA specifications instead crucially depend on the marginal likelihood.1 The latter

is however not analytically available for the VAR(1) models with arbitrary restrictions

that we consider.

The remainder of this paper is organized as follows. Section 2 introduces the data

we use. Next, Section 3 describes the methodology. It provides details on the model,

the prior assumptions, the posterior distributions, the Markov Chain Monte Carlo

(MCMC) techniques we use to obtain estimation results, and some alternative specifi-

cations. Subsequently, section 4 reports the estimation results of the weighted Bayesian

Model Averaging (BMA) specification. Sections 5 - 6 analyze the impact of the incor-

poration of model uncertainty on the term structure of risk of stock returns and on

strategic asset allocations. Next, section 7 provides some robustness checks. Finally,

section 8 concludes. The appendix contains additional technical details on the posterior

distributions and the simulation techniques that are used in this paper.

4.2 Data

We use a quarterly data-set for the US stock and bond market. It consists of three

asset returns and nine predictor variables and is based on Goyal and Welch (2008). The

data set starts in the fourth quarter of 1926 and ends in the fourth quarter of 2008. We

use all predictor variables that are available in the quarterly Goyal and Welch (2008)

data-set for this sample period.

The first asset return is the ex post real T-bill rate (Rtbill) defined as the difference

between the log return (or lagged yield) on the 3-month T-bill and log inflation. The

second asset return is the excess log stock return (Xs) which is the difference between

1An example is the popular MC3 technique used in e.g. Fernandez, Ley, and Steel (2001).
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Table 4.1: Summary Statistics of the quarterly data-set

This table reports the means, standard deviations, minima, maxima, AR(1)

coefficients and Sharpe ratios for the ex post T-bill rate (Rtbill), the excess

stock return (Xs), the excess bond return (Xb), the default risk premium

(Defpr), the dividend-to-price ratio (DP), the book-to-market ratio (BM),

the price-earnings ratio (PE), the smoothed nominal yield (Ynom), the

yield spread (Yspr), the credit spread (Crspr), net stock issues (ntis) and

the stock return variance (V ar). The data set is quarterly and starts in Q4

of 1926 and ends in Q4 of 2008. Percentages are given as fractions.

Mean Std Min Max AR(1) Sharpe

Rtbill 0.0018 0.0132 -0.0878 0.0449 0.5266

Xs 0.0132 0.1079 -0.4992 0.6399 -0.0408 0.1226

Xb 0.0045 0.0424 -0.1859 0.1854 -0.0555 0.1063

Defpr 0.0005 0.0180 -0.1217 0.0398 -0.0795

DP -3.3422 0.4674 -4.5054 -1.6747 0.9711

BM -0.6280 0.5089 -2.0778 0.7073 0.9769

PE 2.9140 0.3834 1.4214 3.9258 0.9601

Ynom -0.0002 0.0098 -0.0430 0.0443 0.5746

Yspr 0.0152 0.0122 -0.0308 0.0416 0.8484

Crspr 0.0107 0.0068 0.0032 0.0517 0.9175

ntis 0.0197 0.0247 -0.0530 0.1634 0.9196

V ar -5.3703 0.9834 -7.9027 -2.1677 0.7591

the log return (including dividends) on the S&P 500 and the log return on the (nominal)

3-month T-bill. The final asset return is the excess log return on a long-term government

bond with a maturity of 20 years (Xb) and is defined similarly.

Next, we consider nine predictor variables. Several papers show that these variables

predict excess stock returns and/or excess bond returns. Please refer to Goyal and

Welch (2008) for references and more details on data construction. The first predictor

variable is the default risk premium (Defpr) formed as the return difference between a

long-term corporate bond and a long-term government bond. The second predictor is

the log dividend-to-price ratio (DP ) defined as the log difference between the dividends

over the past four quarters and the current log index level. The next predictor variable
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is the log book-to-market ratio (BM) given as the log of the ratio of the book-to-

market value for the Dow Jones Industrial Average. The fourth predictor is the log

price-earnings ratio (PE) formed as the difference between the current log index level

and the log of average earnings over the past 10 years. The next predictor is the

smoothed log nominal yield (Ynom). It is defined as the log nominal yield on the 90-day

T-bill minus the average log nominal yield over the past four quarters. Sixthly, we

include the yield spread (Yspr) which is defined as the difference between the log yield

on a long-term government bond and the log yield on the 90-day T-bill. The seventh

predictor is the credit spread (Crspr) formed as the difference in log yields of Moody’s

BAA and AAA rated bonds. The eighth predictor is the ratio of 12-month moving

sums of net issues by NYSE stocks and the total end-of-year market capitalization of

these stocks (ntis). The final predictor is the log of the stock return variance (V ar) and

is proxied by summing the squared daily returns on the S&P 500 over every quarter.

Table 4.1 provides summary statistics of our data. The equity risk premium of 1.32

% per quarter is in line with most recent papers that use historical data. The results

in the table show that the last eight predictor variables are very persistent.1

4.3 Methodology

Define the n× 1 vector yt as follows (n = 12 in our set-up)

yt =

⎛⎝ rtbill,t
xt
st

⎞⎠ , (4.1)

where rtbill,t is the real return on the T-bill, xt is a vector of excess returns on stocks

and bonds over the T-bill and st is a vector of state variables. Furthermore, define Y

as the T × n matrix containing observations on yt and define Y−1 as the T × n matrix

containing observations on yt−1. Finally, let Yi be the ith column of Y .

1Since the frequentist sampling theory of (for example) the OLS estimator depends strongly on the

presence of a unit root, a frequentist econometrician might wonder whether these variables actually

contain unit roots. We cannot reject a unit root in DP , BM , PE and the Crspr using the Augmented

Dickey Fuller test at the 5% significance level. However, it is important to note that this will not affect

inference in our Bayesian setting, since posterior distributions do not condition on unit roots. Besides,

if we interpret the results of the frequentist unit root tests in a Bayesian way as suggested by Sims and

Uhlig (1991), we only find very limited evidence for the presence of unit roots with a largest ”p-value”

of only 2.80% for BM.
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Our aim is to model the dynamics of all twelve variables in yt. The common

methodology in the strategic asset allocation literature is to select one model using

a model selection criteria and to base inference on this model under the assumption

that the selected model is the correct model, refer for example to Campbell, Chan, and

Viceira (2003) and Barberis (2000). However, this method ignores the uncertainty in

the model selection step and therefore substantially underestimates the uncertainty an

investor truly faces. For example, suppose that the second-best model is almost as likely

as the best model, but leads to very different implications for long-term investors. If an

investor wants to obtain an accurate picture of the distribution of future asset returns

and the uncertainty she faces, she should also include the implications of this second-

best model. The Bayesian methodology allows us to incorporate model uncertainty in

the decisions a long-term investor faces.

We use Bayesian Model Averaging (BMA) to average model predictions across all

considered models. It assigns a posterior probability to all individual models and uses

these probabilities as weights on the forecasts of the individual models to come up with

the composite forecast. In this way, models that receive positive posterior probability

are taken into account in the composite forecasts, but only the plausible models get

a large weight. Several papers such as Avramov (2002) and Cremers (2002) have also

shown that the use of the BMA technique leads to better out-of-sample forecasts.1

If more and more information gets available (if the sample size T goes to infinity)

we would hope that the posterior probability of the ”best” model goes to 1. Gelfand

and Dey (1994) show that asymptotically the posterior probability of the true model

goes to 1 if it is included in the model set. Fernandez-Villaverde and Rubio-Ramirez

(2004) extend this result to a setting where the true model is not included in the

model set. They find that the posterior probability of the model that minimizes the

Kullback-Leibler distance to the true model goes to 1 asymptotically.

The latter result can be seen as a justification for using posterior model probabilities

when the true model is not included in the model set. In fact, we believe - as do Hoeting,

1We choose the Bayesian perspective, because it is conceptually straightforward to include Model

Averaging by just treating models as random themselves and applying Bayes rule in the standard way.

It would also have been possible to use model averaging from the frequentist perspective. A frequentist

could for example use (functions of) information criteria to give weight to the different models, refer

for example to Hjort and Claeskens (2003). The frequentist methods do not seem to be able to deal

with such a large model class as we consider.
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Madigan, Raftery, and Volinsky (1999) - that using Bayesian Model Averaging might

even be more important in such a setting, since we expect that none of the considered

models has a high posterior probability in a moderately sized sample. If instead the

true model would have been included, we would expect its posterior probability already

to be large in a moderately sized sample. Model uncertainty would be less important

with such a dominant model.

The next subsections introduce the model (and likelihood function), the prior, the

posterior and the MCMC techniques we use. The last subsection compares our speci-

fication to alternative specifications.

4.3.1 Model

The models we consider consist of twelve equations. Every model specifies the set of

right-hand-side variables that is included to predict the individual elements in yt. This

set always includes a constant and a subset of Y−1. For simplicity, we do not consider

lags beyond one.1 We allow the set of included right-hand-side variables to differ across

equations.

First, we consider the model that includes all variables in yt−1 as right-hand-side

variables in every equation

Yi = Xβi + εi, i = 1, ......, n, (4.2)

where X is a T × (n + 1) matrix [ι, Y−1] and βi and εi are respectively the (n + 1)× 1

vector of regression coefficients and the T × 1 vector of error terms for equation i. This

model nests all the other models we consider. Equivalently,

Y = XB′ + E, (4.3)

where B is a n × (n + 1) matrix of regression coefficients and E is a T × n matrix of

error terms. This all-encompassing model is a VAR(1) model. The other models are

obtained by removing some (or all) of the right-hand-side variables from some (or all)

of the n equations. We assume throughout that the n × 1 vector εt is i.i.d. normally

distributed

εt ∼ N(0,Σ). (4.4)

1Although the models only predict next period’s asset returns and predictor variables by using

current values of the asset returns and predictor variables, we use the models to make long-horizon

forecasts of stock returns. We do this by iterating our model forward as in e.g. Barberis (2000).
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Model j (Mj) is defined by specifying the set of included right-hand-side variables

for every equation i. We denote the set of right-hand-side variables for equation i in

model j as Z
(j)
i (Z

(j)
i always contains a constant). The regression model j is then given

as

Yi = Z
(j)
i β

(j)
i + ε

(j)
i , i = 1, ......, n, (4.5)

where β
(j)
i is a k

(j)
i × 1 vector of slope coefficients for equation i in model j.

The regression models we consider are restricted VAR(1) models.1 Since Σ(j) - the

covariance matrix of the error term for model j - is not diagonal, the error terms ε
(j)
i

are correlated across equations i. This implies that the n regression equations form a

Seemingly Unrelated Regression (SUR) model. Therefore, we need to estimate the n

regression equations simultaneously to obtain efficient estimates.2 In total we consider

2n
2
models.

In order to calculate the posterior results, we need to obtain an expression for

the likelihood functions of the different models. Therefore, we first introduce some

alternative notation. Instead of equation (4.5), we can express model j as follows

y = Z(j)β(j) + ε(j), (4.6)

where y is the Tn × 1 vector vec(Y), β(j) is the k(j) × 1 vector [β
(j)′

1 , ...β
(j)′
n ]′ with

k(j) =
∑n

i=1 k
(j)
i , ε(j) is a Tn× 1 vector of vertically stacked ε

(j)
i and Z(j) is a Tn× k(j)

matrix

Z(j) =

⎛⎜⎜⎜⎜⎝
Z

(j)
1 0 . . . 0

0 Z
(j)
2 . . . 0

...
...

...

0 0
... Z

(j)
n

⎞⎟⎟⎟⎟⎠ .

The likelihood function of model Mj is (conditional on the first observation)

P (Y |β(j),Σ(j),Mj) = (2π)−
Tn
2 |Σ(j)|−T

2 exp

{
−1

2
(y − Z(j)β(j))′(Σ(j) ⊗ IT )

−1(y − Z(j)β(j))

}
,

(4.7)

where IT is an identity matrix of dimension T .

1It is common in the strategic asset allocation literature to use small VAR(1) models to model the

dynamics of asset returns and predictor variables, refer for example to Campbell and Viceira (2002)

and Campbell, Chan, and Viceira (2003).
2In some restrictive cases, it would also be efficient to estimate the different equations separately,

for example when the same set of right-hand-side variables is included in all equations.
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4.3.2 Prior

For every model Mj we define a model prior p(Mj), a prior distribution for Σ(j) given

Mj p(Σ
(j)|Mj) and a prior distribution for the slope parameters β(j) given Mj and Σ(j)

p(β(j)|Mj ,Σ
(j)).

Firstly, we consider the model prior. The model prior probability is given as follows

p(Mj) ∝ q|Mj |(1− q)n
2−|Mj |, (4.8)

where q is the prior probability that a variable is included and |Mj | is the total number

of included variables in all equations. We set q = 0.50, which implies that every model

has the same prior probability

p(Mj) =
1

n2
. (4.9)

This is the standard choice in the literature, see for example Avramov (2002). As a

robustness check, we also consider putting a beta-prior on q as in Ley and Steel (2009).

We postpone further details on the robustness check until section 4.7.1.

Secondly, we consider the prior on the error covariance matrix. In general we cannot

use improper priors for the coefficients within a model if we use BMA techniques.

However, since all elements of Σ(j) are common to every model Mj , we can choose a

standard improper prior for Σ(j). Therefore, we choose the standard improper Jeffrey’s

prior for Σ(j)

p(Σ(j)|Mj) ∝ |Σ(j)|−n+1
2 . (4.10)

Finally, we look at the prior on the slope coefficients. The different elements of

β(j) are not common to all considered models. Choosing an uninformative prior for

β(j)|MjΣ
(j) would therefore lead to an ill-defined posterior odds ratio

P (Mj |Y )
P (Mi|Y ) . Hence,

we choose a proper prior distribution instead

p(β(j)|Σ(j),Mj) ∼ N(m(j), gV (j)), (4.11)

i.e. a multivariate normal distribution with k(j) × 1 mean vector m(j) and covariance

matrix gV (j) with scalar g and k(j) × k(j) matrix V (j).

The prior mean m(j) consists of 1s and 0s. Most elements are equal to 0. Only the

prior means on the slope coefficient of the most persistent lagged predictor variables

(the dividend-to-price ratio, the book-to-market ratio, the price-earnings ratio, the

smoothed nominal yield, the yield spread, the credit spread, net stock issues and the
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stock return variance) are set equal to 1 in their own equations. This prior mean reflects

the prior belief that excess stock and bond returns are unpredictable and that the

persistent predictor variables follow a random walk. The prior choice expresses a degree

of skepticism about the predictability of stock returns as in Kandel and Stambaugh

(1996) and Wachter and Warusawitharana (2009).

The choice of the prior covariance matrix gV (j) is less straightforward. We let V (j)

depend on data Z(j) and on covariance matrix Σ(j)

V (j) =
(
Z(j)′(Σ(j) ⊗ IT )

−1Z(j)
)−1

. (4.12)

In the special case where the explanatory variables Z
(j)
i for equation i are equal to

Z(j∗) for all i, V (j) = Σ(j)⊗
(
Z

(j∗)′

1 Z
(j∗)
1

)−1
. Our prior for β(j)|Mj ,Σ

(j) is an empirical

Bayes prior. We choose this prior because of two important reasons. Firstly, the prior

is not sensitive to linear transformations of the data. Secondly, the prior covariance

matrix (accurately) reflects the belief that the slope coefficients are strongly correlated.

If instead we would specify a diagonal prior covariance matrix, we would set the prior

correlation between slope coefficients equal to zero while in fact the slope coefficients

are strongly correlated in the data. This conflict of information between the data and

the prior would lead to a distorted posterior distribution with unintended consequences.

The main drawback of letting V (j) depend on Σ(j) is that it complicates the MCMC

algorithm that we use to calculate the results.

Scalar g determines the strength of the prior information within a model. A high

g means that we are relatively uninformative about the parameters within a model.

Therefore, it would seem natural to set parameter g to a very high number, e.g. g = 106.

However, Fernandez, Ley, and Steel (2001) show that setting g equal to such a high

value in order to be uninformative about the coefficients within a model implies that we

are in fact very informative about the models that receive high posterior probability. It

would mean that we put a lot of posterior probability on models with a small number

of explanatory variables.1 Fernandez, Ley, and Steel (2001) suggest to set g = T when

the square of the maximum number of considered explanatory variables per equation

is smaller than T . Therefore, we set g = T , which means that the prior contains as

1By looking at equation (4.16) in the next section (the expression for the marginal likelihood

conditional on Σ(j)), we see that g acts as a penalty factor for larger models. The larger g, the more

large models are penalized.
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much information as one observation. As a robustness check, we also consider putting

a prior on g. Further details on the robustness check are postponed until section 4.7.1.

It is possible to impose that model Mj is stationary by adapting the prior for β(j)

as in the previous chapter. However, we do not pursue this alternative, because we feel

that it is too restrictive to impose such a priori in this setting. We want to consider

model uncertainty over all specifications, not only the stationary ones.

4.3.3 Posterior

We want to estimate the posterior model probabilities p(Mj |Y ), the posterior distri-

butions for the slope coefficients p(β(j)|Y,Mj) and the posterior distributions for the

error covariance matrix p(Σ(j)|Y,Mj). Unfortunately, none are analytically available in

our setting. Therefore, we have to obtain the posterior distributions through MCMC

simulation techniques. In order to be able to use the MCMC techniques that are in-

troduced in the next section, we have to derive several expressions. The derivations

themselves are shown in the appendix.

Let us firstly consider the posterior distributions of β(j). The properties of the poste-

rior distributions of p(β(j),Σ(j)|Y,Mj) or p(β
(j)|Y,Mj) are unknown since the integrat-

ing constant is unknown. However, the conditional posterior distribution p(β(j)|Y,Mj ,Σ
(j))

is analytically available

p(β(j)|Y,Mj ,Σ
(j)) = N(β∗(j),M∗(j)) (4.13)

where

M∗(j) =

[(
1 + g

g

)
Z(j)′(Σ(j) ⊗ IT )

−1Z(j)

]−1

β∗(j) =
g

1 + g
β̂(j) +

1

1 + g
m(j)

β̂(j) =
(
Z(j)′(Σ(j) ⊗ IT )

−1Z(j)
)−1

Z(j)′(Σ(j) ⊗ IT )
−1y(j).

In the next section, we will use p(β(j)|Mj ,Σ
(j), Y ) in a Gibbs step.

Secondly, let us look at the posterior distribution for Σ(j). We do not know the

integrating constant for the conditional posterior p(Σ(j)|Y,Mj , β
(j)) or for p(Σ(j)|Y,Mj),

but we know that the conditional posterior is proportional to the following expression

p(Σ(j)|Y,Mj , β
(j)) ∝ |Z(j)′(Σ(j)⊗IT )−1Z(j)| 12 |Σ(j)|−T+n+1

2 exp

{
−1

2
tr[(Σ(j))−1(E(j)′E(j) +

1

g
H(j))]

}
,

(4.14)
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where

E(j) = (Y −W (j)B(j)
c )′(Y −W (j)B(j)

c )

W (j) = (Z
(j)
1 , Z

(j)
2 , ..., Z(j)

n )

H(j) = (B
(j)′

f −M
(j)′

f )′X ′X(B
(j)′

f −M
(j)′

f ),

B(j)
c =

⎛⎜⎜⎜⎜⎝
β
(j)
1 0 . . . 0

0 β
(j)
2 . . . 0

...
...

...

0 0
... β

(j)
n

⎞⎟⎟⎟⎟⎠ .

and where matrix B
(j)
f is an n × (n + 1) matrix. Elements of B

(j)
f are either equal to

0 when a variable is not included in the model or equal to its corresponding element

in β(j).1 The n × (n + 1) matrix M
(j)′

f is similarly defined with respect to the prior

means in m(j). Expression (4.14) allows us to approximate the conditional posterior

distribution using a Metropolis-Hastings step in the next section.

Finally, let us consider the posterior model probability p(Mj |Y ). If we would know

the marginal likelihood p(Y |Mj), the posterior probability that model Mj is the true

model could be calculated as

p(Mj |Y ) =
P (Y |Mj)p(Mj)∑
k P (Y |Mk)P (Mk)

. (4.15)

BMA papers that rely on simulation techniques to explore the model space (e.g. Fernan-

dez, Ley and Steel, 2001) use an MC3 algorithm to explore the model space. However,

this is not applicable in our setting, since p(Y |Mj) is not analytically available for a

Seemingly Unrelated Regression (SUR) model with arbitrary restrictions. We are only

able to analytically calculate p(Y |Mj) in a couple of limited cases, e.g. when the set

of right-hand-side variables is equal in all equations. Therefore, in the next section

we develop an algorithm to explore the model space that only requires us to know the

”conditional marginal likelihood” p(Y |Mj ,Σ
(j)). The conditional marginal likelihood

is analytically available

p(Y |Mj ,Σ
(j)) = (2π)−

Tn
2 |Σ(j)|−T

2 (1 + g)−
k(j)

2 exp

{
−1

2
(y′(Σ(j) ⊗ IT )

−1y)

}
exp

{
−1

2

(
m(j)′ 1

g
V (j)−1m(j) − β(j)∗

′

M∗(j)−1β(j)∗
)}

.

(4.16)

1For example, if element (xs, DP ) is included, element (2,6) of B
(j)
f is equal to its corresponding

value in β(j), otherwise it is 0.
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4.3.4 Markov Chain Monte Carlo algorithm

We apply Markov Chain Monte Carlo techniques to estimate the posterior distributions

p(Mj |Y ), p(β(j)|Y,Mj) an p(Σ(j)|Y,Mj). The expressions we derive in the previous

section allow us to implement the algorithm. Suppose we are currently in iteration m

with model Mj and suppose that the current coefficients for model Mj in iteration m

are β(j) and Σ(j).

The first step is to draw a new model Ml in iteration m + 1. The modeling step

is a Metropolis-Hastings step and is based on a result in Godsill (2001) who shows

that we can condition on parameters that are shared between different models - Σ(j)

in our setting - when drawing a new model. Our method only requires that Σ(j) has

a common interpretation and common dimensions across models, but does not require

that Σ(j) has the same posterior distribution across different models. We randomly

draw a proposal model from the neighbourhood of models around Mj and then accept

the model with acceptance probability α.

Assume that the current model has k(j) included variables. The algorithm proceeds

as follows.

1. Randomly select a proposal model M∗
l from all models with k(j) + 1 or k(j) − 1

variables.

2. Set Ml =M∗
l with acceptance probability

α = min

{
1,
p(M∗

l )p(Y |M∗
l ,Σ

(j))

p(Mj)p(Y |Mj ,Σ(j))

}
. (4.17)

Otherwise set Ml =Mj.

Appendix B provides details on the calculation of the acceptance probability.

The step for drawing slope coefficients β(l) is more straightforward. It is a standard

Gibbs steps and is based on the conditional posterior we derived in the previous section.

Note that we condition on new model Ml and old draw Σ(j).

1. Draw β(l) using the conditional posterior in equation (4.13).
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We do not know the integrating constant of the conditional posterior of Σ(l) and there-

fore cannot use a standard Gibbs step. Instead, we draw Σ(l) using a Metropolis-

Hastings step. As proposal density, we use an inverted Wishart distribution that ap-

proximates the conditional posterior density for Σ(l) as close as possible. Note that we

condition on the new model Ml and the new draw β(l).

1. Draw Σ(l)∗ according to iWishart(E(l)′E(l) +H(l), T + n+ 1).

2. Set Σ(l) = Σ(l)∗ with acceptance probability

α = min

{
1,

|Z(l)′(Σ(l)∗ ⊗ IT )
−1Z(l)| 12 |Σ(l)∗|n+1

2

|Z(l)′(Σ(j) ⊗ IT )−1Z(l)| 12 |Σ(j)|n+1
2

}
. (4.18)

Otherwise set Σ(l) = Σ(j).

Appendix B provides details on the calculation of the acceptance probability. Note that

we use the parameterization of Bauwens, Lubrano, and Richard (1999) for the inverted

Wishart distribution.

4.3.5 Comparison to alternative specifications

In this section, we compare our weighted Bayesian Model Averaging specification to

alternative specifications that are proposed in the literature.

The first alternative specification is proposed in Avramov (2002). The models he

considers are VAR(1) models. Since his focus is mainly on short-horizon forecasting,

he bases the posterior model probabilities only on the stock return equation within

the VAR(1) model. He mentions ”(..) the weighted predictive distribution makes use

of posterior probabilities computed based on the return generating process in Eq.(1)”

(Avramov, 2002, page 432). The implication is that model uncertainty regarding the

prediction of the predictor variables is not taken into account. Therefore, given our

long-run focus, we cannot use Avramov’s (2002) setting since it would substantially

underestimate the impact of model uncertainty for long horizons.

A second alternative specification is used in George, Ni, and Sun (2008). They

suggest a Bayesian stochastic search method to select restrictions in VAR models. They

put a tight prior centered around 0 on the slope coefficients of irrelevant right-hand-

side variables instead of considering models where irrelevant right-hand-side variable

are excluded as in our setting. The idea is that the use of such a prior sets the slope
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coefficient arbitrarily close to 0 such that the effect of these variables is negligible. An

issue with George, Ni and Sun’s (2008) approach is the calibration of the tightness of the

prior for each slope coefficient. They need to specify a large number of additional prior

hyperparameters and in our experience the results turn out to be very sensitive to this

calibration. If the prior is too tight the stochastic search algorithm does not converge,

while if the prior is too loose the effect of these variables could still be substantial. Our

method avoids the calibration of these parameters and therefore avoids these issues.

A third alternative specification is analyzed in Andersson and Karlsson (2008).

They base the posterior model probabilities on the actual forecasting performance of

the variable of interest at a certain horizon. Andersson and Karlsson’s (2008) method

uses simulation techniques to calculate the predictive performance of each individual

model at each horizons. We do not use their method, because of several reasons.

Firstly, their approach is not feasible in our setting, since we consider a very large

number of models and it is impossible to calculate the predictive performance of each

model individually. Secondly, our objective is to find one combination of models that

describes the predictive distribution at different horizons, while their method leads to

different posterior model probabilities at different horizons. Thirdly, at long horizons

we cannot reliable calculate the predictive performance of individual models due to

data limitations. For example, if we consider a horizon of 30 years, the predictive

performance of each model is based on only two non-overlapping 30-year windows.

This is clearly undesirable.

A fourth alternative method is proposed in Wright (2008). He considers models

that regress the variable of interest at time point t+ k on right-hand-side variables at

time point t for horizon k. He uses these models to directly forecast variables k-period

ahead (so-called direct forecasts). We instead consider models that regress next period’s

variable of interest on current right-hand-side variables and iterate these models k-

periods forward in order to get predictions at a k-period horizon. We consider iterated

forecasts because of several reasons. Firstly, Marcellino, Stock, and Watson (2006)

show that iterated forecasts outperform direct forecasts at longer forecast horizons in

an empirical analysis using macro-economic time-series. The iterated forecasts are more

efficient. Secondly, when k > 1 the overlapping nature of observations on the variable of

interest leads to serial correlation in the error term when one uses the models in Wright

(2008). This is an econometric issue one needs to take into account when using the direct
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forecasting method. Thirdly, Wright’s (2008) method gives different forecasting models

for different horizons. We instead want to find a parsimonious model that describes the

predictive distribution of asset returns at different horizons. Finally, when the forecast

horizon is large we cannot reliably estimate the model in Wright (2008). There are

not enough non-overlapping observations when we consider forecasting horizons of for

example 30 years.

4.4 Estimation Results

As a first step we estimate the unrestricted VAR(1) - the model in equation (4.3) - on

the full data-set. Table 4.2 gives the OLS parameter estimates, its standard errors and

the correlations and standard deviations of the residuals.

We focus on the most important results. Firstly, since the maximum eigenvalue

of 0.9902 is less than 1, the system is strictly-speaking stationary. However, since

the value is close to 1, we need to be careful in interpreting the frequentist t-statistics

below. As mentioned above, this does not have an impact on (the interpretation of) the

posterior distributions. Secondly, the R2’s in the equations for stock and bond returns

are respectively 9.0% and 10.1%. This implies that a large part of the return variation

still remains unexplained. Thirdly, the t-statistics suggest that the price-earnings ratio

is the most important predictor of excess stock returns followed by the book-to-market

ratio, net stock issuance, the credit spread and the default premium. Surprisingly, the

popular dividend-to-price ratio is less important, but this can be due to the fact that

the dividend-to-price ratio, the book-to-market ratio and the price-earnings ratio are

highly collinear. Finally, the table shows that the dividend-to-price ratio, the book-

to-market ratio, the price-earnings ratio, the smoothed nominal yield, the yieldspread,

the credit spread, net stock issues and the stock variance are very persistent processes.

Next, let us consider the Bayesian Model Averaging (BMA) specification. Table

4.3 reports the posterior probability that a right-hand-side variable is included in a

particular equation in the weighted BMA specification. The posterior probability of

variable Y in equation X is obtained by summing the posterior model probabilities of

all models in which variable Y occurs in equation X. The different equations are given

in the different rows.
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Table 4.2: OLS Estimates and standard errors unrestricted model

This table reports the OLS estimates and standard errors of the coefficients in the unrestricted VAR(1)
model where the different equations are given in different rows. Panel A reports the OLS estimates and
standard deviations. Panel B reports the OLS estimates of the covariance matrix of the error term. The
elements on the diagonal are standard deviations x100, the off-diagonal elements are correlations. Note that
constants are suppressed in the table.

Panel A: OLS estimates and standard errors of slope coefficients

Rtbill Xs Xb Defpr DP BM PE Ynom Yspr Crspr ntis V ar

Rtbill 0.4360 -0.0105 -0.0219 -0.0556 0.0024 -0.0061 -0.0002 -0.1278 -0.1149 0.4131 0.0267 -0.0010

0.0535 0.0063 0.0188 0.0410 0.0043 0.0037 0.0075 0.0832 0.0693 0.1728 0.0291 0.0010

Xs 0.2323 -0.1085 0.3134 0.7852 -0.0315 -0.0884 -0.2228 -0.4919 -0.6622 -3.5008 -0.6495 -0.0080

0.5049 0.0597 0.1773 0.3871 0.0406 0.0353 0.0710 0.7859 0.6543 1.6315 0.2751 0.0090

Xb 0.2793 -0.0121 -0.1501 -0.2173 0.0052 -0.0210 -0.0278 0.3182 0.8938 -1.0045 -0.1987 0.0047

0.1971 0.0233 0.0692 0.1511 0.0159 0.0138 0.0277 0.3068 0.2554 0.6369 0.1074 0.0035

Defpr 0.0203 0.0114 0.0479 -0.0801 -0.0138 0.0015 -0.0207 -0.0998 -0.0606 -0.1700 0.1376 0.0013

0.0851 0.0101 0.0299 0.0652 0.0068 0.0059 0.0120 0.1324 0.1102 0.2748 0.0463 0.0015

DP -0.6584 0.0880 -0.2978 -0.8914 1.0360 0.0755 0.2029 0.4034 0.6222 1.9710 0.7770 0.0048

0.5188 0.0613 0.1822 0.3977 0.0418 0.0363 0.0729 0.8074 0.6722 1.6762 0.2826 0.0092

BM 0.0589 0.1230 -0.3403 -0.7438 0.0460 1.0366 0.1485 0.5279 0.9587 1.6938 0.8609 0.0052

0.5221 0.0617 0.1833 0.4002 0.0420 0.0365 0.0734 0.8126 0.6765 1.6869 0.2844 0.0093

PE 0.3363 -0.1048 0.3029 0.7858 -0.0583 -0.0875 0.7586 -0.5156 -0.7452 -2.6523 -0.5647 -0.0085

0.5027 0.0594 0.1765 0.3854 0.0405 0.0351 0.0707 0.7824 0.6513 1.6243 0.2739 0.0089

Ynom -0.0102 0.0026 -0.0068 0.0050 0.0017 0.0065 0.0113 0.6462 0.1828 0.1035 0.0290 -0.0010

0.0376 0.0044 0.0132 0.0288 0.0030 0.0026 0.0053 0.0585 0.0487 0.1215 0.0205 0.0007

Yspr -0.0144 -0.0006 0.0184 0.0037 -0.0023 -0.0044 -0.0084 0.0215 0.7842 0.0426 -0.0016 0.0006

0.0306 0.0036 0.0107 0.0234 0.0025 0.0021 0.0043 0.0476 0.0396 0.0987 0.0166 0.0005

Crspr 0.0092 0.0013 -0.0138 -0.0194 0.0003 -0.0005 -0.0012 -0.0198 -0.0011 0.7925 0.0045 0.0010

0.0135 0.0016 0.0048 0.0104 0.0011 0.0009 0.0019 0.0211 0.0175 0.0438 0.0074 0.0002

ntis -0.0961 0.0106 -0.0177 -0.0051 0.0025 -0.0029 0.0014 -0.1967 -0.1518 0.1491 0.9085 -0.0012

0.0449 0.0053 0.0158 0.0344 0.0036 0.0031 0.0063 0.0698 0.0581 0.1450 0.0244 0.0008

V ar -6.1149 0.4726 -2.5670 -5.4110 0.2098 -0.5217 0.0301 -3.8466 -4.4843 58.2268 0.4973 0.5195

2.9531 0.3490 1.0369 2.2638 0.2377 0.2064 0.4152 4.5963 3.8265 9.5420 1.6089 0.0526

Panel B: OLS estimates of covariance matrix of residuals

Rtbill Xs Xb Defpr DP BM PE Ynom Yspr Crspr ntis V ar

Rtbill 1.0901 -0.0537 0.2521 -0.0658 0.0288 -0.0180 -0.0505 -0.1265 0.0017 0.2609 -0.1156 -0.0318

Xs 10.2926 0.0626 0.2393 -0.9746 -0.8620 0.9949 0.0040 -0.0538 -0.5542 0.1460 -0.4292

Xb 4.0179 -0.3821 -0.0598 -0.0713 0.0643 -0.5539 0.0919 0.1569 0.0488 0.0788

Defpr 1.7339 -0.2520 -0.2034 0.2432 0.0537 0.1500 -0.1481 0.1673 -0.1693

DP 10.5747 0.8528 -0.9757 0.0030 0.0413 0.5291 -0.1241 0.4269

BM 10.6419 -0.8651 0.0106 0.0511 0.4657 -0.1112 0.3443

PE 10.2468 -0.0014 -0.0484 -0.5375 0.1409 -0.4372

Ynom 0.7662 -0.8454 -0.1325 -0.0593 -0.0325

Yspr 0.6228 0.0665 0.0686 -0.0013

Crspr 0.2760 -0.2346 0.2580

ntis 0.9145 0.1313

V ar 60.1963

Firstly, the table shows that the posterior probabilities vary a lot across equations.

The most extreme example is the stock variance. In 10 out of 12 equations, it is only

rarely included in the BMA model (see the last column), but in 2 out of 12 equations

- namely the credit spread equation and the stock variance equation itself - the stock

variance is always included. Hence, if we would exclude the stock variance from the set

of predictors, the equation for the credit spread would be misspecified. However, if we

would include the stock variance in all equations we would obtain inefficient estimates,

since the stock variance has no predictive power in most equations. Therefore it is

clearly important that we allow the set of right-hand-side variables to differ across

120



4.4 Estimation Results

Table 4.3: Posterior probability of including a variable

This table reports the posterior probability of including a variable in the weighted Bayesian Model Averaging

model. The different equations are given in the different rows. Note that the right-hand-side variables are

lagged by one period. Results are based on 500,000 retained draws from the posterior distribution.

Rtbill Xs Xb Defpr DP BM PE Ynom Yspr Crspr ntis V ar

Rtbill 1.0000 0.3189 0.0580 0.1081 0.1292 0.2880 0.2262 0.0808 0.1199 0.4725 0.2264 0.0779

Xs 0.3320 0.0852 0.0695 0.0534 0.8406 0.0986 0.3831 0.0667 0.1741 0.8633 0.4850 0.0900

Xb 0.0679 0.0622 0.0915 0.1969 0.0670 0.0619 0.0619 0.5457 1.0000 0.0884 0.0816 0.1498

Defpr 0.0696 0.0854 0.1752 0.6810 0.1397 0.1802 0.2651 0.0761 0.0605 0.0936 0.7020 0.1954

DP 0.6725 0.1766 0.0795 0.2692 1.0000 0.1088 0.2329 0.0487 0.0587 0.6288 0.5781 0.1040

BM 0.0960 0.0702 0.0707 0.0621 0.1216 1.0000 0.1367 0.0572 0.0799 0.0776 0.4615 0.0777

PE 0.2568 0.0621 0.0590 0.0519 0.2752 0.0620 1.0000 0.0664 0.1529 0.4437 0.7225 0.1532

Ynom 0.0620 0.0521 0.0832 0.0976 0.0696 0.0698 0.0822 1.0000 0.8359 0.1894 0.1371 0.2267

Yspr 0.0717 0.0613 0.1143 0.0954 0.0590 0.0913 0.0776 0.0692 1.0000 0.4268 0.0982 0.2630

Crspr 0.0693 0.0521 0.1280 0.0595 0.1578 0.1505 0.3671 0.0937 0.0634 1.0000 0.0793 1.0000

ntis 0.1077 0.5003 0.1346 0.0702 0.0979 0.0926 0.1805 0.2396 0.2192 0.1096 1.0000 0.2251

V ar 0.1696 0.0562 0.0809 0.1125 0.1049 0.9850 0.2030 0.0696 0.1049 1.0000 0.0572 1.0000

equations.1 Secondly, we conclude that the posterior probabilities are only roughly

related to the frequentist t-statistics that are reported in the previous table. In some

cases, there is a correspondence. For example, in most predictor equations the lag

of the dependent variable both has a high t-statistic and a high posterior probability.

However, let us also consider the dividend-to-price ratio, the book-to-market ratio and

the price-earnings ratio in the equation for stock returns. Although 2 out of 3 (the

book-to-market ratio and the price-earnings ratio) have high t-statistics, only 1 of

them (the dividend-to-price ratio) is frequently included in the weighted BMA model.

The reason is that the dividend-to-price ratio, the book-to-market ratio and the price-

earnings ratio are highly collinear and therefore contain almost the same information.

The BMA specification therefore only includes one of them - the dividend-to-price ratio

- on average. Thirdly, the posterior probability that the system is non-stationary is

6.2%. Although Barsky and De Long (1993) show that under certain assumptions

the dividend-to-price ratio is an I(1) process, our analysis shows that there is little

evidence for this claim. Fourthly, the table shows that between 2 - 4 variables out of

1As an example, if we restrict the set of right-hand-side variables to be equal across all equations,

the most persistent predictor variables are always included. The reason is that the lags of the persistent

predictors need to be included to model the persistent predictor variables themselves. Since the right-

hand-side variables are the same for all equations in this example, the lags are included in all equations.

This is clearly undesirable.
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12 are on average included in most equations. Hence, the full model clearly overfits

the data. Fifthly, we see that the dividend-to-price ratio and the credit spread are the

most important direct predictors of excess log stock returns. The marginal probabilities

that these variables are included are larger than 84% for both. Furthermore, the most

important predictor of the T-bill rate is its own lag and the most important predictor

of excess bond returns is the yield spread.

Since the dividend-to-price ratio and the credit spread are by far the most impor-

tant predictors of excess stock returns, it seems natural to conclude that the other 10

variables are not important to model future stock returns. However, this is incorrect.

To see this, let us again consider the stock variance. The current value of the stock

variance only predicts next period’s stock returns with a posterior probability of 9.00%.

However, note that if we want to predict excess stock returns two periods in the future,

we first have to be able to predict next period’s credit spread and note that equation

10 in the table shows that the stock variance is the most important predictor of next

period’s credit spread. Hence, if we want to predict stock returns two periods ahead,

the stock variance is one of the most essential predictors of future stock returns. If

we would have only based model probabilities on the stock return equation, we would

have wrongly concluded that the stock variance is not an important predictor of stock

returns. Therefore, it is essential that model probabilities not only reflect which pre-

dictors accurately predict next period’s stock returns, but also which predictors predict

predictors itself.

There are more and more predictors that become important at longer horizons.

Therefore, we develop a measure to assess the importance of predictors of excess stock

returns at different horizons. We explain this measure using an example. Firstly,

suppose that the considered model is an unrestricted VAR(1) model with known slope

coefficients A and suppress constants for notational convenience. The following holds

Etyt+1 = Ayt (4.19)

Etyt+2 = A2yt
...

Etyt+k = Akyt.

We can use this result to calculate the importance of the right-hand-side variables for

predicting excess stock returns at different horizons in the following way. Suppose we
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Table 4.4: Relevance of explanatory variables for predicting excess stock re-

turns at different horizons

This table reports the posterior probability of including a variable in the weighted Bayesian Model

Averaging model when the model is iterated forward by H periods. It shows which variables are important

for predicting excess stock returns at different horizons. Results are based on 500,000 retained draws from

the posterior distribution.

H Rtbill Xs Xb Defpr DP BM PE Ynom Yspr Crspr ntis V ar

1 0.3320 0.0852 0.0695 0.0534 0.8406 0.0986 0.3831 0.0667 0.1741 0.8633 0.4850 0.0900

2 0.8287 0.5303 0.2946 0.3877 0.9967 0.4646 0.7203 0.3538 0.4897 0.9982 0.8150 0.9055

4 0.9226 0.8058 0.5809 0.6629 0.9990 0.9939 0.8984 0.6930 0.8775 0.9995 0.9814 0.9993

8 0.9261 0.8185 0.5997 0.6794 0.9995 0.9946 0.9056 0.7207 0.9045 0.9995 0.9861 0.9995

20 0.9261 0.8185 0.5997 0.6794 0.9995 0.9946 0.9056 0.7207 0.9045 0.9995 0.9861 0.9995

40 0.9261 0.8185 0.5997 0.6794 0.9995 0.9946 0.9056 0.7207 0.9045 0.9995 0.9861 0.9995

want to analyze whether the lagged book-to-market ratio is an important predictor of

stock returns k periods in the future. In order to do so, we firstly draw a model and

a parameter draw from our posterior distribution. Then, we rewrite our model as a

restricted VAR(1) model and iterate the model forward by k periods.1 Next, we check

whether element (Xs, BM) of matrix Ak is different from 0. If it is, the book-to-market

ratio is a predictor of excess stock returns at horizon k for this parameter draw in this

particular model. We repeat this process N times for different model and parameter

draws. Finally, we calculate the fraction of draws for which the book-to-market ratio is

a predictor of excess stock returns. We use this fraction as a measure for the importance

of the book-to-market ratio for predicting excess stock returns at horizon k.

Table 4.4 shows the measure for horizons up to 40 quarters. For a horizon of 1

quarter, the measure is equal to the posterior probabilities that are given in table 4.3.

When horizon k increases, the measure substantially deviates from these probabilities.

As argued before we see that the stock variance becomes an important predictor of

excess stock returns when horizon k ≥ 2. All 12 right-hand-side variables become

important at a horizon of 10 years. At these long investment horizons variables either

predict stock returns directly or predict the predictors of stock returns or the predictors

of the predictors of stock returns etcetera.

Table 4.5 reports the posterior moments of the coefficients of the weighted BMA

model. The table shows the posterior means and standard deviations of the slope

1Note that the different models we consider can easily be rewritten as restricted VAR(1) models

with 0s in place of excluded variables.
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Table 4.5: Posterior means and standard deviations

This table reports the posterior mean and standard deviation of the coefficients in the weighted Bayesian
Model Averaging model where the different equations are given in different rows. Panel A reports the
posterior mean and standard deviations of the slope coefficients. Panel B reports the posterior mean of the
elements of the covariance matrix of the error term. The elements on the diagonal are standard deviations
x100, the off-diagonal elements are correlations. Note that constants are suppressed in the table. Results
are based on 500,000 retained draws from the posterior distribution.

Panel A: Posterior means and standard deviations

Rtbill Xs Xb Defpr DP BM PE Ynom Yspr Crspr ntis V ar

Rtbill 0.4745 -0.0037 0.0001 -0.0047 0.0004 -0.0010 0.0013 -0.0060 -0.0094 0.1474 0.0104 0.0000

0.0538 0.0062 0.0038 0.0175 0.0019 0.0020 0.0034 0.0298 0.0340 0.1871 0.0229 0.0003

Xs -0.0393 -0.0005 0.0007 -0.0013 0.0234 -0.0005 -0.0163 -0.0026 0.0163 -0.9449 -0.1049 0.0000

0.0844 0.0030 0.0054 0.0132 0.0125 0.0034 0.0264 0.0225 0.0448 0.5820 0.2242 0.0005

Xb 0.0067 -0.0001 -0.0040 -0.0221 0.0000 0.0000 0.0000 0.3406 0.9993 0.0049 0.0002 0.0004

0.0353 0.0030 0.0204 0.0565 0.0010 0.0009 0.0013 0.3655 0.2677 0.1085 0.0248 0.0014

Defpr 0.0027 0.0007 0.0069 -0.0939 -0.0002 0.0006 -0.0018 -0.0066 0.0029 0.0087 0.0749 0.0003

0.0207 0.0036 0.0184 0.0768 0.0027 0.0016 0.0043 0.0388 0.0247 0.0662 0.0589 0.0008

DP -0.2152 -0.0037 0.0023 -0.0396 0.9812 -0.0009 0.0106 -0.0019 -0.0020 -0.6841 0.1890 -0.0003

0.1824 0.0097 0.0128 0.0764 0.0133 0.0043 0.0242 0.0338 0.0349 0.6388 0.2600 0.0011

BM 0.0265 0.0016 -0.0034 0.0064 0.0023 0.9708 -0.0042 -0.0036 0.0143 -0.0119 0.2100 -0.0002

0.1152 0.0097 0.0236 0.0503 0.0087 0.0149 0.0148 0.0806 0.0925 0.2474 0.2954 0.0014

PE 0.0165 0.0000 -0.0002 -0.0004 -0.0023 -0.0002 0.9659 0.0005 -0.0119 -0.1336 -0.0176 -0.0002

0.0750 0.0024 0.0045 0.0122 0.0115 0.0029 0.0252 0.0207 0.0390 0.5529 0.2269 0.0007

Ynom 0.0003 0.0000 -0.0005 -0.0003 0.0000 0.0000 0.0001 0.6644 0.1034 -0.0121 0.0012 -0.0002

0.0032 0.0004 0.0035 0.0039 0.0001 0.0005 0.0007 0.0404 0.0591 0.0462 0.0042 0.0005

Yspr 0.0003 0.0000 0.0008 -0.0007 0.0000 -0.0001 0.0000 0.0017 0.8510 0.0320 0.0004 0.0002

0.0032 0.0004 0.0038 0.0037 0.0001 0.0005 0.0007 0.0147 0.0417 0.0542 0.0028 0.0005

Crspr 0.0004 0.0000 -0.0006 0.0002 0.0001 -0.0001 -0.0005 -0.0014 0.0004 0.8090 -0.0003 0.0009

0.0032 0.0003 0.0018 0.0019 0.0003 0.0004 0.0009 0.0063 0.0033 0.0347 0.0021 0.0002

ntis -0.0050 0.0057 -0.0025 0.0019 0.0002 -0.0001 0.0007 -0.0287 -0.0214 -0.0104 0.9230 -0.0002

0.0197 0.0066 0.0081 0.0109 0.0014 0.0006 0.0022 0.0622 0.0487 0.0458 0.0223 0.0005

V ar -0.7063 0.0010 -0.0646 -0.2388 0.0160 -0.3910 -0.0844 0.1473 -0.3725 50.1991 -0.0229 0.5321

1.8988 0.0735 0.3188 0.8930 0.0743 0.1640 0.2257 1.0625 1.4352 8.0194 0.3682 0.0456

Panel B: Posterior mean of covariance matrix

Rtbill Xs Xb Defpr DP BM PE Ynom Yspr Crspr ntis V ar

Rtbill 1.1483 -0.0588 0.2525 -0.0743 0.0381 -0.0127 -0.0556 -0.1318 0.0114 0.2672 -0.0945 -0.0092

Xs 10.9314 0.0695 0.2406 -0.9752 -0.8669 0.9951 -0.0265 -0.0256 -0.5449 0.1320 -0.4340

Xb 4.2376 -0.3799 -0.0670 -0.0775 0.0715 -0.5603 0.1003 0.1725 0.0435 0.0883

Defpr 1.8222 -0.2538 -0.2039 0.2444 0.0458 0.1588 -0.1516 0.1540 -0.1776

DP 11.2089 0.8575 -0.9763 0.0316 0.0157 0.5215 -0.1101 0.4338

BM 11.2405 -0.8697 0.0403 0.0229 0.4642 -0.1038 0.3499

PE 10.8847 -0.0317 -0.0207 -0.5285 0.1275 -0.4415

Ynom 0.8111 -0.8468 -0.1296 -0.0510 -0.0312

Yspr 0.6562 0.0569 0.0612 -0.0059

Crspr 0.2882 -0.2190 0.2711

ntis 0.9637 0.1508

V ar 63.4195

coefficients in panel A and the posterior mean of the covariance matrix of the residuals

in panel B.1

Firstly, the results in the table are roughly in line with table 4.3. The posterior

means of variables that are hardly ever included in the model are close to 0. Secondly,

the table shows that a higher credit spread implies a lower future excess stock return,

while a higher dividend-to-price ratio leads to a higher future excess stock return. Both

1The reported numbers are the unconditional moments, i.e. the posterior means of the coefficients

are not conditional on the inclusion of the variables in the model. When a variable is not included in

a particular model, the posterior mean is equal to 0 for that model.
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signs are in line with the OLS results. Next, the maximum eigenvalue of 0.9823 indicates

that the system is stationary (using the means of the parameters as estimates). Finally,

the R2 of the equations for stock and bond returns are respectively 2.33% and 5.45%.

This is a lot lower than the R2’s we obtain when we estimate the unrestricted VAR(1)

model by OLS. This finding is not surprising, since the BMA model only includes

3 variables on average per equation, while the full model includes 12 variables per

equation. The full model clearly overfits the data.

The posterior model probabilities are conditional on the considered model space.

The used methodology could easily be extended to a larger model space. For example,

if one believes that the true model might be a VAR(2) model or might not be ho-

moscedastic, we could in principle include such models in the (extended) model space

and apply the same methodology. In fact, we can use exactly the same MCMC algo-

rithm to incorporate the VAR(2) model. The incorporation of heteroscedastic models

is more difficult (we cannot condition on a constant error covariance matrix anymore)

but can be done.

How does the posterior distribution of the coefficients look like in the BMA spec-

ification? Figure 4.1 shows the posterior distribution of the coefficient on the credit

spread in the equation for stock returns, (xs, Crspr).

The figure shows that the posterior distribution is clearly non-normal. Firstly,

there is a spike at 0. This spike corresponds to the probability that the credit spread

is not included in the stock return equation. Secondly, even when the credit spread

is included in the model we see that the posterior distribution is bi-modal. The bi-

modality is caused by the presence or absence of other variables in the model. In case

the credit spread is included in the equations for stock returns and the dividend-to-price

ratio, the posterior distribution of (xs, Crspr) is equal to the right bell-shaped curve in

the figure. If the spread is only included in the stock return equation, the posterior

distribution is given by the left bell-shaped curve.

Do most variables occur independently from each other in the composite model? In

order to analyze this question we analyze the variables that occur jointly in the weighted

BMA model (these variables are complements) and the variables that occur disjointly

in the weighted model (these variables are substitutes). We use the measure developed

in Ley and Steel (2007) to quantify whether pairs of variables are complements or

substitutes.
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Figure 4.1: Posterior distribution of the coefficient on the credit spread in the

equation for excess stock returns
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This figure shows the posterior distribution of the coefficient on the credit spread in the equation for excess stock

returns, i.e. (xs, Crspr). It is based on 500,000 retained draws from the posterior distribution of the weighted BMA

model.

Consider the prediction equation for excess stock returns. Let P (i) be the marginal

probability that variable i is included in this equation, P (j) be the marginal probability

that variable j is included and P (i
⋂
j) the probability that both variables are included.

Ley and Steel’s (2007) measure equals

Pij =
P (i

⋂
j)

P (i) + P (j)− 2P (i
⋂
j)
, (4.20)

where a high value (larger than 3) indicates that variables i,j occur jointly in the

weighted model and where small values (smaller than 1/3) indicate that variables i,j

occur disjointly in the model.

Table 4.6 reports Pij for pairs of variables i and j in the prediction equation for

excess stock returns. It reports the (posterior) jointness measure for a horizon of 1.

The table shows that there are hardly any pairs of variables that are complements

except the dividend-to-price ratio /credit spread pair with a Pij relatively close to 3.

For all other pairs the Pij values are much smaller than 1. Consider for example the
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4.4 Estimation Results

Table 4.6: Jointness measure of explanatory variables in equation for excess

stock returns

This table reports a jointness measure for pairs of variables in the equation for excess stock returns. The

jointness measure is based on Ley and Steel (2007) and ranges from 0 (decisive evidence in favour of

disjointness of the variables) to ∞ (decisive evidence in favour of jointness of the variables). Results are

based on 500,000 retained draws from the posterior distribution.

Rtbill Xs Xb Defpr DP BM PE Ynom Yspr Crspr ntis V ar

Rtbill - 0.0881 0.0707 0.0510 0.4690 0.0914 0.2428 0.0711 0.1148 0.4321 0.3180 0.0619

Xs 0.0881 - 0.0470 0.0267 0.0959 0.0457 0.0776 0.0405 0.0671 0.0914 0.0909 0.0441

Xb 0.0707 0.0470 - 0.0355 0.0755 0.0407 0.0601 0.0220 0.0467 0.0773 0.0632 0.0441

Defpr 0.0510 0.0267 0.0355 - 0.0589 0.0503 0.0510 0.0294 0.0385 0.0564 0.0464 0.0521

DP 0.4690 0.0959 0.0755 0.0589 - 0.0905 0.2986 0.0702 0.2103 2.5790 0.8327 0.0917

BM 0.0914 0.0457 0.0407 0.0503 0.0905 - 0.1560 0.0483 0.0581 0.1102 0.1015 0.0553

PE 0.2428 0.0776 0.0601 0.0510 0.2986 0.1560 - 0.0726 0.1331 0.6960 0.3991 0.0866

Ynom 0.0711 0.0405 0.0220 0.0294 0.0702 0.0483 0.0726 - 0.0439 0.0700 0.0662 0.0319

Yspr 0.1148 0.0671 0.0467 0.0385 0.2103 0.0581 0.1331 0.0439 - 0.2158 0.1755 0.0736

Crspr 0.4321 0.0914 0.0773 0.0564 2.5790 0.1102 0.6960 0.0700 0.2158 - 0.7769 0.0985

ntis 0.3180 0.0909 0.0632 0.0464 0.8327 0.1015 0.3991 0.0662 0.1755 0.7769 - 0.0881

V ar 0.0619 0.0441 0.0441 0.0521 0.0917 0.0553 0.0866 0.0319 0.0736 0.0985 0.0881 -

dividend-to-price ratio/book-to-market ratio pair. A Pij value of 0.0905 suggests that

there is strong evidence that the dividend-to-price ratio and the book-to-market ratio

are substitutes in the stock return equation. This is not surprising, since the correlation

between DP and BM is very high.

The method we outline in the previous section to calculate the posterior distribution

of the composite BMA model can also be used to select one best model, i.e. the model

with the highest posterior probability. In the next sections, we compare the highest

posterior probability model with the overall weighted BMA model. Table 4.7 shows

the variables that are included in the highest posterior probability model and their

posterior means and standard deviations.

The incorporated variables are roughly in line with the results in table 4.3. The

posterior probability of the highest probability model is not large, i.e. less than 0.001.

This suggests that the posterior probability is widely spread over many models and

suggests that model uncertainty is prevalent even after using more than 80 years of

data.
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Table 4.7: Posterior means and standard deviations Best Model

This table reports the model that receives the highest posterior probability where the different equations
are denoted by different rows in the table. The table reports the posterior means and standard deviations.
A ”-” means that a variable is excluded in the highest posterior probability model. Results are based on
500,000 retained draws from the posterior distribution.

Panel A: Posterior means and standard deviations

Rtbill Xs Xb Defpr DP BM PE Ynom Yspr Crspr ntis V ar

Rtbill 0.5036 -0.0124 - - - - - - - - -

0.0452 0.0055

Xs - - - - 0.0272 - - - 0.0835 -0.7729 -0.5190 -

0.0037 0.0525 0.1267 0.1891

Xb - - - - - - - - 0.7994 0.2096 - -

0.1707 0.1707

Defpr - - - -0.1515 - - -0.0042 - - - 0.0834 -

0.0470 0.0022 0.0365

DP -0.4315 - - - 0.9751 - - - - - 0.6849 -0.0038

0.1044 0.0046 0.1972 0.0014

BM - - - - - 0.9812 - - - - 0.7078 -

0.0065 0.2091

PE 0.0937 - - - - - 0.9794 - - - -0.4347 -

0.0474 0.0047 0.1897

Ynom - - - - - -0.0001 - 0.6974 0.1259 - - -

0.0002 0.0127 0.0367

Yspr - - - - - - - - 0.8464 - - -

0.0293

Crspr - - - - 0.0008 - - - 0.0034 0.7931 - 0.0009

0.0003 0.0111 0.0299 0.0002

ntis - - - - - - - - - - 0.9212 -0.0012

0.0205 0.0005

V ar - - - - - -0.2931 - - - 49.7713 - 0.5350

0.0681 6.8995 0.0441

Panel B: Posterior mean of covariance matrix

Rtbill Xs Xb Defpr DP BM PE Ynom Yspr Crspr ntis V ar

Rtbill 1.1465 -0.0648 0.2373 -0.0727 0.0413 -0.0073 -0.0616 -0.1303 0.0210 0.2682 -0.0773 0.0017

Xs 10.8456 0.0590 0.2470 -0.9746 -0.8644 0.9951 -0.0192 -0.0275 -0.5427 0.1243 -0.4319

Xb 4.2459 -0.3886 -0.0512 -0.0637 0.0601 -0.5577 0.0967 0.1727 0.0342 0.0919

Defpr 1.8163 -0.2620 -0.2103 0.2509 0.0490 0.1593 -0.1552 0.1625 -0.1850

DP 11.0966 0.8545 -0.9757 0.0204 0.0190 0.5209 -0.1057 0.4325

BM 11.1029 -0.8672 0.0283 0.0281 0.4639 -0.0976 0.3497

PE 10.7938 -0.0234 -0.0234 -0.5266 0.1201 -0.4396

Ynom 0.8126 -0.8469 -0.1308 -0.0525 -0.0348

Yspr 0.6594 0.0589 0.0679 -0.0032

Crspr 0.2876 -0.2130 0.2704

ntis 0.9661 0.1561

V ar 63.4407
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4.5 The term structure of risk

In this section we consider the variance of the predictive distribution of future cumu-

lative excess stock returns. Since we are working with log stock returns, we can easily

calculate cumulative excess stock returns as follows

xs,t→t+K = xs,t+1 + xs,t+2.....xs,t+K ,

where xs,t→t+K is the cumulative excess stock return from period t to period t+ k.

The predictive distribution of cumulative excess stock returns is given in the fol-

lowing equation

p(xs,t→t+K |Y ) =

∫
p(xs,t→t+K |Y,Mj , β

(j),Σ(j))p(β(j),Σ(j)|Y,Mj)p(Mj |Y )d(β(j))d(Σ(j))d(Mj).

This distribution incorporates both parameter and model uncertainty.1 The first com-

ponent is the distribution of future stock returns conditional on a model and parameter

values. This distribution is normal, ignores both parameter and model uncertainty and

is used in Campbell, Chan, and Viceira (2003) and Campbell and Viceira (2005) among

others. The second component is the posterior distribution of the parameters condi-

tional on a particular model. We use it to include parameter uncertainty by integrating

over the parameter space. Barberis (2000) and Hoevenaars, Molenaar, Schotman, and

Steenkamp (2007) also consider settings that incorporate parameter uncertainty. The

last component is the posterior model probability. We use this component to sum over

the model space and take model uncertainty into account. This is unique to our setting.

We present the results using the term structure of risk. It plots the annualized

standard deviation of the predictive distribution of cumulative excess stock returns

versus the investment horizon. If annualized volatility at long horizons is smaller than

at short horizons, stocks are safer in the long-run. Campbell and Viceira (2005) show in

a setting without parameter uncertainty that this term structure is downward sloping

due to the mean reversion in stock returns. Hoevenaars, Molenaar, Schotman, and

Steenkamp (2007) show that the incorporation of parameter uncertainty increases the

volatility, that it leads to an upward sloping term structure for long investment horizons,

but that the annualized volatilities at horizons up to 50 years are still lower than the

1In this chapter, we ignore time-variation in parameters β(j) and Σ(j). We consider this source of

uncertainty in the next chapter.
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annualized volatility at investment horizons around one year. Both papers therefore

conclude that stocks are less volatile in the long-run than in the short-run.

Pastor and Stambaugh (2010) consider a different framework. They explicitly take

into account that predictor variables are imperfect and that linear functions of a small

number of predictor variables are likely to be less than perfectly correlated with the

(unknown) true expected future stock return. Pastor and Stambaugh (2010) show that

stocks are much riskier in the long-run than in the short-run in that setting.

In this paper, we consider a different setting than in the previously mentioned

papers. We make the basic assumption that the expected stock return can be captured

by a linear combination (of a subset of) 12 predictor variables. Hence, instead of

assuming that the expected stock return is imperfectly correlated with a small number

of predictor variables, we assume that it is perfectly correlated with a subset of a

much larger number of predictor variables. We explicitly take into account that we are

uncertain about the correct model and that we also face parameter uncertainty.1

Firstly, let us analyze whether stocks mean-revert in our setting. An indication for

mean reversion is that there is a negative correlation between a shock to current stock

returns and a shock to the expectation of future stock returns. Our objective is to

find the posterior distribution of this correlation. We explain this measure using an

example. Suppose for a moment that the model we consider is an unrestricted VAR(1)

model and suppress constants for notational convenience

yt+1 = Ayt + εt. (4.21)

Define A2 as the second row of A. Obviously, εt,2 is the shock to excess stock returns.

Furthermore, since A2yt is the predicted value of next period’s stock return, A2εt is

the shock to the expectation of next period’s stock return. Therefore, the correlation

between A2εt and εt,2 is our measure for mean-reversion. Our aim is to find the posterior

distribution of this correlation.

Figure 4.2 plots this posterior distribution for our weighted BMA model. The

figure shows that the posterior probability that the correlation is negative is 98.4%

which means that it is very likely that stocks exhibit mean reversion. Furthermore, the

1In this section, we plot the term-structure of risk for excess stock returns. The term structure of

risk for real stock returns lies strictly above the term structure of risk for excess stock returns and is

steeper due to the strong mean-aversion in the real T-bill rate.
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Figure 4.2: Posterior distribution of the correlation between a shock to current

excess stock returns and a shock to future expected excess stock return.
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This figure shows the posterior distribution of the correlation between a shock in current excess stock

returns and a shock in the expectation of future excess stock returns. The correlation is a measure for the

mean reversion in stock returns. It is based on 500,000 retained draws from the posterior distribution of

the weighted BMA model.

probability that the correlation is smaller than -0.5 is still 75.7%. Hence, there is a lot

of evidence that there is very strong mean reversion in stock returns.

Next, we analyze the term structure of risk. We decompose the (annualized) total

predictive variance of excess log stock returns in the (annualized) mean of the condi-

tional variance and the (annualized) variance of the conditional mean. Note that the

conditional mean and conditional variance are conditional on a particular model and

set of parameters.

1

K
V (xs,t→t+K |Y ) =

1

K
E(V (xs,t→t+K |Y,Mj , β

(j),Σ(j)))+
1

K
V (E(xs,t→t+K |Y,Mj , β

(j),Σ(j)))

Figure 4.3 plots the term structure of risk using the weighted BMA model when

variables are set equal to their historical average. It shows total volatility, the square

root of the mean of the conditional variance and the volatility of the conditional mean.
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4. MODEL UNCERTAINTY FOR LONG-TERM INVESTORS

In order to obtain the posterior distribution, we estimate the specification on the full

data-set.

The picture shows that stocks are almost as risky in the long-run as in the short-run.

The annualized total volatility is 22% at short horizons and around 20% at horizons up

to 30 years. What effects play a role? Firstly, the mean-reversion effect is important.

If a long-term investor sees a bad stock return, he knows that on average the bad stock

return will be followed by a better stock return due to mean-reversion. This leads

to a negative correlation in stock returns and makes stock returns safer in the long-

run. The second effect is the parameter and model uncertainty effect. If a long-term

investor sees a bad stock return, it could also be the case that the true model and the

true parameter set (the ones he does not know) are relatively unfavourable for him.

Since this will persist in the future as well, this will create a positive autocorrelation

in stock returns in the eyes of an investor who does not know the true model and does

not know the true parameter values. Therefore, the model and parameter uncertainty

effects make stock returns riskier in the long-run. Hence, whether stocks are riskier

Figure 4.3: Term structure of risk for the excess log stock return using the

BMA model. Predictor variables are equal to their historical average.
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This figure shows the term structure of risk for excess log stock returns. It is based on 100,000 retained

draws from the posterior distribution of the weighted BMA model. The predictor variables are equal to

the sample means. Note that the total variance is equal to the mean of the conditional variance plus the

variance of the conditional mean and note that all values are annualized.
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Figure 4.4: Term structure of risk for the excess log stock return using the

BMA model. Predictor variables are equal to the values at the end of the

sample.
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This figure shows the term structure of risk for excess log stock returns. It is based on 100,000 retained

draws from the posterior distribution of the weighted BMA model. The predictor variables are equal to

values in the fourth quarter of 2008. Note that the total variance is equal to the mean of the conditional

variance plus the variance of the conditional mean and note that all values are annualized.

or safer in the long-run depends on the magnitude of both opposing effects and is an

empirical matter. In the figure, mean-reversion still dominates parameter and model

uncertainty.

The line that depicts the volatility of the conditional mean in the figure (the red

line) shows the parameter and model uncertainty effect. Different models (and pa-

rameters) give different predictions of future stock returns, i.e. they have different

conditional means. The volatility of these different conditional means therefore de-

picts the parameter and model uncertainty effect. At short horizons the parameter and

model uncertainty effect has a negligible impact, because at short horizons the differ-

ent models predict very similar future stock returns. However, at longer horizons the

parameter and model uncertainty effect becomes really important, since the different

models predict very different trajectories of future stock returns. At a horizon of 30

years this effect plays a relatively large role, but not enough to make stock returns

riskier in the long-run. The other component of total volatility - (the square root of)
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the mean of the conditional variance (green line) - depicts the residual component of

total volatility. It is largely downward sloping due to mean reversion.

The figure shows the term structure of risk when the variables are set equal to their

historical average. In that case, the different models agree on future stock returns and

therefore the parameter and model uncertainty effects are not large. If variables deviate

substantially from their historical average, the different models predict very different

future stock returns. In that case parameter and model uncertainty becomes really

important. Figure 4.4 plots the term structure of risk using the weighted BMA model

when variables are set equal to their Q4 2008. At this date, we were in the middle

of the sub-prime mortgage crisis and all predictors deviated substantially from their

historical average.

If we compare the two figures, we see that the mean of the conditional variance

turns out to be exactly equal to its values in the previous figure. However, the variance

of the conditional mean changes substantially. As expected we see that the variance of

the conditional mean becomes much larger when the variables deviate significantly from

their historical average. Figure 4.4 also shows that the variance of the conditional mean

dominates the mean of the conditional variance as the most important component at a

30 year horizon. Total volatility increases due to the larger variance of the conditional

mean. It is again 22% for short horizons, decreases slightly for medium horizons and

increases up to 28% at a horizon of 30 years. Hence, the volatility at a 30-year horizon

is larger than at short horizons. Hence, stocks are not safer in the long-run when we

incorporate parameter and model uncertainty and when predictors deviate a lot from

their historical average. The figure also shows that parameter and model uncertainty

is not important at short horizons.

How does total volatility of stock returns change over time when predictor variables

change over time? In order to answer this question, we plot a time-series of total

volatility for different investment horizons in figure 4.5. The dates on the x-axis indicate

the value of the predictor variables we use to calculate the term structure of risk. The

posterior distribution is obtained by estimating the composite specification on the full

data-set.

Firstly, annualized total volatility at an investment horizon of 1 quarter is not

very sensitive to values of the predictor variables, i.e. it is relatively constant over

time at a value of around 22%. Parameter and model uncertainty is not important,
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4.5 The term structure of risk

Figure 4.5: Time-series of annualized total volatility at different horizons.
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This figure shows a time-series of the square root of the annualized total variance of excess log stock returns

for three different investment horizons. It is based on 50,000 retained draws from the posterior distribution

of the weighted BMA model.

since volatility hardly changes over time. Secondly, we conclude that the annualized

volatility at an investment horizon of 15 years is always lower than the volatility at

shorter horizons. Its average value is 18%. Parameter and model uncertainty turns out

to be important at this horizon, since volatility changes quite a lot over time. The mean-

reversion effect however still dominates the parameter and model uncertainty effect at

this investment horizon. Finally and most interestingly, the annualized volatility at an

investment horizon of 30 years indicates that parameter and model uncertainty is really

important, because it shows a lot of variation over time. The figure also shows that

the parameter and model uncertainty effect dominates the mean-reversion effect when

predictor variables are rather extreme, such as in the recent crisis or in the crisis of

1929. Annualized volatility can be as high as 30%. However, in stable times such as the

1960s, annualized volatility at a 30-year horizon is very close to annualized volatility

at a 1-quarter horizon. We clearly see that the riskiness of stocks (as measured by the
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variance of the predictive distribution) changes a lot over time even though we only

consider homoscedastic models!

These results only partially confirm results in Pastor and Stambaugh (2010). We

also find that stocks can be riskier in the long-run than in the short-run. However, we

find that there are also periods in which stocks are safer in the long-run.

The previous three figures consider a setting where we include both parameter and

model uncertainty. How do these figures change if we ignore model uncertainty? In

order to answer that question, figure 4.6 plots the term structure of risk for the highest

posterior probability model if variables are set equal to their historical average. In this

setting, only parameter uncertainty plays a role.

The decomposition shows that the mean of the conditional variance is the biggest

component of the total variance at all horizons. The total volatility is around 22% for

short investment horizons, decreases to 15.5% for moderate investment horizons and

Figure 4.6: Term structure of risk for the excess log stock return using the

highest posterior probability model. Predictor variables are equal to their

historical average.
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This figure shows the term structure of risk for excess log stock returns. It is based on 100,000 retained

draws from the posterior distribution of the SUR model that receives the highest posterior probability. The

predictor variables are equal to the sample means. Note that the total variance is equal to the mean of the

conditional variance plus the variance of the conditional mean and note that all values are annualized.
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Figure 4.7: Term structure of risk for the excess log stock return using the

highest posterior probability model. Predictor variables are equal to the values

at the end of the sample.
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This figure shows the term structure of risk for excess log stock returns. It is based on 100,000 retained

draws from the posterior distribution of the SUR model that receives the highest posterior probability. The

predictor variables are equal to values in the fourth quarter of 2008. Note that the total variance is equal

to the mean of the conditional variance plus the variance of the conditional mean and note that all values

are annualized.

slightly increases again towards 17% for investment horizons up to 30 years. Results

suggest that stocks are safer assets in the long-run.

Figure 4.7 shows the term structure of risk when variables are set equal to Q4 2008

values. The figure shows that the mean of the conditional variance is again exactly

equal to the values in the previous picture. It also shows that the variance of the

conditional mean increases slightly. Therefore, the total volatility is slightly higher

than in the previous figure. The annualized volatility at the 30 year horizon is around

18%. Hence, if we ignore model uncertainty we (incorrectly) find that stocks are safer

in the long-run than in the short-run no matter how we set the predictor variables.

This confirms the results in Hoevenaars, Molenaar, Schotman, and Steenkamp (2007):

parameter uncertainty increases risk at longer horizons but does not change the fact

that stocks are safer in the long-run.

In the previous section we conclude that the full model - the unrestricted VAR(1)
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that includes all variables - overfits the data considerably. Since this model contains too

many parameters, we expect that this model significantly overestimates the uncertainty

of future stock returns. Do the term structures of risk for the full model confirm this

suspicion? Figures 4.8 and 4.9 show the term structures of risk when variables are set

equal to respectively their historical average and the end-of-sample values.

If we compare the results in the figures with the other figures in this section, we

clearly see that the full model - as expected - overestimates the true uncertainty con-

siderably, especially at the end of the sample. Figure 4.9 shows that the parameter

uncertainty effect - depicted as the volatility of the conditional mean in the figure - is

extremely high at this point in time.

Note that the full model is one of the models that we consider in calculating the

BMA specification. However, it receives an extremely low weight in the composite

model, because it contains way too many parameters. Therefore, the uncertainty in

the full model plays a negligible role in the composite specification. Hence, if one

Figure 4.8: Term structure of risk for the excess log stock return using the full

model. Predictor variables are equal to the values at their historical average.
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This figure shows the term structure of risk for excess log stock returns. It is based on 100,000 retained

draws from the posterior distribution of the full model. The predictor variables are equal to their historical

average. Note that the total variance is equal to the mean of the conditional variance plus the variance of

the conditional mean and note that all values are annualized.
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Figure 4.9: Term structure of risk for the excess log stock return using the full

model. Predictor variables are equal to the values at the end of the sample.
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This figure shows the term structure of risk for excess log stock returns. It is based on 100,000 retained draws from

the posterior distribution of the weighted BMA model. The predictor variables are equal to values in the fourth

quarter of 2008. Note that the total variance is equal to the mean of the conditional variance plus the variance of

the conditional mean and note that all values are annualized.

only considers the full model without excluding irrelevant variables, one considerably

overestimates the true uncertainty an investor faces when predicting stock returns.

We conclude that the incorporation of model uncertainty has an important effect

on the variance of the conditional mean. This component dominates at longer horizons

when the economy deviates from its steady state, i.e. when predictor variables are

not equal to their historical average. When one recognizes model uncertainty as an

important risk factor, the total volatility at long horizons could be substantially larger

than at short horizons. We also find that parameter and model uncertainty has a

negligible impact on short horizons.

4.6 Optimal portfolio choice

In this section we investigate the impact of model uncertainty on the asset allocations

of long-term investors. Therefore, we start with analyzing the mean, variance, skewness

and kurtosis of the predictive distribution in a setting without parameter and model
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uncertainty, in a setting with only parameter uncertainty and finally in a setting with

both parameter and model uncertainty. Next, we consider the asset allocations in these

settings.

We consider a risk-averse investor who chooses a buy-and-hold portfolio such that

her expected utility is maximized and is allowed to invest in the real T-bill rate, in

stock returns and in bond returns. As a utility function, we choose power utility with

constant relative risk aversion parameter γ > 1

max
wt

Et

(
W 1−γ
t+K

1− γ

)
(4.22)

subject to the budget constraint

Wt+K =

3∑
i=1

wiRi,t+K ,

where w is the vector of three portfolio weights, Wt+K is the terminal wealth at time

point t+K, K is the investment horizon and Ri,t+K is the cumulative gross return for

asset i over K periods. We assume that short-selling is not allowed such that 0 ≤ wi ≤ 1

∀i.
We solve the maximization problem in equation (4.22) by using simulations. As a

first step, we set-up a grid of portfolio weights. Secondly, we draw N scenarios from the

predictive distribution of asset returns. Next, we calculate the average realized utility

for all scenarios and for all grid points. Finally, we choose the asset allocation that

maximizes average realized utility. It turns out that it is troublesome to accurately

calculate the kurtosis of the predictive distribution and the asset allocations for invest-

ment horizons beyond 20 years. Therefore we limit the maximum investment horizon

to 20 years to guarantee the accuracy of our results.

The predictive distribution of asset returns has fat tails if we either include param-

eter or model uncertainty. Therefore, the expected utility of all portfolios is −∞ unless

we make additional assumptions, because the simple returns for all three assets can

get arbitrarily close to -100%. In order to take this issue into account, we make the

additional assumption that the quarterly real T-bill rate is not lower than -10%. This

implies that the investor cannot go bankrupt if she invests a positive amount in the

T-bill and makes sure that expected utility is finite for at least some portfolios.
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4.6 Optimal portfolio choice

Figure 4.10: Higher moments stock returns. Predictor variables are equal to

their historical average.
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This figure plots the first four moments (mean, standard deviation, skewness and kurtosis) of the predictive

distribution of excess log stock returns using either the highest posterior probability (HPD) model without

parameter uncertainty (plug-in), the HPD with parameter uncertainty (param unc - HPD) or the BMA

model with parameter and model uncertainty (BMA). Results are based on 100,000 draws from the predictive

distribution. Predictor variables are set equal to their sample means. Note that the values in the graphs are

not annualized.

Firstly, we consider the predictive distribution of future stock returns. Figure 4.10

plots the mean, standard deviation, skewness and kurtosis of the predictive distributions

of excess stock returns for three different settings. The first setting - Plug-in - is based

on the highest posterior probability model and ignores parameter uncertainty. The

second setting - Parameter uncertainty HPD - is also based on the highest posterior

probability model, but includes parameter uncertainty. The third setting - BMA - is

based on the weighted BMA model and includes both parameter and model uncertainty.

The figure plots these moments versus the investment horizon when the variables are

set equal to their historical average.1

1The predictive distribution of all asset returns, including the correlations between asset returns,

determines the asset allocations. For the sake of brevity, our main focus in this section is on the
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4. MODEL UNCERTAINTY FOR LONG-TERM INVESTORS

The figure shows that the four moments are very similar for short-investment hori-

zons. However, if the investment horizon increases we see that the moments for the

BMA predictive distribution deviate quite a bit from the moments for the other two

distributions. The incorporation of model uncertainty leads to a slightly smaller mean,

a higher standard deviation, slightly more negative skewness and a much higher kur-

tosis at long investment horizons, compared to the other two specifications. The figure

shows that especially the even moments - the standard deviation and the kurtosis - are

quite a bit different at long horizons. The distribution for the BMA specification clearly

deviates from the normal distribution. The third and fourth moment for the plug-in

method are respectively 0 and 3 for all investment horizons, since this distribution is

normal.

Figure 4.11 plots the moments of the predictive distributions when the variables are

equal to their values at the end of 2008. Again, the figure shows that the four moments

are almost exactly equal at short-investment horizons. However, at longer investment

horizons, the moments differ a lot. The difference is much larger than in the previous

figure. Firstly, the means of the specifications are very different. The reason is that

the different models give very different predictions when predictor variables deviate

from their historical average. The weighted BMA model takes all of them into account,

whereas the highest probability model ignores the information in other models. At

the end of 2008, the highest probability model is more optimistic about future stock

returns than the weighted BMA model.1 The means also deviate substantially from

the means in figure 4.10. Secondly, the figure shows that the variance of the predictive

distribution for the weighted BMA model is a lot higher than for the highest probability

model. Whereas the predictive variance for the highest probability specification that

includes parameter uncertainty hardly increases compared to figure 4.10, the predictive

variance for the weighted BMA model increases substantially. The variance for the

plug-in specification on the other hand is exactly the same as in the previous figure.

This is consistent with the results in the previous section. Thirdly, the predictive distri-

bution for the weighted BMA specification is negatively skewed while the specifications

based on the highest probability model are (close to being) symmetric. Note that in

predictive distribution of excess stock returns.
1Note that the figures show the predictive distributions of excess stock returns. In other words, a

mean of zero means that the stock returns increase on average as much as the real T-bill rate.
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4.6 Optimal portfolio choice

Figure 4.11: Higher moments of stock returns. Predictor variables are equal

to the values at the end of the sample.
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This figure plots the first four moments (mean, standard deviation, skewness and kurtosis) of the predictive

distribution of excess log stock returns using either the highest posterior probability (HPD) model without

parameter uncertainty (plug-in), the HPD with parameter uncertainty (param unc - HPD) and the BMA

model with parameter and model uncertainty (BMA). Results are based on 100,000 draws from the predictive

distribution. Predictor variables are equal to their end-of-sample values. Note that the values in the graphs

are not annualized.

the previous figure the distribution based on the BMA specification is also very close

to symmetric. Finally, the kurtosis for the weighted BMA specification increases sub-

stantially compared to the previous figure. Hence, the figure shows that both the even

and odd moments are quite a bit different at long horizons. Especially the distribution

for the BMA specification is very different from the normal distribution.

How do the moments for the predictive distribution using the BMA specification

change over time when variables change over time? Figure 4.12 plots a time-series

of these moments at investment horizons of 1 quarter, 10 years and 20 years. The

figure shows that all four moments change considerably over time, especially at longer

investment horizons. It is remarkable how much the kurtosis changes over time. Also

note that the distribution can be both negatively and positively skewed.
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4. MODEL UNCERTAINTY FOR LONG-TERM INVESTORS

Figure 4.12: Time-series of four moments of predictive distribution.

Q41926 Q41946 Q41966 Q41988 Q42008
−1

−0.5

0

0.5

1

1.5

2

Date

M
ea

n

 

 
Time−series of mean of excess stock returns

Horizon = 1 quarter
Horizon = 10 years
Horizon = 20 years

Q41926 Q41946 Q41966 Q41988 Q42008
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Date

S
ta

nd
ar

d 
de

vi
at

io
n

Time−series of standard deviation of excess stock returns

 

 

Q41926 Q41946 Q41966 Q41988 Q42008
−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

Date

S
ke

w
ne

ss

Time−series of skewness of excess stock returns

 

 

Q41926 Q41946 Q41966 Q41988 Q42008
2

4

6

8

10

12

14

Date

K
ur

to
si

s

Time−series of kurtosis of excess stock returns

 

 

This figure shows a time-series of the four moments of the predictive distribution for three different investment

horizons. It is based on 50,000 retained draws from the posterior distribution of the weighted BMA model.

The previous figures show that there are substantial differences in the predictive

distributions between the three different specifications. The BMA specifications leads

on average to a lower mean, higher standard deviation, more negative skewness and

higher kurtosis than the other two specifications. Since a risk-averse investor dislikes

all of this, we expect that such an investor invests less of her money in the stock

market when model uncertainty is included. We also expect that the differences between

specifications are larger when variables deviate from their historical average.

Figure 4.13 plots the asset allocations versus the investment horizon for an investor

with risk aversion parameter γ = 5, where predictor variables are set equal to their

historical average. The figure shows that allocations are remarkably similar at short

investment horizons no matter what method we use, i.e. neither parameter nor model

uncertainty significantly changes asset allocations. However, if we consider longer hori-

zons we see that both parameter and model uncertainty play an important role. Firstly,

consider the differences in allocations between the highest posterior probability model

with and without parameter uncertainty. The plot shows that the asset allocation to
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4.6 Optimal portfolio choice

Figure 4.13: Portfolio weights versus horizon for different estimation tech-

niques. Predictor variables are equal to their historical average.
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This figure plots T-bill weights (panel A), stock weights (panel B) and bond weights (panel C) against

different investment horizons for different estimation techniques. The weights are the optimal weights for a

buy-and-hold investor with risk aversion parameter γ = 5. Weights are either based on the highest posterior

probability model without parameter uncertainty (plug-in), on the HPD model incorporating parameter

uncertainty (param unc - HPD) and on the BMA specification that includes both parameter and model

uncertainty (BMA). Results are based on 100,000 draws from the predictive distribution. Predictor variables

are equal to their historical average values.

stocks is up to 12% lower when we take parameter uncertainty into account. Secondly,

consider the difference in allocations between the highest posterior probability model

incorporating parameter uncertainty and the weighted BMA model. The allocation to

stocks is 20% lower when we incorporate model uncertainty. Furthermore, the graph

shows that the allocation to stocks decreases when the investment horizon approaches

20 years. Clearly, an investor with a longer horizon should not always invest more in

the stock market than an investor with a shorter horizon, since the stock allocation of

a long-term investor is remarkable similar to the allocation of a short-term investor. A

long-term investor replaces the bonds in her portfolio with investments in the T-bill
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4. MODEL UNCERTAINTY FOR LONG-TERM INVESTORS

Figure 4.14: Portfolio weights versus horizon for different estimation tech-

niques. Predictor variables are equal to the values at the end of the sample.
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This figure plots T-bill weights (panel A), stock weights (panel B) and bond weights (panel C) against

different investment horizons for different estimation techniques. The weights are the optimal weights for a

buy-and-hold investor with risk aversion parameter γ = 5. Weights are either based on the highest posterior

probability model without parameter uncertainty (plug-in), on the HPD model incorporating parameter

uncertainty (param unc - HPD) and on the BMA specification that includes both parameter and model

uncertainty (BMA). Results are based on 100,000 draws from the predictive distribution. Predictor variables

are equal to the values in the fourth quarter of 2008.

rate compared to the investment of a short-term investor.

What happens with asset allocations when we consider the optimal buy-and-hold

asset allocations at the end of the sample? Figure 4.14 plots these allocations at the

end of 2008. Firstly, the figure indicates that allocations to stocks are on average a lot

lower compared to figure 4.13. Whereas the allocations range between 35% and 70%

when predictor variables are equal to their historical average, these allocations vary

between 0% and 45% when predictor variables are equal to their end-of-sample values.

Secondly, the three methods lead to different asset allocations even at short horizons.

For short investment horizons up to 2 years, the specification based on the weighted

BMA model implies a 0% allocation to stocks, whereas the specifications based on
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4.6 Optimal portfolio choice

the highest probability model imply allocations up to 30%. This is mainly due to

the difference in means across specifications. Thirdly, at long investment horizons the

impact of model uncertainty is again larger than the impact of parameter uncertainty.

Incorporating parameter uncertainty lowers the allocation to stocks by 10% for the

highest probability model, while the incorporation of model uncertainty decreases the

stock allocation by 35%. Finally, the allocation to stocks again decreases when the

investment horizon becomes very long. If we include model uncertainty, a long-term

investor should not allocate more to the stock market than a short term investor.

How much expected utility do long-term investors obtain from investing in the

stock market and how do these expected utilities change across specifications? In

order to answer these questions, figure 4.15 and 4.16 plot the certainty equivalence

(a monotonic transformation of expected utility) against the investment horizon for

Figure 4.15: Plot of Certainty Equivalent versus horizon for different estimation

techniques. Predictor variables are equal to their historical average.
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This figure plots the certainty equivalence of different strategies versus the investment horizon. The cer-

tainty equivalents are calculated using a specification based on the HPD without parameter uncertainty, a

specification based on the HPD with parameter uncertainty and a specification based on the BMA model.

All strategies are evaluated using the BMA specification. Results are based on 100,000 retained draws from

the predictive distribution. Variables are set equal to their historical average.
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Figure 4.16: Plot of Certainty Equivalent versus horizon for different estimation

techniques. Predictor variables are equal to the values at the end of the sample.
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This figure plots the certainty equivalence of strategies versus the investment horizon. The certainty equiv-

alents are calculated using a specification based on the HPD without parameter uncertainty, a specification

based on the HPD with parameter uncertainty and a specification based on the BMA model. All strategies

are evaluated using the BMA specification. Results are based on 100,000 retained draws from the predictive

distribution. Variables are set equal to their end-of-sample values.

the three specifications.1 We calculate the portfolio weights using the HPD model

without parameter uncertainty, the HPD model with parameter uncertainty and the

BMA specification. All strategies are evaluated using the BMA specification. The

portfolio weights based on the BMA specification therefore give by definition the best

performance.

Both figures show that the three different strategies give the same expected utility

(and certainty equivalent) at short horizons. At longer horizons, there are differences.

The strategy that only includes parameter uncertainty approximates the optimal strat-

egy based on the BMA specification the best. However, the loss in certainty equivalence

is still considerably: 15% when predictor variables are at their historical average and

20% when they are equal to their end-of-sample values. The losses when ignoring both

parameter and model uncertainty are respectively 23% and 38%. These are quite big

losses if we compare them to the magnitude of the certainty equivalences themselves.

1Note that the certainly equivalents are not annualized.
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The most remarkable result is that the certainty equivalent is smaller than 1 for all

three specifications if the investment horizon is sufficiently large and if the variables

are set equal to their end-of-sample values. The reason is that risk-averse investors

dislike the extreme fat tail of the predictive distribution at the longest horizons. It

is very important to recall that all asset returns are in real terms. Hence, a certainty

equivalent of 1 means that an investor is indifferent between either following the strategy

or getting 100% of its starting wealth at the end of the horizon in real terms. Certainty

equivalents less than 1 therefore mean that an investor who follows the optimal strategy

would rather pay a lot for an inflation-indexed bond than that he would follow this

strategy. An important implication is that it would be very valuable for an investor

who faces both parameter and model uncertainty to have the ability to invest in these

inflation-indexed bonds.

4.7 Robustness tests

In this section, we consider several robustness checks. In the first section we recalculate

the posterior distribution using a different prior distribution. In the second section we

recalculate the posterior distribution at different points in time.

4.7.1 Different prior distribution

In this section, we check the prior robustness of our results by comparing the posterior

distribution in section 4.4 with a posterior distribution based on a different prior. We

use a different model prior and we use a different prior on the slope coefficients.

Firstly, let us consider a different prior for the model prior probability. In the

previous sections, we use the following prior

p(Mj |q) ∝ q|Mj|(1− q)n
2−|Mj |,

where q is set equal to 0.50. This choice implies that all models are given the same

prior probability.

The choice of q is arbitrary and therefore we consider an alternative choice for q.

Instead of setting q equal to a constant, we put a prior on q as in Ley and Steel (2009).

We follow their recommendation and use the following prior for q

p(q) = Beta(1, b), (4.23)
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where we choose b in such a way that the prior mean of the model size is equal to n2

2 , i.e.

half the size of the full model. This prior lets the data determine a value for q instead

of fixing a value for q a priori. Ley and Steel (2009) show that this prior leads to a

posterior that is very robust to the choice of the prior parameter, i.e. the choice of b.

Note that this prior choice does not lead to a more complicated MCMC algorithm. The

only aspect in the MCMC algorithm that changes is that we use a different marginal

model prior in the model selection step of the MCMC algorithm, refer to section 4.3.4

for details on the MCMC algorithm.

Secondly, let us consider a different prior for the slope coefficients. In the main part

of the paper, we use the following prior

p(β(j)|Σ(j),Mj) = N(m(j), gV (j)),

where m(j) and V (j) are given in section 4.3.2 and where g is set equal to T .

The choice for g is an important choice. This parameter determines on one hand

how much information the prior contains within a model, but on the other hand it also

determines the penalty factor for larger models. Therefore, we cannot choose g too

large or too small. We put a prior on g to let the data determine a value for g instead

of specifying it a priori. We choose the following proper rather flat inverse gamma

Table 4.8: Robustness: posterior probability of including a variable using a

different prior distribution

This table reports the posterior probability of including a variable in the weighted Bayesian Model Averaging

model. We use a beta-prior for parameter q and an inverse gamma prior for parameter g. The different

equations are given in the different rows. Note that the right-hand-side variables are lagged by one period.

Results are based on 500,000 retained draws from the posterior distribution.

Rtbill Xs Xb Defpr DP BM PE Ynom Yspr Crspr ntis V ar

Rtbill 1.0000 0.1826 0.0255 0.0434 0.0429 0.1124 0.0794 0.0410 0.0421 0.1552 0.0836 0.0359

Xs 0.2332 0.0385 0.0271 0.0273 0.9650 0.0410 0.1524 0.0348 0.1028 0.7348 0.2405 0.0454

Xb 0.0520 0.0236 0.0344 0.1101 0.0275 0.0230 0.0243 0.3555 0.9983 0.0438 0.0282 0.0653

Defpr 0.0257 0.0339 0.0980 0.4661 0.0630 0.0822 0.1331 0.0281 0.0277 0.0522 0.5011 0.0998

DP 0.4593 0.1002 0.0349 0.1322 1.0000 0.0430 0.0654 0.0198 0.0213 0.8010 0.3096 0.0420

BM 0.0375 0.0347 0.0284 0.0268 0.0592 1.0000 0.0530 0.0211 0.0239 0.0337 0.2106 0.0305

PE 0.1204 0.0190 0.0235 0.0310 0.1156 0.0299 1.0000 0.0277 0.0818 0.3829 0.8025 0.0733

Ynom 0.0253 0.0227 0.0239 0.0519 0.0270 0.0303 0.0243 1.0000 0.7649 0.0858 0.0472 0.0771

Yspr 0.0232 0.0239 0.0336 0.0480 0.0265 0.0309 0.0302 0.0361 1.0000 0.2199 0.0355 0.1094

Crspr 0.0271 0.0257 0.0544 0.0305 0.1028 0.0743 0.2813 0.0427 0.0343 1.0000 0.0339 0.9992

ntis 0.0379 0.3455 0.0606 0.0400 0.0454 0.0414 0.1052 0.0822 0.0798 0.0705 1.0000 0.1539

V ar 0.0761 0.0340 0.0320 0.0504 0.0487 0.9789 0.0934 0.0270 0.0398 1.0000 0.0266 1.0000
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Table 4.9: Robustness: posterior means and standard deviations using a dif-

ferent prior distribution

This table reports the posterior mean and standard deviation of the coefficients in the weighted Bayesian
Model Averaging model where the different equations are given in different rows. We use a beta-prior for q
and a inverse gamma prior for g. Panel A reports the posterior mean and standard deviations of the slope
coefficients. Panel B reports the posterior mean of the elements of the covariance matrix of the error term.
The elements on the diagonal are standard deviations x100, the off-diagonal elements are correlations. Note
that constants are suppressed in the table. Results are based on 500,000 retained draws from the posterior
distribution.

Panel A: Posterior means and standard deviations

Rtbill Xs Xb Defpr DP BM PE Ynom Yspr Crspr ntis V ar

Rtbill 0.4865 -0.0021 0.0000 -0.0017 0.0001 -0.0003 0.0003 -0.0029 -0.0021 0.0407 0.0036 0.0000

0.0496 0.0051 0.0025 0.0107 0.0010 0.0012 0.0018 0.0199 0.0161 0.1112 0.0139 0.0002

Xs -0.0289 -0.0002 0.0002 -0.0005 0.0265 -0.0002 -0.0047 -0.0013 0.0099 -0.6633 -0.0336 0.0000

0.0638 0.0018 0.0029 0.0086 0.0081 0.0014 0.0141 0.0153 0.0352 0.4973 0.1300 0.0003

Xb 0.0052 -0.0001 -0.0010 -0.0123 0.0000 0.0000 0.0000 0.2242 0.9490 0.0072 0.0005 0.0001

0.0298 0.0017 0.0103 0.0421 0.0005 0.0005 0.0007 0.3375 0.2717 0.0669 0.0117 0.0007

Defpr 0.0009 0.0002 0.0039 -0.0625 0.0001 0.0002 -0.0007 -0.0024 0.0015 0.0063 0.0513 0.0002

0.0123 0.0019 0.0140 0.0749 0.0012 0.0010 0.0023 0.0234 0.0172 0.0475 0.0577 0.0006

DP -0.1422 -0.0022 0.0010 -0.0193 0.9802 -0.0003 0.0023 -0.0005 -0.0007 -0.9725 0.0779 -0.0001

0.1743 0.0078 0.0081 0.0567 0.0091 0.0022 0.0118 0.0206 0.0213 0.6287 0.1671 0.0007

BM 0.0089 0.0007 -0.0014 0.0031 0.0013 0.9763 -0.0016 -0.0015 0.0041 -0.0102 0.0789 -0.0001

0.0656 0.0066 0.0149 0.0337 0.0065 0.0117 0.0090 0.0478 0.0498 0.1481 0.1905 0.0008

PE 0.0077 0.0000 -0.0001 -0.0001 0.0005 0.0000 0.9768 0.0006 -0.0067 0.1164 0.0573 -0.0001

0.0448 0.0012 0.0025 0.0083 0.0072 0.0011 0.0142 0.0126 0.0292 0.4709 0.1351 0.0004

Ynom 0.0001 0.0000 -0.0001 -0.0002 0.0000 0.0000 0.0000 0.6794 0.0932 -0.0023 0.0003 -0.0001

0.0018 0.0002 0.0013 0.0025 0.0001 0.0001 0.0001 0.0370 0.0618 0.0249 0.0019 0.0003

Yspr 0.0001 0.0000 0.0002 -0.0003 0.0000 0.0000 0.0000 0.0011 0.8657 0.0123 0.0001 0.0001

0.0017 0.0002 0.0016 0.0023 0.0001 0.0001 0.0001 0.0110 0.0422 0.0321 0.0013 0.0003

Crspr 0.0001 0.0000 -0.0002 0.0001 0.0001 0.0000 -0.0004 -0.0007 0.0002 0.8169 -0.0001 0.0008

0.0019 0.0002 0.0012 0.0014 0.0002 0.0003 0.0007 0.0043 0.0025 0.0353 0.0013 0.0002

ntis -0.0015 0.0040 -0.0010 0.0013 0.0000 0.0000 0.0003 -0.0086 -0.0065 -0.0083 0.9235 -0.0002

0.0108 0.0062 0.0052 0.0088 0.0008 0.0004 0.0014 0.0350 0.0269 0.0391 0.0204 0.0005

V ar -0.3037 -0.0003 -0.0231 -0.1077 0.0058 -0.3310 -0.0319 0.0619 -0.1239 49.8479 -0.0133 0.5443

1.2676 0.0571 0.1879 0.6065 0.0492 0.1270 0.1538 0.6543 0.8219 7.4173 0.2447 0.0461

Panel B: Posterior mean of covariance matrix

Rtbill Xs Xb Defpr DP BM PE Ynom Yspr Crspr ntis V ar

Rtbill 1.1532 -0.0644 0.2508 -0.0719 0.0448 -0.0077 -0.0612 -0.1366 0.0216 0.2658 -0.0941 -0.0056

Xs 10.9552 0.0694 0.2344 -0.9751 -0.8670 0.9951 -0.0264 -0.0264 -0.5422 0.1286 -0.4319

Xb 4.2419 -0.3801 -0.0678 -0.0779 0.0715 -0.5615 0.1032 0.1741 0.0378 0.0894

Defpr 1.8280 -0.2463 -0.1965 0.2380 0.0447 0.1616 -0.1474 0.1493 -0.1768

DP 11.2450 0.8577 -0.9763 0.0322 0.0163 0.5184 -0.1067 0.4327

BM 11.2647 -0.8699 0.0414 0.0224 0.4631 -0.1014 0.3486

PE 10.9089 -0.0317 -0.0214 -0.5258 0.1243 -0.4395

Ynom 0.8143 -0.8477 -0.1317 -0.0454 -0.0331

Yspr 0.6593 0.0590 0.0573 -0.0043

Crspr 0.2882 -0.2186 0.2710

ntis 0.9661 0.1541

V ar 63.4438

prior for g (using the parameterization of Bauwens, Lubrano, and Richard (1999) for

the inverse-gamma distribution)

p(g) = iG(0.01, 0.01). (4.24)

Liang, Paulo, Molina, Clyde, and Berger (2008) also consider several priors on the g

parameter in Zellner’s g-prior in standard linear regression models.

In order to draw g we need to introduce an extra step in our MCMC algorithm. It is
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4. MODEL UNCERTAINTY FOR LONG-TERM INVESTORS

easy to show that we can draw g using the inverse gamma distribution in a Gibbs-step

p(g|Y,Mj , β
(j)) = iG((β(j) −m(j))′V (j)−1(β(j) −m(j)) + 0.01, k(j) + 0.01). (4.25)

Since parameter g is common to all models, we condition on parameter g in the model

selection step in the MCMC algorithm. The marginal likelihood in equation (4.16) now

conditions on both Σ(j) and g, but the expression for the marginal likelihood itself stays

exactly the same.

Table 4.8 shows the posterior probability that a variable is included in an equation

for the alternative prior specification. If we compare this table to table 4.3, we see

that most probabilities are very similar for both prior specifications. For example,

the dividend-to-price ratio and the credit spread are still the most important direct

predictors of stock returns. However, the posterior probability for the credit spread is

lower and the posterior probability for the dividend-to-price ratio is higher than in table

4.3. Table 4.9 shows the posterior means and standard deviations for the alternative

specification. If we compare the posterior moments with the posterior moments in table

4.5, we again see that these posterior moments are in general very similar. Since the

posterior distribution of the parameters is not very sensitive to the exact prior choice,

we conclude that our results are robust to the prior choice.

4.7.2 Posterior moments over time

In this section, we calculate the posterior distribution at different points in time in order

to check the stability of our results. We do this as follows. We calculate the posterior

distribution in the same way as in section 4.4 but by considering an expanding window

of observations. In other words, we re-estimate our BMA specification on data-sets

that contain more and more observations.

Figures 4.17 and 4.18 contain respectively the posterior probability that the dividend-

to-price ratio is included in the equation for excess stock returns and the probability

that the credit-spread is included in the equation for excess stock returns. The date on

the horizontal axis indicates the last included observation in the subsample. Firstly,

both figures show that the probabilities are quite stable after 1960. Furthermore, in

both cases the probabilities decrease in the last 5 years. This is not surprising since the

last 5 years were rather turbulent. Figures 4.19 and 4.20 show similar figures for the

posterior means of these coefficients. These figures largely confirm the results above.
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4.7 Robustness tests

Figure 4.17: Time-series of model probability (Xs, DP )
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This figure shows the time-series of the model probability (Xs, DP ). These are calculated by estimating the

BMA specification on an expanding window. The x-axis indicates the value of the last included observation

in the window. Results are based on 100,000 retained draws.

Figure 4.18: Time-series of model probability (Xs, Crspr)
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This figure shows the time-series of the model probability (Xs, Crspr). These are calculated by estimating the

BMA specification on an expanding window. The x-axis indicates the value of the last included observation

in the window. Results are based on 100,000 retained draws.
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4. MODEL UNCERTAINTY FOR LONG-TERM INVESTORS

Figure 4.19: Time-series of posterior mean of coefficient (Xs, DP )
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This figure shows the time-series of the posterior mean of (Xs, DP ), its 5th percentile and its 95th percentile.

These are calculated by estimating the BMA specification on an expanding window. The x-axis indicates

the value of the last included observation in the window. Results are based on 100,000 retained draws.

Figure 4.20: Time-series of posterior mean of coefficient (Xs, Crspr)
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This figure shows the time-series of the posterior mean of (Xs, Crspr), its 5th percentile and its 95th per-

centile. These are calculated by estimating the BMA specification on an expanding window. The x-axis

indicates the value of the last included observation in the window. Results are based on 100,000 retained

draws.
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4.8 Conclusion

Firstly, the posterior means stabilize around 1960. Furthermore, we see that the means

for both coefficients are shrunk towards 0 in the last years, because the probability that

the variable is included in the BMA specification decreases in these years.

All together we conclude that the posterior results are relatively stable over time

as long as we estimate the specification on 40 years of data or more.

4.8 Conclusion

We develop an estimation framework that is able to include model uncertainty over

long-term predictions using Bayesian Model Averaging (BMA). Our methodological

framework allows us to consider model uncertainty in the prediction equations for both

asset returns and predictor variables. The latter is very important when considering the

impact of model uncertainty on the long-run predictability of stock returns. A variable,

that is a good predictor of asset returns but cannot be predicted itself, is useless for a

long-term investor.

Our results show that the credit spread and the dividend-to-price ratio are the most

important predictors of stock returns at short horizons. However, at longer horizons,

all variables are important for predicting long-horizon stock returns, either by directly

predicting stock returns or by indirectly predicting the predictors of stock returns.

If one would instead only base the inclusion of predictor variables on the prediction

equation for stock returns, one would wrongly conclude that most predictor variables

are not important for modeling stock returns. Furthermore, our results clearly show

that model uncertainty is substantial, since the posterior probability mass is widely

spread across many models.

The incorporation of model uncertainty has important implications for the term

structure of risk. At long horizons, model uncertainty increases the variance of the pre-

dictive distribution of stock returns substantially, especially when predictor variables

deviate significantly from their average values. The fact, that different models give sig-

nificantly different predictions of stock returns, increases the variance of the predictive

distribution. In extreme events such as the great depression and the subprime mortgage

crisis, long-run stock returns can be significantly riskier than short-run stock returns.

However, in relatively stable periods such as the 1960s, stock returns are safer in the
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4. MODEL UNCERTAINTY FOR LONG-TERM INVESTORS

long-run than in the short-run. Furthermore, we find that model uncertainty only has

a negligible impact in the short-run.

The incorporation of model uncertainty also leads to significantly different asset

allocations (up to 35%) at longer horizons compared to specifications that ignore model

uncertainty. The reason is that the inclusion of model uncertainty leads to a predictive

distribution of excess stock returns with a lower mean, higher standard deviation,

more negative skewness and higher kurtosis, especially when predictor variables deviate

from their own average. Also, despite the homoscedasticity of our models, the mean,

variance, skewness and kurtosis of the predictive distribution of asset returns change

substantially over time. Furthermore, we find that model uncertainty hardly has an

impact on asset allocations for short-horizon investors. Finally, our results show that

the certainty equivalent of the optimal buy-and-hold strategy for a long-horizon investor

can be lower than 1 for sufficiently long investment horizons. The incorporation of

model uncertainty makes the asset market too risky at long horizons in the eyes of an

investor who recognizes that she does not know the true model and true parameters.

This implies that such an investor would be willing to pay a lot for an inflation-indexed

bond.

In this paper we consider the impact of model uncertainty in a setting where models

only differ in the variables that are included and where we estimate the specification

on a relatively long data-set. Of course, we could also extend the model space by

considering non-linear models, stochastic volatility models etcetera. We can also look

at the impact of model uncertainty if we use shorter data sets. It is likely that the impact

of model uncertainty is larger in such settings, because we would consider more models

and less information (data). The results in this paper can therefore be interpreted as

a lowerbound on the true impact of model uncertainty.

4.9 Appendix: Posterior distribution and MCMC algo-

rithm

Firstly, we derive the posterior distributions that are used in the paper. The notation is

consistent with the notation introduced in the main paper. Most terms are introduced

in the main text.
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4.9 Appendix: Posterior distribution and MCMC algorithm

The likelihood function for model Mj in equation (4.5) is (all three expressions are

equivalent)

P (Y |β(j),Σ(j),Mj) = (2π)−
Tn
2 |Σ(j)|−T

2 exp

{
−1

2
(y − Z(j)β(j))′(Σ(j) ⊗ IT )

−1(y − Z(j)β(j))

}
P (Y |β(j),Σ(j),Mj) = (2π)−

Tn
2 |Σ(j)|−T

2 exp{−1

2
s(j)}

exp

{
−1

2
(β(j) − β̂(j))′Z(j)′(Σ(j) ⊗ IT )

−1Z(j)(β(j) − β̂(j))

}
P (Y |β(j),Σ(j),Mj) = (2π)−

Tn
2 |Σ(j)|−T

2 exp

{
−1

2
tr(Σ(j)−1(Y −WBc)

′(Y −WBc))

}
,

where

s(j) = y′(Σ(j) ⊗ IT )
−1y − β̂(j)

′

Z(j)′(Σ(j) ⊗ IT )
−1Z(j)β̂(j).

Please refer to Bauwens, Lubrano, and Richard (1999) for details. The prior p(β(j),Σ(j)|Mj)

is proportional to (both expressions are equivalent)

p(β(j),Σ(j)|Mj) ∝ |Σ(j)|−n+1
2 g−

k(j)

2 |V (j)|− 1
2 exp

(
−1

2
(β(j) −m(j))′

1

g
V (j)−1(β(j) −m(j))

)
p(β(j),Σ(j)|Mj) ∝ |Σ(j)|−n+1

2 g−
k(j)

2 |V (j)|− 1
2

exp

(
−1

2
tr(Σ(j)−1(B

(j)′

f −M
(j)′

f )′
1

g
X ′X(B

(j)′

f −M
(j)′

f ))

)
.

The posterior is proportional to the product of the prior and the likelihood. We do

not know the analytical properties of the joint posterior p(β(j),Σ(j)|Mj , Y ), since its

integrating constant is unknown in general. Therefore, we derive expressions for the

conditional posteriors.

The conditional posterior p(β(j)|Mj ,Σ
(j), Y ) is analytically known. Use the second

expression for the likelihood and the first expression for the prior to get

p(β(j)|Mj , Y,Σ
(j)) ∝ exp

{
−1

2
(β(j) − β̂(j))′V (j)−1(β(j) − β̂(j))

}
exp

{
−1

2
(β(j) −m(j))′

1

g
V (j)−1(β(j) −m(j))

}
. (4.26)
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Note the following:

C = (β(j) − β̂(j))′V (j)−1(β(j) − β̂(j)) + (β(j) −m(j))′
1

g
V (j)−1(β(j) −m(j))

C = β(j)
′

(
1 + g

g
V (j)−1

)
β(j) − 2β(j)

′

(
1 + g

g
V (j)−1

)(
1 + g

g
V (j)−1

)−1

(V (j)−1β̂(j)

+
1

g
V (j)−1m(j)) + β̂(j)

′

V (j)−1β̂(j) +m(j)′ 1

g
V (j)−1m(j)

C = β(j)
′

M∗(j)−1β(j) − 2β(j)
′

M∗(j)−1β∗(j) + β̂(j)
′

V (j)−1β̂(j) +m(j)′ 1

g
V (j)−1m(j)

C = (β(j)
′ − β∗(j))′M∗(j)−1(β(j)

′ − β∗(j)) + β̂(j)
′

V (j)−1β̂(j) +m(j)′ 1

g
V (j)−1m(j) − β∗(j)

′

M∗(j)−1β∗(j),

where M∗(j) is defined in equation (4.14) and β∗(j) is

β∗(j) =

(
1 + g

g
V (j)−1

)−1

(V (j)−1β̂(j) +
1

g
V (j)−1m(j))

β∗(j) =
g

1 + g
β̂ +

1

1 + g
m(j)

and hence equals equation (4.14). These results imply that

p(β(j)|Mj , Y,Σ
(j)) ∝ exp

{
−1

2
(β(j) − β∗(j))′M∗(j)−1(β(j) − β∗(j))

}
.

and therefore

p(β(j)|Mj ,Σ
(j), Y ) = N(β∗(j),M∗(j)).

The conditional posterior p(Σ(j)|Mj , β
(j), Y ) is not analytically known. By combin-

ing the last expression for the likelihood and the last expression for the prior we can

easily show that it is proportional to

p(Σ(j)|Mj , β
(j), Y ) ∝ |Σ(j)|−T+n+1

2 |V (j)|− 1
2 exp

(
−1

2
tr
(
Σ(j)−1[(Y −WBc)

′(Y −WBc)]
))

exp

(
−1

2
tr

(
Σ(j)−1(B

(j)′

f −M
(j)′

f )′
1

g
X ′X(B

(j)′

f −M
(j)′

f )

))
and hence equals equation (4.14).

Finally, we need to obtain an expression for the conditional marginal likelihood

p(Y |Mj ,Σ
(j)). By combining the second expression for the likelihood and the first
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expression for the prior we get

p(Y |Mj ,Σ
(j)) =

∫
p(Y |Mj , β

(j),Σ(j))p(β(j)|Mj ,Σ
(j))dβ(j)

p(Y |Mj ,Σ
(j)) =

∫
(2π)−

Tn
2 |Σ(j)|−T

2 exp

{
−1

2
s(j)
}

exp

{
−1

2
(β(j) − β̂(j))′Z(j)′(Σ(j) ⊗ IT )

−1Z(j)(β(j) − β̂(j))

}
(2π)−

k(j)

2 g−
k(j)

2 |V (j)|− 1
2 exp

{
−1

2
(β(j) −m(j))′

1

g
V (j)−1(β(j) −m(j))

}
dβ(j)

p(Y |Mj ,Σ
(j)) = (2π)−

Tn+k(j)

2 |Σ(j)|−T
2 g−

k(j)

2 |V (j)|− 1
2

exp

{
−1

2

(
s(j) + β̂(j)

′

V (j)−1β̂(j) +m(j)′ 1

g
V (j)−1m(j) − β∗(j)

′

M∗(j)−1β∗(j)
)}

∫
exp

{
−1

2
(β(j)

′ − β∗(j))′M∗(j)−1(β(j)
′ − β∗(j))

}
dβ(j)

p(Y |Mj ,Σ
(j)) = (2π)−

Tn+k(j)

2 |Σ(j)|−T
2 g−

k(j)

2 |V (j)|− 1
2

exp

{
−1

2

(
s(j) + β̂(j)

′

V (j)−1β̂(j) +m(j)′ 1

g
V (j)−1m(j) − β∗(j)

′

M∗(j)−1β∗(j)
)}

(2π)
k(j)

2 |M∗(j)| 12

p(Y |Mj ,Σ
(j)) = (2π)−

Tn
2 |Σ(j)|−T

2 g−
k(j)

2 |V (j)|− 1
2 |M∗(j)| 12

exp

{
−1

2

(
y′(Σ(j) ⊗ IT )

−1y +m(j)′ 1

g
V (j)−1m(j) − β∗(j)

′

M∗(j)−1β∗(j)
)}

p(Y |Mj ,Σ
(j)) = (2π)−

Tn
2 |Σ(j)|−T

2 (1 + g)−
k(j)

2

exp

{
−1

2

(
y′(Σ(j) ⊗ IT )

−1y +m(j)′ 1

g
V (j)−1m(j) − β∗(j)

′

M∗(j)−1β∗(j)
)}

,

where the third equality follows from the last expression for C. The final expression

for p(Y |Mj ,Σ
(j)) is equal to expression (4.16).

Secondly, we explain the MCMC algorithm we use to estimate the posterior distri-

butions. In every iteration we draw model Ml, coefficient vector β(l) and covariance

matrix Σ(l). Current values are indexed by j. The discussion in this section is partially

based on Godsill (2001) and Troughton and Godsill (1997) who explain how to apply

model selection to univariate time-series. Godsill (2001), Troughton and Godsill (1997)

and Han and Carlin (2001) show that the method works well when the common pa-

rameter (in our case Σ(j)) has a common meaning across models. We generalize their

method to model uncertainty over systems of equations, i.e. restricted VAR(1) models.
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In the first step, we choose to draw a new model Ml and a new coefficient vector

β(l). As in Godsill (2001), we draw Σ(l) in a second step and therefore condition

on Σ(j) in the first step. Since the dimension of the parameter space of the new

model is not necessarily equal to the dimension of the parameter space of the current

model, we cannot use standard Metropolis-Hastings techniques. We have to rely on the

generalization in Green (1995) that allows moves between parameter spaces of different

dimensions.

Let the probability of proposing model M∗
l when we are currently in model Mj be

q(Mj →M∗
l ) and let q(β(l)|M∗

l , β
(j),Σ(j)) be the proposal density for coefficient vector

β(l) when we are in model M∗
l . Results in Green (1995) imply that the acceptance

probability is

α = min

{
1,
p(M∗

l , β
(l)|Y,Σ(j))q(M∗

l →Mj)q(β
(j)|Y,Mj , β

(l),Σ(j))

p(Mj , β(j)|Σ(j))q(Mj →M∗
l )q(β

(l)|M∗
l , β

(j),Σ(j))

}

We propose a new modelM∗
l by randomly selecting a model with k(j)+1 and k(j)−1

variables and propose β(l) using the conditional posterior distribution in equation (4.13):

p(β(l)|M∗
l ,Σ

(j), Y ). The acceptance probability simplifies to

α = min

{
1,
p(M∗

l , β
(l)|Y,Σ(j))p(β(j)|Y,Mj ,Σ

(j))

p(Mj , β(j)|Y,Σ(j))p(β(l)|Y,M∗
l ,Σ

(j))

}

Obviously, the following holds

p(M∗
l , β

(l)|Y,Σ(j)) = p(M∗
l |Y,Σ(j))p(β(l)|Y,M∗

l ,Σ
(j))

and therefore we can simplify the acceptance probability to

α = min

{
1,
p(M∗

l |Y,Σ(j))

p(Mj |Y,Σ(j))

}
.

Finally, since

p(M∗
l |Y,Σ(j)) =

p(M∗
l )p(Y |M∗

l ,Σ
(j))

p(Y |Σ(j))

the acceptance probability becomes

α = min

{
1,
p(M∗

l )p(Y |M∗
l ,Σ

(j))

p(Mj)p(Y |Mj ,Σ(j))

}
,

which is equivalent to the expression in equation (4.17).
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Note that the acceptance probability does not depend on the value of β(l). There-

fore, in practice we only draw β(l) when model M∗
l is accepted. In case model M∗

l is

rejected and therefore Ml =Mj , we simply update β(l) using the conditional posterior

distribution in equation (4.13): p(β(l)|Ml =Mj ,Σ
(j), Y ).

Finally, we consider the updating step for Σ(l). We use a standard Metropolis-Hastings

algorithm. Suppose we draw Σ(l)∗ according to proposal density q(Σ(l)∗|Y,Ml) and let

h(Σ(l)∗|Y,Ml) be the kernel of the target density. The acceptance probability is

α = min

{
1,
h(Σ(l)∗|Y,Ml)q(Σ

(j)|Y,Ml)

h(Σ(j)|Y,Ml)q(Σ(l)∗|Y,Ml)

}
.

The kernel of the target distribution is given in equation (4.14). As a proposal den-

sity, we choose an iWishart
(
E(l)′E(l) + 1

gH
(l), T + n+ 1

)
.1 The acceptance probability

becomes

α = min

{
1,

|Z(l)′(Σ(l)∗ ⊗ IT )
−1Z(l)| 12 |Σ(l)∗|n+1

2

|Z(l)′(Σ(j) ⊗ IT )−1Z(l)| 12 |Σ(j)|n+1
2

}
,

which is equivalent to the expression in equation (4.18).

In the empirical section, most results are based on 500,000 retained draws after an

initialization phase of 100,000 draws. Increasing the burn-in phase or the number of

simulations does not significantly change results. Visual inspection of the posterior

draws suggests that the estimates converge.

1We use the parameterization of Bauwens, Lubrano, and Richard (1999) for the inverted Wishart

distribution.
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5

Model instability and long-term

investors1

We analyze the effect of model instability on long-term investors using a time-varying

VAR(1) model. Our specification is able to handle time-varying intercepts, time-varying

slopes, time-varying volatility, time-varying correlation, the leverage effect and fat tails.

We find that the persistence of time-variation is important to assess its importance for

long-term investors. Time variation in intercepts and slope coefficients is not persistent

enough for long-term investors to be relevant while time-variation in the error covari-

ance matrix (especially error volatility) is persistent and therefore very important for

long-term investors. Fat tails disappear once time-varying volatility is incorporated.

Random walk specifications (persistence equal to 1) or regime-switching models (same

persistence for all parameters) lead to a large overestimation of perceived stock market

risk and an underinvestment in the stock market. Results are robust to changes in the

specification.

5.1 Introduction

Long-term investors face substantial uncertainty when modeling future asset returns.

Firstly, investors need to select a model to model the dynamics of asset returns. This

model can be wrong and investors therefore face model uncertainty. Chapter 4 shows

that this uncertainty plays a major role at long-horizons. Secondly, upon choosing a

1This chapter is based on Diris (2011a).
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model long-term investors need to estimate the model parameters. They face parameter

uncertainty, since the true parameters are unknown. Parameter uncertainty is also

very important at long horizons as argued in Barberis (2000). Thirdly, even if the

true model and true parameters are known, stock returns are still uncertain due to

unexpected shocks (error term). This component is the most important component at

short horizons.

Recently, there has been a lot of interest in the strategic asset allocation literature

due to the finding that asset returns, specifically stock returns, might be predictable.1

If asset returns are predictable, the optimal asset allocations of long-term investors

deviate from the allocations of short-term investors. Empirically, it is found by e.g.

Campbell, Chan, and Viceira (2003) that long-term investors should invest more in

stocks than short-term investors, since stocks mean-revert and are therefore safer in

the long-run. This conclusion is robust to the inclusion of parameter uncertainty as

shown in Barberis (2000), but not to the incorporation of model uncertainty as shown

in chapter 4.

The common practice in the strategic asset allocation literature is to estimate a

model on a data-set of 50 years or more and to assume that model coefficients remain

constant over this period. However, a priori there is no reason to believe that they

indeed are. Aspects such as institutional changes, wars or changes in the stock mar-

ket behavior of participants due to different risk aversion levels or different financial

sophistication levels could lead to changes in the relation between asset returns and

predictor variables or to changes in the properties of the error term.

While small changes in coefficients might not have a large impact on short-term

investors, they can have a large impact on long-term investors if they are long-lasting

and persistent. In that case, the mistakes one makes in using a constant model add

up over the investment horizon and can become very large. If on the contrary the

changes in coefficients are not persistent but of transitory nature, they are unlikely to

be important for long-term investors. In that case the coefficients only deviate from

the constant model for a fraction of the investment horizon. Hence, the persistence of

time-varying parameters is extremely important at long horizons.

1Campbell and Viceira (2002) and Brandt (2010) give an excellent overview of the strategic asset

allocation literature.
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Another common practice in the literature is to impose Gaussian error distributions,

whereas evidence clearly shows that the error distributions deviate significantly from

normality. Risk-averse investors evaluate very good and very bad outcomes differently,

since they want to avoid bad outcomes at all costs. They value models that are able

to avoid these bad outcomes as chapter 3 shows. This suggests that the normality

assumption could lead to very misguided investment advice, since it does not accurately

model extreme tail events. Properly modeling the error term is therefore very important

for risk-averse investors.

We consider the effect of model instability on long-term investors using a time-

varying VAR(1) model in which parameters are allowed to change in every period. We

develop a methodology that is able to handle time-varying intercepts, time-varying slope

coefficients, time-varying error volatility, time-varying error correlation, the leverage

effect and fat tails. We assess the importance of these model components for long-term

investors. We focus on the persistence of the different time-varying parameters.

An alternative specification is the regime-switching model that Guidolin and Tim-

mermann (2007) and Pettenuzzo and Timmermann (2010) implement. We do not

pursue this alternative here because of three reasons. Firstly, a priori it seems more

likely that the behavior of stock market participants changes smoothly over time (due to

changes in risk aversion or financial sophistication) instead of abruptly, which suggests

that a regime-switching model is not appropriate. Secondly, one of our objectives is to

assess which kind of model instability is the most important for long-term investors.

A regime-switching model does not allow us to assess the individual components, since

all components change jointly. Finally, a regime-switching model pools the persistence

parameter of all components. In other words, changes in say the slope of stock returns

are equally persistent as changes in the volatility of a predictor variable, while there is

a priori no reason to impose such a restriction.

A related paper is Johannes, Korteweg, and Polson (2011). These authors develop

particle filtering techniques to assess how the views of economic decision makers evolve

over time using a VAR model in which only some parameters are allowed to change

over time. Our chapter differs in both scope and perspective. Firstly, we use smoothed

estimates to assess ex-post whether there is model instability, while Johannes, Ko-

rteweg, and Polson (2011) use filtered estimates. Since we use smoothed parameters,

we are able to assess more efficiently whether there was time variation in the past 82
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years. Since Johannes, Korteweg, and Polson (2011) use filtered estimates, they would

find time-variation even if there was none. Secondly, we consider time-variation in all

intercepts and slope coefficients, add the leverage effect, consider non-normal distribu-

tions and also consider time-varying error correlation. Johannes, Korteweg, and Polson

(2011) only consider time-variation in one slope coefficient and in the volatility of the

error term. Thirdly, we look at specifications that also consider bond returns and are

therefore more relevant for long-term investors and indeed find interesting effects in the

correlation between stocks and bonds.

We find that it is important for long-term investors to take model instability into

account. CER gains are up to 5% per year. Long-term investors should take time-

varying volatility and correlation into account, but can safely ignore time-varying slopes

and excess kurtosis once time-varying volatility is incorporated. The reason is that time-

varying slopes are not persistent enough to be of importance for long-term investors

and that fat tails are not important once stochastic volatility is incorporated. The

persistence of time-varying parameters is extremely important and a random walk

specification (persistence equal to 1) or a regime-switching model (same persistence for

all parameters) is therefore not appropriate. Results are robust to changes in the main

specification.

This chapter is organized as follows. Section 2 discusses the data-set we use and

performs a preliminary analysis. Next, section 3 explains the methodology. It discusses

the model, the Bayesian prior distribution and the Bayesian MCMC techniques. Section

4 shows the results for the basic specification in which the dividend-to-price ratio is

incorporated as predictor of asset returns. Section 5 performs a robustness check using

the yield-spread as predictor variable. Finally, section 6 provides the conclusion. The

appendix contains details on the numerical techniques we use to estimate the model.

5.2 Data and preliminary analysis

We use a monthly data-set that starts in December 1926 and ends in December 2008

for the US stock and bond markets. It is based on Goyal and Welch (2008). We use

three asset returns and two predictors.

The first asset return is the ex post real T-bill rate (Rtbill) which we obtain by

subtracting log inflation from the log return on the 3-month T-bill rate. We do not
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include the T-bill rate in the econometric models to keep our models parsimonious, but

we use its average value, which is 0.060% per month, in portfolio construction. The

second asset return is the excess log stock return (Xs). It is defined as the difference

between the log return (including dividends) on the S&P 500 and the log return on the

(nominal) 3 month T-bill. The third asset return is the excess log return on a long-term

government bond (maturity of approximately 20 years) and is defined in a similar way.

Our data-set contains two predictor variables. The first predictor variable is the

log dividend-to-price ratio, defined as the log difference between dividends over the

past four quarters and the current S&P index level. Campbell and Shiller (1998) and

Cochrane (2007b) (among others) show that this ratio is an important predictor of

stock returns. Secondly, we consider the yield-spread, which is the difference between

the log yield on a long-term government bond and the log yield on the 90-day T-bill.

It is an important predictor of both stock and bond returns, refer to e.g. Campbell

(1995) and Fama and French (1989).

Table 5.1 shows the summary statistics for the data-set. Firstly, the equity risk

premium of 5.4% per year is in line with other papers. Secondly, the kurtosis and

skewness clearly indicate that the variables deviate significantly from normality. This

holds especially for asset returns. Thirdly, the AR(1) coefficients indicate that the

predictor variables are very persistent.

We consider two different specifications. The first specification is a VAR(1) model

in which stock returns, bond returns and the dividend yield are regressed on a constant

and the lagged dividend yield. This specification is considered in section 5.4. The

second specification is a VAR(1) model in which excess stock returns, bond returns

Table 5.1: Summary Statistics of the monthly data-set

This table reports the means, standard deviations, minima, maxima, AR(1)

coefficients, Skewness, Kurtosis and Sharpe ratios for excess stock returns (Xs),

excess bond returns (Xb), the dividend-to-price ratio (DP) and the yield spread

(Yspr). The data set is monthly and starts in December 1926 and ends in

December 2008. Percentages are given as fractions.

Mean Std Min Max AR(1) Skewness Kurtosis Sharpe

Xs 0.0044 0.0557 -0.3391 0.3471 0.0904 -0.4007 10.8715 0.0793

Xb 0.0015 0.0231 -0.1041 0.1342 0.0556 0.3253 7.4090 0.0640

DP -3.3399 0.4622 -4.5074 -1.6851 0.9924 -0.2759 3.2983

Yspr 0.0153 0.0122 -0.0319 0.0438 0.9600 -0.2259 3.0648
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Table 5.2: Preliminary analysis

This table shows the OLS estimates, standard errors and

covariance matrix for respectively the model with DP

(panel A) and the model with Yspr (panel B) as predictor.

The first subpanel gives the parameter estimates, the stan-

dard errors in brackets and the skewness and kurtosis of

the error terms. The second subpanel shows the estimates

for the covariance matrix of the residual. The diagonal

indicates the standard errors of the residuals whereas the

off-diagonal elements are the correlations. Note that the

different equations are given in different rows and that c

indicates the constant.

Panel A1: Est. DP model

c DP Skewness Kurtosis

Xs 0.0270 0.0068 -0.5262 10.7775

(0.0129) (0.0038)

Xb 0.0031 0.0005 0.3293 7.3907

(0.0054) (0.0016)

DP -0.0258 0.9924 0.2568 11.4675

(0.0131) (0.0039)

Panel A2: Cov. DP model

Xs Xb DP

Xs 0.0556 0.1227 -0.9860

Xb 0.1227 0.0563 -0.1253

DP -0.9860 -0.1253 0.0563

Panel B1: Est. Yspr model

c Yspr Skewness Kurtosis

Xs 0.0023 0.1373 -0.4238 10.8776

(0.0028) (0.1459)

Xb -0.0026 0.2640 0.3516 7.6976

(0.0012) (0.0599)

Yspr 0.0006 0.9600 0.5155 25.1347

(0.0002) (0.0090)

Panel B2: Cov. Yspr model

Xs Xb Yspr

Xs 0.0557 0.1201 -0.0185

Xb 0.1201 0.0228 -0.2774

YS -0.0185 -0.2774 0.0034
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and the yield spread are regressed on a constant and the lagged yield spread. We look

at this model in the robustness section 5.5. We do not consider VAR(1) models of

dimension greater than 3 to keep our analysis feasible and to reduce the total number

of parameters.

Table 5.2 shows the OLS estimates, standard errors, the covariance matrix of the

residuals and the skewness and kurtosis of the residuals for both specifications. We find

that the dividend-to-price ratio (panel A) and the yield spread (panel B) are positively

related to excess stock returns. These positive coefficients combined with the negative

error correlation between excess stock returns and especially the dividend-to-price ratio

suggest that stocks mean-revert on average. The large standard errors indicate that

there is a lot of estimation uncertainty involved. Next, the yield spread is a positive and

strong predictor of excess bond returns, but hardly predicts stock returns. Its positive

coefficient combined with the negative error correlation between excess bond returns

and the yield spread suggests that bond returns show some mean-reversion. Finally,

the skewness and kurtosis values indicate that the error terms deviate strongly from

normality. The kurtosis value for the yield-spread is especially remarkable and needs

to be further analyzed.

5.3 Methodology

In this paper, we use a first order time-varying Vector Autoregression - TVAR(1) - to

model the investment opportunity set of long-term investors.1 The model is able to

handle time-varying intercepts and slope coefficients, a time-varying error covariance

matrix with both volatility and correlation time-varying, a leverage effect in volatility

and finally error terms with fat tails. The model is estimated by Bayesian MCMC

techniques.2

1As argued in the introduction of this thesis, time-variation in the model might be a sign of time-

variation in the parameters of the DGP or a sign of misspecification of the model. Even if it is a sign

of misspecification, it does not invalidate the use of the time-varying model. All models are wrong, but

some are actually useful. The TVAR(1) is a very flexible and therefore useful model.
2In theory, it would be possible to estimate the model with frequentist techniques. However, this

would be extremely difficult due to the large number of parameters and the non-linearity of the problem.

Bayesian methods on the other hand are well-suited to estimate a problem of this magnitude, since it

divides the original estimation problem in smaller and simpler steps (the Gibbs step).
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Our methodology is an extension of the methodology of Primiceri (2005). We

extend Primiceri’s (2005) methodology by allowing for fat tailed error distributions,

by estimating the leverage effect in volatility and by estimating AR(1) processes for

all transition equations. These extensions are very relevant given the data-set we use.

Firstly, it is well-known (e.g. Omori, Chib, Shephard, and Nakajima (2007), Jacquier,

Polson, and Rossi (2004)) that the leverage effect in volatility and fat tailed error

distributions are present in data on stock returns. Secondly, empirically we find that it is

very important to estimate the persistence of time-varying processes instead of imposing

random walks. We explain below that random walks lead to a large overestimation of

perceived risk of long-term stock returns. Ignoring these extensions would lead to

misspecified models.

5.3.1 Model

In this section, we explain the most general model we estimate. Define the n×1 vector

yt as follows (n = 3 in the empirical application)

yt =

(
xt
zt

)
, (5.1)

where xt is a n − k × 1 vector consisting of the asset returns and zt a k × 1 vector of

predictor variables at time t. The model we consider is as follows

yt = at +Btzt−1 + ut, (5.2)

for t = 1, ..., T , where at is a n × 1 vector of intercepts, Bt an n × k matrix of slope

coefficients and ut an n × 1 vector of error terms with covariance matrix Ωt whose

properties are indicated below.

First, we introduce some additional notation. Let Xt = In ⊗ [1, zt−1] and let bt =

vec ([at, Bt]
′). The model can be rewritten as

yt = Xtbt + ut. (5.3)

Without loss of generality, we consider a triangular reduction of covariance matrix

Ωt

LtΩtL
′
t = ΣtΣt, (5.4)
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where Lt is an n× n lower triangular matrix

Lt =

⎛⎜⎜⎜⎝
1 0 0 0
l21,t 1 0 0
...

. . . 1 0
ln1,t . . . lnn−1,t 1

⎞⎟⎟⎟⎠ (5.5)

and where Σt is an n× n diagonal matrix

Σt =

⎛⎜⎝ σt,1 0 0

0
. . . 0

0 0 σt,n

⎞⎟⎠ .1 (5.6)

The common assumption in the literature (e.g. Campbell, Chan, and Viceira (2003),

Barberis (2000)) is to assume that the error term is normally distributed. In that case,

we could write

ut = L−1
t Dtet,

where et has a standard normal distribution. Since Ωt = L−1
t ΣtΣtL

′−1
t , ut would be

distributed as N(0,Ωt).

However, there is ample evidence that suggests that the distribution of the error

term deviates from normality, see for example the preliminary results in the previous

section. Therefore, we consider an alternative specification for the error term and

assume that ut has a distribution with fat tails. In order to do so we introduce scale

mixture variables λt,1, ...λt,n and n× n diagonal matrix

Λt =

⎛⎜⎜⎝
λ

1
2
t,1 0 0

0
. . . 0

0 0 λ
1
2
t,n

⎞⎟⎟⎠ (5.7)

and make the following assumption for ut

ut = L−1
t ΣtΛtet, (5.8)

where the elements of et have independent standard normal distributions.

1Due to the triangular reduction, the results depend in theory on the ordering of the variables. Our

empirical results turn out to be robust to different orderings.
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Table 5.3: Moments of the normal-lognormal distribution

This table reports the first four moments of the normal-lognormal distri-

bution λ
1

2

t et with lnλt ∼ N(−(1/2)τ 2, τ 2) and et ∼ N(0, 1) for different

values of τ 2.

τ2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Mean 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Std 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Skewness 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Kurtosis 3.0 3.7 4.5 5.5 6.6 8.1 9.2 12.0 14.5 18.2 22.8

By multiplying et,j by scale mixtures λ
1
2
t,j, error term ut,j deviates from normality

∀ j. We follow Omori, Chib, Shephard, and Nakajima (2007) and use the following

distribution for lnλt,j for j = 1, ..., n

lnλt,j ∼ N

(
−1

2
τ2j , τ

2
j

)
. (5.9)

If τ2j = 0, λ
1
2
t,jet,j would have a normal distribution. If τ2j > 0, λ

1
2
t,jet,j has a normal

log-normal distribution.1 This is a distribution with fat tails. Its moments for different

values of τ2j are given in table 5.3. The table clearly shows that the multiplication of

et,j for j = 1, ...n with the scale mixture only impacts the kurtosis. The mean, standard

deviation and skewness are not influenced. Therefore, Ωt can still be interpreted as the

covariance matrix of ut.

Next, we specify the dynamics of the time-varying parameters. Let lt be the n(n−
1)/2 × 1 vector of non-zero and non-one elements of Lt (stacked by rows) and let σt

be the n × 1 vector of diagonal elements of Σt. The evolution of the time-varying

parameters in the model - bt, lt and σt - is modeled as follows

bt+1 − μb = Ab (bt − μb) + ηt (5.10)

lt+1 − μl = Al (lt − μl) + ζt

lnσ2t+1 − μs = As
(
lnσ2t − μs

)
+ ξt,

where μb, μl and μs are respectively the unconditional means of bt, lt and lnσ2t , where

Ab, Al and As are the transition matrices and where ηt, ζt and ξt are the innovations.

1An alternative would be to specify that λt,j has an inverse gamma iGamma(ν,ν) distribution such

that λ
1

2

t,jet,j would have a student-t distribution with ν degrees of freedom. However, this choice leads

to an unstable numerical algorithm and therefore we do not pursue this alternative in this chapter.
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These are distributed as ηt ∼ N(0, Q), ζt ∼ N(0, R) and ξt ∼ N(0, S). The next

subsection explains that we need to impose restrictions on R and S to make the analysis

tractable.1

We follow Primiceri (2005) and assume that ηt, ζt and ξt are independent of each

other and that ηt and ζt are independent of error term et. However, unlike Primiceri

(2005) we do allow for a leverage effect in volatility by specifying that the correlation

between et,j and ξt,j is (instead of 0)

corr(et,j , ξt,j) = ρj ,∀j. (5.11)

Omori, Chib, Shephard, and Nakajima (2007) and Jacquier, Polson, and Rossi (2004)

find that this correlation is negative for a shock to stock returns and an innovation in

its stochastic volatility. This means that if there is a negative shock to stock returns

at time t, next period’s log volatility lnσ2t+1 will be higher on average.

We introduce some additional notation. Firstly, define b̃t+1 = bt+1 − μb, l̃t+1 =

lt+1 − μl and ˜lnσ2t+1 = lnσ2t+1 − μs. Secondly, let b, l and lnσ2 be vectors that stack

all values of bt, lt and lnσ2t ∀t. Finally, define τ2 as the vector that vertically stacks

the values for τ2j ∀ j and define vector ρ similarly for ρj ∀ j.
It is very important to note that say et,3 is not the error term for the third equation

of the system in period t. Instead, it is the part of the third equation error term that

is orthogonal to the errors of the first two equations. Likewise, τ23 and ρ3 are not the

excess kurtosis and correlation coefficients for the third equation, but are the excess

kurtosis and correlation coefficients for the part of the third equation error term that

is orthogonal to the first two equations.

We consider several alternative models. Firstly, we impose some or all of the fol-

lowing restrictions

• Time-constant bt : Q = 0

• Time-constant lt and lnσ2t+1: R = 0, S = 0

• Normally distributed error terms: τ2 = 0

1In order to estimate the model, we use the simulation smoother of Durbin and Koopman (2002).

We use their timing convention for the innovations in the transition equations.
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Secondly, we consider a pooled model in which the persistence of all time-varying

parameters is equal

ab,(i,i) = ρP ,∀i = 1, ...nK (5.12)

al,(j,j) = ρP ,∀j = 1, ...n(n − 1)/2

as,(k,k) = ρP ,∀k = 1, ..., n

and 0 otherwise.

Finally, we impose random walks (without drift) by setting the persistence of all

time-varying parameters equal to 1

bt+1 = bt + ηt (5.13)

lt+1 = lt + ζt

lnσ2t+1 = lnσ2t + ξt.

Note that in such models, the unconditional distribution of time-varying parameters

does not exist.

These alternative models are either nested in our most general model or are (in

the case of the random walk specification) straightforward extensions. Since they do

not lead to any further issues regarding prior choice, posterior distribution or MCMC

algorithm, we do not explicitly deal with them in the next two subsections.

5.3.2 Prior

In this section, we explain the prior distributions for the most general model. It is

an hierarchical model and therefore we have to define prior distributions for the initial

conditions b̃1, l̃1 and ˜lnσ21 and for the hyperparameters of the model (μb, μl, μs, Ab,

Al, As, Q, R, S, ρ, τ2). We use the first 60 months of our data-set as a training

sample to estimate a time-constant VAR(1) model by OLS and use its estimates in the

construction of some of the prior distributions below.

Firstly, we assume that the initial conditions are drawn from their stationary un-

conditional distribution

p(̃b1|Ab, Q) = N(0,Σb) (5.14)

p(l̃1|Al, R) = N(0,Σl) (5.15)

p(˜lnσ21|As, S) = N(0,Σs), (5.16)
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where vec(Σb) =
(
I(nK)2 −Ab ⊗Ab

)−1
Q and where Σl and Σs are defined similarly.

Secondly, we consider the transition matrices. We set the off-diagonal elements of

the matrices equal to 0 and assume the following for the diagonal elements

p(Ab,(i,i)) = N(mb, vb)I(Ab,(i,i)),∀i = 1, ...nK (5.17)

p(Al,(j,j)) = N(ml, vl)I(Al,(j,j)),∀j = 1, ...n(n − 1)/2 (5.18)

p(As,(k,k)) = N(ms, vs)I(As,(k,k)),∀k = 1, ..., n, (5.19)

where

mb = ml = ms = 0.9 (5.20)

vb = vl = vs = 0.22 (5.21)

and where I(x) is equal to 1 if −1 < x < 1 and 0 otherwise. Hence, we impose stationary

processes for the time-varying parameters. The prior correlations between the elements

are equal to 0.

Thirdly, we use the training sample to specify the prior distributions for the uncon-

ditional means as follows1

p(μb) = N (̂bOLS, 10
6V (̂bOLS)) (5.22)

p(μl) = N(l̂OLS, 10
6V (l̂OLS)) (5.23)

p(μs) = N(̂lnσ2OLS, 10
6V (̂lnσ2OLS)). (5.24)

Mean b̂OLS and covariance matrix V (̂bOLS) are respectively the standard OLS estimates

and its covariance matrix. We do not have direct OLS estimates for μl and μs and

its covariance matrices, but instead have an estimate of the covariance matrix of the

residuals Ê. We draw this covariance matrix 1000 times from the inverse Wishart

distribution iWishart(Ê′Ê, T ), construct lOLS and lnσ2OLS for every draw and use

its means and covariance matrix across the 1000 draws to calculate l̂OLS , V (l̂OLS),

̂lnσ2OLS and V (̂ln σ2OLS).

It is common in the literature (e.g. Primiceri (2005)) to use the variance of the

estimated intercepts, slopes, volatilities and l̂OLS’s of the time-constant model to set-

up the covariance matrices of the innovations of the transition equations. We follow

1Although the parameters are unlikely to be exactly constant in the training sample, we assume

that time-variation is limited over such a short time-span. Furthermore, we choose the priors as

uninformative as possible such that they only have a negligible impact on the posterior distribution.
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this trend and set the mean of the inverse Wishart and inverse gamma distributions

equal to a constant fraction c of the covariance matrices of the estimated coefficients.

For the degrees of freedom, we choose the minimum degrees of freedom such that the

prior means actually exist. Constant c is specified below.

The prior distribution for Q is

p(Q) = iWishart(WQ, dfQ), (5.25)

where

WQ = c× (dfQ − nK − 1)×DQ (5.26)

dfQ = nK + 2

where DQ is a diagonal matrix with the diagonal elements of V (b̂OLS) on the diagonal.

It is common in the literature to impose a diagonal matrix for Q itself to reduce the

total number of parameters, while there is a priori no reason to expect that the off-

diagonal elements are equal to 0. In our setting, Q can be any positive definite matrix,

but is shrunk towards a diagonal matrix by choosing this particular prior scale matrix.

In this way, we try to find the balance between flexibility and efficiency.

There is no good guidance on how to choose the multiplication constant c. If we

choose c too large, our prior implies too much time-variation. If we choose c too low,

the simulation algorithm does not work smoothly. We choose c equal to 0.01. Results

are not noticeably different to specifications with c = 0.1 or c = 0.001. In this way, the

prior is not flat, but still diffuse and relatively uninformative. This same constant c is

chosen in the priors for R and S.

In order to obtain partially analytical results for lt, we need to impose a blockdi-

agonal structure for matrix R as in Primiceri (2005). Since n = 3, the matrix contains

two blocks. The first block is formed by element R1,1, i.e. the variance of innovations

to lt,(2,1). The second block is formed by elements R2:3,2:3, i.e. the covariance matrix

of innovations to lt,(3,1) and lt,(3,2). This gives the following prior distributions

p(R(1,1)) = iGamma(Wr1, dfr1) (5.27)

p(R(2:3,2:3)) = iWishart(Wr2, dfr2),
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where

Wr1 = c× (dfr1 − 2)×Dl,1 (5.28)

Wr2 = c× (dfr2 − 3)×Dl,2

dfr1 = 1 + 2

dfr2 = 2 + 2

and where Dl,1 is V (l̂OLS,(1,1)) and Dl,2 is a diagonal matrix with the diagonal elements

of V (l̂OLS,(2:3,2:3)) on its diagonal. As above, matrix R(2:3,2:3) can be any positive definite

matrix, but we shrink it towards a diagonal matrix to get more efficient estimates.

Next, let us consider the prior covariance matrix for S and the prior for ρ jointly.

In order to make the analysis tractable, we choose a diagonal matrix for S. This allows

us to consider the three stochastic volatility equations separately. Let us consider the

covariance matrix Σ∗
j of et,j and ξt,j jointly for j = 1, .., n

Σ∗
j =

(
1 ρj

√
Sj,j√

ρjSj,j Sj,j

)
. (5.29)

It is difficult to formulate a prior for Σ∗
j , since its (1,1) element is equal to 1. There-

fore, we reparameterize Sj,j and ρj to be able to choose prior distributions in the way

proposed in Jacquier, Polson, and Rossi (2004)

Σ∗
j =

(
1 ψj
ψj θj + ψ2

j

)
. (5.30)

As in Jacquier, Polson, and Rossi (2004), we choose an inverse gamma prior for θj

and a normal prior for ψj |θj such that we obtain a tractable algorithm. We get for

j = 1, ....., n

p(θj) = iGamma(Wθ,j, dfθ) (5.31)

p(ψj |θj) = N(0, θj/p), (5.32)

where

Wθ,j = c(dfθ − 2)V (̂lnσ2OLS,(j,j)) (5.33)

dfθ = 3

p = 3
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Clearly, Sj,j = θj + ψ2
j and ρj =

ψj√
θj+ψ2

j

for j = 1, .., n.

Finally, we choose a prior distribution for τ2j for j = 1, ...n. As in Omori, Chib,

Shephard, and Nakajima (2007) we use a gamma prior

p(τ2j ) = Gamma(aτ , bτ ) (5.34)

with

aτ = 0.25 (5.35)

bτ = 2

This prior has a mean of 0.5 and a relatively large variance of 1.

5.3.3 Posterior and MCMC

In this section, we sketch how we estimate the general model. Exact details are given in

appendix 5.7. The simulation algorithm is more complicated than Primiceri (2005) due

to the formulation of the initial conditions in equations (5.14), (5.15) and (5.16), the

estimation of transition matrices, the estimation of the leverage effect and the presence

of fat-tailed error distributions.

We use Markov Chain Monte Carlo techniques to obtain posterior distributions of

the parameters of interest. In general, time-varying parameters and their unconditional

means are drawn using the Kalman filter - smoother technique of Durbin and Koopman

(2002). Transition matrices and covariance matrices are simulated using Metropolis-

Hastings steps.

The system for b is clearly a linear Gaussian state space model (conditional on l,

σ and hyperparameters) and b and μb can therefore be easily simulated. The system

for l is in general not a linear Gaussian state space model (conditional on b, σ and

hyperparameters), but can be transformed to n− 1 linear Gaussian state space models

if we impose that R is blockdiagonal. Under this assumption, sampling l and μl is

straightforward. The system for σ2 is also not a linear Gaussian state space model

(conditional on b, l and hyperparameters), but can be transformed into n approximately

linear Gaussian state space models by transforming σ2t to ln σ2t and by approximating

the errors of the observation equation of the state space model by a mixture of normals

as suggested in Kim, Shepherd, and Chib (1998) and Omori, Chib, Shephard, and
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Nakajima (2007). In this way, we can still use the simulation smoother of Durbin and

Koopman (2002) to simulate lnσ2 and μs.

If the initial conditions in equations (5.14), (5.15) and (5.16) would not depend on

the transition matrices and covariance matrices, we could easily simulate them using a

Gibbs sampler by respectively a normal distribution and an inverse Wishart distribu-

tion. Since they do, we use these distributions as proposal densities in a Metropolis-

Hastings step. Since the acceptance probabilities are all larger than 80%, this hardly

deteriorates the sampling performance of the MCMC algorithm.

We do not sample the correlations ρ directly, but instead consider the transformation

in equation (5.30) to make the sampling step easier. These transformed parameters

are sampled using a Metropolis-Hastings algorithm using inverse gamma and normal

proposal densities.

Finally, the conditional posterior distribution for τ2j , for j = 1, ..., n is not a known

distribution. Therefore, we use another Metropolis-Hastings step. We sample ln τ2j , be-

cause its posterior distribution is easier to approximate by a student-t proposal density.

This gives an acceptance probability of 97%.

In the empirical section, we retain 10,000 iterations after a burn-in period of 5,000

iterations. We draw 10 asset return paths per iteration (hence 100,000 in total) to calcu-

late predictive distributions and portfolio weights. Increasing the number of iterations

does not significantly impact results.

5.4 Results basic specifications

We report results for the basic specification with the dividend-to-price ratio as predictor.

We explain estimation results, consider the term structures of risk and portfolio weights

for the time-varying model, provide an assessment of the individual components of

the time-varying model and finally analyze the importance of the persistence of time-

varying parameters.

5.4.1 Estimation results

Figure 5.1 plots the time-series of (smoothed) posterior means of the time-varying in-

tercepts and slope coefficients for both the time-varying and constant model. A few

results stand out. Firstly, the dividend-to-price ratio is a positive predictor of excess
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Figure 5.1: Time-series of the posterior means of intercepts and slopes

This figure shows the (smoothed) posterior means of intercepts and slopes for the time-varying and the

time-constant model. Results are based on 10,000 retained draws. Note that the equations are given in the

different rows.

stock and bond returns in every period. Both coefficients are on average quite a bit

higher than the ones in the constant model. Secondly, both prediction coefficients show

some modest time-variation. For example, the posterior mean in the stock return equa-

tion varies between 0.008 and 0.015. The time-variation is however not very persistent,

since deviations from means do not last very long. Thirdly, the AR(1) coefficient for

the dividend-to-price ratio is on average lower than the one in the constant model and

varies over time. Such a change in persistence of a predictor can potentially have a large

impact on long-term investors. The constant in the predictor equation varies quite a

lot over time as well.

Table 5.4 shows the posterior means and standard deviations of the most important

hyperparameters of several specifications. The time-varying model is in the last column.

The other specification are considered in subsection 5.4.3. The first 12 rows show the

posterior means and standard deviations of the diagonal elements of Aslope. The table
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Table 5.4: Posterior means and standard deviations of hyperparameters

This table shows the posterior means and standard deviations (between

brackets) of the most important hyperparameters of seven specifications.

The specifications differ in whether b is time-varying (1) / time-constant

(0), whether Ω is time-varying (1) / time-constant (0) and finally

whether error terms have fat tails (1) / are gaussian (0). Matrices Ab,

As and Al are the transition matrices for bt, ln σ
2
t and lt. Vectors ρ and

τ 2 are respectively the correlation between error term et and ξt, and a

kurtosis measure for et.

TV b 0 0 0 1 1 1 1

TV Ω 0 1 1 0 0 1 1

Kurt 1 0 1 0 1 0 1

Ab,(1,1) 0.3110 0.3209 0.9153 0.9109

(0.0480) (0.0483) (0.0318) (0.0347)

Ab,(2,2) 0.6703 0.6623 0.8804 0.8837

(0.0884) (0.1051) (0.0319) (0.0321)

Ab,(3,3) 0.8112 0.9333 0.8605 0.8637

(0.1354) (0.1107) (0.1416) (0.1213)

Ab,(4,4) 0.7764 0.8337 0.8383 0.8779

(0.1627) (0.1519) (0.1463) (0.1310)

Ab,(5,5) 0.9112 0.8853 0.9411 0.9436

(0.0178) (0.0205) (0.0163) (0.0144)

Ab,(6,6) 0.4837 0.5874 0.8973 0.9021

(0.0650) (0.0784) (0.0355) (0.0340)

As,(1,1) 0.9538 0.9589 0.9495 0.9555

(0.0184) (0.0175) (0.0183) (0.0169)

As,(2,2) 0.9784 0.9788 0.9773 0.9808

(0.0090) (0.0090) (0.0091) (0.0083)

As,(3,3) 0.9865 0.9860 0.9984 0.9985

(0.0067) (0.0065) (0.0016) (0.0015)

Al,(1,1) 0.9964 0.9959 0.9962 0.9960

(0.0028) (0.0033) (0.0030) (0.0032)

Al,(2,2) 0.8168 0.8069 0.8352 0.8506

(0.1328) (0.1313) (0.1183) (0.1292)

Al,(3,3) 0.7925 0.7733 0.8182 0.7599

(0.1276) (0.1567) (0.1361) (0.1525)

τ21 0.8802 0.0592 0.9145 0.1269

(0.1368) (0.0506) (0.1422) (0.0702)

τ22 1.3335 0.0445 1.6542 0.1626

(0.2011) (0.0723) (0.2569) (0.1147)

τ23 1.8091 0.0003 0.2506 0.0750

(0.2191) (0.0004) (0.3696) (0.0618)

ρ1 -0.3249 -0.3513 -0.3629 -0.4266

(0.1016) (0.1027) (0.1200) (0.1297)

ρ2 -0.0856 -0.1024 -0.1108 -0.1532

(0.0902) (0.0981) (0.1094) (0.1250)

ρ3 0.0714 0.0711 -0.5311 -0.4787

(0.0511) (0.0530) (0.2148) (0.2351)
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confirms that time-variation in intercepts and slopes is not very persistent. The average

posterior mean of these persistence parameters is around 0.90, which implies a half life

of an innovation of only a bit more than 6 months.

We conclude that there is time-variation in intercepts and slopes, but that this

time-variation is rather small and not very persistent.

Figure 5.2 reports the time-series of (smoothed) posterior means of the covariance

matrix of the error terms. It reports volatilities on the diagonal, correlations above the

diagonal and values for lt below the diagonal. The figure shows some interesting results.

Firstly, the error volatility in the stock return equation varies considerably over time.

It ranges from 17% per month in the 1930s to 2.5% in the 1960 and 1970s. The figure

also shows that time-variation is very persistent, since volatility reverts only slowly to

Figure 5.2: Time-series of the posterior means of error volatilities, correlations

and lt

This figure shows the (smoothed) posterior means of the standard deviation of the residuals (diagonal), the

correlation between the residuals (above the diagonal) and the lt coefficients (below the diagonal) for the

time-varying and time-constant specifications. Results are based on 10,000 retained draws. Note that the

equations are given in the different rows.
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its mean. Secondly, there is a lot of time-variation in the correlation between stocks and

bonds. Correlation can be positive as in the 1970s and 1980s, but can also be negative

as in more recent times. The time-variation in correlation is also very persistent. The

correlation between stock and dividend-to-price ratio innovations also varies somewhat,

but stays very close to -1. Thirdly, the error volatility for the dividend-to-price ratio

almost exactly mimics the error volatility for stock returns. This is not surprising

because of the consistently strong negative correlation between them. Fourthly, the

error volatility of bond returns varies a lot over time. It reaches its maximum of 6%

per month at the end of the sample. Its error correlation with the dividend-to-price

ratio is almost exactly the negative of its error correlation with stocks.

Table 5.4 shows some interesting results for the error covariance matrix. Firstly,

it indicates that time-variation in error volatilities and error correlations are much

more persistent than variation in intercepts and slopes. The posterior mean of the

persistence parameter of error volatility for the stock return equation is 0.96. This

implies a half-life of almost 1 1/2 years. The other error volatilities are even more

persistent. Secondly, there is hardly any excess kurtosis left after taking time-variation

in volatility into account. For example, parameter τ21 shows that the kurtosis of the

error term in the stock equation is very close to 3 instead of more than 10 as in table

5.2. Hence, if one ignores time-variation in volatility, one would wrongly conclude that

the distribution of error terms deviates substantially from normality.

Posterior mean E(ρ1|Y ) = −0.43 shows that there is a leverage effect in stock re-

turns at the monthly horizon even if predictors are included. This means that three

aspects play a role if there is a negative shock to stock returns. Firstly, a negative in-

novation leads to higher expected future stock returns due to the mean-reversion effect.

Secondly, the negative innovation increases the error volatility for stocks. Thirdly, the

negative shock increases the error volatility of the dividend-to-price ratio, since et,1 is

a major component of the error for this ratio.1

The first effect is beneficial for long-term investors and implies that long-term in-

vestors should invest more in stocks than short term investors as shown in e.g. Camp-

bell, Chan, and Viceira (2003). However, the second and third effect increase the risk

1The error for the dividend-to-price ratio in period t is a linear combination of et,1, et,2 and et,3.

The almost perfect negative correlation between the error in the dividend-to-price ratio and the error in

stock returns shows that the latter two components hardly matter for the error in the dividend-to-price

ratio equation.
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for long-term investors and therefore should reduce their stock allocations. The pre-

ceding suggests that ignoring time-variation in volatility leads to an overinvestment

in stocks at long horizons. The second effect is considered in isolation in Chacko and

Viceira (2005), who conclude that it leads to a modest negative hedge term for long-

term investors. The third effect is ignored in the literature. There are no papers that

consider all three effects jointly as we do.

We conclude that there is a lot of time-variation in error volatility and correlation

and that this time-variation is very persistent and relevant for long-term investors.1

5.4.2 Term structure of risk and portfolio weights

Figure 5.3 reports the term structures of risk for excess log stock returns for both the

time-varying and time-constant model. It shows the annualized predictive volatility of

future cumulative stock returns. We obtain these figures by simulating stock returns

from the predictive distribution of future stock returns. In the upper panel we draw

time-varying parameters from its unconditional posterior distribution, draw the time-

constant parameters from its posterior distribution and we set the dividend-to-price

ratio equal to its historical average. In the bottom panel, we simulate the time-varying

parameters from the posterior distribution in December 2008, we simulate the time-

constant parameters from its posterior distribution and we set the dividend-to-price

ratio equal to its December 2008 value.

The term structures of risk takes parameter uncertainty, state uncertainty and

uncertainty due to the error term into account. An investor faces state uncertainty,

since she does not know the exact values of the time-varying parameters (states) and

only knows their posterior distribution at any point in time.

The figure shows that the term structure of risk for the time-varying specification

varies a lot over time. It can either be upward sloping (upper panel) or downward

1A note on methodology. It is well-known in the time-series literature (e.g. Breusch and Pagan

(1979)) that one can rewrite an AR(1) model with random coefficients as an AR(1) with heteroscedastic

errors. In such a setting, the extra variation due to the random coefficient only leads to a heteroscedastic

error term, but does not affect the mean. However, in our setting, the time-varying parameters are

autocorrelated over time, i.e. if for example the autocorrelation of stock returns is high today, it will also

be (relatively) high tomorrow. Therefore, the time-variation in say the slope parameter in for example

an AR(1) does not only affect the conditional variance but also the conditional mean. Therefore, such

a model cannot simply be rewritten as an heteroscedastic AR(1).
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Figure 5.3: Annualized predictive standard deviation of excess log stock re-

turns: time-varying and time-constant specifications
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The figure shows the annualized predictive standard deviation of excess log stock returns for the time-

varying and time-constant specifications. Time-varying parameters are either drawn from its unconditional

distribution (upper panel) or from its posterior distribution at the end of the sample (lower panel). The

predictor variable is either set to its historical average (upper panel) or to its end-of-sample value (lower

panel). Results are based on 100,000 retained draws.

sloping (bottom panel). Let us firstly consider the term structure in the bottom panel.

The error volatility at the 1-month horizon is very high (27%). Figure 5.2 already

showed that at the end of the sample, the error volatility for stock returns is much

higher than its mean. At medium horizons, the annualized predictive volatility is

however much lower, because (i) mean-reversion in stock returns makes stocks safer in

the long-run and (ii) the error volatility reverts back to its (lower) long-run mean. At

horizons of 15 years or more, the term structure is slightly upward sloping due to the

effect of parameter uncertainty. At the 20-year horizon, annualized volatility is almost

20%.

If time-varying parameters are drawn from its unconditional distribution (upper
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panel), we see a different picture. Predictive volatility starts low and increases up

to 19% at the end of the 20-year horizon. Due to the combined effect of parameter

uncertainty and time-variation in parameters, the term structure of risk is upward

sloping for all horizons. At a 20-year horizon, predictive volatility is around 20% in

both panels.

In both panels, the term structures deviate strongly from their time-constant coun-

terpart. The latter is always strongly downward sloping. Apparently, if one ignores

model instability, mean-reversion strongly dominates parameter uncertainty. Especially

at the end of the sample, this gives a false sense of security. Stocks are much riskier if

one takes time-variation in parameters into account.

Next, we calculate stock and bond weights for buy-and-hold investors who want to

maximize expected power utility at time t over terminal wealth at time t+K

max
ws,wb

Et

(
W 1−γ
t+K

1− γ

)
, (5.36)

where relative risk aversion γ = 5, where w = (ws, wb)
′, where

Wt+K =
K∏
j=1

(
1 + w′ exp(Rtbillι+ xt+j) + (1− w′ι) exp(Rtbillι)

)
(5.37)

and where ι is an (n− k)× 1 vector of ones. We consider investors who either consider

the time-varying or time-constant specification to calculate portfolio weights at both

the end of the sample and when predictor variables are equal to its historical average.

As above we draw time-varying parameters from its unconditional distribution in the

latter case.

Figure 5.4 plots the results. Let us firstly consider the constant model. It is well-

known - e.g. Campbell and Viceira (2002), Barberis (2000) - that the stock investment

curve (plot of stock weights versus investment horizon) is upward sloping in settings

without model instability. We find similar results both at the end of the sample and

at the historical average.

If we take time-variation in model parameters into account, the stock investment

curve can however be strongly downward sloping. This is the case at the historical

average. This is not a surprising result given the term structure of risk we showed in

the previous figure. At the end of the sample, the stock investment curve is initially

upward sloping, but becomes downward sloping for longer horizons. We conclude that
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Figure 5.4: Optimal stock and bond weights: time-varying and time-constant

specifications
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The figure shows the optimal stock weights (first column) and optimal bond weights (second column) for

a buy-and-hold investor with γ = 5 who either uses the time-varying specification or the time-constant

specification. Time-varying parameters are either drawn from its unconditional distribution (first row)

or from its posterior distribution at the end of the sample (second row). The predictor variable is either

equal to the historical average (first row) or to the end-of-sample value (second row). Results are based on

100,000 retained draws.

this curve can have all kind of shapes if time-variation in parameters is taken into

account. The bond investment curve is downward sloping in general. Apparently,

long-term (constant maturity) bonds are unattractive for long-term investors.

If we compare the results for the time-constant and time-varying specifications to

each other, we see that portfolio weights differ a lot. For example, at the historical

average, stock weights differ more than 40% at both short and long horizons. Ignoring

model instability can therefore lead to huge investment mistakes.

In order to quantify investment mistakes, figure 5.5 plots the certainty equivalent

returns (CERs) for buy-and-hold investors who either base their portfolio weights on

the time-varying or time-constant specifications. In both cases, we calculate the CERs
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Figure 5.5: Annualized certainty equivalent returns: time-varying and time-

constant specifications
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This figure shows the annualized certainty equivalent returns for buy-and-hold investors with γ = 5 who

either base their portfolio weights on the time-varying specification or the time-constant specifications. The

certainty equivalent returns are calculated using the time-varying specification. Time-varying parameters

are either drawn from its unconditional distribution (first row) or from its posterior distribution at the end

of the sample (second row) and the predictor variable is either equal to its historical average (first row) or

to its end-of-sample value (second row). Results are based on 100,000 retained draws.

using the time-varying specification. The certainty equivalent return for the time-

varying specification is therefore by construction the highest. We consider the difference

in CERs between both specifications. If ignoring time-variation leads to a considerable

reduction in CER for an investor, we can conclude that ignoring model instability is

economically costly.

The figure shows some interesting results. Firstly, the average CER across horizons

is much higher at the historical average. Apparently, even at medium to long horizons,

the unfavorable initial state leads to a considerable reduction in the attractiveness of

financial markets. Secondly, at long horizons, ignoring time-variation can be really

costly for investors. Differences can be as large as 5% per year. This is not surprising,

since the previous figure showed that investment mistakes can be as large as 40%.
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Thirdly, if initial states deviate from their average values, it is also costly to ignore

time-variation at short horizons. Even at the 1-month horizon, CERs are already

reduced from more than 2% to 1%.

We conclude that it is economically important to take time variation into account.

Ignoring time variation leads to a considerable underestimation of perceived risk, an

overinvestment in the stock market and therefore a much lower performance. These

effects are especially pronounced at long horizons and when state variables deviate from

their historical averages.

5.4.3 A closer look at the time-variation of model components

The time-varying model shows the joint effect of time-variation in intercepts and slopes,

time-variation in error volatility and error correlation and the non-normality of the error

terms on term structures of risk, portfolio weights and portfolio performance. In this

section, we are interested in assessing the importance of the individual components of

the time-varying model.

One way to do this would be to use statistical criteria such as posterior model

probabilities. We do not pursue this alternative here because of two reasons. Firstly, it

is well-known that posterior model probabilities are very sensitive to prior assumptions.

Especially if one tries to choose prior distributions as uninformative as possible (as

we do), the prior choice can have unintended consequences for model probabilities.

Secondly, the portfolio weights and their expected utility are what matters ultimately

for long-term investors.

Our strategy is to choose the most general model that nests all submodels and

compare the portfolio weights it gives to the portfolio weights for the submodels. These

submodels are obtained by omitting some or all of the model components. We evaluate

all portfolio weights using certainty equivalent returns calculated using the most general

specification. The portfolio weights based on this most general model therefore have

by definition the highest certainty equivalent return. What matters is whether other

specifications lead to much lower certainty equivalent returns. If the omission of let’s

say time-varying slopes does not lead to a substantial loss of performance in a world

where slopes indeed vary over time, then a risk-averse investor can safely ignore such

an effect.
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Table 5.4 in section 5.4.1 shows the posterior means and standard deviation of the

most important hyperparameters of seven specifications that differ in whether b is time-

varying / time-constant, whether Ω is time-varying / time-constant and whether the

distributions of the errors contain fat tails / are Gaussian.1 Firstly, the table shows that

ignoring stochastic volatility (column 1) leads to a large overestimation of the kurtosis

of the error terms (τ2). This is in line with results in section 5.4.1 and table 5.2.

Secondly, the persistence parameters for volatility are very robust across specifications.

This suggests that the modeling of the time-variation in the error covariance matrix

is not sensitive to the exact specification of intercepts and slopes. Thirdly, ignoring

stochastic volatility implies a large underestimation of the persistence of the time-

varying slopes and intercepts. For example, Ab,(1,1) is reduced from 0.91 to 0.32 if the

error covariance matrix is constant. The reason is that ignoring stochastic volatility

leads to many transitory movements in the time-varying slopes and intercepts due

to outliers in periods when true volatility was actually very high. These transitory

movements reduce the persistence of time-varying slopes and intercepts.

Table 5.5 shows the means and standard deviations of the posterior means of inter-

cepts, slopes, error volatilities and error correlations over time. The table shows that

the posterior means of time-varying intercepts and slopes are too variable if stochastic

volatility is ignored. As above, this is caused by the presence of outliers in time-varying

bt if the error covariance matrix is constant. Furthermore, we clearly see that time-

variation in intercepts and slopes is modest, while time-variation in error volatility and

error correlation is substantial across specifications. Finally, the table indicates that

the unconditional means of the parameters vary quite a bit across specifications. For

example, the incorporation of time-variation in Ω leads to large differences. If the lat-

ter is incorporated, periods with large volatility are underweighted when estimating

unconditional means.

Figure 5.6 plots the annualized CERs for specifications that include some or all

three model components (time-varying intercepts/slopes, time-varying covariance ma-

trix, excess kurtosis). In all subpanels, the first specification is the time-constant model

and the fourth specification is the time-varying model. The second and third specifi-

1The posterior means of the hyperparameters for the time constant model are not reported in the

table, since they are all 0.
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Table 5.5: Means and standard deviations of the posterior means of the time-

varying parameters

This table plots the means and standard deviations of the posterior means of the time-varying parameters

over time for eight specifications. The specifications differ in whether b is time-varying (1) / time-constant

(0), whether Ω is time-varying (1) / time-constant (0) and finally whether error terms have fat tails (1) /

are gaussian (0). The first part of the table shows the means and standard deviations of the posterior mean

of bt over time. The second part gives the means and standard deviations of the posterior mean of Ωt over

time. The diagonal elements show the moments of the error volatilities and the off-diagonal elements show

the moments of the error correlations.

TV b 0 0 0 0 1 1 1 1

TV Ω 0 0 1 1 0 0 1 1

Kurt 0 1 0 1 0 1 0 1

b1,1 0.0368 0.0324 0.0280 0.0273 0.0405 0.0337 0.0454 0.0453

(0.0085) (0.0070) (0.0042) (0.0038)

b1,2 0.0094 0.0072 0.0063 0.0061 0.0105 0.0076 0.0115 0.0114

(0.0009) (0.0017) (0.0011) (0.0011)

b2,1 0.0046 0.0027 0.0070 0.0070 0.0092 0.0144 0.0078 0.0075

(0.0006) (0.0032) (0.0008) (0.0008)

b2,2 0.0009 0.0003 0.0019 0.0019 0.0023 0.0038 0.0020 0.0018

(0.0004) (0.0004) (0.0002) (0.0003)

b3,1 -0.0349 -0.0254 -0.0217 -0.0210 -0.0396 -0.0384 -0.0562 -0.0577

(0.0114) (0.0137) (0.0106) (0.0108)

b3,2 0.9900 0.9939 0.9949 0.9951 0.9886 0.9898 0.9841 0.9838

(0.0025) (0.0019) (0.0009) (0.0010)

Ω1,1 0.0505 0.0507 0.0456 0.0458 0.0491 0.0500 0.0447 0.0449

(0.0207) (0.0203) (0.0212) (0.0205)

Ω1,2 0.1287 0.0951 0.1235 0.1249 0.1445 0.0919 0.1242 0.1266

(0.2308) (0.2415) (0.2365) (0.2402)

Ω1,3 -0.9827 -0.9825 -0.9806 -0.9810 -0.9999 -0.9999 -0.9969 -0.9970

(0.0284) (0.0278) (0.0036) (0.0034)

Ω2,2 0.0233 0.0243 0.0204 0.0205 0.0231 0.0246 0.0201 0.0204

(0.0117) (0.0117) (0.0118) (0.0118)

Ω2,3 -0.1333 -0.0963 -0.1244 -0.1258 -0.1428 -0.0933 -0.1240 -0.1258

(0.2286) (0.2393) (0.2360) (0.2397)

Ω3,3 0.0512 0.0517 0.0464 0.0465 0.0493 0.0498 0.0446 0.0448

(0.0211) (0.0207) (0.0211) (0.0203)
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Figure 5.6: Annualized certainty equivalent returns: individual model compo-

nents
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This figure shows the annualized certainty equivalent return for a buy-and-hold investor with γ = 5 who

uses several specifications to calculate portfolio weights. These specifications differ in whether they allow

for time-varying intercepts/slopes, a time-varying covariance matrix and excess kurtosis. The certainty

equivalent returns are calculated using the time-varying specification. We report results for the 1 month

horizon, the 10 years horizon and the 20 years horizon. Time-varying parameters are either drawn from its

posterior distribution at the end of the sample (first row) or its unconditional distribution (second row).

Results are based on 100,000 retained draws. The first and fourth column in every subpanel report the

time-constant model and the time-varying model. The second column shows a specification where either

the time-varying bt, time-varying covariance matrix or excess kurtosis is added to the time-constant model.

The third column reports the results for a setting in which either time-varying bt’s, time-varying covariance

matrix or excess kurtosis is removed from the time-varying model.

cation respectively add the individual model component to the time-constant model or

remove the individual model component from the fully time-varying model.

Let’s firstly consider time-varying intercepts/slopes. The figure shows that it can be

very costly (at the end-of-the-sample) to add time-varying intercepts/slopes to the time-
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5.4 Results basic specifications

constant model. The incorporation of time-varying bt’s, while ignoring time-varying

volatility leads to a misspecified model. On the other hand, removing time-varying

intercepts/slopes from the fully time-varying model is not costly. It only leads to a

modest loss in CERs at all horizons.

Secondly, we consider the time-variation of the error covariance matrix. The figure

shows that its inclusion always improves performance irrespective of the horizon. In

fact, just including the time-varying error covariance matrix while ignoring time-varying

bt’s or excess kurtosis almost leads to the maximum performance. The omittance of the

time-variation in the error covariance matrix however turns out to be costly in almost

all cases. The exception is the one-month horizon when predictor variables are equal

to its historical average.

Finally, let us look at the incorporation of excess kurtosis. Clearly, adding excess

kurtosis to the time-constant model only hurts performance. The time-constant model

contains fat tails, because time-varying volatility is ignored. Apparently, allowing for

non-normal distributions while ignoring stochastic volatility leads to a misspecified

model and deteriorated performance. The removal of excess kurtosis from the fully

time-varying model hardly has an affect on performance. This is not surprising, since

previous sections show that the error distribution is close to normal once time-varying

volatility is incorporated.

We conclude that the incorporation of time-varying intercepts/slopes and fat tails

hardly has a positive effect on performance and can therefore be safely omitted. How-

ever, it is extremely important to incorporate a time-varying error covariance matrix.

Its omission drastically reduces certainty equivalence returns.

5.4.4 The persistence parameter

The persistence of time-varying parameters plays a crucial role in the portfolio forma-

tion of long-term investors. This section analyzes the importance of the persistence

by considering two alternative specifications. The first specification sets all persistence

parameters equal to the same value. We estimate this specification to approximate

regime-switching models, since all parameters have equal persistence in such models.

Note that this pooled model is nested in our most general model and is therefore a

restricted version of this most general model. The aim of this section is to analyze the

economic losses incurred by imposing these restrictions.
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Figure 5.7: Time-series of the posterior means of the intercepts and slopes for

the time-varying, pooled and random walk specifications

The figure shows the (smoothed) posterior means of the intercept and slopes for the time-varying model, the

model in which the persistence parameters are equal for all time-varying parameters and the random walk

specification. Results are based on 10,000 retained draws. Note that the equations are given in different rows.

The second specification sets all persistence parameters equal to 1. We consider

this random walk specification, because it is a popular way to model time-varying

parameter models (e.g. Primiceri (2005)). Note that it is not nested in our most

general specification. However, the results in the previous section show that there is no

evidence at all that the persistence parameters for intercepts and slopes can be set to

1. The aim is again to assess the economic losses incurred if one uses this alternative

specification.1

Figure 5.7 reports the time-series of the posterior means of the intercepts and slope

coefficients for three specifications: (i) the time-varying specification, (ii) the pooled

1In unreported results, we also consider alternative specifications that nest the random walk spec-

ification. These specifications do no impose the existence of the long-run mean of the time-varying

parameters. Results are in line with the results in this paper, i.e. no evidence for persistent variation

in intercepts/slopes.
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5.4 Results basic specifications

Figure 5.8: Time-series of the posterior means of error volatilities, correlations

and lt for the time-varying, pooled and random walk specifications

The figure shows the (smoothed) posterior means of the standard deviation of the residuals (diagonal),

the correlation between the residuals (above the diagonal) and the lt coefficients (below the diagonal)

for the time-varying model, the model in which the persistence parameters are equal for all time-varying

parameters and finally the random walk specification. Results are based on 10,000 retained draws. Note

that equations are given in the different rows.

specification and (iii) the random walk specification. The figure indicates that the three

specifications lead to very different posterior means. Both the pooled as well as the

random walk model are quite different from the time-varying model. Note that even for

the random walk specification, the time-variation in the parameters is still relatively

modest. The differences across specifications suggest that ”restricting” the persistence

parameters to 1 or pooling the persistence parameters can lead to very different results.

Figure 5.8 plots time-series of the posterior means of error volatilities, correlations

and parameters lt for the three specifications. Remarkably, it is hardly possible to see

any difference between the three models with the naked eye. There is some difference

in lt,(3,1) and lt,(3,2), but this does not lead to any noticeable differences in the posterior
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Figure 5.9: Annualized predictive standard deviation of excess log stock re-

turns: time-varying, pooled and random walk specifications
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The figure shows the annualized predictive standard deviation of excess log stock returns for the time-

varying specification, the specification in which the persistence parameters are pooled for all time-varying

parameters and finally the random walk specification. Time-varying parameters are either drawn from its

unconditional distribution (upper panel) or from its posterior distribution at the end of the sample (lower

panel). The predictor variable is either equal to its historical average (first row) or to its end-of-sample

value (second row). Results are based on 100,000 retained draws.

means of volatilities or correlations. We conclude that pooling persistence parameters

or setting them to 1 is a viable alternative for the error covariance matrix.

Figure 5.9 plots the term structures of risk for the three specifications. Since the

unconditional distribution of time-varying parameters is not defined for the random

walk specification, we do not plot its term-structure at the historical average. The figure

shows that restrictions lead to completely different term structures of risk. For horizons

longer than 2 years, the term structures for the pooled and especially random walk

specification increase extremely fast. At a 10 year horizon, the annualized predictive

volatility is already more than 44%. For horizons longer than 10 years (not plotted), the

predictive volatility reaches unrealistically high values. This suggests that restrictions
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Figure 5.10: Optimal stock and bond weights: time-varying, pooled and ran-

dom walk specifications
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The figure shows the optimal stock weights (first column) and optimal bond weights (second column) for a

buy-and-hold investor with γ = 5 who bases her portfolio weights on either the time-varying specification,

the specification in which the persistence parameters are pooled for all time-varying parameters and

finally the random walk specification. Time-varying parameters are either drawn from its unconditional

distribution (first row) or from its posterior distribution at the end of the sample (second row). The

predictor variable is either equal to its historical average (first row) or to its end-of-sample value (second

row). Results are based on 100,000 retained draws.

should only be imposed for short horizons.

Figure 5.10 plots the portfolio weights for the three specifications. We again consider

a buy-and-hold investor who maximizes expected power utility over final wealth with

risk aversion parameter γ = 5. The figure shows that bond weights are very similar

for all three models. However, the figure also shows that a risk-averse investor who

either uses the pooled or random walk specification is much too conservative. Such

an investor hardly invests in stocks at long horizons, since stock returns are much too

risky in her eyes (see previous figure).

Finally, figure 5.11 plots the certainty equivalent returns for the three specifications.
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Figure 5.11: Annualized certainty equivalent returns: time-varying, pooled and

random walk specifications
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The figure shows the annualized certainty equivalent return for a buy-and-hold investor with γ = 5 who

either bases her portfolio weights on the time-varying specification, the specification in which the persistence

parameters are pooled for all time-varying parameters and finally the random walk specification. All

certainty equivalent returns are calculated using the time-varying specification. Time-varying parameters

are either drawn from its unconditional distribution (first row) or from its posterior distribution at the end

of the sample (second row). The predictor variable is either equal to its historical average (first row) or to

its end-of-sample value (second row). Results are based on 100,000 retained draws.

They are all evaluated under the time-varying model. Let us consider the situation

at the historical average. The figure shows that an investor who uses a restricted

specification hardly loses at very short horizons. Such an investor only starts to lose

at horizons of 10 years or more. However, at the end of the sample, the situation is

different. Here, investors lose at very short or very long horizons. The losses are still

acceptable for medium horizons.

We conclude that it is economically important that persistence parameters are not

restricted for different time-varying parameters. Restricting the parameters to be equal

or imposing a random walk leads to an overestimation of risk, an underinvestment in
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5.5 Robustness

the stock market and therefore to a deteriorated performance at especially the longest

horizons.

5.5 Robustness

Our main specification contains the dividend-to-price ratio as predictor for both stock

and bond returns. One can argue that a different predictor for especially bond returns

is more appropriate. In this section, we therefore consider the yield spread as an

alternative predictor. For the sake of brevity, we only focus on the time-series of the

posterior means of the time-varying parameters.

Figure 5.12 plots the posterior means of the intercepts and slopes over time. It

reports results for the constant and time-varying model. The figure largely confirms

the results of section 5.4.1. Firstly, there is modest time-variation in both intercepts

Figure 5.12: Time-series of the posterior means of the intercepts and slopes

for Yspr model

The figure shows the (smoothed) posterior means of the intercept and slopes for the time-varying and

time-constant Yspr - model. Results are based on 10,000 retained draws. Note that the equations are given

in the different rows.
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Figure 5.13: Time-series of the posterior means of error volatilities, correlations

and lt for the Yspr model

The figure shows the (smoothed) posterior means of the standard deviation of the residuals (diagonal), the

correlation between the residuals (above the diagonal) and the lt coefficients (below the diagonal) for the

time-varying and time-constant Yspr - specifications. Results are based on 10,000 retained draws. Note that

the equations are given in the different rows.

and slopes in especially the stock return equation. The posterior mean of the yield

spread coefficient varies between 0 and 0.40. Secondly, the time-variation is not very

persistent and therefore not important for long-term investors. The diagonal elements

of Aslope are all around 0.85 which implies a half-life of less than half a year. Thirdly,

the average coefficients differ quite a lot from the constant model. The difference is

especially large for the lagged yield spread in the yield spread equation, 0.99 versus

0.96. This change in persistence is very important for long-term investors.

In order to understand the large change in persistence, we need to consider time-

variation in the error covariance matrix. Figure 5.13 shows the posterior means of

the error volatilities, error correlations and lt coefficients for both the time-constant

and time-varying model. The figure confirms results that there is considerable time-

variation in correlation and volatility. Firstly, the most remarkable result is the large
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change in error volatility for the yield spread around 1980. Volatility increased to 0.015

which is much higher than its average value of 0.0028. This change is related to the

change in the Fed policy in this period when Volcker was appointed as chairman of

the Federal Reserve in August 1979. The previous figure shows that ignoring time-

variation in volatility leads to a large underestimation of the average persistence of the

yield spread. Secondly, the correlations between on one hand the error in the yield

spread and on the other hand the errors in the stock and bond return equations vary a

lot over time. The correlation for stocks is in general negative, but there are periods in

which this correlation is positive. This implies that there is mean-reversion in stocks on

average, but that there are periods in which stocks show mean-aversion. The correlation

for bonds is negative, but the strength of this correlation changes a lot over time. Long-

term bonds strongly mean-revert in the 1930s and 1940s, but hardly mean-revert in for

example the 1960s and 1970s. Thirdly, the error volatility of stock and bond returns

and the correlation between these errors is similar to figure 5.2. A change in predictor

does not affect these parameters. This is not surprising given the low R2 values of these

regressions. Finally, the excess kurtosis in the error terms is considerably reduced if

time-variation in volatility is incorporated. The posterior means of τ21 , τ
2
2 and τ23 are

only 0.10, 0.00 and 0.44. Apparently, if one does not take the large change in volatility

around 1980 into account, one would wrongly conclude that the yield spread contains

extremely high excess kurtosis as in table 5.2. In other words, once the time-varying

error covariance matrix is taken into account, there is hardly any excess kurtosis left.

We conclude that it is very important to take the time-variation in the error covari-

ance matrix into account. Ignoring the variation leads to a large underestimation of

the persistence of the yield-spread and a large overestimation of the excess kurtosis of

the error terms. The time-variation in intercepts and slopes is however not persistent

enough for long-term investors to consider. This confirms results of previous sections.

An alternative robustness check would have been to analyze whether the parameters

governing the transition equations (5.10) are themselves time-varying. We could ana-

lyze this issue by extending the most general specification to allow for time-variation in

these parameters and then test whether these parameters can be pooled over time. We

do not pursue this alternative here because of several reasons. Firstly, we expect that

such ”time-varying time-variation” (if present at all) only has a second-order impact on

portfolios. It seems unlikely that time-variation in the time-variation of intercepts and
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slopes is important given the results above. It could be important for the error covari-

ance matrix, but it seems unlikely that it is as important as the direct time-variation

in the error covariance matrix. Secondly, we would need to set-up transition equations

for the intercepts, slopes and volatilities of the parameters in equations (5.10). This

would increase the number of parameters considerably and would considerably increase

the risk of overfitting. Finally, it would not solve the issue. One could wonder whether

the parameters that govern the additional transition equations in the extended model

are again time-varying etcetera.

5.6 Conclusion

This chapter analyzes the effects of time-variation in model parameters on long-term

investors. Our most general specification allows for time-varying intercepts and slope

coefficients, time-varying error volatility and time-varying error correlation. It also

allows for non-normal error distributions.

We find that the persistence of time-varying parameters plays a decisive role in

the importance of different time-varying components. The time-variation in intercepts

and slopes does not turn out to be persistent enough and is therefore not relevant for

long-term investors and hardly has an impact on portfolio allocations. Time-variation

in error correlations and especially error volatility is however very persistent and very

relevant for long-term investors due to the large impact on asset allocations. The

normality assumption for the error term is valid as long as the error covariance matrix

is allowed to vary over time. In case one ignores this time-variation, one would wrongly

include that fat tails are important. Our preferred specification includes time-variation

of the error covariance matrix, but ignores time-varying intercepts / slopes and ignores

fat tails.

Our analysis can be extended in several directions. Firstly, we could consider a

larger model that contains multiple predictor variables and multiple asset returns. Such

a model contains a large number of parameters and its estimation therefore either

requires restrictions or tight prior distributions. A second extension is to calculate

fully dynamic strategies instead of straightforward buy-and-hold strategies. A full

dynamic strategy includes learning about all parameters in the model. However, such

a specification cannot be solved using the current state-of-the-art numerical techniques,
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because of the large number of state variables. An interesting alternative would be to

ignore learning about hyperparameters, but to explicitly consider learning about the

time-varying parameters. This limits the number of state variables considerable and

might be feasible using techniques such as Brandt, Goyal, Santa-Clara, and Stroud

(2005). Thirdly, since volatility affects the asset allocations of investors, it would be

interesting to analyze whether it also affects expected returns directly by using volatility

as a (latent) predictor of stock returns. This would however considerably complicate

the MCMC algorithm used in this chapter.

5.7 Appendix: Posterior distribution and MCMC algo-

rithm

In this appendix, we write down posterior distributions and explain the MCMC algo-

rithm we use to estimate the model.

Firstly, we consider how to draw time-varying parameters bt, their unconditional means

μb, their transition matrix Ab and the covariance matrix of its innovations Q. In order

to do so, we reparameterize our model slightly

yt = Xtμb +Xtb̃t + ut (5.38)

˜lnσ2t+1 = As˜lnσ2t + ξt

μb = μb

b̃t+1 = Abb̃t + ηt.

The properties of the innovations are explained in section 5.3.1 and the initial conditions

are specified in equations (5.14) and (5.22). The equations form a linear Gaussian state

space model where the first two equations are the observation equations and the last two

equations are the transition equations. We condition on (i) Ab, Q (transition equation),

(ii) λt, lt, σt ∀t (the covariance matrix of ut) and (iii) As, S, μs and ρ (remaining terms

second observation equation and correlation first and second observation equation).

Therefore, we can use the standard Kalman filter - smoother technique to draw μb and

b̃t+1 ∀ t from p(μb, b̃|Y,Ab, As, Q, S, λ, l, σ, ρ). We use the Kalman filter - smoother

technique explained in Durbin and Koopman (2002).
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We include the second equation because ξt is correlated with ut due to the leverage

effect and cannot be ignored when drawing b̃t and μb conditional on (among others)

σ2t . Therefore, we need to include it as an observation equation that is correlated to

the first observation equation with correlation coefficient ρ. Note that in order to draw

˜lnσ2t itself we also need to consider this same equation as a transition equation below.

If the initial condition (5.14) would not depend in a non-linear way on Ab and Q,

we could simply use an inverse Wishart distribution to draw p(Q|Y,Ab, b̃) and a normal

distribution to draw p(Ab|Y,Q, b̃). Instead, we use a Metropolis-Hastings step where

the inverse Wishart and normal distributions are used as proposal densities. For Q the

proposal density is

ι(Q∗) = iWishart

(
T∑
t=1

(
ηtη

′
t

)
+WQ, T + dfQ

)
(5.39)

and the acceptance probability is

αb = min

{
1,

|Σ∗
b |−

1
2

|Σb|−
1
2

exp

(
−1

2
b̃1

′
Σ∗
b b̃1 +

1

2
b̃1

′
Σbb̃1

)}
, (5.40)

where Σ∗
b and Σb are the unconditional covariance matrices - see the explanation below

equation (5.14) - based on respectively the newly proposed draw Q∗ and the draw from

the previous iteration.

Define B̃ as the T ×nK matrix whose tth row is equal to b̃
′

t+1 and define B̃−1 as the

T × nK matrix whose tth row is equal to b̃
′

t. Let ab be the diagonal of Ab. Its proposal

density is

ι(a∗b) = N(âb,M
∗−1
b ), (5.41)

where

M∗
b = X ′

b̃

(
Q−1 ⊗ IT

)
X
b̃
+ v−1

b InK (5.42)

âb = M−1
b

(
X ′
b̃
(Q−1 ⊗ IT )yb̃ + ιnKv

−1
b mb

)
,

where y
b̃
vertically stacks the columns of B̃, where

X
b̃
=

⎛⎜⎝ b̃1,−1 0 0

0
. . . 0

0 0 b̃nK,−1

⎞⎟⎠ (5.43)

204



5.7 Appendix: Posterior distribution and MCMC algorithm

and where b̃i,−1 is the ith column of B̃−1. This is similar to a GLS regression. The

acceptance probability is again αb with Σ∗
b depending on the newly proposed draw A∗

b .

Secondly, we look at drawing time-varying parameters lt, their unconditional means

μl, transition matrix Al and the covariance matrix of the innovations R. The system

of equations can be rewritten as

Lt(yt −Xtbt) ≡ Ltŷt = ΛtΣtet. (5.44)

We condition on bt, Σt and Λt ∀ t and can therefore treat them as given in this step.

Since matrix Lt is a lower triangular matrix with ones on the diagonal, we can rewrite

the previous equation as

ŷt = Ttlt + ΛtΣtet, (5.45)

where

Tt =

⎛⎜⎜⎜⎜⎜⎜⎝
0 . . . . . . 0

−ŷ1,t 0 . . . 0

0 −ŷ[1:2],t . . .
...

...
. . .

. . .
...

0 0 0 −ŷ[1:n−1],t

⎞⎟⎟⎟⎟⎟⎟⎠ . (5.46)

Since the dependent variable of the observation equation - ŷt - also occurs on the

right-hand-side (RHS) in Tt, this system has a nonlinear Gaussian state space repre-

sentation. However, since (i) we impose that R is blockdiagonal (ii) the system has a

triangular structure and (iii) the dependent variable in one equation does not show up

on the RHS of the same equation, we can apply the Kalman filter - smoother technique

equation by equation. Hence, for equation j with j = 2, ..., n, we consider the following

linear Gaussian state space model

ŷt,j = −ŷt,[1:j−1]μl,{j} − ŷt,[1:j−1]lt,{j} + λ
1
2
t,jσj,tet,j (5.47)

˜lnσ2j,t+1 = Al,(j,j)
˜lnσ2j,t + ξt,j

μl,{j} = μl,{j}

l̃t+1,{j} = Al,{j}l̃t,{j} + ζt,

where {j} refers to the elements of the vectors/matrices that belong to the jth equa-

tion. The properties of the error terms are explained in section 5.3.1 and the initial

conditions are given in equations (5.15) and (5.23). The first two equations are the
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observations equations and the last two are the transition equations. As above, the

second equation is included, because the correlation between et,j and ξt,j is equal to ρj .

We can use the Kalman filter - smoother technique to draw μl,{j} and l̃t,{j} ∀ t from

p(μl,{j}, l̃{j}|Y,As,(j,j), Sj,j, σj , λj , Al,{j}, R{j}).

We cannot simply use Gibbs steps to draw R{j} and Al,{j} for j = 2, ...., n, because

the unconditional variance Σl,{j} depends in a non-linear way on these parameters.

We use Metropolis-Hastings steps instead where we use inverse Wishart and normal

distributions as proposal densities for p(R2:3,2:3|Y,Al,{3}, l̃{3}), p(Al,{2}|Y,R1,1, l̃{2}) and

p(Al,{3}|Y,R2:3,2:3, l̃{3}). Since these steps are almost similar to drawing Ab and Q

above, we do not explicitly write them down. We do not need a Metropolis-Hastings

step when drawing R1,1 for j = 2. In this case, we can use a Gibbs step by drawing

from the inverse gamma distribution

p(R1,1|Y,Al,{1,1}, l̃{2}) = iGamma

(
[(1−A2

l,{1,1})l̃
2
1,1] +

T∑
t=1

(ζtζ
′
t) +WR1, T + 1 + dfR1

)
.

(5.48)

Thirdly, we explain how to simulate the time-varying parameters ln σ2t and λt ∀t, the
unconditional mean μs, transition matrix As, covariance matrix S and correlation co-

efficient ρ. We rewrite our model slightly

Lt(yt −Xtbt) ≡ y∗t = ΛtΣtet. (5.49)

We condition on lt and bt and hence treat them as given. Note that we can treat the

different equations separately, since (i) the elements of et are independent of each other

and (ii) we impose a diagonal structure for covariance matrix S.

The observation equations are non-linear in the diagonal elements of Λt and Σt which

means that we cannot use the linear Gaussian state space model without any further

modification. Following Omori, Chib, Shephard, and Nakajima (2007) we consider the

following transformation of the dependent variable instead

y∗∗t,j = ln y∗2t,j,∀t, j. (5.50)
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For j = 1, ...., n this gives the following state space model

y∗∗t,j = μs,j + ˜lnσ2t,j + ln(λt,j) + ln(e2t,j) (5.51)

μs,j = μs,j

˜lnσ2t+1,j = As,(j,j)˜lnσ2t,j + ξt,j

ln(λt+1,j) = −(1/2)τ2j + uτ,j,

where

uτ,j ∼ N(0, τ2j ) (5.52)

is independent of the other error terms. The properties of the other innovations are

given in section 5.3.1 and the initial conditions are specified in equations (5.16) and

(5.24). The first equation is the observation equation and the remaining equations are

the transition equations. The error in the observation equation - ln(e2t,j) - and the

innovation in the transition equation - ξt - are dependent, since the correlation between

et,j and ξt,j is ρj .

The state space system is linear, but non-Gaussian, since the error in the obser-

vation equation has a log χ2 distribution. In order to be able to use linear Gaussian

state space techniques, Omori, Chib, Shephard, and Nakajima (2007) propose to ap-

proximate the log chi-squared distribution using a mixture of 10 normal distributions.

Their method is an extension of Kim, Shepherd, and Chib (1998) by allowing for the

leverage effect, i.e. dependence between ln(e2t,j) and ξt,j. It allows us to draw from

p(lnσ2j , ln(λj)|Y, b, l, As,(j,j), Sj,j, τ2j , ρj). Please refer to Omori, Chib, Shephard, and

Nakajima (2007) for more details.

In order to draw θj and ψj (which we transform to ρj and Sj,j), we use results in

Jacquier, Polson, and Rossi (2004). Let rt,j = (et,j , ξt,j) for equation j. The posterior

distribution of Σ∗
j is proportional to

p(Σ∗
j |Y,As,(j,j), lnσ2j ) ∝ p(Σ∗

j)p(ln σ
2
j,1|As,(j,j), Sj,j)|Σ∗

j |−T/2 exp
(
−1

2
tr
(
Σ∗−1
j UUj

))
,

(5.53)

where UUj =
∑

t rt,jr
′
t,j .

Define a(k,l),j as the (k, l)th element of UUj . Furthermore, let a22.1,j = a(2,2),j −
a2(1,2),j/a(1,1),j and let ψ̂j = a(1,2),j/a(1,1),j . Ignoring the initial condition, it is easy to
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show (see Jacquier, Polson, and Rossi (2004)) that

p(ψj|Y, θj , b, λt,j ,˜lnσ2j, As,(j,j)) = N

(
ψ̃j ,

θj
a(1,1),j + p

)
(5.54)

p(θj|Y, b, λt,j ,˜lnσ2j, As,(j,j)) = iGamma(a22.1,j +Wθ,j, T + dfθ), (5.55)

where

ψ̃j =
a(1,1),jψ̂

j

a(1,1),j + p
(5.56)

These are the conditional distributions used in Jacquier, Polson, and Rossi (2004).

These are not equal to the conditional posteriors in our setting due to the presence of

the initial conditions. We use these two equations as proposal densities in a Metropolis-

Hastings step with the following acceptance probability

αs, = min

{
1,

|Σ∗
s|−

1
2

|Σs|− 1
2

exp

(
−1

2
˜lnσ21,j

′

Σ∗
s
˜lnσ21,j +

1

2
˜lnσ21,j

′

Σs
˜lnσ21,j

)}
, (5.57)

where Σ∗
s,(j,j) depends on the newly drawn ψ∗

j and θ∗j .

The step to draw As,(j,j) for equations j = 1, ..., n is a relatively straightforward

Metropolis-Hastings step. We need to take the correlation between ξt,j and et,j into

account. Therefore, we obtain the following auxiliary equation for ˜lnσ2t+1,j

˜lnσ2∗t+1,j ≡ ˜lnσ2t+1,j −Δ× et = As,(j,j)
˜lnσ2t,j + ξ∗t , (5.58)

where innovation ξ∗t ∼ N(0, Sj,j(1− ρ2j )) (due to the conditioning) and where

Δ = ρj
√
Sj,j. (5.59)

It is straightforward to show that we can use the following proposal density for A∗
s,(j,j)

ι(A∗
s,(j,j)) = N(âj ,M

−1
j ) (5.60)

with

Mj =
(
Sj,j(1− ρ2j )

)−1

(
T∑
t=1

(˜ln σ2t,j)
2

)
+ v−1

s (5.61)

âj = M−1
j

((
Sj,j(1− ρ2j)

)−1
T∑
t=1

(˜lnσ2t,j˜lnσ2t+1,j) + v−1
s ms

)
(5.62)

and the same acceptance probability as in equation (5.57) where Σ∗
s,(j,j) depends on

the newly drawn value for A∗
s,(j,j).
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Finally, we look at drawing τ2j . The kernel of the conditional posterior distribution

for τ2j is

p(τ2j |Y, λj) ∝ (τ2j )
−T+1.5

2 exp

(
−τ

2
j

2

)
T∏
t=1

exp

(
1

2τ2j
(lnλt,j + 0.5τ2j )

2

)
. (5.63)

This is a non-standard distribution, but we simulate from this distribution for j =

1, ...., n using a Metropolis-Hastings step. More precisely, we simulate ln τ2j by finding

the mode mj of the above posterior distribution in every iteration and by subsequently

using a student-t distribution as proposal density with mean equal to the log of the

mode, variance equal to 1.1 times the negative inverse of the hessian matrix of the log

kernel at the mode and degrees of freedom equal to 8. The acceptance probability is

calculated in the usual way using both the proposal and the kernel (taking the Jaco-

bian of the transformation into account), refer to for example Bauwens, Lubrano, and

Richard (1999), page 89. Finally, we transform ln τ2j to obtain τ2j .
1

The acceptance probabilities for all Metropolis-Hastings steps are larger than 80% in

all cases. In the empirical section, we retain 10,000 iterations after a burn-in period

of 5,000 iterations. Increasing the number of iterations does not significantly impact

results. We draw 10 path asset return paths per iteration, 100,000 paths in total, to

calculate predictive distributions and portfolio weights.

1The acceptance probability using ln τ 2
j is approximately 97%. If we would simulate τ 2

j directly,

the acceptance probability would decrease to 67%.
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6

Summary and conclusion

The main objective of this thesis is to investigate whether the promises of the (long-

term) strategic asset allocation literature hold in settings that include parameter uncer-

tainty, model uncertainty and model instability. A side objective is to analyze whether

we can sort thousands of stocks in robust myopic portfolios with high expected returns

and low risk.

We answer the research questions as follows. Firstly, we document that a panel

data model that combines firm characteristics with industry effects can explain a large

part of the cross-section of stock returns. The constructed portfolios are not particu-

larly risky, are stable over time (especially using long investment horizons) and lead to

a (risk-adjusted) average return of up to 2% per month. Secondly, although a naive

implementation of strategic portfolios fails out-of-sample, the use of a shrinkage prior

improves performance considerably and allows long-term investors to time the market.

The hedge component of dynamic strategies hardly adds value though. Thirdly, we de-

velop refined Bayesian Model Averaging techniques to incorporate model uncertainty

in systems of equations and find that its impact is large, especially at long horizons.

Including model uncertainty makes stocks riskier in the long-run in crisis periods and

leads to lower optimal allocations to stocks. Finally, we develop a time-varying param-

eter model including fat tailed error distributions and the leverage effect and find that

only changes in the elements of the error covariance matrix are variable and persistent

enough to be relevant for long-term investors. Changes in intercepts and slopes can be

safely ignored.
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We provide a further, more detailed, summary of the thesis in the following 13

statements. These statements also include the main lessons derived from this thesis.

1. Standard asset pricing models cannot explain differences in expected returns based

on multiple firm characteristics and industry effects jointly.

The portfolios, generated using a panel data model with 11 firm characteristics and

industry-specific effects, are a challenge for standard asset pricing models. The long-

short portfolios have average returns of up to 2% per month, do not contain a very

clear factor structure and risk-adjustment hardly has an impact either using the Fama-

French Carhart model with/without time-varying factor loadings. New research in

asset pricing is needed to explain the cross-sectional differences in returns across the

industry dimension.

2. Considering longer investment horizons can be beneficial, even when using short-

term performance measures.

Even when evaluating the performance of long-short portfolios by using short-term per-

formance measures such as Sharpe ratios, the specifications that forecast stock returns

for longer forecasting horizons lead to the best performing portfolios. These portfo-

lios have high average (risk-adjusted) returns, are well-diversified and have only low

turnover.

3. After controlling for many observed characteristics, there is still considerable het-

erogeneity left across firms.

Although the panel data model is able to explain a large part of the cross-sectional

variation in stock returns, the presence and importance of (fixed) individual effects

suggests that considerable heterogeneity across firms is left that cannot be explained

by the firm characteristics. This suggests that new econometric estimation techniques

should be developed that are able to efficiently extract information from individual

effects, while still allowing for correlation between firm characteristics and individual

effects.

4. With a bit of skepticism long-term investors can benefit from market timing.

The finding that a naive implementation of strategic asset allocations leads to very
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bad performance does not mean that long-term investors should not time the market.

Skeptical investors - reflected in the use of a skeptical shrinkage prior - can benefit con-

siderably from market timing. Their skepticism allows them to benefit from changes in

market conditions, but saves them from large declines in their portfolio value. Hence,

we do not share the negative view of DeMiguel, Garlappi, and Uppal (2009) that data-

based methods to calculate (strategic) asset allocations are not able to outperform the

1/N allocation out-of-sample.

5. Investment strategies but also forecasts should not be evaluated by quadratic loss

functions, but by asymmetric utility/loss functions.

Investors do not necessarily prefer specifications that lead to the best forecasts in terms

of mean squared errors. They are risk-averse, evaluate big losses and gains differently

and therefore value specifications that are able to avoid big losses. This fact should

be reflected in both the evaluation of investment strategies as well as the evaluation of

forecasts. Standard practice in forecast evaluation is to use symmetric loss functions

instead. A notable exception is Christoffersen and Diebold (1997).

6. Although optimal long-term strategies are much more difficult to calculate than

short-term strategies, they often give the same results.

Optimal long-term dynamic strategies are much more difficult to calculate than myopic

strategies, since the former involve dynamic programming, many state variables and

thousands of simulated paths. Still, there is hardly a difference in their out-of-sample

performance. The main reason is estimation error. Estimated myopic and estimated

dynamic strategies approximate the true optimal dynamic strategy equally well. An-

other explanation can be found in the last two chapters. In case model uncertainty

and model instability are incorporated in the decision process, optimal long-term eq-

uity allocations can be very similar to short-term allocations or occasionally even lower.

7. Even though short horizons suggest that parameter and model uncertainty and model

instability are irrelevant, these concepts are very important for investment decision

making at longer horizons.

The incorporation of parameter uncertainty, model uncertainty and to a lesser degree

model instability hardly has an impact on short-term asset allocations. However, since
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(i) an unfavorable parameter set / model persists for the full investment horizon and

(ii) (unexpected) time-variation in (especially) error volatility is very persistent, these

effects become important at longer horizons.

8. The (perceived) riskiness of stocks changes considerably over time and should be

taken into account by long-term investors.

The (error) volatility of stock returns changes considerably and persistently over time.

However, even in settings where volatility is constant, the volatility of the predictive

distribution of stock returns still changes a lot over time due to model uncertainty. One

of its major components - the volatility of the conditional mean of the different model

forecasts - is low when all models deliver similar predictions such as in the 1960s or

1970s, but high in periods when the models yield diverse predictions such as in 1929 or

2008. Ignoring the increases in volatility leads to a substantial overinvestment in equity.

9. The incorporation of uncertainty is important in decision making, but not all uncer-

tainty is relevant.

Parameter uncertainty, model uncertainty and the time-variation in the error volatil-

ities are all very important at long horizons. However, at short horizons these effects

(especially the first two) can be safely ignored. Furthermore, the low persistence of

time-variation in intercepts and slopes implies that this time-variation can be ignored

for all horizons.

10. The stock market is not a better place for long-term investors than for short-

term investors

The incorporation of model uncertainty can make stocks substantially riskier in the

long-run than in the short-run and can lead to lower equity allocations for long-term

investors. This finding is related to a recent paper by Pastor and Stambaugh (2010).

In their setting they allow for expected returns that are not perfectly correlated with a

linear combination of a small set of predictors. They find that this fact leads to returns

that have a much larger variance in the long-run. In contrast to them we find that

stocks can either be riskier/safer in the long-run than in the short-run. Crucial is the

fact that the importance of model uncertainty changes over time. The incorporation

of model instability strengthens these conclusions.
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11. Long-term investors want inflation-indexed bonds.

If long-term investors recognize that the true parameters and true model are unknown,

the predictive distribution of stock returns can in the most extreme cases have high

variance, negative skewness and (extremely) high kurtosis due to model uncertainty. In

such a setting, long-term investors prefer the real riskfree long-term asset - the inflation-

indexed bond - over the optimal combination of T-bills, stock and nominal bonds, since

the certainty equivalent of this optimal combination is lower than 1.

12. The disagreement about stock return predictors can for a large part be attributed to

the forecast horizon.

Since there is only minor time-variation - especially compared to the amount of noise

- in slope coefficients on the dividend-to-price ratio and the yield spread in the stock

return equation, we conjecture that the sample period is not the most important driver

of the disagreement in academia about viable stock return predictors. The forecast

horizon most likely plays an even bigger role. While at short horizons only predictors

of stock returns are important, predictors of predictors become important as well at

longer forecast horizons.

13. The incorporation of relatively new asset classes in the investment menu is not

attractive for long-term investors given the limited information we have about them.

Since we only have a short data-set available to estimate models for new asset classes

(e.g. commodities), parameter uncertainty is expected to be huge for such models.

Because parameter uncertainty increases predictive volatility considerably in the long-

run, long-term investors will hardly invest in new asset classes unless they provide really

large benefits compared to more traditional asset classes such as stocks and bonds. New

asset classes only become attractive for long-term investors if sufficient data is available.

Finally, we consider a brief outlook for future research. Even with more than 80 years

of data, uncertainty still plays a major role for long-term investors. The promising find-

ing in the early 2000s that stocks mean-revert and are therefore safer in the long-run

is more than offset by the parameter and model uncertainty effect. This implies that

without any extra information about future stock returns, long-term investors cannot
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benefit from mean-reversion and therefore should not invest more in the stock market

than short-term investors. Therefore, we need other ways to impose structure/add prior

information to econometric models and reduce parameter and/or model uncertainty. A

promising avenue of research is to use economic theory to impose restrictions on models

that are (approximately) true and in this way improve forecasts and reduce forecast

uncertainty. Present value models seem a promising line of research.
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Nederlandse samenvatting

Deze sectie geeft de Nederlandse samenvatting van de dissertatie getiteld: ”Strategische

beleggingskeuze: het effect van onzekerheid op portefeuillekeuze”.

Personen en instituten (zoals pensioenfondsen) beleggen hun vermogen in financiële

producten om een lange-termijn doel te bereiken. Personen sparen bijvoorbeeld zelf

voor hun pensioen of de opleiding van hun kinderen. Pensioenfondsen beleggen om

hun pensioendeelnemers een pensioen uit te kunnen keren. Deze fondsen willen een

veilig pensioen garanderen tegen de laagst mogelijke kosten (contributies). Aan de

hand van een set preferenties kiezen beleggers hoe ze hun vermogen verdelen over be-

leggingsklassen zoals aandelen, obligaties, korte-termijn deposito’s, vastgoed, handels-

goederen en hedge fondsen. ”Strategic asset allocation” (strategische beleggingskeuze)

is de keuze hoe beleggers dienen te investeren in deze brede klassen om hun lange-

termijn doel te bereiken. De beleggingen variëren over de tijd door veranderingen in

beleggingskansen, de investeringshorizon en lange-termijn macro-economische risicofac-

toren zoals inflatie en de rente.

Ruim 40 jaar geleden liet Merton (1969, 1971) al zien dat lange-termijn beleg-

gers hedge-portefeuilles dienen aan te houden die toekomstige veranderingen in be-

leggingskansen anticiperen. Aan het eind van de jaren ’90, begin 2000 was er een

enorme opkomst in de populariteit van de strategische beleggingskeuze literatuur door

de vondst dat aandelenrendementen mogelijk voorspelbaar zijn (bijvoorbeeld door de

dividend-prijs ratio en rentes) en door de grote vooruitgang in computerkracht.

Campbell en Viceira (2002) geven een overzicht van de stand van de literatuur rond

2000. Het feit dat de dividend-prijs ratio mogelijk aandelenrendementen voorspelt leidt

tot zogenaamde ”mean-reversion” (terugkering naar het gemiddelde) in rendementen.

Dit betekent dat een lager dan verwacht rendement wordt gevolgd door een hoger
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dan verwacht toekomstig rendement. Deze negatieve autocorrelatie in aandelenren-

dementen maakt aandelen veiliger (kijkend naar de variantie) en dus aantrekkelijker

op de lange termijn. De mean-reversion is ook een belangrijke component van de

hedge portefeuille van lange-termijn beleggers. Dergelijke beleggers willen investeren

in een financieel product waarvan het rendement hoog is wanneer verwachte toekom-

stige aandelenrendementenlaag zijn. Aandelen zelf blijken zo’n soort product te zijn.

Een andere belangrijke overweging voor lange termijn beleggers is het inflatie- en rente-

risico. De risico-vrije investering voor een lange termijn belegger is een lange-termijn

inflatie gëındexeerde staatsobligatie. Aangezien T-bills meerdere malen moeten wor-

den overgesloten, zijn deze niet de risico-vrije investering. Ook het reële rendement van

nominale lange-termijn obligaties is niet veilig, aangezien deze gevoelig zijn voor in-

flatierisico wat onaantrekkelijk is op de lange termijn. Lange-termijn beleggers moeten

deze risico’s meenemen in hun hedge portefeuille.

De bovenstaande resultaten zijn verkregen met behulp van eenvoudige modellen

waarin de ware parameters en het ware model bekend worden verondersteld. Elke

vorm van modelmisspecificatie heeft echter een grote invloed op de samenstelling van

de berekende portefeuilles. In de jaren 2000 is daarom een nieuwe tak van de literatuur

naar voren gekomen die de kwaliteit van de modellen en de gevoeligheid van de resul-

taten voor veranderingen in parameters analyseert. Barberis (2000) neemt parameter

onzekerheid mee in het beslisproces van beleggers. Hij vindt dat aandelen nog altijd

aantrekkelijker zijn op de lange termijn dan op de korte termijn, hoewel het verschil

in beleggingen tussen lange en korte termijn verkleind wordt door het erkennen van

parameter onzekerheid. Xia (2001) en Brandt, Goyal, Santa-Clara en Stroud (2005)

beschouwen het leren over de voorspelbaarheid van aandelen en vinden dat het negeren

van leren mogelijk leidt tot portefeuilles met een lager nut voor de belegger. Guidolin

en Timmermann (2007) en Pattenuzo en Timmermann (2010) bekijken het effect van

model instabiliteit door te kijken naar zogenaamde ”regime-switching” modellen en

concluderen dat het negeren van structurele breuken ook tot substantiële nutskosten

kan leiden.

Er zijn verschillende redenen om sceptisch te zijn over de voorspellingen van de

strategische beleggingskeuze literatuur. Ten eerste, de optimale portefeuilles blijken

extreem, onrealistisch en erg gevoelig te zijn voor veranderingen in voorspelvariabe-

len. In Campbell, Chan en Viceira (2003) varieren de aandelengewichten bijvoorbeeld
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tussen de - 1000% en 1000% en jaarlijkse veranderingen van 500% zijn niet ongewoon.

Ten tweede, Goyal en Welch (2008) documenteren de slechte ”out-of-sample” voorspel-

baarheid van aandelenrendementen door te laten zien dat het historisch gemiddelde van

rendementen even goed voorspelt als alle bekende voorspelvariabelen. Deze vondst leidt

tot twijfels over de ”mean-reversion” van aandelenrendementen en de tijdsvariatie van

optimale portefeuilles. Ten derde, strategische beleggingskeuze is nog gecompliceerder

dan myopische beleggingskeuze door de aanwezigheid van de hedge component. Ter-

wijl de myopische portefeuilles slechts aangetast worden door schattingsfouten in de

myopische component, worden strategische portefeuilles aangetast door fouten in zowel

de myopische als de hedge component.

Een rijke literatuur documenteert de slechte prestaties van myopische portefeuilles.

De reden waarom korte termijn portefeuilles zo slecht presteren is zogenaamde ”error

maximization” (fout maximalisatie). De ”input” van portefeuille optimalisatie tech-

nieken (gemiddeldes, varianties etc.) worden geschat met fouten en portefeuille opti-

malisatie technieken geven te veel (te weinig) gewicht aan financiële producten met hoge

(lage) rendementen. Deze producten hebben waarschijnlijk de grootste schattingsfouten

zoals beweerd in Michaud (1989). DeMiguel, Garlappi en Uppal (2009) analyseren 14

verschillende modellen voor het uitrekenen van de inputs van mean-variance optimisatie

technieken en laten zien dat geen enkele van deze 14 consistent beter presteert dan een

simpele 1/N regel (zelfde gewicht voor alle producten). Aangezien strategische porte-

feuilles gevoeliger voor fouten zijn, zullen zij waarschijnlijk zelfs slechter presteren.

De geciteerde literatuur suggereert dat het onduidelijk is of de potentiële winsten

van strategische portefeuille keuze kunnen worden gerealiseerd in de praktijk. Enerzijds

suggereren de slechte out-of-sample resultaten van eenvoudige myopische portefeuilles

dat dit niet het geval is, maar anderzijds kunnen recente inzichten zoals het mee-

nemen van parameter onzekerheid in beslissingen de prestaties misschien aanzienlijk

verbeteren. Dit overzicht suggereert ook dat het vormen van myopische portefeuilles

bestaande uit vele individuele aandelen leidt tot zeer instabiele portefeuilles.

Het hoofddoel van deze dissertatie is te onderzoeken of de beloftes van de strategi-

sche portefeuille literatuur waar te maken zijn in realistische set-ups waarin mogelijke

parameter onzekerheid, model onzekerheid en model instabiliteit worden meegenomen.

Een tweede doel is te onderzoeken of we robuuste myopische portefeuilles kunnen vor-

men (d.w.z. portefeuilles die stabiel zijn door de tijd) bestaande uit bijna 2,000 indi-
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viduele aandelen die hoge verwachte rendementen met minimaal risico kunnen gene-

reren. Deze dissertatie beantwoordt de volgende onderzoeksvragen:

• Hoe kunnen we een panel data model opzetten om individuele aandelenrende-

menten met behulp van meerdere bedrijfskarakteristieken uit te leggen en kunnen

we dit model gebruiken om robuuste portefeuilles te construeren?

• Kunnen de mogelijke winsten van de strategische beleggingskeuze literatuur wor-

den gerealiseerd in een out-of-sample test en hoe kunnen we de prestaties ver-

beteren?

• Hoe kunnen we een methodologie ontwikkelen om model onzekerheid met be-

trekking tot lange-termijn voorspellingen mee te nemen en wat is de impact van

model onzekerheid op lange-termijn beleggers?

• Hoe kunnen we een model met tijdsvariërende parameters opzetten en schatten

en wat voor een soort tijdsvariatie moet een lange-termijn belegger meenemen in

zijn analyse?

Als eerste analyseren we hoe we een model kunnen opzetten om de cross-sectie van

individuele aandelenrendementen te modelleren gebruikmakend van meerdere bedrijfs-

karakteristieken. De standaard sorteermethode werkt niet in zo’n set-up en daarom

ontwikkelen we een panel data model dat in staat is meerdere karakteristieken tegelijk

mee te nemen. Ten tweede onderzoeken we de prestaties van strategische portefeuilles

out-of-sample. Hoewel de out-of-sample prestaties zeer relevant zijn voor lange-termijn

beleggers, is een dergelijke out-of-sample test nog niet gedaan. Ten derde documenteren

we de impact van model onzekerheid op de verdeling van toekomstige aandelenren-

dementen en op de beslissingen van lange-termijn beleggers. Hoewel verschillende

modellen kunnen leiden tot compleet andere voorspellingen van toekomstige rende-

menten, wordt modelonzekerheid bijna altijd genegeerd in de strategische portefeuille

literatuur. Ten vierde gebruiken we een model met tijdsvariërende parameters om

de impact van model onzekerheid op de verdeling van toekomstige rendementen en

op de portefeuillekeuzes van lange-termijn beleggers te analyseren en om inzichten te

krijgen in het belang van de tijdsvariatie van de verschillende parameters. Andere ar-

tikelen - zoals Pettenuzo en Timmermann (2010) en Guidolin en Timmermann (2007)
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- gebruiken ”regime-switching” modellen en kunnen daarom geen onderscheid maken

tussen de belangrijkheid van de verschillende parameters.

We beantwoorden de onderzoeksvragen als volgt. Ten eerste, we documenteren dat

een panel data model dat bedrijfskarakteristieken met industrie-effecten combineert een

groot gedeelte van de cross-sectie van aandelenrendementen kan verklaren. De gevorm-

de portefeuilles zijn niet erg risicovol, zijn stabiel over de tijd (vooral wanneer gebruik

wordt gemaakt van een lange beleggingshorizon) en leiden tot (risico-gecorrigeerde)

gemiddelde rendementen van rond de 2% per maand. Ten tweede, hoewel een näıeve

implementatie van strategische portefeuilles niet werkt out-of-sample, verbetert het ge-

bruik van zogenaamde ”shrinkage” prioren de prestaties aanzienlijk en staat dit lange-

termijn beleggers toe om de markt te timen. De hedge component van de dynamische

strategieën voegt echter amper waarde toe. Ten derde ontwikkelen we ”Bayesian Model

Averaging” (Bayesiaanse model middel technieken) om model onzekerheid mee te ne-

men in een systeem van vergelijkingen en vinden we dat de impact groot is, vooral voor

een lange horizon. Het meenemen van model onzekerheid maakt aandelenrendementen

risicovol op de lange termijn in crisis periodes en leidt tot een lagere optimale belegging

in aandelen. Tenslotte ontwikkelen we een model met tijdsvariërende parameters dat

zowel distributies met dikke staarten als het ”leverage” (hefboom) effect aankan en vin-

den we dat alleen veranderingen in de covariantiematrix van de fouttermen variabel en

persistent genoeg zijn om relevant te zijn voor lange-termijn beleggers. Veranderingen

in constanten en hellingscoefficiënten mogen echter rustig genegeerd worden.

We geven een verdere, meer gedetailleerde samenvatting van de dissertatie in de

volgende 13 stellingen. Deze stellingen bevatten ook de belangrijkste lessen van deze

dissertatie.

1. Standaard asset pricing modellen kunnen de verschillen in verwachte rendementen

- gebruik makend van zowel verscheidene bedrijfskarakteristieken als industrie-effecten

- niet verklaren.

Portefeuilles, gevormd door gebruik te maken van een panel data model met 11 be-

drijfskarakteristieken en industrie-specifieke effecten, zijn een uitdaging voor standaard

asset pricing modellen. De portefeuilles hebben een gemiddeld rendement van 2% per

maand, hebben geen duidelijke factor structuur en risico-correcties met behulp van het

Fama-French Carhart model met of zonder tijds-variërende factorladingen heeft amper
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invloed. Nieuw onderzoek in asset pricing modellen is nodig om de cross-sectionele

verschillen in rendementen uit te leggen .

2. Het beschouwen van een lange horizon kan een goede invloed hebben op beleggin-

gen, zelfs wanneer we alleen de korte-termijn prestaties meten.

Zelfs wanneer we de prestaties van portefeuilles evalueren met korte-termijn prestatie

maatstaven zoals een Sharpe ratio, geven specificaties die aandelenrendementen voor-

spellen voor een langere horizon de best presterende portefeuilles. Deze portefeuilles

hebben hoge gemiddelde (risico-gecorrigeerde) rendementen, zijn goed gediversifieerd

en hebben slechts lage transactiekosten.

3. Er is nog altijd heel veel heterogeniteit tussen bedrijven in verwachte rendementen,

zelfs wanneer we corrigeren voor vele bekende karakteristieken.

Hoewel panel data modellen in staat zijn om een groot gedeelte van de cross-sectionele

variatie in aandelenrendementen uit te leggen, suggereert de aanwezigheid en de belang-

rijkheid van vaste individuele effecten dat voldoende heterogeniteit tussen bedrijven

over is die niet kan worden uitgelegd door alleen gebruik te maken van de verschillen

in bedrijfskarakteristieken. Dit suggereert dat nieuwe econometrische schattingstech-

nieken ontwikkeld moeten worden die in staat zijn om op een efficiënte manier infor-

matie uit individuele effecten te halen, terwijl deze technieken ook nog correlaties tussen

bedrijfskarakteristieken en individuele effecten moeten toestaan.

4. Met een beetje scepsis kunnen lange-termijn beleggers profiteren van het timen van

de markt.

De vondst dat een näıeve implementatie van strategische beleggingskeuze leidt tot

slechte prestaties betekent niet dat lange-termijn beleggers geen market timing moeten

doen. Sceptische beleggers - gebruikmakend van sceptische shrinkage prioren - kun-

nen veel baat hebben bij market timing. Hun scepsis staat hen toe te profiteren van

veranderingen in markt condities, maar redt hen ook van zeer grote reducties in hun

portefeuille waardes. Met andere woorden, we delen de negatieve visie van DeMiguel,

Garlappi en Uppal (2007) niet dat op data gebaseerde methodes om portefeuilles te

berekenen niet in staat zijn om de eenvoudige 1/N regel te kunnen verslaan out-of-

sample.
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5. Beleggingsstrategieën maar ook voorspellingen moeten niet geëvalueerd worden met

kwadratische verliesfuncties, maar met asymmetrische nut/verlies functies.

Beleggers hebben niet noodzakelijkerwijs een voorkeur voor specificicaties die leiden

tot de beste voorspellingen wat betreft gemiddelde kwadratische fouten. Ze vermij-

den risico, evalueren grote verliezen en winsten verschillend en waarderen daarom spe-

cificaties die in staat zijn om grote verliezen te voorkomen. Dit feit moet zowel in

de evaluatie van beleggingsstrategieeën als de evaluatie van voorspellingen naar voren

komen. Het is echter standaard in de literatuur om gebruik te maken van symmetrische

verliesfuncties. Een belangrijke uitzondering is Christoffersen en Dieboldt (1997).

6. Hoewel de optimale lange-termijn strategieën veel moeilijker te berekenen zijn dan

korte-termijn strategieën, geven ze vaak dezelfde resultaten.

De optimale lange-termijn dynamische strategieën zijn veel moeilijker uit te rekenen

dan myopische strategieën, omdat men voor de eerste dynamisch programmeren, veel

variabelen en duizenden gesimuleerde paden nodig heeft. Toch is er bijna geen ver-

schil in hun out-of-sample prestaties. De hoofdreden is schattingsfouten. Geschatte

myopische en geschatte dynamische strategieën benaderen de echte optimale dynami-

sche strategie even goed. Een andere uitleg kan worden gevonden in de laatste twee

hoofdstukken. Wanneer model onzekerheid en model instabiliteit meegenomen worden

in het beslisproces, kunnen optimale lange-termijn beleggingen in aandelen bijna gelijk

of soms zelfs lager zijn dan korte-termijn beleggingen.

7. Ook al suggeren resultaten voor een korte horizon dat parameter en model onze-

kerheid en model instabiliteit niet belangrijk zijn, toch zijn deze concepten erg belangrijk

voor portefeuille beslissingen voor een langere horizon.

Het meenemen van parameter onzekerheid, model onzekerheid en in minder mate model

instabiliteit heeft bijna geen invloed op korte-termijn beleggingen. Echter, omdat (i)

een ongunstige parameter set of model blijft voortduren voor de hele beleggingshorizon

en (ii) (onverwachte) tijdsvariatie in (vooral) fout volatiliteit zeer persistent is, worden

deze effecten belangrijker voor een langere beleggingshorizon.
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8. Het geschatte risico van aandelen verandert behoorlijk over de tijd en moet in ogen-

schouw genomen worden door lange-termijn beleggers.

De volatiliteit van de fouten in aandelenrendementen verandert behoorlijk en persis-

tent gedurende de tijd. Zelfs in situaties waarin volatiliteit constant is, verandert

de volatiliteit van de verdeling van toekomstige aandelenrendementen behoorlijk door

model onzekerheid. Een van zijn belangrijke componenten - de volatiliteit van de con-

ditionele gemiddeldes van de verschillende modelvoorspellingen - is laag wanneer alle

modellen dezelfde voorspellingen afleveren zoals in de jaren ’60 en ’70, maar hoog in

periodes wanneer de modellen juist verschillende voorspellingen leveren zoals in 1929

en 2008. Het negeren van deze stijging in volatiliteit leidt tot een te hoge belegging in

aandelen.

9. Het meenemen van onzekerheid is belangrijk in het maken van beslissingen, maar

niet alle onzekerheid is relevant.

Parameter onzekerheid, model onzekerheid en de tijdsvariatie in de fout volatiliteit zijn

allemaal erg belangrijk voor een lange horizon. Echter, voor een korte horizon kunnen

deze effecten (vooral de eerste 2) worden genegeerd. Verder, de lage persistentie van

de tijds-variatie in intercepten en hellingshoeken betekent dat deze tijdsvariatie kan

worden genegeerd voor zowel een korte als een langere beleggingshorizon.

10. De aandelenmarkt is niet een beter oord voor lange-termijn beleggers dan voor

korte-termijn beleggers.

Het meenemen van model onzekerheid kan aandelen veel risicovoller maken op de lange-

termijn dan op de korte-termijn en kan leiden tot lagere aandelenbeleggingen voor

lange-termijn beleggers. Deze vondst is ook gedaan in een recent artikel van Pastor

en Stambaugh (2010). In hun set-up nemen ze mee dat verwachte rendementen niet

perfect gecorreleerd hoeven te zijn met een lineaire combinatie van een klein aantal

voorspellers. Ze vinden dat dit feit leidt tot rendementen die een veel hogere variantie

hebben op de lange termijn. In tegenstelling tot hun vinden we dat aandelen zowel risi-

covoller als veiliger kunnen zijn op de lange termijn dan op de korte termijn. Cruciaal

is het feit dat de invloed van model onzekerheid verandert over de tijd. Het meenemen

van model instabiliteit versterkt deze conclusies.
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11. Lange-termijn beleggers willen inflatie-gëındexeerde overheidsobligaties.

Als lange-termijn beleggers zich realiseren dat de echte parameters en het echte model

onbekend zijn, dan heeft hun verdeling van toekomstige aandelenrendementen in de

meest extreme gevallen een hogere variantie, een negatieve scheefheid en extreme dik-

staartigheid door model onzekerheid. In zo’n setup preferen lange-termijn beleggers het

echte risicovrije lange-termijn financieel product - inflatie-gëındexeerde staatsobligaties

- boven de optimale combinatie van T-bills, aandelen en nominale obligaties, omdat

het zogenaamde ”certainty equivalent” van deze optimale combinatie lager is dan 1.

12. De onenigheid over de verschillende voorspellers van aandelenrendementen kan

voor een groot gedeelte worden toegeschreven aan de voorspelhorizon.

Aangezien er slechts beperkte tijdsvariatie - vooral vergeleken met de hoeveelheid schat-

tingsfouten - in de hellingscoefficienten van de dividend - prijs ratio en de yield spreiding

is in de vergelijking voor aandelenrendementen, speculeren we dat de schattingsperiode

niet de belangrijkste reden is voor onenigheid in de academische wereld over mogelijke

voorspellers van aandelenrendementen. De voorspelhorizon speelt waarschijnlijk zelfs

een grotere rol. Terwijl voor een korte horizon alleen voorspellers van aandelenrende-

menten belangrijk zijn, worden voorspellers van voorspellers belangrijke voorspellers

voor een langere voorspelhorizon.

13. Het meenemen van relatief nieuwe productklassen in het keuzemenu voor beleg-

gers is niet aantrekkelijk voor lange-termijn beleggers door de beperkte informatie die

we hebben over hen.

Aangezien we slechts een korte data-set beschikbaar hebben om modellen voor nieuwe

financiële production te schatten, verwachten we dat parameter onzekerheid een belang-

rijke rol zal spelen voor zulke modellen. Omdat parameter onzekerheid de voor-

spelonzekerheid flink laat toenemen op de lange termijn, zullen lange-termijn investeerders

bijna niet investeren in nieuwe producten tenzij ze zeer grote baten opleveren in vergelij-

king met meer traditionele klassen zoals aandelen en obligaties. Nieuwe beleggingsklassen

worden alleen aantrekkelijk voor lange termijn beleggers als er voldoende data beschik-

baar is.

229



NEDERLANDSE SAMENVATTING

Tenslotte een kleine vooruitblik op toekomstig onderzoek. Zelfs met meer dan 80

jaar data, speelt onzekerheid nog altijd een zeer belangrijke rol voor lange-termijn beleg-

gers. De veelbelovende vondst rond 2000 dat aandelen teruggaan naar een gemiddelde

en daarom veiliger zijn op de lange termijn wordt meer dan teniet gedaan door het

parameter en model onzekerheid effect. Dit betekent dat zonder extra informatie over

toekomstige aandelenrendementen, lange-termijn beleggers niet kunnen profiteren van

de ”mean-reversion” en daarom niet meer geld moeten beleggen in de aandelenmarkt

dan korte-termijn beleggers. Daarom hebben we andere manieren nodig om structuur

op te leggen / prior informatie toe te voegen aan econometrische modellen om pa-

rameter en model onzekerheid te beperken. Een veelbelovende onderzoeksrichting is

om economische theorie te gebruiken om restricties op te leggen aan modellen die (bij

benadering) waar zijn en op deze manier voorspellingen te verbeteren en voorspelonze-

kerheid te verminderen. Contante waarde modellen lijken een interessante richting van

toekomstig onderzoek te zijn.

230



Curriculum Vitae

Bart Diris was born on December 4, 1983 in Born, The Netherlands. He completed

a Bachelor of Science (2002-2005) and Master of Science (2005-2006) in Econometrics

and Operations Research at Maastricht University. During his Bachelor studies, Bart

spent a semester abroad at the University of California at Berkeley. In August 2006, he

obtained his master’s degree with honors. His master thesis was awarded with the best

thesis award of the Faculty of Economics and Business Administration of Maastricht

University.

He joined the Finance and Quantitative Economics departments of Maastricht Uni-

versity in September 2006 as a PhD candidate. His research was supported by the

Maastricht Research School of Economics of Technology and Organization (METEOR),

The Network for Studies on Pensions, Aging and Retirement (Netspar) and the Ned-

erlandse Organisatie voor Wetenschappelijk Onderzoek (NWO). Bart’s work was or

will be presented at various universities and international conferences, among them the

European Meeting of the Econometric Society in Milan in 2008, the European Finance

Association meeting in Frankfurt in 2010, a seminar at Harvard University in 2009 and

the annual conference of The Society for Financial Econometrics (SoFiE) in Chicago

in 2011. He conducted part of his research as a visiting PhD student at The Institute

for Financial Research (SIFR) in Stockholm (January - March 2009) and as a visiting

research fellow at Harvard University (September - December 2009). Bart finished his

PhD research in January 2011.

In February 2011, Bart started as a (trainee) Assistant Professor at the Econometric

Institute at Erasmus University Rotterdam. Here, he is responsible for the Master of

Science course Portfolio Management in the Quantitative Finance master. His research

interests are financial econometrics, in particular strategic asset allocation, asset pricing

and time-series econometrics.

231


	Acknowledgements
	Contents
	List of figures
	List of tables
	Chapter 1 - Introduction
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6 - Summary and conclusion
	References
	Nederlandse samenvatting
	Curriculum vitae


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


