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Summary

Chapter 1 - Friendship Selection1

In the first chapter of my dissertation I aim at understanding some of the most well known

and recognized phenomena about friendship relations between human beings. Before get-

ting deeper into these phenomena, however, let me start by saying few a words about the

relationship between friendship relations and economics.

Economics is not the science of money. It is the science aimed at studying decision making

in situations involving scarce resources. These types of decisions range from which university

degree to study to where to go on our next holidays. It is natural to think about money

when thinking about economics as money is a scarce resource that we constantly use in our

everyday life.

Many economic theories exists on how to optimally allocate our time between work and

leisure. Furthermore, many theories explain such things as how agents make job decisions,

how many years of education to acquire, or whether to invest now in a pension fund or to

wait for better fundamentals. However, very few theories exist that explain how the scarce

resource of leisure is employed by agents. In particular, no economic theory exists on how

people use their leisure time to choose with whom to have friendship relations. Given the

relevance in society of the social contacts in general and friends in particular I study how

friendship arises in a network of people. The first chapter of my dissertation is then aimed at

understanding how friends are selected given the impossibility of being friends with everybody

as friendship relations involve costs (effort, time, etc.).

I model friendship as repeated interaction between a group of agents. Interactions between

the group of agents is modeled as a two-step decision. First, each agent decides with every

other agent whether to join in a relationship or not. Joining a relationship involves a benefit

that is not player specific and a cost that is player specific. This benefit is interpreted as

the joy a player gets from being in a relationship while this cost is interpreted as the degree

to which agents needs help in a relationship. Second, for every two agents that decided to

be joined together in a relationship, they decide whether or not to help the other. Helping

involves a cost for the person providing help but a benefit for the person receiving help.

If two agents do not agree on joining a relationship, they remain as strangers. If two

agents decide on joining a relationship but are not helping each other, we say they are mates
1Many thanks to Karl Schlag, Pascal Courty, Anna Orlik, Ilan Eshel, Itai Agur and Sanne Zwart for very

useful comments and discussions on this chapter. I also would like to thank the seminar participants at the

European University Institute and University of Wisconsin-Madison.
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because although having a relationship, this relationship is not strong enough to consider

them as friends. Finally, if two agents decide on joining a relationship and are helping each

other, we say they are friends.

As just mentioned in the paragraph above, each of the agents in the group is characterized

by the degree to which they, if joined in a relationship with the other agent, need help. Hence,

there are agents who constantly, and in each of its relationships, need help to a high degree

and there are other agents who will barely need help at all. Players with a high degree of

needing help prefer not to join a relationship over being mates with someone, as being in a

relationship might involve a cost higher that the benefit from being in a relationship. Players

with a low degree of needing help prefer to have a relationship of either of the two types

(mates and friends) over not joining the relationship at all since the benefit from being in a

relationship, independently on whether they receive and provide help, are greater than the

cost of needing help. The degree to which a player needs help is what makes her different

from the other players. We say that two agents are similar if they have a similar degree of

needing help.

The decision of helping an agent with whom one is having a relationship is a type of

Prisoners’ Dilemma problem. Agents like to be helped as it involves benefits to them, however,

since helping is costly, agents also prefer not to offer help. In this cooperative setting I find the

following: for agents who need help to a relatively small degree, a friendship relationship is

possible only if the differences in the degree to which each of this players need help is similar.

That is, in this case similarity, also known as homophily, plays the key role in determining

if two agents can become friends or not. This is because if an agent with a low degree of

needing help joins in a relationship with an agent with a high degree of needing help, the low

degree agent might have an incentive to stop offering help to the other agent and move their

situation to a mate relationship.

However, when one of the players has a high degree of needing help, high enough so that

a mate relationship is less beneficial than no relationship at all, then the difference between

the degrees of needing help of each agent plays no role in determining whether the two agents

can become friends or not. In this situation the incentives of breaking the friendship relation

of the low degree agent might be smaller than if the other agent was also a low type. This

is because if a friendship relation with the high type is broken, then these two agents will

become strangers as the high type prefers not to be in a relationship over being in a mate

relationship. Hence, the costs of breaking the relationship for the low degree type are high

as breaking a relationship will mean not having any relationship at all. In this situation the

key for determining if two player can become friends is the profit each player is getting from

the relationship independently of the difference of their degrees of needing help.
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Once the role of homophily in a friendship relation is understood, I move to study how

friendships are selected when players have a time constraint by which they can only have a

fixed maximum number of friends. Hence, the question now is not who can be friends with

who, but rather the following: among those with whom an agent could be friends, which ones

are actually going to become this agents friends? That is, if the possibility for two agents of

becoming friends is not high enough, there is now a process for selecting friendships. I model

the selection process as a random event by which at every moment only one agent is allowed

to offer new relationships. This random selection process represents the fact that in the real

world friendship relations arise as a result of a complex meeting-new-people process.

I find that unless all agents in the population are different enough it is impossible to

predict which friendship relations will arise in equilibrium. Given that there exists a certain

degree of substitutability between agents, if two or more agents are similar in that they have a

similar degree of needing help, then the random process by which people make new friendship

will determined the equilibrium outcome. I also find that the out of equilibrium length of a

friendship relation is directly influenced by the degree to which agents discount the future.

Impatient agents tend to have shorter friendship relations, an observation that is in line with

empirical studies.

In the last part of this chapter I present robustness checks of the model and relate my

results with the empirical literature on friendship. Among other findings, I find the model to

be robust to different specifications of the cooperative strategies of the agents. I also illustrate

how my results match empirical evidence reported on friendship.

Chapter 2 - Learning within a Markovian Environment2

In this chapter I explore human decision making in a situation where there are two alternatives

and the outcome or benefits from each of these alternatives is unknown to the agents. Agents

are faced with the situation of making a choice from a set of alternatives repeatedly over time.

Although oblivious of the payoff players get from making the choices, they can learn from

their past experiences or from observing the choices of other agents. This decision problem

is faced by many of us in our everyday lives: such as whether to buy a PC or a Mac, whether

to have fruit or a cake as a dessert in a restaurant, or whether to watch an action movie or

a romantic movie at the theater.

The outcome of each of the two available choices depends on a random, non-stationary,
2Part of this chapter was written during my visit to the University of Wisconsin-Madison. I am grateful

to the faculty at UW and the participants in the Theory Lunch. I would like to thank Karl Schlag and

Larry Samuelson for useful discussions and comments. I would also like to thank Mark Le Quement for useful

comments and the seminar audiences at the University of Alicante and at the European University Institute.
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variable: the state of nature. This non stationarity is represented in the model as a Markov

chain. That is, the probability of being at a given state of nature tomorrow depends on which

state we are in today. To illustrate this case consider the simple situation in which a broker

has to decide whether to buy or sell a given stock. The state of nature in this case is whether

the stock goes up or down. I assume that the probability of having the stock going up is

random and depends on whether the stock went up las period or not.

Agents are given a set of alternatives where to choose from but know nothing about

the outcome of these alternatives. In particular they also ignore the fact that a Markov

chain is governing the payoff of each of the available choices. Agents then learn which of

the alternatives is better by repeatedly facing the same situation. They learn from their

own payoff experiences and/or from the experiences of the others. The way agents learn

is assumed to agree to the principle of reinforcement, whereby alternatives that where more

successful in the past are more likely to be chosen. Moreover, I assume that there is a memory

effect meaning that more recent payoff experiences weigh more in the present decision than

less recent ones.

I study two different informational settings, one where after each choice, an agent knows

the payoff he got and the payoff he would have gotten had he chosen the other alterna-

tive (foregone payoffs are observed). This setting can be interpreted as if there was some

information transmission mechanism, like word-of-mouth, that makes agents aware of the

performance of all the available options. Furthermore, I also study decision making in a

another setting where after each choice each agent only knows the payoff he gets from his

alternative (foregone payoffs are not observed).

Given these two informational settings just described, I study how the choices of a pop-

ulation evolve when agents learn according to the reinforcement principle. The results I find

are intriguing and pose explanations to real life behavior that seemed puzzling before. In

the informational setting where foregone payoffs are observed I find that the behavior of the

population converges to a behavior very similar to the probability matching behavior. Prob-

ability matching behavior is better understood with an example. Imagine a pot with 100

balls, of which 60 are red and 40 are black. Suppose that I draw 5 balls with replacement

and I ask you to guess the colors. Since at each draw there are more red balls in the urn,

the probability of getting a red ball is higher than the probability of getting a black ball.

Therefore, it is optimal to guess that the color will be red in all the 5 draws. However, in

this type of decision problem it has been observed in experiments with human subjects that

agents tend to guess red 3 times and black 2 times. Guessing red 3 out of 5 times means

guessing red 60% of the time, which is exactly the proportion of red balls that he pot contains.

Similarly, guessing black 2 out of 5 times means guessing black 40% of the time, again the
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fraction of black balls in the urn. The choice pattern whereby the frequency by which each

choice is made equals the frequency by which each choice is optimal is known as probability

matching.

As mentioned already, when foregone payoffs are observed, the behavior of the population

converges to a behavior very similar to that in probability matching. The reason being the

following: when foregone payoffs are observed, reinforcement is translated into being more

likely to play tomorrow the action that was best today. Hence, each action will be reinforced

a fraction of the time equal to the fraction of time that action is actually the best one. The

result follows that in the long run each action is played a fraction of time that matches the

fraction of times that action is actually the best one. As already pointed out, probability

matching is not an optimal behavior. Reinforcement behavior, although sounding a plausible

way of learning and being empirically relevant, may lead to suboptimal choices.

When foregone payoffs are not observed a very different behavior is observed. In this

case choices of the population converge to a unique alternative, as opposite to the other

informational setting, no mixing is observed. The alternative selected is the long run optimal

one only if alternatives are different enough. That is, if there is not a significant difference

in the long run payoff difference between alternatives then it is possible that the population

ends up choosing always the suboptimal choice. This suboptimal lock-on could be observed

if, for instance, the long run inferior alternative happens to be better for a long period of

time. In this case, reinforcement will lead players to play the long run inferior alternative

to the point where no one observes the performance of the other alternative. At this point,

and once the long run optimal alternative happens to be better, no one notices it under the

informational setting where foregone payoffs are not observed. Hence, no agent ever plays

again the alternative that is best in the long run. This behavior explains why, for instance, we

sometimes observe inferior products dominating the market as happened when the Betamax

video format took over the VHS tapes.

I round off the analysis by showing, among all the possible ways of learning following the

reinforcement principle, which ones are efficient in the sense that, when used by the agents,

they end up choosing the long run best alternative. In this respect I show that efficient

learning under reinforcement requires players to disregard the information from observing

foregone payoffs, in case this information is available, and exhibit very cautious learning.

Cautious learning implies that decisions are not very responsible to the feedback from the

environment. Reinforcement learning, although a learning principle employed by real life

subjects, does not use information optimally. Due to this, too much information can be

harmful. This is why I get the striking result that using less information, by disregarding

foregone payoffs, is the right thing to do if an agent learns according to reinforcement.
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Chapter 3 - The Effects of the Market Structure in the Adoption of Evolving

Technologies3

In the third chapter of my Ph.D. dissertation I study how does the market structure affects

the speed at which new technologies are adopted. By the market structure I mean how the

market power is shared between suppliers, firms that sell new technologies, and buyers, firms

that buy new technologies.

In the model I present there is a set of firms, the suppliers, that have the rights of selling

new technologies to another set of firms, the buyers. Technologies are constantly evolving

and all suppliers have access to the same set of technologies. The role of the firms in the

supply side is then to put a price to these technologies.

The different market structures differ in how the market power is shared. In the first

market structure I consider, all the market power lies in the supply side. In this setting

there is only one firm selling technologies and many firms in the demand side that compete

for buying these technologies. In the second setting I consider, the opposite happens. The

buyer holds all the market power. In this setting there are many firms selling technologies

but only one firm interested in buying a new technology. Hence, in this setting firms in the

supply side compete to selling the technology to the only firm on the demand side. The third

setting considered is characterized by the fact that both supply and demand have a share of

the market power. In this setting there is one firm on each side of the market and both firms

compete to extract as much surplus as possible.

A point worth noticing is that in this chapter I aim at understanding how the different

market structures can have an effect on the speed to which new technologies are adopted.

It is usually argued that differences on speed of adoption are the result of the difference in

the underlying evolution of the technologies themselves. That is, different paces of adoption

of technologies are observed because not all the technologies evolve in the same way: the

computational capacity of computers is greatly improved every year while it takes more

than 5 years to see significant improvements in order technologies like cars. I propose an

explanation of the differences in the timing of adoption that is based solely on the structure

of the market where the technologies are sold. Hence, we prove that differences of speed can

be explained in term of different market structures and independently on the nature of the

technology at hands.

In my results I find some striking features about the speed of adoption of new technologies.
3I would like to thank Pascal Courty, Karl Schlag, Omar Licandro and Fernando Vega-Redondo as well as

the seminar audience of the Micro Working Croup at the European University Institute for useful comments

and discussions.
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First, I show that when only one side of the market holds all the power and independently of

which, the adoption of technologies is expected to occur at the same speed. That is, whether

the suppliers or the buyers hold all the market power does not affect the pace of adoption.

This is because as soon as the market power lies on only one side, the total surplus of the

economy is maximized. The only actual difference between the two settings lies on which side

of the market actually gets to keep all this surplus. I prove that actually the total surplus

of the economy is maximized by comparing the speed of adoption when only one side of the

economy holds all the market power with the Nash bargaining solution between supply and

demand. In order words, if a social planner was to decide what is the optimal timing of

adoption, the result will be the same as if we give all the market power, or bargaining power,

to one side of the market.

When there is competition between suppliers and buyers in the sense that each side of

the market competes for the total surplus of the economy, we find that adoption occurs at a

slower pace. This surprising result implies that competition between suppliers and buyers is

actually decreasing the total surplus of the economy as compared with the cases where only

one side of the market holds all the power. Hence, from the social point of view, competition

can be harmful in that the adoption of new technologies is delayed.

After this main result I then present some comparative statics results on how the speed

of adoption is affected in the three market settings when the parameters determining the

evolution of technologies change. I find that the timing of adoption is more sensible to the

process determining the evolution of technologies when there is competition between supply

and demand. That is, markets where only one side holds all the power should exhibit more

similar behavior independently on the evolution of technologies than in markets where there

is competition.

Another interesting fact revealed by the numerical exercise is that as the interest rate

raises, the differences in timing of adoption between the setting where there is competition

between supply and demand and the settings where only one side holds all the power converge

to zero. This means that in high interest rate economies the market structure has less effect

in the adoption of new technologies than in low interest rate economies.
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Chapter 1 - Friendship Selection
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1.0 Abstract

We model the formation of friendships as repeated cooperation within a set of heterogeneous

players. The model builds around three of the most important facts about friendship: friends

help each other, there is reciprocity in the relationship and people usually have few friends.

In our results we explain how similarity between people affects the friendship selection. We

also characterize when the friendship network does not depend on the random process by

which people meet each other. Finally, we explore how players’ patience influences the length

of their friendship relations. Our results match and explain empirical evidence reported in

social studies on friendship. For instance, our model explains why troublesome subjects have

fewer friends.

1.1 Introduction

Social relationships represent one of the most basic needs of human beings. They arise

quickly between subjects in any kind of environment and they condition the behavior of

the subjects involved. Different degrees of social relationships can exist between individuals:

family members, work mates, partners, friends, etc. Among all of them, friendship relations

represent one of the most intriguing aspects of social relationships. While every person can

identify his friends if asked, it is difficult to find a proper definition for what friendship means.

The most commonly mentioned characteristics of friendship relations are: helping, reci-

procity and a limited number of friends (See, for example, Hruschka and Henrich (2004), Silk

(2002), Hallinan (1979), de Vos and Zeggelink (1997), van de Bunt, van de Duijn and Snijders

(1999) or Zeggelink (1995)). Mutual help in a friendship relation implies that friends help

each other in case of necessity. The exchange or reciprocity means that people expect from

their friends a similar attitude to the one that they take towards them. Finally, a limited

number of friends simply means that subjects do not have as many friends as they would like

since keeping up friendship relations takes time and effort.

The present paper presents a model that tries to reproduce these three facts: helping,

reciprocity and a limited number of friends. The interactions between a group of players are

modeled in the following repeated setting: each period every player has to decide whether

to perform an activity with each of the other players in the population, one activity per

pair of people. The activity might be going to the cinema, going on vacation, doing sports

together, etc. Each player is characterized by an exogenous degree of needing help. This

means that in each of the activities each player performs, she needs some help. This might

be because she needs money, has had an accident, is sad, etc. After both players decide to
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do the activity together, they have to decide simultaneously whether to help the other or

not. Helping involves a cost for the player who provides help but also a benefit for the player

receiving help. In game-theoretical terms, we model the decision of helping as a cooperation

game of a class of prisoners’ dilemma game. We called this game the Helping Game. The

degree to which a player needs help is exogenous, common knowledge and heterogeneous

among the players. Finally, each player is able to provide help a limited number of times

per time period. This represents the fact that helping is time-consuming. If two players are

performing the activity and helping each other (playing the cooperative equilibrium) they

are called friends. If they are performing the activity but not helping each other, they are

called mates. If they are not performing the activity they will be called strangers.

As mentioned above, our aim is to construct a model that, based on helping, reciprocity

and a limited number of friends, is able to explain some of the phenomena that we observe

in the real world friendship relations. From the preceding paragraph it is clear how we make

use of the helping and the limited number of friends. To implement reciprocity, the strategies

that we use for supporting cooperation (providing help) will be Grim Trigger. According to

Grim Trigger strategies, a player will keep on providing help to another player as long as this

other player is also providing help to her. Because Grim Trigger strategies do not allow for

forgiveness, in section 1.5.1 we check for the robustness of the results when instead players

use Tit-for-Tat for supporting cooperation.

In our three most important results we explore the three following issues: role of similarity

in friendship relations, uniqueness of equilibrium of the friendship network and length of the

friendship relations. First, we manage to explain the role of similarity in friendship relations

(similarity in the friendship context is often referred to as homophily). It has been reported

in empirical studies that similar people (same hobbies, race, etc.) are more likely to have

friendship relations. For example, Marmaros and Sacerdote (2004), using the number of

emails exchanged between students from Dartmouth College, found that similarity in age,

geographic closeness, race and interests increase the likelihood for two people to become

friends. However, strong friendship relations between very different people can exist. Section

1.3 suggests a solution to this fact. According to the model, when two people are mates

this means that they are having a relationship but their relationship is not strong enough to

consider them friends. We find that similarity matters only if a “mate” relationship between

two people is possible. Otherwise, similarity will play no role in determining if these two

people can become friends and the only factor determining if a relationship is possible are

the profits from the relationship each party gets.

Second, we show that it is in general impossible to predict the friendship relations that will

prevail within a group of people in the long run. In particular we show that the equilibrium
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will depend on the order in which people meet each other. This order is modeled as a

random process. In game-theoretical terms, the equilibrium is history dependent and the

history follows a random process. What is interesting about the model we present is that

we give two precise explanations for why the equilibrium may be history dependent. First,

if people belonging to the group are not different enough in terms of their degree of needing

help, then a certain degree of substitutability between people exists. In this case, the random

process by which people meet each other will play a role in the final outcome of the process.

Second, if no mechanism or social norm exists by which agents punish those agents who

’betray’ their friends, then the random process by which people meet each other will again

play a crucial role in determining the final outcome. In section 1.6 we relate this and other

results with some empirical facts about friendship relations.

Many sociological, physiological and anthropological papers have modeled the process

of friendship formation. For example, in a paper by Zeggelink (1995), friends have a fixed

desired number of friends and each player is defined by a dichotomous variable (they are

either type-1 player or type-2 player). Each player tries to have the desired number of friends

and to maximize the similarity in his type with the type of his friends. The author performs

simulations and finds that the players tend to group with the others of the same type. The

taste for similarity is exogenously imposed whereas we make no assumption on this respect.

In this respect, Hruschka and Henrich (2004) developed a model in which in each period

players can choose with whom they want to play a prisoners’ dilemma game. The model is

focused on the evolutionary biological point of view of the cooperative relations. That is,

they focus on the differences between the survival rates of cooperative players and selfish

players.

The model presented is different also from the economic models of social networks pio-

neered by Jackson and Wolinsky (1995) and Bala and Goyal (2000). It differs from Jackson

and Wolinsky (1995) in that in our model the payoff of the players is not determined uniquely

by the state of the friendship network but also by the actions of the players against those

with whom they do not share a friendship relation. The model presented, on the other hand,

differs from Bala and Goyal (2000) in that when two players share a link, they then play a

cooperative game and not a coordination game.

To our knowledge, only two papers examine the issue of social networks when players

play a cooperative game. These are Lippert and Spagnolo (2005) and Vega-Redondo (2005).

The first one focuses on the information transmission about the defectors in the network

and on the different punishment mechanism for supporting cooperation. On the other hand,

Vega-Redondo (2005) explores the amount of cooperation that will emerge in the network

when the environment suffers from aggregate shocks to payoffs.
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The rest of the paper is organized as follows. In Section 1.2 we develop the model. Section

1.3 explores the simplest case in which the population consists of only two players. Section

1.4 extends the model for more than two players. In Section 1.5 we discuss the robustness

of the results and the assumptions as well as present some extensions. We relate our results

with empirical findings on friendship relations in Section 1.6. Finally, Section 1.7 concludes.

1.2 The Model

1.2.1 Informal Discussion

Assume a population N of n players. Each player in the population is characterized by the

degree to which she needs help p ∈ (0, 1). Every time period t = 1, 2, . . . a player, say i, is

selected by nature. This player can make ‘phone calls’ to the players with whom she intends

to form a relationship. There are two types of relationships: friends and mates. When two

players are not in a relationship, we say they are strangers. These three different states,

friends, mates and strangers, are explained in more detail below. When player i calls player

k, then players i and k decide simultaneously and non-cooperatively whether to enter into

such a mutual relationship or not. Relationships carry a benefit to both players but also

involve the the cost of additional additional cooperation. In any relationship, each party

needs some help and the degree of help needed differs among players. Part of the relationship

is an observable decision of whether or not to cooperate in the sense of providing help. So

when two players have decided to join a mutual relationship they then non-cooperatively

simultaneously decide whether or not to help the other. When both decide to help the other

then we speak of friends; otherwise we speak of mates. If the relationship does not even arise

because at least one of the two parties does not want to participate in the relationship then

we speak of strangers.

The maximum number of times per period that a player can offer help is limited to

m ∈ {1, . . . , n− 1}. This constraint reflects the fact that providing help is costly in terms of

time. It implies that a player can only have at most m friends at every moment of time.

We limit the set of possible strategies of each player as follows. Only in a period in which

a player makes or receives phone calls she can change her plan of action. Otherwise, she

plays as she decided at the time of the last phone call. Only two types of plans of actions or

strategies are considered: the cooperative and the defective.

In the cooperative plan the player acts as in Grim Trigger. A friendship is suggested,

which means that, first, a relationship is suggested and then if the other agrees the first

player suggests helping the other when in need of help. The Grim Trigger plan also specifies
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what to do if the other does not want to be friends or even to be mates: If a friendship does

not arise then the player chooses whatever is best for herself in the one-shot game. Depending

on the payoffs, this can be to not accept any relationship or to suggest forming a relationship.

Finally, the Grim Trigger plan protects against later defections by proceeding, in case of a

defection, as if a friendship did not even arise in the first place.

In the defective strategy the player rejects or breaks the friendship relation. If both

players had a friendship relationship in the previous period then she breaks it. The player

does so by not providing help to the other player but still receiving the benefits from the other

player’s helping her. The two players had not previously been in a friendship relationship

with each other, she rejects a possible friendship relation and plays whatever is best for her

in the one-shot game.

1.2.2 Formal Presentation

Assume a population N of N players that discount the future at a common rate δ ∈ (0, 1).

Each player i ∈ N is characterized by the degree to which she needs help pi ∈ (0, 1). Every

time period t = 1, 2, . . . every placer faces a one-shot game with every other player in the

population. In this game, which we call the Relationship Game, the two players have to

decide simultaneously whether to link l (suggest a relationship) to the other player or not

n. If both players agree on having a relationship together, they then simultaneously decide

whether to help H the other or not N . The subgame that starts after both players have

decided to join a relationship (both chose l) is called the Helping Game.

The payoff scheme works as follows. First, at any given period the payoff of each player is

the sum of the payoff she gets from playing the Relationship Game with all the other players

in the population. Within each time the Relationship Game is played, if one of the players

decides not to link with the other, then they both get 0 payoff. If both players play l but are

not helping each other, then player i gets A − pi and player k gets A − pk. Hence, they get

a fixed amount A ∈ (0, 1) minus the degree to which they need help. If player i is helping

player k but not the other way around, then player i gets A − pi − cpk and player k gets

A − pk + xpk. That is, player i has to pay the cost cpk with c ∈ (0, 1) for helping player

k and player k receives a benefit xpk with x ∈ (0, 1) because of being helped by player i.

The payoffs in the other situations follow the same logic. We assume A ≥ 1 − x, so that

being helped without providing help is always weakly preferred to not being linked. The

Relationship Game is shown in extensive form in Figure 1.1.

For the reader’s convenience, we present below the normal form of the Helping Game,

which is the subgame that starts after both players have decided to join a relationship.
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Figure 1.1: Relationship Game

Table 1: Helping Game

H N

H A− (1− x)pi − cpk, A− (1− x)pk − cpi A− pi − cpk, A− (1− x)pk
N A− (1− x)pi, A− pk − cpi A− pi, A− pk

The following proposition characterizes the Nash equilibria of the Relationship Game

between players i and k. Whenever we write ((x, y), (x′, y′)), this means that player i plays

(x, y) and player k plays (x′, y′) with x, x′ ∈ {l, n} and y, y′ ∈ {H,N}.

Proposition 1. In the Relationship Game for any players i, k ∈ N :

• Nash equilibria: For each pi, pk ∈ (0, 1), ((n, y), (n, y′)) are Nash equilibria with y, y′ ∈
{H,N}. If pi, pk ≤ A then ((l, N), (l, N)) is also a Nash equilibrium.

• Sub-game perfect Nash equilibria: For each pi, pj ∈ (0, 1), ((n,N), (n,N)) is a sub-game
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perfect Nash equilibrium. If pi, pk ≤ A, then ((l, N), (l, N)) is also a sub-game perfect

Nash equilibrium.

As mentioned above, if two players are playing (l,H) repeatedly against each other, we

define them as friends. If they are playing (l, N) repeatedly against each other, they are

mates. If two players play (n,N) repeatedly against each other, we say they are strangers.

The words betrays and betrayal are used throughout the paper; below we write the formal

definition of betray and betrayal.

Definition 1. We say that a player i betrays another player k if they were friends in the last

period, but in the current period i, still having a link with k, does not provide her with help.

That is, they both played (l,H) against each other in the past round but i switches to play

(l, N). We say there has been a betrayal between two players if they were friends in the last

period but at least one of them betrays the other in the current period.

As is well known from the Folk theorem in repeated games, infinitely many strategies can

form Nash equilibria. Hence, we shall restrict the strategy space of the agents to make the

model tractable. In our model, as already mentioned, players are only able to have two types

of plans, the Cooperative Plan and the Defective Plan.

Cooperative Play according to Grim Trigger (defined below).

Defective Play (l, N) if you and the other player played (l,H) in the last round; play

your weakly dominant strategy in the Relationship Game otherwise.

As can be infered from the Relationship Game and Proposition 1, whenever we write play

your weakly dominant strategy it implies play (n,N) if your degree of needing help is smaller

than A; play (l, N) otherwise.

Definition 2. Define the Grim Trigger strategy for player i ∈ N played against any player

k ∈ N as follows:

• If a play in any past period against k was either ((l,H), (l, N)) or ((l, N), (l,H)), then

play your weakly dominant strategy.

• Otherwise, play (l,H).

The Grim Trigger strategy prescribes helping unless there has been a betrayal in the past

between the two players. Note that by the way we define the Grim Trigger strategy players

are protected against possible deviations from the other player when both are playing (l,H).

Our choice of these two specific plans is motivated by two facts that we explain now

and formally prove below. First, if players can play according to the Defective Plan, the
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Cooperative Plan is the best (i.e. for more parameter values) way of supporting cooperation

that does not involve the use of dominated actions. Second, the Defective Plan is the best

possible deviation against the Cooperative Plan. Nevertheless, in section 1.5.1 we check for

the robustness of the results when instead of Grim Trigger players are allowed to use the

Tit-for-Tat, which allows players to forget deviations that occurred in the past.

Proposition 2. Given the possibility of playing as in the Defective Plan, there is no strat-

egy that does not involve the use of dominated actions and that can support the outcome

((l,H), (l,H)) as a part of an equilibrium of the repeated Relationship Game for a bigger set

of parameter values than the Cooperative Plan. Furthermore, the Defective Plan is the best

possible deviation against the Cooperative Plan.

Proof. See Appendix 1.A.1.

We constrain the agents to provide help at most m ∈ {1, ..., n − 1} times per period

and, hence, each player can have at most m friends in a given period. When each player

is to decide with whom she can set up a friendship relation, she will do so in a pair-wise

fashion. This means that, if i is to decide whether she can set up a friendship relation with

k, i will take this decision as if there were no more players in the population. That is, as if

N = {i, k}. However, i will still take into account the upper-bound m. Hence, if i already has

m friends, she will take into account that before setting up a friendship relation with k she

must break one of her already existing friendship relations. On the other hand, if i has less

than m friends, her decision of whether to set up a friendship relation with k will be taken

as if N = {i, k}. We make this assumption to make the model tractable. This assumption

can be thought as a bound in the rationality of players by which they cannot fully take into

account all the interactions that occur among all the players in the population when taking

their decisions.

We refer to a friendship relation between i and k as pair-wise sustainable if the friendship

relation is possible when N = {i, k}. Thus, Proposition 3 in the next section, where we

consider the two-player case, is telling us which friendship relations may exist in equilibrium.

Players are allowed to revise (or update) their strategies in the following way. Each period

a player, say i, is selected by nature. This player can make “phone calls” to the players with

whom she wants to play the Cooperative Plan. Player i then updates her strategies as follows.

She plays the Cooperative Plan with whom she calls and plays the Defection Plan with the

rest. The players who get a call from i can update only the plan or strategy they are playing

against i. However, if a player gets a call but is already providing help to m players, then she

can switch to play the Defective Plan against one of her friends in order to be able to play
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the Cooperative Plan with the player that called her. The rest of players do not update their

strategies in any manner (for a more formal definition of the dynamics the reader is referred

to Appendix 1.A.2). The fact that only one player per period is allow to make a phone call

reflects the fact that real-world relationships don’t happen instantaneously; rather, they are

the result of a ’meeting people’ process.

1.3 Two-Player Game

Assume that the population N consists of only two players, i and k.

Proposition 3. A friendship relation between players i and k can be supported in the repeated

Relationship Game when both players use Cooperative Plan if and only if the following holds:

• if pi, pk ≤ A then c
δx ≤

pi
pk
≤ δx

c ,

• if pi, pk ≤ A
1−x but either A < pi or A < pk, then A − pi + xpi − c

δpk ≥ 0 and

A− pk + xpk − c
δpi ≥ 0.

Proof. See Appendix 1.A.1.

From Proposition 3 we conclude the following. First, if both pi and pk are smaller than

a A, then the friendship relationship can only be supported if the relative difference between

respective probabilities of needing help is sufficiently small. A player with low degree of

needing help (less than A) will not accept a friendship relation with a player whose degree of

needing help, although also smaller than A, is very different from his.

Second, if at least one of the players needs help with a degree higher than A and both

players’ need of help is below A
1−x , then players no longer care about the relative difference

in probabilities of needing help but about their absolute values. In this case, as long as the

inequalities A − pi + xpi + c
δpk ≥ 0 and A − pk + xpk + c

δpi > 0 are satisfied, the friendship

relationship can be supported. The relevant implication of this case is that player i cares

now only about the balance between the costs and benefits of the relationship instead of, as

in the previous case, being similar to the other player.

To have a better understanding of the implications of Proposition 1 we present Figure

1.2. It plots when, for a given value of the parameters A, x, c and δ a friendship relation

is possible between players i and k. So if the coordinate (pi, pk) is shaded it is because for

the given parameters a player whose degree of needing help is pi can be a friend of a player

whose degree of needing help is pk and vice versa.
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Figure 1.2: Friendship Relations

The common interesting feature of these graphs is the existence of non-convexity between

the area when both p’s are smaller than A and the area when one of the p’s is higher than

A. The intuition behind this result is that a player with a small degree of needing help will

not want to be linked with a player with a much smaller degree of needing help. This may

happen because she is afraid that this player may betray her (i.e. deviate from playing the

Cooperative Plan) since this person may prefer her only has a mate. On the other hand, if

their p’s are close enough or the other player’s degree of needing help is high, then he will

be willing to have the friendship relation with that other person because she knows that: (1)

she needs the other player as much as the other player needs her and since both are getting

positive profits from the relationship no one will have incentives to terminate it, and, (2) if

they are not having a relationship they will not even be mates as one of the player’s degree

of needing help is higher than A. In other words, the loss if one betrays the other is too high

(they won’t even be mates) in this second case.

Figure 2.4 (when c > x) merits special attention. It shows that no friendship relationship

between players with a low degree of needing help will arise. Since having a friendship

relationship is not very profitable in terms of x and c, the low-degree of needing help players

will only like each other as mates and not as friends. This happens because the likelihood of
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betrayal is too high. For the same reason, the relationship between low degree players and

moderate degree of needing help players will be possible. Players with a moderate degree

of needing help won’t want to have mates, only friends or strangers. Therefore, in this

latter case, the cost of betrayal is very high. This makes the relationship more likely to be

supported.

Proposition 3 states that the relevance of similarity for friendship selection differs accord-

ingly to the type of players. For some pairs of players the similarity with their friends will

matter and for some other players the similarity will be irrelevant. The thing that will matter

in this latter case will be the balance between costs and benefits from the relationship.

One more thing is worth underlining. A player with a very low p may be “marginalized”

among the players with low p because she needs “too little” help. Summing up the results of

Proposition 3:

• If both pi and pk are small, the relevant thing for a friendship to be possible is the

relative difference between pi and pk.

• If either pi or pk is not small, the relevant thing for a friendship to be possible is the

absolute value of pi and pk.

1.4 n-Player Game

For a clearer understanding of the dynamics of the model when the population consists of

more than two players, we present example 1. The example is drawn in Figure 1.3, where

each node represents a player and a line between two players represents the fact that those

two players are friends.

Example 1. The simulation is conducted for N = {1, 2, 3}, p1 = 0.4, p2 = 0.45, p3 = 0.55

, A = 0.5, x = 0.6, c = 0.3, δ = 0.7 and m = 1. In this setting all the possible friendship

relations are pair-wise sustainable. To check this we can apply the result in Proposition 3 to

the present example.

In the first period, player 1 is selected by nature to make calls. Since m = 1, player 1 can

only provide help to at most one player. Hence, because p2 < p3, she will call player 2 and

both of them will switch to play Grim Trigger against each other.

In the second period, player 1 is again the one allowed to make calls. Since this time

she has one friend, she makes different considerations. Because of the fact that m = 1, she

now wonders if betraying 2 and setting up a relationship with 3 is better than keeping the
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friendship relation with 2. Betraying player 2 is profitable for player 1 because providing help

is costly. Hence, it may happen that the lower payoff associated with a friendship relation

with player 3 is compensated by the one-period gains from betraying player 2. This is exactly

the case in this particular example. Therefore, player 1 will call player 3 and they will switch

to play Grim Trigger against each other. Moreover, player 1 will play (l, N) against player

2.

In period 3, nature selects player 2. Since player 1 betrayed player 2, the friendship

relation between them is no longer possible. This is due to the unforgivingness property of the

Grim Trigger strategy. Hence, player 2 will call player 3. Player 3 is in a similar situation

to the one faced by player 1 in the second period. In this particular example, player 3, as did

player 1, finds the betrayal profitable. Hence, player 3 betrays player 1 to set up a friendship

relation with player 2.

An equilibrium has been reached. Since player 1 betrayed player 2 and player 3 betrayed

player 1, no new friendship relations can arise in the network.

As we have seen, nature (or chance) plays an important role in determining which friend-

ship relations can arise. If the players selected by nature were 2, 2 and 3 in this order, the

equilibrium would have had players 1 and 3 as the only friends. This result together with

other important ones is presented in the next subsection.

In the example above, the equilibrium in which players 2 and 3 are friends results only

if 1 betrayed 2 (or vice versa) and 3 betrayed 1 (or vice versa). On the other hand, the

equilibrium in which 1 and 3 are friends is possible only if 1 betrayed 2 (or vice versa) and 2

betrayed 3 (or vice versa). Therefore, the equilibrium in this case is history dependent.

The key to this result is that, if players 2 and 3 from the example above are similar

enough, player 1 is not losing much by having a relationship with player 3 instead of with

player 2. What loss there is can be compensated by the one-shot profits from betraying 2

today. Hence, the existence of a certain degree of substitutability between friends creates

history dependence in the equilibria. This fact is exploited in Proposition 4.

Proposition 4 shows that convergence to equilibrium is always guaranteed, although the

equilibrium can depend on the order in which players are selected by nature. This fact

represents an important feature of friendship relations. The friendship relations that emerge

in the real world are the result of a complex process of interactions between individuals in

which unpredictable events may play a crucial role in the final outcome. The order of meeting

people has important effects on one’s long-term relationships. However, as we shall see below,

there are some situations in which the convergence of the process to a uniquely determined

equilibrium is guaranteed. These situations are: 1) when the players in the population are
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Figure 1.3: Simulation

different enough from each other (Proposition 5), and, 2) when there exists some type of

social rule by which betrayers are punished (Proposition 9).

Proposition 4. The system converges with probability 1 to an equilibrium network archi-

tecture that can be history dependent. If A > cδ then there exists an ε > 0 such that

if mini,k∈N ,i6=k |pi − pk| > ε, then the friendship network converges with probability 1 to a

unique network architecture.

Proof. See Appendix 1.A.1.

Therefore, when players in the population are different enough, the process will converge to

a unique equilibrium. In other words, the process has only one equilibrium that is not history

dependent and the process will always converge to it. As mentioned before, there exists a

certain degree of substitutability between friends. Hence, if players are different enough, no

player will want to betray a friend to set up a relationship with a higher-degree-of-needing-

help player. Once the substitutability between friends is eliminated, we can successfully

predict the long-term friendship relations that will arise within the population. Note that

conditions in Proposition 4 do not rule out the case where players with p < A can have
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friendship relations between each other. Hence, even when players are different enough so

that the friendship network converges to a unique equilibrium, similarity may play a role.

Another interesting feature of the model is that, when subjects are more patient, the

duration of the friendship relations will tend to be longer. When a player is about to betray

another one, she has to consider the fact that the betrayal will yield her a higher current

payoff but possibly a lower future payoff (consider, for instance, the first betrayal in the case

above). Hence, more patient subjects are less likely to betray another player to set up a

friendship relation with a player who has a higher degree of needing help. Note that the

decision of a player to betray one of her friends and to set up a friendship relation with a

player who has a lower degree of needing help is independent of δ. This is formally stated in

the following proposition.

Proposition 5. Ceteris paribus, the length of the friendship relations depends positively on

δ.

Proof. See Appendix 1.A.1.

Now we present some more complex examples to get a better understanding of how the

friendship network looks in equilibrium. Simulations are conducted for the same parameter

values as in example 1. That is, A = 0.5, x = 0.6, c = 0.3, δ = 0.7. We run simulations

for two different population sizes, 12 and 19, and for two possible values for the maximum

number of friends a player can have, m = 2 and m = 4.

Figure 1.4 show the result of the simulation for m = 2 (left-hand side) and m = 4

(right-hand side). The degrees to which each player needs help are given by pi = 0.05i with

i ∈ {1, . . . , 8} and pi = 0.55 + 0.05i for i ∈ {9, . . . , 12}. As we can see, when m = 2 two

groups (components) are formed. These two components are not fully connected and exhibit

the circle property. This is because each player is restricted to having at most two friends.

However, if we allow them to have more than two friends, the two components merge and

there is a slight increase in connectivity. Careful inspection of the graph at the right-hand

side shows that we have two interconnected components, one with players 6, 7, 8 and 12 and

the other one with the rest.

In Figure 1.5 we show a for the case where there are 19 players in the population and the

degrees to which each player needs help are given by pi = 0.05i for {1, . . . , 19}. When m = 2,

we can see that there are three components plus four players that have no friendship relations

at all. Again, once we allow the population to have more than 2 friends (right-hand side) the

two components merge and we are left with a single component plus three players that are

isolated. In the right-hand side graph, we can see the important role played by player 5, who
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Figure 1.4: Simulation - 12 players

is linked to two subcomponents, the one that involves players 6, 7, 8, 9 and 16 and the other

that involves all the players except herself and players 15, 17 and 18.

Figure 1.5: Simulation - 19 players

From Figures 1.4 and 1.5 we can see that, as one would expect from real-life friendship

relations, the friendship networks arising in equilibrium are very complex and few or non

generalities can be found. Apart from the qualitative results already presented, we have

been unable to find any other generalization. Furthermore, for every seemingly general fact

involving the existence of stars, components, circles, etc. and for every observation about the

amount of connectivity, the characteristic of isolated players, the distance between players,

etc. we were able to find an example such that, with a slight modification of the parameters,

the fact or observation was no longer present..
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1.5 Robustness Checks

1.5.1 Tit-for-Tat

In this section we check for the robustness of our results when players, instead of using Grim

Trigger, use the Tit-for-Tat. Because of our way of modeling, we cannot use the standard

definition of Tit-for-Tat. The problem arises due to the possibility of not being linked so we

have to adapt the standard definition to our setting. We define Tit-for-Tat as follows. If

player k betrays player i, player i will offer help to the other player again only if k offers

help to i and at the same time i does not help k. Hence, after a betrayal, the friendship

relation can be reestablished only if the betrayer ’pays back’ to the betrayed for the harm

done. Formally,

Definition 3. Define the Tit-for-Tat strategy for player i ∈ N played against any player

k ∈ N as follows:

• If i never betrayed k and k never betrayed i, play (l,H).

• Otherwise:

1. If the play in the past period against k was ((l, N), (l,H)) or ((l,H), (l,H)) then

play (l,H).

2. If the play in the past period against k was ((n, {H,N}), (l,H)) then play (l, N).

3. Otherwise, play your weakly dominant strategy.

The following result shows that the conditions for supporting friendship under Grim

Trigger (Proposition 1) and Tit-for-Tat are the same apart from minor differences.

Proposition 6. Under Tit-for-Tat strategies, a friendship relation between players i and k

can be supported in the repeated game if and only if the following holds:

• if pj ≤ A
1−x and p−j ≤ A, then pj

p−j
≥ c

δx

• if pj ≤ A
1−x and A < p−j ≤ A

1−x , then 1
1+δ (A− pj) + xpj − c

δp−j ≥ 0

for j ∈ {i, k} and −j ∈ {i, k}r {j}.

Proof. See Appendix 1.A.1.

When both pi and pk are below A both Grim Trigger and Tit-for-Tat strategies yield the

same conditions for supporting friendship. When either pi > A or pk > A, the condition is
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Figure 1.6: Tit-for-Tat

slightly different between the two settings. Figure 1.6 is a counterpart of Figure 1.2 for the

case of Tit-for-Tat strategies formulation.

Under Tit-for-Tat strategy convergence to equilibrium is not guaranteed, that is, the

friendship network may cycle between different configurations forever. The reason why this

happens is that, because of the discount factor, it may be in some players’ interest to contin-

uously betray each other and became friends again. In Figure 5 we present an example of a

situation in which the social network never reaches an equilibrium. The parameters used are

the same as in example 1. Computations are presented in Appendix 1.A.4.

Remark 1. Under Tit-for-Tat strategies, convergence to an equilibrium is not guaranteed.

1.5.2 Social Punishment

Now we analyze a different issue. In the model presented in the main text, if a player betrays

another, the rest of the players in the population do not react to the betrayal. We may

think that if an agent is betraying her friends, it is less likely that new agents will want to

set up a friendship relation with her. We explore a situation in which, if a player betrays

another, all players will automatically switch to play (n,N) against the betrayer. Each player
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Figure 1.7: Simulation - Tit-for-Tat

knows this fact when considering whether to betray one of her friends or not. We call this

punishment mechanism the Social Punishment. This punishment mechanism may seem to

be a bit too strong but we do not study here the effects of different punishment mechanisms

(Kandori (1992) undertakes this issue). Here we restrict ourselves to the most basic and

simple mechanism of social punishment.

In addition to this, we add one further plan to the two plans players already have at

their disposal. The Friendly Ending Plan is now available for the players. By friendly ending

we mean that the player who wants to break the friendship relation switches to play (n,N)

instead of betraying the other player by playing (l, N).

Friendly Ending Play (n,N) if you and the other player played (l,H) in the last round;

play your weakly dominant strategy in the Relationship Game otherwise.

Proposition 7. Assume Social Punishment. For all A, x, c there exists a δ̂ > 0 such that

if δ > δ̂ and pi 6= pj ∀i, j ∈ N , then the friendship network converges with probability 1 to a

unique network architecture.

Proof. See Appendix 1.A.1.

Without the Social Punishment, we only need each player to be different enough ensure

convergence to a unique equilibrium. On the other hand, with Social Punishment, we need
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each to be sufficiently patient and not to be equal to anybody else in the population.

The following result for the case of Social Punishment deserves attention. Define a fully

connected component as the set of players who are all friends with each other and with no

player outside the component.

Proposition 8. Consider an equilibrium situation. If pi 6= pj ∀i, j ∈ N , δ > δ̄ and Social

Punishment exists, then there exists no fully connected component of m+ 1 or more players

in which all of the players have a degree of needing help bigger than A.

Proof. See Appendix 1.A.1.

Proposition 8 implies that players with a high degree of needing help can not form big

groups of friendship. Without Social Punishment a betrayal in an early period between

people with high degree of needing help may make possible the existence in equilibrium of a

component of more than m+ 1 players to exist in equilibrium.

1.6 Relating our Results with Some Empirical Facts About

Friendship

We propose a repeated setting in which players are friends when they are helping each other.

Many empirical studies show how important the exchange of help between friends is. For

example, Walker (1995) interviewed 52 working- and middle-class subjects and found that one

of the main functions of the friends was to provide help. She found that among the working-

class this help was based on providing goods and services such as borrowing or lending small

amounts of money or helping in finding a job. In turn, helping among the middle-class was

based on emotional and intellectual support.

In their study on 185 Dutch students, Buunk and Prins (1998) found that in the relation-

ship with their best friend, 73.6% of the subjects considered the friendship to be reciprocal.

In our paper, players’ reciprocity is translated into Grim Trigger: I help you as long as you

help me. The Cooperative Plan is restrictive as it does not allow for forgiveness, which is a

standard feature of friendship. We believe that using Grim Trigger is not so far from reality

as betraying a friend is something very severe that is difficult to forgive. Betraying a friend

causes direct and conscious harm, which is different to, for instance, having a small argument

with a friend. Nevertheless, as a robustness check, section 1.5.1 presents the results for the

case in which players instead use the Tit-for-Tat strategy, which allows for forgiveness.

According to Proposition 4, the friendship equilibrium can depend on the order in which

players are selected by nature. We can think of the order in which players are selected by
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nature as being similar to the order in which players in the population meet each other. The

player selected by nature is the one who can have the initiative to meet new people by making

phone calls. The fact that the order in which people meet each other affects the long-term

friendship relations was reported in an empirical study by Cloninger (1986). Cloninger found

that meeting new people may result in breaking old and strong friendship relations because

of the novelty of having new friends. In a forthcoming article, Whitmeyer and Yeingst (2008)

refer to this characteristic of the friendship relations as fickleness.

Our result in Proposition 5 related the length of the friendship relations in a population

to the patience of players, represented by the discount factor. In a sample with children from

the fourth and sixth grades, Hallinan (1978) found that the length of the friendship relations

was considerably longer among the sixth-grade children than among fourth grade children.

Hence, considering that the discount factor decreases with age (see, for example, Read and

Read (2004)), the result stated in the proposition matches the empirical result concerning

friendship relations between children.

1.7 Conclusions

We have presented a model of friendship selection between a group of players. Each player

can decide with whom of the other players in the group she wants to set up a friendship

relation. The results of the paper state under which conditions friendship can arise between

players. We find that when there are only two players, the decision to be friends between

players whose degree of needing help is low depends on the relative difference between their

degrees of needing help: the bigger the difference, the less likely they are to become friends.

For players whose degree of needing help is high, we find that rather than caring about the

relative difference in degrees of needing help, they look only at the absolute level of these

values

When we move to analyze the case of a group of more than two people, we find that it is

in general impossible to predict which friendship relations will be present in equilibrium. We

present two explanations for why this happens. These are the existence of a certain degree of

substitutability between friends and the non-existence of a social mechanism to punish the

players betraying friends. We also find that the length of the friendship relations positively

depends on the patience of the players.

The model presented here differs mainly from the existing models in psychology, anthro-

pology and sociology in that it is solved analytically and in the fact no assumptions in the

taste for friends are made. Moreover, it differs from the existing models of social networks in

that: there exists heterogeneity between players, the cooperation game that players play in
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the network is micro-founded in friendship relations and the strategies of each player can be

different in each one of the cooperative games that they play on each period.

The results found in the paper seem to match the findings reported in many empirical

studies of friendship selection. In our opinion, the value of the paper lies in the fact that it

gives a precise non-trivial explanation to some of the phenomena we find in the friendship

relations among humans. Possible extensions of the model may include a more general setting

in which the degrees of needing help are unknown but players can learn them or allowing for

a more flexible dynamic setting with respect to how players change their strategies.
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Appendix

1.A.1 Proofs

Proposition 2. Given the possibility of playing as in the Defective Plan, there is no strat-

egy that does not involve the use of dominated actions and that can support the outcome

((l,H), (l,H)) as a part of an equilibrium of the repeated Relationship Game for a bigger set

of parameter values than the Cooperative Plan. Furthermore, the Defective Plan is the best

possible deviation against the Cooperative Plan.

Proof. First, we prove the first part of the proposition. It is straightforward to notice that,

given the possibility of playing the Defective Plan the only way of making the cooperative

outcome easier to sustain, in the sense that it can be sustained for a bigger set of parameter

values, is via the following strategy.

• If a play in any past period against k was either ((l,H), (l, N)) or ((l, N), (l,H)), then

play (n,N).

• Otherwise, play (l,H).

That is, a strategy that threatens the opponent with playing (n,N) if a deviation occurs

increases the parameter set for which a friendship relation is possible. Any other strategy

different from the one above will imply less cooperation as the Defective Plan will make

deviation profitable for a bigger parameter set. However, playing (n,N) is weakly dominated

by playing (l, N) for all players i ∈ N with pi ≥ A, a contradiction.

The second part of the proposition follows easily. The best one-period gain can be achieved

by playing (l, N) when the other player is playing (l,H), which is what the Defective Plan

prescribes. Moreover, once deviation has occurred, the Cooperative Plan prescribes playing

the weakly dominant action in the Relationship Game, and the best response to this is to

also play the weakly dominant action in the Relationship Game, which is again what the

Defective Plan prescribes.
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Proposition 3. A friendship relation between players i and k can be supported in the repeated

Relationship Game when both players use Cooperative Plan if and only if the following holds:

• if pi, pk ≤ A, then c
δx ≤

pi
pk
≤ δx

c ,

• if pi, pk ≤ A
1−x but either A < pi or A < pk, then A − pi + xpi − c

δpk ≥ 0 and

A− pk + xpk − c
δpi ≥ 0.

Proof. The payoff to player i when both players play (l,H) equals 1
1−δ (A − pi + xpi − cpk).

If player i deviates at time t from this strategy, then according to the definition of the

Cooperative Plan, three things can happen:

Case 1. If pi ≤ A and pk ≤ A then the most profitable deviation for player i is to play (l, N).

This is weakly better for her than to play (n,N) if pi ≤ A. According to the Cooperative Plan,

in the period after this deviation occurs, player k would switch to play (l, N) forever because

pk < A. Then, the payoff of the deviation for player i equals (A − pi − xpi) + δ
1−δ (A − pi).

Hence, the increase of payoff for player i from the deviation is weakly negative if and only if:

pi
pk
≥ c

δx
(1.1)

Case 2. If pi ≤ A
1−x but A < pk, then A − pk < 0 and A − pi > 0. In this case the best

deviation for player i is to play (l, N) as shown before. But this time, however, because pk > A

player k will switch to play (n,N) forever after player i’s deviation occurs. The payoff of

deviation from (l,H) for player i is given by A− pi − xpi. Hence, the increase of payoff for

player i from the deviation is weakly negative if and only if:

A− pi + xpi −
c

δ
pk ≥ 0. (1.2)

Case 3. If A
1−x ≥ pi > A, then the best deviation for player i is to play (l, N) if the other

player is playing (l,H) and to play (n,N) if the other player is not playing (l,H). So if

they are both playing the Cooperative Plan and no deviation has occurred, if i deviates from

(l,H), the action she will play is (l, N) (because A− pi + xpi ≥ 0). The next period after the

deviation the action played is (n,N). Hence, i’s payoff is the same as in the previous case,

so his incentives to deviate are the same as in the previous case. Therefore, equation (1.2)

gives us the condition for player i to support the Friendship Equilibrium.

Grouping the results of cases 1, 2 and 3 and their equivalent for player k gives us the

result stated in the proposition.

Proposition 4. The system converges with probability 1 to an equilibrium network archi-

tecture that can be history dependent. If A > cδ then there exists a ε > 0 such that if
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mini,k∈N ,i6=k |pi − pk| > ε, then the friendship network converges with probability 1 to a unique

network architecture.

Proof. First, we prove the first statement of the theorem. The fact that the equilibrium

network architecture may be history dependent was already shown in example 1. Moreover,

the system will always converge to an equilibrium because of the following. Given that players

are using Grim Trigger as the strategy for supporting cooperation, if one player betrayed one

of her friends then they won’t become friends ever again. Hence, the process will eventually

get to a point in which no player will want to betray her friends nor to change the strategy

she is currently playing against the other players. Once this happens, the process has reached

an equilibrium.

To prove the second statement of the theorem we proceed as follows. As mentioned earlier,

the process is not ergodic because of the substitutability between players. That is, given the

order in which players are selected by nature, it may happen that a player betrays one of her

friends to set up a friendship relation with a third one whose degree of needing help is higher.

As we show in the next paragraph, this will never happen if players are different enough.

If players are different enough, then the unique equilibrium can be constructed in a fashion

that we will specify below.

The increase in the profit for player i from betraying a friend, say player k, for setting up

a friendship relation with another player j with pk < pj is at most c
(
pk − δ

1−δ (pj − pk)
)

+
1

1−δ (A − xpi + pi). Hence, if c (pk − δpj) + A − (1 − x)pi) < 0 for all i, j, k ∈ N , that is,

if −cδ + A < 0 and pj and pk are different enough, then the profits from betraying will

be negative and the only betrayal that will occur will be those in which one player betrays

another for setting up a friendship relation with a third one that has a smaller degree of

needing help.

To construct the equilibrium network when players are different enough we proceed as

follows. Take the player with the lowest degree of needing help in the population, say i. Define

the combination of relationships between i and the rest of the players that maximize i’s payoff

for a given m. This combination of friendship relations, call it fi, is uniquely determined if

all the players are different from each other. Now take the player that has the second lowest

degree of needing help in the group, say k. Define the combination of relationships between

k and the rest of the players that maximize k’s payoff for a given m and considering that the

friendship relation prescribed by fi has to hold. Continue in this fashion until the player with

the highest degree of needing help. This results in a friendship network F = f1∪f2∪· · ·∪fN .

It is clear that if players are different enough F is an equilibrium network as no player

can improve her situation by betraying a friend in order to set up a friendship relation with
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a different player. F is indeed the only equilibrium network; this follows from the fact that

in any network configuration different to F , there exists at least one player that can improve

her situation by changing her current strategy. To see this, consider a network configuration

different to F . Take the player with the lowest degree of needing help that has her friendship

relations different that what F prescribes. If she breaks her links and offers links to the

players with whom she should be linked according to F , these links will be accepted and she

will improve her payoff (by construction of the network F ).

Now we show that the process converges with probability one to network F . To do so we

only have to consider the fact that (1) for any network different from F there is a positive

probability from moving to a different network, (2) once the network F is reached, the process

remains there forever, and (3), for any network there is a positive probability of reaching the

network configuration F in a finite number of steps. Statements (1) and (2) were proven in

the preceding paragraphs (by showing that F is the unique equilibrium network). To show

(3) it is enough to notice that at any point in time there is a positive probability that the

players allowed to revise their strategy in each period are ordered from the one with the

lowest degree of needing help to the one with the highest degree of needing help. However, if

this is the case, the network that the process reaches is exactly F , as we wanted to show.

Proposition 5. Ceteris paribus, the length of the friendship relations depends positively on

δ.

Proof. For any friendship relation between two players, the chances that one of the players

will betray the other negatively depends on the discount factor. This is so because when a

player betrays another player, she is increasing her present payoff for a possible decrease of

her future payoff. Hence, the higher the discount factor, the less likely a player will betray

one of her friends. Therefore, given a set of parameters and a population, the speed at which

the friendship relations change depends negatively on the discount factor.

Proposition 6. Under Tit-for-Tat strategies, a friendship relation between players i and k

can be supported in the repeated game if and only if the following holds:

• if pj ≤ A
1−x and p−j ≤ A, then pj

p−j
≥ c

δx

• if pj ≤ A
1−x and A < p−j ≤ A

1−x , then 1
1+δ (A− pj) + xpj − c

δp−j ≥ 0

for j ∈ {i, k} and −j ∈ {i, k}r {j}.

Proof. We structure the proof of this result similarly to the proof of Proposition 1 but with

the only difference that once a player betrays the other, it may be in her interest to play (l,H)
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in the next round after betrayal so as to bring the helping situation back. The payoff of player

i that the situation in which both players play (l,H) forever equals 1
1−δ (A− pi + xpi − cpk).

If player i deviates at time t from this strategy, according to the definition of the Tit-for-Tat

strategy two things can happen:

Case 1. If pi ≤ A
1−x and pk ≤ A, then the best deviation for player i is to play (l, N). In

the period after this deviation occurred, player k will switch to play (l, N) because pk ≤ A. If

player i then plays (l, N) or (n,N) forever, we are in the same case as Grim Trigger, i.e. the

case in which condition 1.1 has to hold. On the other hand, if player i plays (l,H) from after

the period she deviated on, player k will also come back to playing (l,H). Note that for player

i there is no difference between trying to restore the friendship relationship immediately after

he betrayed player k T periods after the betrayal has taken place. The payoff of the deviation

for player i equals (A − pi + xpi) + δ(A − pi − cpk) + δ2

1−δ (A − pi − xpi − cpk). Hence, the

increase of payoff for player i from the deviation is weakly negative if and only if:

pi
pk
≥ c

δx
(1.3)

Note that in this case the condition for friendship to be possible is the same as in the case

with Grim Trigger.

Case 2. If pi ≤ A
1−x but A < pk, then A − pk < 0 and A − pi > 0. In this case the best

deviation for player i is to play (l, N) as shown before. But this time, however, because

pk > A player k will switch to play (n,N) after player i’s deviation occurs. If player i then

plays (l, N) forever, we are in the same case as Grim Trigger, i.e. the case in which the

condition 1.2 has to hold. On the other hand, imagine that player i plays (l,H) from after

the period she deviated on. Then, according to the Tit-for-Tat strategy, player k will play

first (l, N) and then (l,H) forever. The payoff of deviation from (l,H) for player i is given

by A− pi +xpi + δ2

1−δ (A− pi − cpk) + δ3

1−δ (A− pi + xpi − cpk). Hence, the increase of payoff

for player i from the deviation is weakly negative if and only if:

1
1 + δ

(A− pi) + xpi −
c

δ
pk > 0 (1.4)

Note that condition 1.4 is stronger than condition 1.2.

Grouping the results of cases 1, 2 and 3 and their equivalent for player k gives us the

result stated in the proposition.

Proposition 7. Assume Social Punishment. For all A, x, c there exists a δ̂ > 0 such that

if δ > δ̂ and pi 6= pj ∀i, j ∈ N , then the friendship network converges with probability 1 to a

unique network architecture.
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Proof. If a player i is to betray another player under the Social Punishment setting, she

knows that from the moment of her betrayal she will get a payoff of 0 forever. Hence, when

deciding whether to betray or not, the player takes into account the present period increase

in her profits with the future decrease in her payoff. Hence, if player i is patient enough she

won’t be interested in betraying any of her friends ever. This result, combined with the fact

that all players are different, shows that, using the same arguments as in Proposition 4, a

unique network exists and the system converges to it with certainty.

Proposition 8. Consider an equilibrium situation. If δ is high enough, pi 6= pj ∀i, j ∈ N
and there exists Social Punishment, then there exists no component of m+ 1 or more players

in which all of the players have degree of needing help bigger than A.

Proof. The proof goes by contradiction. Take a group of k > m+ 1 players among which all

have their degree of needing help bigger than A. Take the m + 1 players of the component

with the lowest degree of needing help. Because k > m + 1, at least one of them won’t be

linked with the other m (if not these m + 1 players will form a closed component which by

assumption is not the case). Take a player among the m+1 with the lowest degree of needing

help in the component who is not linked with the other m with the lowest degree of needing

help in the component. If she makes calls to the players with whom she is not linked and have

the lowest degree of needing help in the component, the calls will result in new friendships.

Note that this won’t happen if some players have a degree of needing help smaller than A.

Hence, the initial situation was not an equilibrium.

1.A.2 Dynamics

The dynamics of the model work as follows.

1. At t = 0 each player is playing the strategy ”play (n,N) against all players in all the

rounds”.

2. In period t for t = 1, 2, . . . the following sequence of events takes place:

(a) A player i ∈ N is selected by nature. This player can make calls to the other

players.

(b) Every player k ∈ N−i plays, if she gets a call from i, according to one of the

possible schemes:

i. If cooperation between k and i is not pair-wisely sustainable. Then k plays the

same strategy she played last period against all the players in the population.

29

Rivas, Javier (2008), Cooperation in Repeated Games, Bounded Rational Learning and the Adoption of Evolving Technologies 
European University Institute

 
10.2870/26189



ii. If cooperation between k and i is pair-wisely sustainable and player k is pro-

viding help less than m times. Then player k plays Grim Trigger with i and

plays the same strategy she played last period against the rest of the players.

iii. If cooperation between k and i is pair-wisely sustainable and k is providing

help exactly m times. Let j be the player with the highest degree of needing

help among those who k is currently helping. If, moreover, the discounted

present value of the profits from playing the Cooperative strategy with i plus

playing the Defective strategy j are higher than the profits of player k from

playing the Cooperative strategy against j, then player k switches to play

the Cooperative strategy with i, the Defective strategy with j and plays the

same strategy she played last period against the rest of players. Otherwise, k

plays the same strategy she played last period against all the players in the

population.

(c) Player i, the one selected by nature in the current period, makes calls to the other

players and changes her current strategy against them. She does so knowing that

the players who get a call will react as stated in step b. She makes the calls

and changes her strategy in such a way as to maximize her present value payoff

myopically, i.e.

i. she will decide whom to call and play the Cooperative strategy with

ii. she will play the Defective strategy with the players she does not call.

(d) Players who get a call from i play according to step b.

(e) All other players don’t change strategy.

1.A.3 Example: A Simple Case

The simulation in example 1 is conducted for N = {1, 2, 3}, p1 = 0.4, p2 = 0.45, p3 = 0.55

, A = 0.5, x = 0.6, c = 0.3, δ = 0.7 and m = 1. First we check that all friendship relations

are possible. To do so we only have to apply Proposition 3 to the present example. Players 1

and 2 can be friends because 0.3
0.6×0.7 ≤

0.4
0.45 ≤

0.6×0.7
0.3 . Players 1 and 3 can be friends because

0.5−0.4+0.6×0.4− 0.3
0.7×0.55 = 0.104 ≥ 0 and 0.5−0.55+0.6×0.55− 0.3

0.7×0.4 = 0.108 ≥ 0.

Finally, players 2 and 3 can be friends because 0.5−0.45 + 0.6×0.45− 0.3
0.7 ×0.55 = 0.084 ≥ 0

and 0.5− 0.55 + 0.6× 0.55− 0.3
0.7 × 0.45 = 0.087 ≥ 0.

In period 1, player 1 is selected by nature. Since she can set up friendship relations

with the other two players but she is constrained to have at most one friendship relation

player 1 will choose to call player 2. This is true simply because p2 < p3 and hence, the

stream of payoffs for player 1 is higher if she sets up a friendship relation with player 2.
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In particular, the stream of payoffs if player 1 sets up a relationship with player 2 equals
1

1−0.7 (0.5− 0.4 + 0.6× 0.4− 0.3× 0.45) = 0.683. On the other hand, if player 1 sets up a

friendship relation with player 3, her stream of payoffs equals 1
1−0.7 (0.5− 0.4 + 0.6× 0.4− 0.3

×0.55) = 0.583. Player 2 will respond to the call of player 1 by switching to play Grim Trigger

with her since 0.3
0.6×0.7 ≤

0.4
0.45 ≤

0.6×0.7
0.3 holds.

In period 2, player 1 is again selected by nature. Now her decision is whether or not to

betray player 2. In this example, player 1 will switch to the strategy ”play (l, N) if you and

the other player played (l,H) in the last round; play your weakly dominant strategy in the

Relationship Game otherwise” against player 2 and will call player 3 and play Grim Trigger

against her. That is, player 1 will betray player 2. The next period after this deviation

occurs, both player 1 and player 2 will switch to play (l, N) against each other (because

p1 < p2 < A). To see that player 1 will betray player 2 and call player 3 and play Grim

Trigger against her, we consider her payoff with this change of her strategies. If player 1

betrays player 3 and sets up a relationship with player 3, her payoff equals (0.5 − 0.4 +

0.6×0.4)+ 0.7
1−0.7 (0.5− 0.4)+ 1

1−0.7 (0.5− 0.4 + 0.6× 0.4− 0.3× 0.55) = 1.156. On the other

hand, if player 1 keeps her friendship relation with player 2, she will get a payoff equal to:
1

1−0.7 (0.5− 0.4 + 0.6× 0.4− 0.3× 0.45) = 0.683. Hence, player 1 will betray player 2 and

set up a friendship relation with player 3.

In period 3, player 2 is selected by nature. She will call player 3 instead of player 1

because the betrayal that happened in period 2 now makes the friendship between player

1 and 2 impossible forever. In this example, we have that, in response to player 2’s call,

player 3 will betray player 1 to set up a relationship with player 2 even though the profit

of player 3 is higher if she has a friendship relation with player 1. The stream of payoffs of

player 3 from betraying player 1 by setting up a relationship with player 2 equals: (0.5 −
0.55 + 0.6× 0.55) + 1

1−0.7 (0.5− 0.55 + 0.6× 0.55− 0.3× 0.45) = 0.763. On the other hand,

the stream of payoffs of player 3 if she keeps her friendship relation with player 1 equals:
1

1−0.7 (0.5− 0.55 + 0.6× 0.55− 0.3× 0.4) = 0.533. Hence, player 3 will betray player 1.

After period 3, the network is in equilibrium. No player can increase her profit by changing

the strategy as it can be easily verified.

1.A.4 Example: Nonexistence of Equilibrium under Tit-for-Tat

We now show with an example that under Tit-for-tat there may not exist equilibrium. We use

the same set of parameters as in example 1. That is, N = {1, 2, 3}, p1 = 0.4, p2 = 0.45, p3 =

0.55, A = 0.5, x = 0.6, c = 0.3, δ = 0.7 and m = 1.

First, we check that a friendship relation is possible between any two players in the group.
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To do so, we only have to apply Proposition 6 to the present example in the same fashion as

we applied Proposition 3 in Appendix 1.A.3.

We show now that, in this particular case, the process will never converge no matter how

nature selects the players. As we showed in the proceeding paragraph, all friendship relations

are possible. Now we show that for any given friendship relation in this group, there is always

a profitable betrayal independent of the history of past play. Imagine that players 1 and 2 are

friends and both players betrayed player 3 recently. If one of these two players wants to set up

a friendship relation with player 3, they will have to first ’pay back’ and offer help to player 3.

Imagine that player 2 is selected by nature: she will betray player 1 and switch to play (l,H)

against player 3 if and only if (0.5−0.45+0.6×0.45)+0.7(0.5−0.45−0.3×0.55)+ 0.7
1−0.7(0.5−

0.45) · · ·+ 0.72

1−0.7(0.5−0.45+0.6×0.45−0.3×0.55) > 1
1−0.7 (0.5− 0.45 + 0.6× 0.45− 0.3× 0.4).

This inequality holds true. Note that because p1 < p2 and p3 < A, if player 2 finds it profitable

to retake her friendship with player 3 so will player 1 . Also note that if player 1 (2) finds

it profitable to betray 2 (1) to retake her friendship relation with 3, it is straightforward to

show that since p3 > p2 > p1, if player 1 (2) is having a friendship relation with 3, she will

find it profitable to betray player 3 and to retake (or start) a friendship relation with 2 (1).

Also, in this example player 3 finds it profitable to betray player 1 (2) to retake her friendship

relation with player 2 (1). However, this is not needed for the result we want to show.

So we have that for any history of past play (or, more intuitively, history of past betrayals),

there always exists at least one player that can increase her profit by changing strategy. Hence,

the process never converges to an equilibrium.

1.A.5 Formal Definitions of the Sets of Strategies

Let i and k stand for the two typical elements of N and let N−i = N r {i}. Define the set

of actions in the Relationship Game as A = {l, n} × {H,N} and let Ai be the set of actions

of each player i against every other player in the Relationship Game, Ai = (Aij)j inN−i with

Aij ∈ A. Let Ht
ik be the set of all possible histories between players i and k till the beginning

of time t ≥ 0. Hence, we have that
(
h1
ik, . . . , h

t−1
ik

)
∈ Ht

ik for t ≥ 1 and H0
ik = ∅ with

hsik ∈ {Aik ×Aki} for s ∈ {1, . . . , t− 1}. Define Ht
i = (Ht

ij)j∈N−i .

Let Lt be the sequence of players selected by nature till time t, hence Lt = (lτ )tτ=1 with

lτ ∈ N . Define the set of strategies of each player i against player k given the players selected

by nature each period and set of all possible histories between i and all the other players as

Σik. Hence, if σik ∈ Σik then:

σik : ∪∞t=0

{
Lt ×Ht

i

}
→ A.
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Therefore, a strategy σik is a plan that maps all the possible histories and all the possible

combinations of players selected by nature into the set of actions. We make use of pair-wise

strategies. That is, if player i is to decide which action to take against player k, i will only

consider the past history between i and k as if N = {i, k}. Formally, denote the pair-wise set

of strategies for each player i against player k given the players selected by nature in every

period and set of all possible histories between players i and k by Σp
ik. Hence, if σpik ∈ Σp

ik,

then:

σpik : ∪∞t=0

{
Lt ×Ht

ik

}
→ A.

We are using the superscript p to refer to the fact that the strategy is pair-wise. For each i

define Σi = (Σij)j∈N−i and Σp
i =

(
Σp
ij

)
j∈N−i

.

We write πik(σi, σ−i) as the discounted present value payoff for player i when he plays the

Relationship game against player k when i’s strategy is σi and the rest of players are playing

a strategy σ−i. Define the best response of each player i as σBRi = (σBRij )j∈N−i where:

σBRij ∈ arg max
σpij∈Σpij

πij(σ
p
ij , σ−i)

st : # {σpi : σpi ∈ (l,H)} ≤ m

Put in words, each player maximizes her payoff taking each relationship pair-wisely subject

to the constraint of not offering help more than m times.

Finally, we reduce the strategy space to the case in which, for each player i, her strategy

against every player k consists in either the Cooperative strategy or the Defective strategy.

For every i, k let Σ̂p
i be this strategy space.
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Chapter 2 - Learning within a

Markovian Environment
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2.0 Abstract

We investigate learning in a setting where each period a population has to choose between

two actions and the payoff of each action is unknown by the players. The population learns

according to reinforcement and the environment is non-stationary, meaning that there is

correlation between the payoff of each action today and the payoff of each action in the

past. We show that when players observe realized and foregone payoffs, a suboptimal mixed

strategy is selected. On the other hand, when players only observe realized payoffs, a unique

action, which is optimal if actions perform different enough, is selected in the long run. When

looking for efficient reinforcement learning rules, we find that it is optimal to disregard the

information from foregone payoffs and to learn as if only realized payoffs were observed.

2.1 Introduction

Imagine the simple decision problem in which every period individuals in a population have

to choose between two alternatives. The payoff of these two alternatives is not know by the

players. What is more, the payoff of the alternatives could vary over time according to some

distribution also unknown for the players.

This decision problem is faced by many of us in our everyday lives: whether to buy a PC

or a Mac, whether to have fruit or a cake as a dessert in a restaurant, or whether to watch an

action movie or a romantic movie at the theater. Although oblivious of the payoff we will get

from making these choices, we might have some information that can help in choosing the

better alternative. This information could have been obtained, for instance, from our own

experiences in the past or via word-of-mouth communication.

In this paper we study how the choices made by a population evolve in the setting just

described. The model we present has two major features about how players learn and about

how the payoffs change. First, players learn according to reinforcement, whereby actions that

where successful in the past are more likely to be chosen. Second, the underlying distribution

determining the payoff of each action is non-stationary. This means that the payoff today of

a given action depends on the payoff it yielded in the past. In particular, we consider the

case in which payoffs depend deterministically on the state of nature. The state of nature

changes following a Markov chain. Hence, the probability of being at a given state tomorrow

depends on which state we are in today. Players are ignorant of this fact; they simply observe

that the payoff of available actions changes over time.

In the learning literature, as well as in the economic literature in general, randomness

determining the outcome of certain events or actions is almost always assumed to follow a
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stationary i.i.d. process. This assumption is clearly made for the sake of technical simplicity,

as real life phenomena, such as financial markets, gambling, population biology, statistical

mechanics, etc., quite often follow non-stationary processes. To our knowledge, only Ben-

Porath et al. (1993) and Rustichini (1999) deal with the evolutionary properties of models

where nature follows a non-stationary process.

Ben-Porath et al. (1993) present an evolutionary model that is framed within a changing

environment. They study two types of environments: one in which the change is deterministic

and another in which the changes in environment follow a Markov chain. In their model,

players’ actions are subject to random mutations. They characterize the mutation rate that

maximizes population growth in the long run.

Rustichini (1999) presents a paper that focuses on the optimality of two different pop-

ulation dynamics within a Markovian environment. In his model, the environment changes

according to a Markov chain, and for any state in the chain there is a unique action that

maximizes payoff. Rustichini (1999) studies the optimality properties of linear and exponen-

tial (logit) adjustment process when players have infinite memory. An adjustment process or

learning rule is simply a map between information and strategies. Rustichini (1999) considers

two different informational settings about payoffs of actions. In one of these settings players

observe the performance of all the actions (realized and foregone payoffs are observed), while

in the other they only observe the performance of the action chosen (only realized payoffs are

observed).

As in Rustichini (1999), we consider two informational settings: one in which both realized

and foregone payoffs are observed and another in which only realized payoffs are observed.

There are two main differences between Rustichini’s work and ours. First, we consider a very

general set of learning rules instead of only two specific rules. Second, and most importantly,

in our setting players don’t use the whole history of past payoff realizations. Instead, as pre-

scribed by reinforcement, players learn using the information they have from their most recent

payoff experiences. The reason why we are interested in a setting where players have limited

memory is that empirical and theoretical literature in psychology and economics agrees that

limited memory is a better assumption for modeling human behavior than infinite memory

(see for example, Rubinstein (1998), Hirshleifer and Welch (2002) and Conlisk (1996)).

As already mentioned, the learning rules considered in this paper have the property of

being reinforcing. According to reinforcement learning, actions that were more successful

today are more likely to be adapted for tomorrow. Reinforcement has been found to be

one of the main driving forces of human behavior in repeated decision problems. For some

detailed expositions on reinforcement learning and its relationship with real life behavior the

reader is referred to Roth and Erev (1995), Erev and Roth (1998) and Camerer and Ho
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(1999).

When both realized and foregone payoffs are observed, reinforcement is translated into

being more likely to play tomorrow the action that was better today. For this setting, we use

a generalization of the best response behavior that we call the Stochastic Better Response.

Under the Stochastic Better Response, the probability of playing tomorrow a given action

increases if and only if today that action was better than the other one. The magnitude of

the change in probabilities of playing either action depends on the specific functional form

used. The Stochastic Better Response is a very general learning rule that allows players

to respond to the magnitude and not just the ordering of payoffs of each action. Note

that the Stochastic Better Response is a different concept from the Stochastic Better Reply

Dynamics (Josephson (2007)). The Stochastic Better Reply Dynamics are the dynamics for

the evolution of strategies resulting when players use the better response, which is a particular

case of the Stochastic Better Response.

When foregone payoffs are not observed, players can not directly compare the perfor-

mance of both actions within the same time period. In this case, players reinforce (possibly

negatively) the action they played. How much they reinforce this action will depend on the

payoff achieved. We use a general case of the Cross (1973) learning rule that also generalizes

the rules in Börgers, Morales and Sarin (2004) (BMS, henceforth). We call this rule the Gen-

eral Reinforcement Rule. Note that players could use the General Reinforcement Rule even if

they observe foregone payoffs. While this implies that players are disregarding information,

we will show that it may be optimal to do so.

Under the Cross Learning Rule, players increase the probability of playing the action just

played by the payoff yielded by that action. An interesting result shown by Börgers and Sarin

(1997) is that a population that plays according the Cross Learning Rule exhibits a behavior

that converges to replicator dynamics.

The rules in BMS can incorporate aspiration levels (exogenous or endogenous): in other

words, if the payoff of the action chosen is higher than the aspiration level, then the probability

of playing that action increases for the next period. On the other hand, if the payoff achieved

by the action chosen is smaller than the aspiration level, then the probability of playing that

action decreases for next period. The rules in BMS are linear on payoffs. We relax this by

allowing for any increasing function on realized payoff.

In the case where foregone payoffs are observed, we show that the continuous time limit of

the evolution of strategies converges to a situation where every period every action is played

with a constant probability bounded away from 1. The specific value of the probability by

which each action is played at every period will depend on two things: first, the difference
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in payoffs between the two actions and the specific form of Stochastic Better Response used,

and, second, on the probabilities that the limiting distribution of the Markov chain for states

puts on each state. The behavior found in this setting is a generalization to what is know

as probability matching. Under probability matching, if an action is best a fraction x of

the time, then in any given period it is played with probability x. The best reply matching

behavior is clearly suboptimal. While some experimental papers report that this behavior is

observed in real life (see, for example, Rubinstein (2002), Siegel and Goldstein (1959)), there

does not seem to be consensus as to whether probability matching is in fact present in the

behavior of real life agents (see, for instance, Vulkan (2000) and Shanks et al. (2002)).

The results found in this informational setting are also closely related to the findings by

Kosfeld et al. (2002). They study a setting where a finite set of players repeatedly play a

normal-form game. Players adapt their strategies by increasing the probability of playing a

certain action only if this action is a best reply to the actions played by the other agents.

Hence, the rule they use is a particular case of the Stochastic Better Response in which the

magnitude of payoffs is irrelevant for the updating of strategies. Our setting is also different

from theirs in that players do not play against other players but against nature and in that

we consider a general class of rules instead of only one. Kosfeld et al. (2002) find that the

continuous time limit of the system converges to a best-reply matching equilibrium. In a

best-reply matching equilibrium each player plays an action with a probability that is equal

to the probability that this action is a best response to the actions of the other players. The

probability matching behavior found in this paper for games against nature is the equivalent

to the best-reply matching equilibrium found in Kosfeld et al. (2002). In Section 2.5.1 this

issue is discussed in more depth.

In our second informational setting, when foregone payoffs are not observed, we show that

the population may end up playing a suboptimal action. The population surely selects the

action that has higher average payoff only if the difference between the average payoff of the

two actions is high enough. Hence, the system may lock-on to a suboptimal action. In this

respect, our work extends Ellison and Fudenberg (1995) results to a general set of learning

rules and an environment that may not be stationary.

Our results are rounded off by characterizing the efficient rules for both informational

settings. A striking result is that when foregone payoffs are observed, it is optimal to ignore

the extra information conveyed by the payoff of the action not chosen. That is, players are

better off by learning using the General Reinforcement Rule, which only uses the information

of the realized payoff. This is due to the fact that observing foregone payoffs leads players to

adopt the action that is best today but may be not the best in the long run. That is, players

are ”distracted” by observing the performance of all the actions. When foregone payoffs are
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not observed, we show that if players use learning rules that diminish the magnitude of payoffs,

that is, that have very cautious and show slow learning, then the population learns the optimal

action. These results from are in contrast to those of Rustichini’s (1999). In Rustichini (1999),

when the population uses the exponential rule (fast learning) the best action is selected only

in situations where foregone payoffs are observed, whereas if populations uses the linear

rule (slow learning) best action is selected only in situations where foregone payoffs are not

observed. Here, instead, we find that under reinforcement learning it is optimal to disregard

foregone payoffs and to exhibit slow learning in both informational settings.

This paper’s contribution to the literature is twofold. Our first contribution to the lit-

erature is the introduction new techniques for dealing with correlated states of nature. As

mentioned, very few papers have studied the situation in which the future realization of the

state of nature depends on its past realizations. Most papers on learning consider either that

the environment does not change or that it changes independently of past realizations. This

is due to the technical difficulties involved in dealing with correlated realizations of states. In

this paper we show how these difficulties can, at least partially, be overcome. The proofs for

the result for the Stochastic Better Response demonstrate how dependent randomness can

be dealt with by showing that for any possible realization of states of nature, the position

of the system in the future can be approximated by the differences in speed of convergence

towards each action.

The proof of the result for the case where foregone payoffs are not observed extends Ellison

and Fudenberg’s (1995) result to the case where the distribution of payoffs is not stationary.

We show that the behavior of a system that evolves according to a Markov Chain can be

approximated by the behavior of a system in which the probability of each state occurring is

independent and equal to the limiting distribution of the Markov Chain.

Our second contribution is the extension of the knowledge about stimulus response learn-

ing models and evolutionary models. The differences in the behavior of the population under

the two informational settings are very intriguing and of interesting application for real life

situations. For instance, why can inferior technologies come to dominate the market? A

well known example is that when the video format VHS took over from the superior format

Betamax. The model can explain that if the two technologies are not too different in terms

of performance, the stochastic evolution of nature can lead the population to lock on the

suboptimal choice forever. In the example with video formats, during the first months after

the release of both technologies, Betamax tapes could not hold an entire movie. This caused

the population to slowly adopt the VHS format. Once the true potential of Betamax was

revealed, it was too late, consumers had already locked on the inferior technology.

The rest of the paper is organized as follows. Section 2.2 presents the model. The two
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informational settings are introduced in Section 2.3. Results are developed in Section 2.4.

Section 2.5 presents a discussion and a deeper comparison of this work with the existing

literature. Finally, Section 2.6 concludes.

2.2 The Model

Consider a continuum of identical players of measure 1. Every period t = 0, 1, . . . players

in the population have to choose between action 1 or action 2. The payoff of each player at

time t depends on her action and on the current state of nature st ∈ {1, . . . ,m}. If a player

chooses action i and the state equals j then she gets a payoff πij ∈ [0, 1] with i ∈ {1, 2}
and j ∈ {1, . . . ,m}. Note that the payoff of each player does not depend on the actions

played by others but only on her own action and the state of nature. We assume there is

no weakly dominant action. That is, there exists no i ∈ {1, 2} such that πij ≥ π−ij for all

j ∈ {1, . . . ,m}. Without loss of generality we assume that for some h < m, π1j ≥ π2j for

j ≤ h and π2j > π1j for j > h. That is, in the first h states action 1 yields at least the same

payoff as action 2. In the remaining states, action 2 yields more payoff than action 1. Finally,

we define πj as the vector of payoffs of action 1 and action 2 in state j, πj = (π1j , π2j).

The sequence of states of nature {st}∞t=0 follows a discrete Markov process P with m ≥ 2

states. The probability of transiting from state i to state j is given by θij ∈ [0, 1]. We assume

the Markov chain to be irreducible and aperiodic. Hence, if θij = 0 for some i, j ∈ {1, . . . ,m}
then there exists a sequences of states k1, k2, . . . , kn ∈ {1, . . . ,m} with n ≤ m such that

θik1 , θk1,k2 , . . . , θkn,j 6= 0. We define λ ∈ [0, 1]m as the limiting distribution of the Markov

chain P where λi is the weight the limit distribution puts in state i. An environment is

defined then by the payoff vectors together with a transition matrix, {(π1, . . . , πm), P}.

A strategy is the probability of playing each action at a given period. We denote by

σti ∈ [0, 1] with i ∈ {1, 2} and t ∈ {0, 1, . . .} the probability of playing action i at time

t. Define σ∗ = (σ∗1, σ
∗
2) ∈ [0, 1]2 as the strategy that maximizes payoff in the long run.

Formally, for any (σ̄1, σ̄2) ∈ [0, 1]2 we have that

m∑
j=1

λj (σ∗1π1j + σ∗2π2j) ≥
m∑
j=1

λj (σ̄1π1j + σ̄2π2j) .

Since we are dealing with a continuum of population, Law of Large Numbers applies and

we have that σti is also the fraction of players playing action i at time t. In an abuse of

notation, throughout the paper we will refer to σti as both the probability for a single player

of playing action i at time t and the fraction of the population playing action i at time t.
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Note that given our setting, the sequence σi = {σti}∞t=0 is an irreducible and aperiodic

Markov process on [0, 1] for i ∈ {1, 2}. The aim of the paper is to characterize, if it exists,

the invariant distribution of such process.

The timing within each time period works as follows. First, players choose actions ac-

cording to their strategies. Then, nature decides the state. Third, payoffs are realized and

players observe their payoff and possibly forgone payoffs. The possibility of observing fore-

gone payoffs depends on the informational setting being considered. Finally, players update

their strategies.

When updating their strategies, players use the following information: their strategy at

the beginning of the period, the action they played and the payoff they got and possibly the

payoff the other action would have yielded (foregone payoffs). Formally, a learning rule is a

function b : [0, 1]2×{1, 2}2× [0, 1]2 → [0, 1]2. That is, a function that maps three arguments,

strategies for the present period, action played and payoff gotten and action not played and

foregone payoff, into the strategies for the following period. The functional form of b will

depend on the specific learning rule under consideration.

2.3 Informational Settings

2.3.1 Forgone Payoffs are Observed

When both realized and foregone payoffs are observed, players best respond to the environ-

ment by increasing the probability of playing at the next period the action that was most

successful at the present period. We use a generalization of the best response behavior that

we call the Stochastic Better Response.

We write σt+1
i |j to denote the value of σt+1

i given that at period t the state of nature, st,

was j. The Stochastic Better Response is defined by

σt+1
1 |j =

{
σt1 + σt2µf(πj) if π1j ≥ π2j

σt1 − σt1µf(πj) otherwise,

where µ > 0 is a learning speed parameter. The function f : [0, 1]2 → [0, 1] maps the payoff

of the action that yielded higher payoff and the payoff of the other action into a number

between 0 and 1. This function is interpreted as the probability of adopting or learning the

action that was best given today’s state of nature. The only requirement on f is that it

must be weakly increasing in the payoff of the action that yielded higher payoff and weakly

decreasing in the payoff of the other action. That is, f is weakly increasing (decreasing) in πij
only if πij > (<)π−ij . We set f(πj) = 0 if and only if π1j = π2j . In other words, we assume
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that the population does not change strategies if and only if both actions yielded the same

payoff. The function f could also be a constant. In the case where the function f is constant

and equals 1, the learning rule is equivalent to the standard best response in which players

show inertia with probability 1− µ (as in Samuelson (1994) and Kosfeld et al. (2002)).

The intuition behind the Stochastic Better Response is the following. In each period, all

players observe the payoff of the action chosen and the payoff of the other action. Then every

player updates her strategy in the following way. The probability of playing action i in the

next period is increased if and only if action i yielded higher payoff than the other action

in the current period. The increase in the probability of playing action i will depend on the

difference in payoffs between the two actions.

A different interpretation of this same rule uses the fact that σi can be considered as the

fraction of population playing action i deterministically. Under this interpretation, at every

period, players that did not play the best action will change their actions (best response to

the environment) with some probability. The probability of changing action depends on the

difference in payoff between the two actions. The Stochastic Better Response is an individual

learning rule because actions played by other players have no effect on the updating of the

one’s own strategy.

As an example, we can look at two possible ways of writing the Stochastic Better Response.

In the first one below, payoffs enter exponentially in the function f .

σt+1
1 |j =

{
σt1 + σt2µ

eπ1j−eπ2j

eπ1j+eπ2j if π1j ≥ π2j

σt1 − σt1µ e
π2j−eπ1j

eπ1j+eπ2j otherwise
(2.1)

A second example could be the following, where only the payoff of the best action at the

current period enters in f and f is linear.

σt+1
1 |j =

{
σt1 + σt2µπ1j if π1j ≥ π2j

σt1 − σt1µπ2j otherwise

2.3.2 Foregone Payoffs are not Observed

When foregone payoffs are not observed, players have no means of directly comparing the

performance of both actions within the same time period. In this case, players reinforce

(possibly negatively) the action they played. How much they reinforce this action will depend

on the payoff achieved. We use a general case of the Cross (1973) learning rule that also

generalizes the rules in BMS. We call this rule the General Reinforcement Rule.

Let σt+1
i |kj be the probability by which a player plays action i at time t + 1 given that

action k was played at time t and state at time t, st, was j. The General Reinforcement Rule

42

Rivas, Javier (2008), Cooperation in Repeated Games, Bounded Rational Learning and the Adoption of Evolving Technologies 
European University Institute

 
10.2870/26189



is defined by

σt+1
1 |1j = σt1 + σt2g(π1j),

σt+1
1 |2j = σt1 − σt1g(π2j),

and similarly for σt+1
2 |1j and σt+1

2 |2j . The only assumption we make in g : [0, 1] →
[−1, 1] is that it must be weakly increasing in its argument. If g(πij) = πij then we have

the Cross Learning Rule. For the rules in BMS we have that g(πij) = Aij + Bijπij for

given Aij ∈ R and Bij ∈ R for i ∈ {1, 2} and j ∈ {1, . . . ,m}. BMS show that setting

Aij = −min{1 − σ0
1, σ

0
1}/max{1 − σ0

1, σ
0
1} and Bij = 1/max{1 − σ0

1, σ
0
1} for all i, j results

in the best monotone rule. A rule is defined to be monotone if the expected probability of

playing the action that is best given today’s state increases. A rule is said to be the best

monotone rule if the expected increase in playing the best action from one period to another

is highest among all monotone rules. Since BMS study a setting in which the evolution of

nature follows a stationary distribution, the action that is best today is the action that is

best at every period. In our setting the action that is best today may not be the best action

tomorrow due to the Markovian evolution of the states of nature. This particular difference

will have important consequences in the optimality properties of the rules in BMS.

2.4 Results

2.4.1 Results - Foregone payoffs are Observed

Before going to the formal results, we present a small discussion on the behavior of the system

under the Stochastic Better Response. First, note that the biggest difference in the behavior

of the two rules that we consider lies in the way they behave when σi is close to the corners

(0 and 1). In particular, under the Stochastic Better Response the corners are not absorbing

while the opposite occurs under the General Reinforcement Rule.

Assume for this short discussion that there are only two states of nature. Under the

Stochastic Better Response, the speed at which a player adopts an action slows down as the

probability of playing that action increases. That is, consider that action 1 is played with

a high probability and that today action 1 yielded a higher payoff than action 2. Then the

increase in the probability of playing action 1 will be small. On the other hand, consider

that action 1 is played with a small probability and today action 1 yielded higher payoff than

action 2. In this case the probability of playing action 1 next period increases sharply.

Figure 2.1 shows the movements of the probability of playing action i (σi) as a response

to an action being better than the other in the current period. As above, assume that an
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action is played with a high probability. Then the increase in playing that action in case it

yielded a higher payoff than the other action at the present period is low.

Figure 2.1: Stochastic Better Response

As one could possibly guess already, the Stochastic Better Response will not converge

to any of the corners. To study convergency, we consider the limit case when µ, which

can be viewed as the size of the changes in σi, gets arbitrarily small. Once such a limit is

taken, the Stochastic Better Response converges to a single point. This issue can be seen

much more clear by looking at Figure 2.2, where a simulation is conducted. The specific

learning rule used is given by equation 2.1. The value of the parameters is set to m = 2,

π11 = 0.5, π12 = 0.3, π21 = 0.1, π22 = 0.6 and θ12 = θ21 = 0.3. The initial value σ1 was set to

σ0
1 = 0.5. The figure depicts the same simulation, the same random seed, for two situations:

one in which µ = 1 and another in which µ = 0.05.

Figure 2.2: Simulation - Stochastic Better Response

By studying the behavior of the system when µ is made arbitrarily small we are char-

acterizing the continuous time limit of σi. When µ is taken to zero the adjustment in the

strategies is made arbitrarily small while keeping constant the speed at which the environ-

44

Rivas, Javier (2008), Cooperation in Repeated Games, Bounded Rational Learning and the Adoption of Evolving Technologies 
European University Institute

 
10.2870/26189



ment changes. For other papers that use this continuous time limit approximation in settings

somewhat different from ours see, for example, Börgers and Sarin (1997) and Benäım and

Weibull (2003).

The following proposition characterizes the convergence of (σ1, σ2) under the Stochastic

Better Response when µ is arbitrarily small. Later in this section we present a sketch of the

proof. The formal proof is contained in the Appendix.

Proposition 1. Define

σ̃ =

∑
j:π1j≥π2j

λjf(πj)∑m
j=1 λjf(πj)

.

For any ε > 0 there exists a µ̄ > 0 such that if µ < µ̄ then

P
(

lim
t→∞

∣∣σt1 − σ̃∣∣ > ε
)

= 0.

The interpretation of the result is the following. For simplicity of the exposition let us

focus on the evolution of the variable σ1 and assume again that there are only two states

of nature. The point σ̃ corresponds to the situation where an increase in σt1 due to action

1 yielding higher payoff at time t than action 2 would be equivalent to the decrease in σt1

from action 2 yielding more payoff than action 1. That is, with m = 2, σ̃ is the σt1 is such

that
∣∣σt+1

1 |1 − σt1
∣∣ =

∣∣σt+1
1 |2 − σt1

∣∣. In Figure 1, the point σ̃ would be such that the size of

the arrows (or jumps) towards the left from a given point σt1 is the same as the size of the

arrows towards the right from this same point σt1. Hence, σ̃ is the point where the marginal

movements towards action 1 and towards action 2 are equalized.

One can easily check that σ̃ < 1, so it will never be the case that the best action in the

long run is played with probability 1. For the general case where the Markov chain has m

states, action 1 is strictly better than action 2 if and only if
∑m

j=1 λjπ1j >
∑m

j=1 λjπ2j ; this

inequality holds in the simulation in Figure 2.2. However, for that simulation we have that

σ̃ = 0.57. That is, in the long run at any given period action 1 is played with probability of

0.57. This behavior is clearly suboptimal as if
∑m

j=1 λjπ1j >
∑m

j=1 λjπ2j then the σt1 that

maximizes payoff in the long run is σ∗ = 1.

Let us now look at a sketch of the proof. To studying the convergence of the sequence

σ1 we first show that it suffices to study the convergence of a sequence y = {yt}∞
t=t̂

, for t̂

large enough, which evolves in a world with just 2 states of nature and symmetric transition

matrix.
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First, define the sequence σ̂1 = {σ̂t1}∞t=t̂ as σ̂t̂1 = σt̂1 and recursively for t > t̂

σ̂t+1
1 =



σ̂t1 + σ̂t2µf(π1) with probability λ1

...

σ̂t1 + σ̂t2µf(πh) with probability λh
σ̂t1 − σ̂t1µf(πh+1) with probability λh+1

...

σ̂t1 − σ̂t1µf(πm) with probability λm

.

Then we have that for any given t > t̂,

P
(
|E0(σt1)− E0(σ̂t1)| > ε

)
= 0. (2.2)

Hence, the expected value of both σ1 and σ̂1 converge in probability to the same value. This

is because the transition matrix P is irreducible and aperiodic. Now define the sequence

y = {yt}∞
t=t̂

as yt̂ = σ̂t̂1 and define recursively

yt+1 =

{
yt + 2(1− yt)µ

∑
j:π1j≥π2j

λjf(Πj) with probability 1/2

yt − 2ytµ
∑

j:π1j<π2j
λjf(Πj) with probability 1/2

.

Note that the variable y evolves according to the expected movement in the long run of

the variable σ̂1. It can be easily seen that yt = σ̂t1 implies E0(yt+1) = E0(σ̂t+1
1 ). Hence, since

yt̂ = σ̂t̂1, the distribution of both yt and σ̂t1 is aperiodic and both E0(yt̂+1) and E0(σ̂t̂+1
1 ) are

linear in their arguments, we can state that E0(yt̂+k) = E0(σ̂t̂+k1 ) for any k ∈ N. Moreover,

we have that for any t > t̂, equation 2.2 must hold. Hence, we have that for any ε > 0 and

t > t̂,

P
(
|E0(σt1)− E0(yt)| > ε

)
= 0.

Furthermore, by making µ arbitrarily small we make the variance of both random variables

yt and σt1 to shrink to zero. Thus, their limiting distribution puts weight on a single point.

In other words, y and σ1 must converge in probability to a fixed value ȳ and σ̄ respectively.

Since E0(yt̂+k) converges to E0(σt̂+k1 ) for all k ∈ N, we must have that ȳ = σ̄. Hence, instead

of studying the convergence of the variable σ1 we focus on the convergence of the variable y.

This is more formally stated in Lemma 2 in the Appendix.

Note now that the point yt = σ̃, with σ̃ as defined in Proposition 1, solves the equation

yt + 2(1− yt)µ
∑

j:π1j≥π2j

λjf(πj) = yt − 2ytµ
∑

j:π1j<π2j

λjf(πj).
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Define the sequence y1 = {yt1}∞t=t̂ as follows

yt1 =

{
yt if yt ≥ σ̃
σ̃ otherwise

.

Hence, we have that E0(yt) ≤ E0(yt1) for all t > t̂. Note that E0(yt+1
1 ) ≤ E0(yt1). Therefore,

y1 is a super-martingale with lower bound σ̃. Thus, by the martingale convergence theorem,

y1 converges in probability to σ̃. This implies that for t large enough, E0(yt) ≤ σ̃.

Define now the sequence y2 = {yt2}∞t=t̂ as follows

yt2 =

{
yt if yt ≤ σ̃
σ̃ otherwise

.

Therefore, we have that E0(yt) ≥ E0(yt2) for all t > t̂. Note that E0(yt+1
1 ) ≥ E0(yt2). Hence,

y2 is a sub-martingale with upper bound σ̃. Thus, by the martingale convergence theorem,

y2 converges in probability to σ̃. This implies that for t large enough, E0(yt) ≥ σ̃.

Hence, we know that for t large enough, E0(yt) ≤ σ̃ and E0(yt) ≥ σ̃. This implies that for

all t > t̂, E0(yt) = σ̃. Since the variance of y shrinks to zero as µ is made arbitrarily small,

we have that y converges in probability to σ̃ as µ is made arbitrarily small. Combined with

the fact that y converges in probability to σ1, this implies that σ1 converges in probability

to σ̃.

2.4.2 Results - Foregone Payoffs are not Observed

We recall that the probability by which a player plays action i at time t+ 1 given that action

k was played at time t and state at time t was j is denoted by σt+1
i |kj and given by

σt+1
1 |1j = σt1 + σt2g(π1j),

σt+1
1 |2j = σt1 − σt1g(π2j).

Hence, σt+1
1 |j , which is the probability of playing action 1 at time t + 1 given that state

was j, equals σt1 + σt2g(π1j) if action 1 was played at time t and σt1− σt1g(π2j) if action 2 was

played at time t. Action i with i ∈ {1, 2} is played at time t with probability σti . Hence, since

we are dealing with a continuum of players, we can use Law of Large Numbers to state that

σt+1
1 |j = σt1σ

t+1
1 |1j + σt2σ

t+1
1 |2j .

This can be rewritten as

σt+1
1 |j = σt1

(
σt1 + (1− σt1)g(π1j)

)
+ (1− σt1)

(
σt1 − σt1g(π2j)

)
.
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Thus, it follows that

σt+1
i |j = σti

(
1 + (1− σti) [g(πij)− g(π−ij)]

)
. (2.3)

Note that if we set g(πij) = πij , as in the Cross Learning Rule, the resulting law of motion

for σi is the discreet time version of the Replicator Dynamics. That is, if g(πij) = πij then

we have that

σt+1
i |j = σti + σti

(
πij − [σtiπij + σt−iπ−ij ]

)
.

The General Reinforcement Rule behaves completely differently to the Stochastic Better

Response. Under the General Reinforcement Rule, the changes in the variable σti become

smaller as σti gets closer to either bound. For example, consider that action 1 is played with

a high probability. Then the change in σi will be small independently of whether action 1

yielded higher payoff than action 2 or the other way around. Figure 2.3 shows the movements

of σ1 under the General Reinforcement Rule as a response to the environment.

Figure 2.3: General Reinforcement Rule

As we see, the process will spend almost no time in intermediate values of σi. This will

allow us to draw our conclusions from analyzing only the behavior of σi in the neighborhoods

of its bounds. In this respect, our analysis will partially rely on the approach by Ellison and

Fudenberg (1995).

Figure 2.4 shows a simulation for the General Reinforcement Rule for the case where

g(πij) = πij and with the same parameters as the ones used in Figure 2.2. The figure plots

the result of the same simulation performed with two different random seeds.

It can be seen that the General Reinforcement Rule quickly converges to a situation in

which all the population plays the same action a fraction 1 of the time. An interesting

thing to note is that the action selected by the General Reinforcement Rule does not coincide

necessarily with the action that is best in the long run. The simulation on the right-hand side

shows a situation in which the General Reinforcement Rule converges to a situation where

all players in the population are playing the suboptimal action. As we will see, this is the

result of the two actions performing not too differently in terms of payoffs in the long run.
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Figure 2.4: Simulation - General Reinforcement Rule

The following proposition, whose proof is presented in the Appendix, characterizes the

convergence of the sequence σ1.

Proposition 2. Define γj = 1 + g(π1j) − g(π2j) and γ̂j = 1 + g(π2j) − g(π1j) and consider

the two inequalities:

m∑
j=1

λj log γj > 0, (2.4)

m∑
j=1

λj log γ̂j > 0. (2.5)

1. If both (2.4) and (2.5) hold then limt→∞ σ
t
1 does not exist.

2. If (2.4) holds but (2.5) does not then limt→∞ σ
t
1 = 1.

3. If (2.5) holds but (2.4) does not then limt→∞ σ
t
1 = 0.

4. If neither (2.4) nor (2.5) hold then limt→∞ σ
t
1 has full support over {0, 1}.

Since σ2 = 1 − σ1 the convergence of the sequence σ2 follows for the proposition above.

An important fact revealed by proposition above is that the process may fail to converge to

the best action. Consider for simplicity the Cross Learning Rule, where g(πij) = πij . Action

1 is weakly better than action 2 in the long run if and only if
∑m

j=1 λjπ1j ≥
∑m

j=1 λjπ2j . This

condition can be rewritten as
∑m

j=1 λjγj ≥ 1. However, even if
∑m

j=1 λjγj ≥ 1 holds, it may

still happen that
∑m

j=1 λj log γj < 0 holds and hence σ1 may not converge to 1. To make this

point more clear consider the case in which m = 2 and λ1 = λ2 = 0.5. That is, there are
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only two states of nature and both states are equally likely in the long run. The following

corollary characterizes the convergence of σ1 in this case when action 1 is better in the long

run than action 2.

Corollary 1. Assume g(πij) = πij, m = 2, λ1 = λ2 = 0.5 and π11 + π12 > π21 + π22.

- If π11 + π12 − π21 − π22 − (π11 − π21)(π22 − π12) > 0 then limt→∞ σ1 = 1.

- Otherwise, limt→∞ σ1 has full support over {0, 1}.

Proof. We can rewrite inequalities (2.4) and (2.5) from Proposition 2 for the case with m = 2

and λ1 = λ2 = 0.5 as follows:

log γ1 + log γ2 > 0 (2.6)

log γ̂1 + log γ̂2 > 0. (2.7)

The conditions (2.6) and (2.7) can be rewritten as γ1γ2 > 1 and γ̂1γ̂2 > 1. These in turn

can be rewritten as

π11 + π12 − π21 − π22 − (π11 − π21)(π22 − π12) > 0, (2.8)

π21 + π22 − π11 − π12 − (π11 − π21)(π22 − π12) > 0. (2.9)

It can be easily seen that equation (2.9) is never holding. Hence, by Proposition 2, if the

inequality (2.8) holds then we have that limt→∞ σ1 = 1, whereas if (2.8) does not hold we

have that limt→∞ σ1 has full support over {1, 2}.

For the process to select the best action, the two actions need to perform significantly

differently. That is, having action 1 better than action 2, π11 + π12 − π21 − π22 > 0, is not

enough for the process to select the best action.

Now we present the intuition for the proof of Proposition 2 for the case where g(πij) = πij .

The proof of Proposition 2 relies partially on the analysis by Ellison and Fudenberg (1995).

In Ellison and Fudenberg (1995), the realization of states of nature is independent of past

values of states. In order to be able to apply Ellison and Fudenberg’s analysis to our setting,

we proceed as follows. Given that the transition matrix P is irreducible and aperiodic, the

state of nature many periods ahead is independent of the state of nature today. This means

that by the law of large numbers, we can take the probability of each state being realized

many periods ahead as the limiting probability placed on it by the Markov chain. Therefore,

for the rest of the exposition we consider that the realization of states is independent of past

values. For a formal proof the reader is referred to Lemma 4 in the Appendix.
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Assume, for the simplicity of the exposition, that there are only two states of nature. Let

1 − p be the probability by which state 1 occurs. Since the process spends almost no time

at its intermediate values, it suffices to examine the convergence of the variable σi when it

is close to its boundary values (0 and 1). To make the exposition clearer, we focus on the

sequence σ2 = 1− σ1. Imagine that σ2 is arbitrarily close to 0. Then we can rewrite (2.3) as

follows:

σt+1
2 |j = γjσ

t
2 + o(σt2) (2.10)

where γj = 1 + g(π2j)− g(π1j) for j ∈ {1, 2} and o(σt2) is a term of order higher than σ2 and

hence is negligible when σ2 is arbitrarily small. Without loss of generality we can assume

that π11 > π21, which implies π12 < π22. Then we can rewrite (2.10) as

σt+1
2 |j =

{
γ1σ

t
2 + o(σt2) if π1j ≥ π2j

γ2σ
t
2 + o(σt2) otherwise

.

Since π11 > π21 and π12 < π22 we have that γ2 > 1 > γ1 > 0. Finally, note that π1j ≥ π2j

with probability 1− p and π1j < π2j with probability p.

The sequence σ2 converges to 0, or σ1 converges to 1, if and only if the sequence x =

{xt}∞t=0 with xt = log σt2 converges to −∞. The process for x when σt2 is close to 0 can be

approximated by

xt+1 =

{
log γ1 + xt with probability 1− p
log γ2 + xt with probability p

.

Therefore, Et(xt+1) = (1− p) log γ1 + p log γ2 + xt. Hence, if (1− p) log γ1 + p log γ2 > 0

then Et(xt+1) > xt, which implies that x is a sub-martingale. Thus, by the Martingale

Convergence Theorem, if (1 − p) log γ1 + p log γ2 > 0 then x cannot converge to −∞ and

hence σ2 cannot converge to 0. Which implies that σ1 does not converge to 1.

Ellison and Fudenberg’s (1995) result is presented here for the readers’ convenience.

Lemma 1 (Ellison and Fudenberg (1995)). Let zt be a Markov Process on (0,1) with

zt+1 =

{
γ1z

t + o(zt) with probability 1− p
γ2z

t + o(zt) with probability p
.

Suppose that γ1 < 1 < γ2.

(a) If
p

1− p
> − log(γ1)

log(γ2)
,

then zt cannot converge to 0 with positive probability.
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(b) If
p

1− p
< − log(γ1)

log(γ2)
,

then there are δ > 0 and ε > 0 such that if z0 < δ then P
(
limt→∞ z

t = 0
)
≥ ε.

(c) If
p

1− p
> − log(γ1)

log(γ1)
,

there is a z̄ > 0 such that for all z0 > 0 and all t ∈ {0, 1, . . . }, P
(
zt < z̄

)
= 0.

2.4.3 Efficient Learning Rules

We say that a learning rule is efficient if it is able to select to optimal action in the long run.

An interesting result is that if foregone payoffs are observed, then it is optimal to disregard

this information and to act as if only realized payoffs were observed.

When players observe the performance of both actions they can be “distracted” towards

the suboptimal action by the Markov chain. This is because even if the population plays

the optimal action with a high probability they can still observe the performance of the

suboptimal action. Hence, since the suboptimal action is the best action for some states

of nature, randomness can constantly lead some players in the population to adopt the

suboptimal action for many periods in time. Thus, the continuous time limit of the process

converges to a situation in which the suboptimal action is played with a positive probability.

This is formally proven in the next proposition.

Proposition 3. Under the Stochastic Better Response, for some ε > 0 there exists no f :

[0, 1]2 → [0, 1] such that for all the environments ({π1, . . . , πm}, P ) we have that |σ̃1−σ∗1| < ε.

Proof. Assume, without loss of generality, that
∑m

j=1 λjπ1j >
∑m

j=1 λjπ2j . Hence, we have

that σ∗1 = 1.

The proof goes by contradiction. Assume that for all ε > 0 there exists a function

f : [0, 1]2 → [0, 1] such that for all the environments ({π1, . . . , πm}, P ), |σ̃1 − σ∗1| < ε.

This can be rewritten as follows: there exists a sequence of functions f = {fn}∞n=0 with

fn : [0, 1]2 → [0, 1] for all n ≥ 0 such that for all the environments we have that

lim
ε→0

lim
n→∞

σ̃1(fn) = σ∗1 = 1,

where σ̃1(fn) is the value of σ̃1 associated with the function fn.

The limit above holds if and only if

lim
ε→0

lim
n→∞

∑
j:π1j≥π2j

λjfn(πj)∑
j:π1j<π2j

λjfn(πj)
=∞ (2.11)

52

Rivas, Javier (2008), Cooperation in Repeated Games, Bounded Rational Learning and the Adoption of Evolving Technologies 
European University Institute

 
10.2870/26189



holds.

Take now an environment E = ({π1, π2}, P ) where 0 < π11 < π22 and πij = 0 for all

i 6= j. We could consider more general environments but that will only complicate the

exposition leaving the logic of the proof unchanged. P is such that action 1 is the optimal

one in the long run. That is, given π11 < π22 and πij = 0 for all i 6= j, P is such that∑2
j=1 λjπ1j >

∑2
j=1 λjπ2j . In this situation, equation (2.11) implies that

lim
ε→0

lim
n→∞

λ1fn(π1)
1− λ1fn(π2)

=∞. (2.12)

Given that the transition matrix P is irreducible we have that λ1 ∈ (0, 1). Thus, we must

have that (2.12) holds if and only if the following limit holds.

lim
ε→0

lim
n→∞

fn(π1)
fn(π2)

=∞ (2.13)

However, given that π11 < π22 and πij = 0 for all i 6= j, we have that fn(π1) < fn(π2) for

all n > 0. Hence, the sequence f is such that equation (2.13) cannot hold for the environment

E, a contradiction.

The logic behind the proof is that if a learning rule makes the population to select the

optimal action in a given environment E′, then the rule must magnify the payoffs of each

action. This can be seen in equation (2.11), where, according to the learning rule, payoffs are

magnify to infinity. However, if this is the case, an environment E can be found such that

there is a very rare state for which the payoff of the suboptimal action is much bigger than

the payoff of the optimal action for that state. In this situation, the learning rule that make

the population to select the best action for environment E′ will fail to do so in environment

E.

When only realized payoffs are observed, a different force operates. Once the population

is almost always playing the optimal action, it is very difficult for players to take notice of

the periods in which the suboptimal action is giving more payoff than the optimal action. A

drawback for the population under this informational setting is that if both actions perform

not too differently in terms of payoffs, the population may lock on the suboptimal action

forever. However, a learning rule can be designed such that this inefficiency is avoided.

The next result states two important features about efficiency rules under the General

Reinforcement Rule. The first one is that if learning is sufficiently cautious in that the

magnitude of payoffs is diminished then the population will select the optimal action. The

second important feature is that how cautious the learning has to be depends on how big the

difference in the long run average payoff of both actions is. The more both actions differ in
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terms of long run performance, the more cautious the learning has to be. This implies that

while a learning rule that is very cautious may not be able to make the population to select

the best action, this will only happen in environments where the two actions perform very

similarly in the long run. Hence, when cautious learning is exhibited, the possible loss in

payoff from not selecting the best action is small.

Proposition 4. Under the General Reinforcement Rule, assume g : [0, 1]→ [−1, 1] is given

by

g(πij) = xπij

where

x =
1 + 4ε−

√
1 + 8ε

4ε
for some ε > 0. If |

∑m
j=1 λjπ1j −

∑m
j=1 λjπ2j | > ε, then we have that limt→∞ σ

t
1 = σ∗1.

Proof. Assume, without loss of generality, that
∑m

j=1 λjπ1j >
∑m

j=1 λjπ2j . Hence, we have

that σ∗1 = 1. Moreover, given the inequality |
∑m

j=1 λjπ1j −
∑m

j=1 λjπ2j | > ε, we must have

that
∑m

j=1 λj(xπ1j − xπ2j) > xε for all x > 0.

Using the first order Taylor series for the logarithmic function around 1 we get that

log(1 + xπ1j − xπ2j) = xπ1j − xπ2j +R1(1 + xπ1j − xπ2j),

where R1(1 + xπ1j − xπ2j) is the remainder term and x > 0. Using the Lagrange form we

can rewrite the remainder term as

R1(1 + xπ1j − xπ2j) =
−1/y2

2
(1 + xπ1j − xπ2j − 1)2,

where y lies between 1 and 1+xπ1j−xπ2j . We can bound the absolute value of the remainder

term in the following way:

|R1(1 + xπ1j − xπ2j)| ≤
1/(1− x)2

2
(xπ1j − xπ2j)2

≤ x2

2(1− x)2
.

Moreover, we have that

log(1 + xπ1j − xπ2j) = xπ1j − xπ2j +R1(1 + xπ1j − xπ2j)

≥ xπ1j − xπ2j − |R1(1 + xπ1j − xπ2j)| .

This can be rewritten as
m∑
j=1

λj log(1 + xπ1j − xπ2j) ≥
m∑
j=1

λj (2xπ1j − xπ2j − |R1(1 + xπ1j − xπ2j)|)

> xε− x2

2(1− x)2
.
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If we take x > 0 to be the minimum solution to the equation

xε− x2

2(1− x)2
= 0,

we get that

x =
1 + 4ε−

√
1 + 8ε

4ε
. (2.14)

Thus, setting x > 0 as in equation (2.14) yields

m∑
j=1

λj log γj > 0. (2.15)

Similar arguments show that

m∑
j=1

λj log(1− xπ1j + xπ2j) ≤ −
m∑
j=1

λjxπ1j − xπ2j + |R1(1− xπ1j + xπ2j)|

< −xε+
x2

2(1− x)2
.

Hence, setting again x > 0 as in equation (2.14) yields

m∑
j=1

λj log γ̂j < 0. (2.16)

Finally, combining inequalities (2.15) and (2.16) with Proposition 2 we get that if g(πij) =

xπij , where we set x > 0 as in equation (2.14), and if |
∑m

j=1 λjπ1j −
∑m

j=1 λjπ2j | > ε, then

we have that limt→∞ σ
t
1 = σ∗1.

Note that if we set g(πij) as in Proposition 4, then limε→0 g(πij) = 0. That is, a rule

that makes the population able to select the best action in all the environments must exhibit

arbitrarily slow learning.

2.5 Discussion

A way of enriching the model could be by adding idiosyncratic perturbations to payoffs.

This could be done by adding εht to each payoff πij . εht are normally distributed zero mean

random variables that are independent across players h and time t. Since the rules we consider

under both scenarios can treat payoffs in a non-linear way, it is not true that the process

will converge to the same values as compared to the case without noise. The reason is the

same as why, for instance, E(x2) 6= E
(
(x+ ε)2

)
with E(ε) = 0. However, it can easily be
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verified that adding noise makes no difference to our results for all the learning rules that

treat payoffs linearly. Rules that treat payoffs linearly include the standard best response and

the bernoulli best response, for the case where foregone payoffs are observed, and the Cross

Learning Rule and the rules in BMS, for the case where foregone payoffs are not observed.

One might argue that if players had means of comparing the payoff of the same action

across different time periods, they could recall different payoff realizations over time and have

significantly more information about the world they are living in. However, as showed by

Rustichini (1999) in a setting very similar to ours, even if players had infinite memory and

could make this comparison, it is not true that they will learn the best action for sure.

2.5.1 Relating our results for the Stochastic Better Response with Kosfeld

et al. (2002)

Kosfeld et al. (2002) present a setting where a finite set of players play a normal-form game.

Each period players update their strategies myopically in the following way. They increase

the probability of playing an action if and only if that action is a best response to the action

played by the other players. If there are many actions that are a best response, the increase

in probability is shared equally among the actions that are a best response. Formally, let

σti(j) be the probability by which player j plays action i at time t. Define s−j as the actions

played by all the players but j. Finally, let Bj(s−j) be the set of actions that are a best

response for player j to s−j and let |Bj(s−j)| be the cardinality of Bj(s−j). The evolution in

the strategies of every player j is governed by

σt+1
i (j) =

{
(1− µ)σti(j) + µ/|Bj(s−j)| if sj ∈ Bj(s−j)
(1− µ)σti(j) otherwise,

(2.17)

where µ ∈ (0, 1) is exogenously given.

Comparing this rule with the Stochastic Better Response there are two points worth

noting. First, the rule in Kosfeld et al. (2002) is a particular case of the Stochastic Better

Response. Second, and most importantly, in our model players play against nature and not

against themselves. Hence, in Kosfeld et al.́s (2002) setting, players best respond to the

actions of other players while in our setting players best respond to the actions of nature.

Kosfeld et al. (2002) show that the continuous time limit of their process, when µ is made

arbitrarily small, converges to a so-called Best-Reply Matching Equilibrium. In a Best-Reply

Matching Equilibrium, for every player, the probability of playing a given action is equal

to the probability by which that action is a best response given the strategies of the other

players.
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Their result and our result for the Stochastic Better Response have the same intuition

behind them and in some situations are equivalent. Given that in our setting there are only

two action we can rewrite (2.17) as follows.

σt1|j =

{
σt1 + σt2µ if π1j ≥ π2j

σt1 − σt1µ otherwise

In Proposition 1 we proved that the sequence σ1 defined above converges in probability

to

σ̂ =

∑
j:π1j≥π2j

λj∑m
j=1 λj

=
∑

j:π1j≥π2j

λj .

That is, σti , which is the probability of playing action i, converges to the limiting proba-

bility that action i is a best response to the environment. Hence, the population strategies

match the nature’s strategies, exactly as predicted by the Best-Reply Matching Equilibrium.

In our results for the Stochastic Better Response we consider a much bigger set of rules

than do Kosfeld et al. (2002). In particular, Kosfeld et al. (2002) only consider one rule.

However, for the specific rule used by Kosfeld et al. (2002), their results and ours come from

two different settings, as in their setting players play against each other while in our setting

players play against nature.

2.6 Conclusions

In this paper we investigated learning within an environment that changes according to a

Markov chain and where players learn according to reinforcement. The payoff of each possible

action depends on the state of nature. Since transition between states follows a Markov Chain,

there is correlation between today’s state and tomorrow’s state of nature. We studied two

different scenarios, one in which realized and foregone payoffs are observed and another in

which only realized payoffs are observed. Our contribution to the literature relies on the

fact that we studied reinforcement learning in a setting where the realization of the state of

nature is correlated with the past.

The literature has focused on the study of learning only in a setting where the realization

of states (or the shocks to payoffs) is independent of its past values. The reason for this is

the technical complexities involved in dealing with the correlated realization of states.

There are several questions left for further research. For the case where foregone payoffs

are observed, we only characterized the asymptotic distribution when the learning step goes
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to zero. For the case where foregone payoffs are not observed we are unable to quantify the

probabilities of reaching each endpoint where the process does not converge deterministically

to a single point.

The present piece of work explores learning in two very general scenarios but there are

other settings that could be of interest. For instance, how does local interaction affect learning

when the environment changes according to a Markov chain? What if there are non-stochastic

idiosyncratic payoff differences among players? Our paper also tried to shed some light on

the techniques that could be used for dealing with such environments. We expect that in the

future more papers dealing with non stationary environments will appear.
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Appendix

2.A.1 Proof of Proposition 1

We begin by proving the following lemma.
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Lemma 2. For any ε > 0 there exists a µ̂ > 0, t̂(ε) > 0 and a sequence y = {yt}∞
t=t̂

given by

yt̂ = σt̂1 and recursively for t > t̂

yt+1 =

{
yt + 2(1− yt)µ

∑
j:π1j≥π2j

λjf(πj) with probability 1/2

yt + 2ytµ
∑

j:π1j<π2j
λjf(πj) with probability 1/2

,

such that for any µ < µ̂ we have that

P
(

lim
t→∞
|σt1 − yt| > ε

)
= 0.

Proof. In the main text we defined h < m as the minimum natural number such that π1j ≥ π2j

for j ≤ h and π2j > π1j for j > h. For any given ε > 0 define now the sequence σ̂1 = {σ̂t1}∞t=t̂(ε)
as σ̂t̂(ε)1 = σ

t̂(ε)
1 and recursively for t > t̂(ε)

σ̂t+1
1 =



σ̂t1 + σ̂t2µf(π1) with probability λ1

...

σ̂t1 + σ̂t2µf(πh) with probability λh
σ̂t1 − σ̂t1µf(πh+1) with probability λh+1

...

σ̂t1 − σ̂t1µf(πm) with probability λm

.

Fix t̂(ε) to be the minimum natural number such that for any given t > t̂(ε),

P
(
|E0(σt1)− E0(σ̂t1)| > ε

)
= 0. (2.18)

The existence of such t̂(ε) is guaranteed by the fact that the transition matrix P is

irreducible and aperiodic and by the Perron-Frobenius theorem applied to P . In an abuse of

notation, from now on we will simply write t̂ to denote t̂(ε).

Since E0 is linear in both σ̂t1 and yt, we have that for all t > t̂, σ̂t1 = yt if and only if

E0(σ̂t+1
1 ) = E0(yt+1). Thus, given that yt̂ = σ̂t̂1, that E0 is linear in both σ̂t1 and yt and that

the distribution of both y and σ̂1 is aperiodic, we have that

E0(yt̂+k) = E0(σ̂t̂+k1 ) (2.19)

for all k ∈ N.

Given the definition of y and equations (2.18) and (2.19) we must have that for any ε > 0

and any t > t̂,

P
(
|E0(σt1)− E0(yt+1)| > ε

)
= 0. (2.20)
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Given the specification of σ1 and the definitions of σ̂1 and y, as µ gets arbitrarily small,

the variance of σ1, σ̂1 and y gets arbitrarily small as well. Formally, for any ε > 0 there

exists a µ̂ > 0 and a t > t̂ such that for any µ < µ̂ and k ∈ N we have that V art(σt+k1 ) < ε,

V art(σ̂t+k1 ) < ε and V art(yt+k) < ε.

Assume that σ1 does not converge in probability to y. As µ goes to zero the variance of

both σ1 and y goes to zero. Hence, both variables will converge in probability to a single

point. That is, for all δ > 0 there exists σ̄1, ȳ, µ̄ > 0 and t̄ ∈ N such that for all µ < µ̄

and t > t̄, P
(
|σt1 − σ̄1| > δ

)
= 0 and P

(
|yt1 − ȳ| > δ

)
= 0. This can also be rewritten as

P
(
|E0(σt1)− σ̄1| > δ

)
= 0 and P

(
|E0(yt1)− ȳ| > δ

)
= 0.

If σ̄1 6= ȳ, them we must have that exists a γ > 0 and a t ∈ N such that

P
(
|E0(σt+k1 )− E0(yt+k)| > γ

)
> 0

for all k ∈ N, which contradicts equation (2.20). Hence, given that P
(
|σt1 − σ̄1| > δ

)
= 0,

P
(
|yt1 − ȳ| > δ

)
= 0 and σ̄1 = ȳ, we must have that for any ε > 0 there exists a µ̂ such that

for all µ < µ̂,

P
(

lim
t→∞
|σt1 − yt| > ε

)
= 0.

In the next lemma we establish that y converges in probability to σ̃.

Lemma 3. For any ε > 0 there exists a µ̂ > 0 such that for any µ < µ̂ we have that

P
(

lim
t→∞
|yt − σ̃| > ε

)
= 0.

Proof. First, note that the point yt = σ̃, with σ̃ as defined in Proposition 1, solves the

equation

yt + 2(1− yt)µ
∑

j:π1j≥π2j

λjf(πj) = yt − 2ytµ
∑

j:π1j<π2j

λjf(πj).

Define now the sequence y1 = {yt1}∞t=t̂ as follows

yt1 =

{
yt if yt ≥ σ̃
σ̃ otherwise

.

Hence, we have that E0(yt) ≤ E0(yt1) for all t > t̂. Note that if yt > σ̃ then we have that

E0(yt+1) < E0(yt). This implies that E0(yt+1
1 ) < E0(yt1) for all yt1 > σ̃ and E0(yt+1

1 ) = E0(yt1)

for yt1 = σ̃. Therefore, y1 is a super-martingale with lower-bound σ̃. Thus, by the Martingale
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convergence theorem, limt→∞ y
t
1 exists. Given that E0(yt+1

1 ) < E0(yt1) for all yt1 > σ̃ and

E0(yt+1
1 ) = E0(yt1) for yt1 = σ̃, we must have that limt→∞ y

t
1 = σ̃. This implies that y1

converges in probability to σ̃.

Define now the sequence y2 = {yt2}∞t=t̂ as follows:

yt1 =

{
yt if yt ≤ σ̃
σ̃ otherwise

.

Hence, we have that E0(yt) ≥ E0(yt1) for all t > t̂. Note that if y < σ̃ then we have that

E0(yt+1) > E0(yt). This implies that E0(yt+1
2 ) > E0(yt2) for all yt2 < σ̃ and E0(yt+1

2 ) = E0(yt2)

for yt2 = σ̃. Therefore, y2 is a sub-martingale with upper-bound σ̃. Thus, by the Martingale

convergence theorem, limt→∞ y
t
2 exists. Given that E0(yt+1

2 ) > E0(yt2) for all yt2 < σ̃ and

E0(yt+1
2 ) = E0(yt2) for yt1 = σ̃, we must have that limt→∞ y

t
2 = σ̃. This implies that y2

converges in probability to σ̃.

Hence, we have that for any ε > 0 exists a µ̂ such that for all µ < µ̂,

P
(

lim
t→∞
|yt1 − σ̃| > ε

)
= 0

P
(

lim
t→∞
|yt2 − σ̃| > ε

)
= 0.

We know, given the definition of y, that for any ε > 0 there exists a µ̂ > 0 and a t > t̄

such that for any µ < µ̂ and h > t we have that V art(yt+h) < ε. This, together with the fact

that E0(yt) ≤ E0(yt1) and E0(yt) ≥ E0(yt1) for all t > t̂ implies that for all t > max{t̄, t̂} we

must have that limt→∞ y
t = σ̃. This implies that y converges in probability to σ̃.

Now we are able to prove the result in Proposition 1.

Proof of Proposition 1. We know from Lemma 2 that σ1 converges in probability to y. From

Lemma 3 we also know that y converges in probability to σ̃. Hence, we must have that σ1

converges in probability to σ̃. This is the result of the Proposition.

2.A.2 Proof of Proposition 2

Whenever σt1 is arbitrarily close to 0 we have that

σt+1
1 |j = σt1(1 + g(π2j)− g(π1j)) + o(σt1).

Define γj = 1 + g(π2j) − g(π1j) for all j ∈ {1, . . . ,m}. Hence, given that g is increasing,

we have that γi ≤ 1 < γj if and only if π1i ≥ π2i and π1j < π2j . We can approximate the

equation for the evolution of the sequence σ1 when σt1 is arbitrarily close to 0 as follows:

σt+1
1 |j = γjσ

t
1.
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Lemma 4. For any σ̄t1 ∈ (0, 1) and any ε > 0 there exists a σt1 < σ̄t1 and a k̄ ∈ N such that

for k > k̄

P
(∣∣σt+k1 − σ̂t+k1

∣∣ > ε
)

= 0,

where σ̂t+k̄1 = σt+k̄1 and

σ̂t+k+1
1 =


γ1σ

t+k
1 with probability λ1

...

γmσ
t+k
1 with probability λm

for k > k̄.

Proof. Given that the transition matrix P is irreducible and aperiodic and that the number of

states is finite, we have the standard result that the empirical distribution of states converges

to the limiting distribution of states. This can be rewritten as: for any δ > 0 there exists a

k̄(δ) ∈ N such that for k > k̄(δ),

P

(∣∣∣∣∣
∑k

t=0 1{st=j}

k + 1
− λj

∣∣∣∣∣ > δ

)
= 0 (2.21)

for all j ∈ {1, . . . ,m}.

We have seen before that if σt1 is arbitrarily close to 0 we can write σt+1
1 |j = γjσ

t
1. In

other words, for any κ > 0 there exists a σ̄1(κ) ∈ (0, 1) such that if σt1 < σ̄1(κ) then

P
(∣∣σt+1

1 |j − γjσt1
∣∣ > κ

)
= 0

for all j ∈ {1, . . . ,m}. This result can also be expressed as follows. For any κ > 0 and any

k ∈ N there exists a σ̄1(κ) ∈ (0, 1) such that if σt1 < σ̄1(κ) then

P
(∣∣∣σt+k+1

1 |j − γjσt+k1

∣∣∣ > κ
)

= 0. (2.22)

Hence, we have the following two facts. First, the probability of a state being realized a

sufficiently far way number of periods converges to the limiting distribution of the Markov

chain. Second, that σt+1
1 |j behaves as γjσt1 if σt1 is sufficiently small. Then, for k sufficiently

large and σt1 sufficiently close to 0 we have that for all j ∈ {1, . . . ,m}, σt+k+1
1 = γjσ

t+k
1 with

probability λj . In other words, combining the results in equations (2.21) and (2.22) we can

write that for all ε > 0 there exists a k̄(ε) ∈ N and σ̄1(ε) ∈ (0, 1), such that for all k > k̄(ε)

and σt1 < σ̄1(ε) we have that

P
(∣∣σt+k1 − σ̂t+k1

∣∣ > ε
)

= 0,
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where σ̂t+k̄1 = σt+k̄1 and

σ̂t+k+1
1 =


γ1σ

t+k
1 with probability λ1

...

γmσ
t+k
1 with probability λm

for k > k̄.

Lemma 5. The sequence σ1 cannot converge to 0 if

m∑
j=1

λj log γj > 0.

There is a positive probability that the sequence σt1 converges to 0 if

m∑
j=1

λj log γj < 0.

Proof. Reasoning as in the proof of Lemma 1 in Ellison and Fudenberg (1995), the sequence

σ1 can converge to zero if and only if the sequence y = log σ1 can converge to −∞. Using again

the proof from Lemma 1 in Ellison and Fudenberg (1995) and Lemma 4 in this Appendix,

the sequence y can converge to −∞ only if
∑m

j=1 λj log γj < 0. The result follows.

To study the situation in which the process is arbitrarily close to 1, we proceed as follows.

First, we define wt = 1 − σt1. Then we apply the analysis above to the variable wt. Define

γ̂j = 1 + g(π2j)− g(π1j). Then we have that for all ε > 0 there exists a k̄ ∈ N and w̄ ∈ (0, 1)

such that for all k > k̄ and wt < w̄ we have that

P
(∣∣wt+k − ŵt+k∣∣ > ε

)
= 0,

where ŵt+k̄ = wt+k̄ and

ŵt+k+1 =


γ̂1w

t+k with probability λ1

...

γ̂mw
t+k with probability λm

for k > k̄.

An analogous to Lemma 5 when σt1 is close to 1 is the following:

Lemma 6. The sequence σ1 cannot converge to 1 if

m∑
j=1

λj log γ̂j > 0.
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There is a positive probability that the sequence σ1 converges to 1 if

m∑
j=1

λj log γ̂j < 0.

Summing up the results from lemmas 5 and 6 the result in Proposition 2 follows.
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Chapter 3 - The Effects of the

Market Structure on the Adoption

of Evolving Technologies
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3.0 Abstract

We study the speed at which new technologies are adopted depending on how the market

power is shared between suppliers and buyers. The suppliers consists of firms that own

technologies and sell then to the firms that demand the technologies, which then produce

output using these technologies. Three different market structures are considered: one where

the suppliers have all the market power; one where the buyers have all the market power

and a another where market power is shared and there is competition between suppliers

and buyers. Our results suggest, among other things, that competition reduces the pace of

adoption of new technologies.

3.1 Introduction

The adoption of new technologies is regarded as one of the main contributors to economic

growth (see, for instance, Lucas (1993), Barro and Sala-i-Martin (1995)). The differences in

timing of the establishment of new technologies in countries or firms can lead to very different

growth rates. Adopting new technologies too quickly may be disadvantageous given the sunk

cost the establishment of a new technology carries. On the other hand, delaying the adoption

of a new technology can lead to high opportunity costs or to a disadvantageous position with

respect to competitors. This tradeoff has been widely studied in the literature.

The literature so far has focused on the pace of the adoption of new technologies from

the perspective of a firm, which by adopting a new technology incurs a fixed cost that will

be compensated over time by the benefits from having a better technology. In this respect

the problem of adopting new technologies was reduced to two basic settings. In the first

one, the problem of the firm was an optimal stopping problem (see for example Farzin et al.

(1998) and Jovanovic and Nyarko (1996)) where the firm has to decide, given a fixed price,

at which point in time to adopt a new technology. In the second setting, firms adopting new

technologies play a game in which earlier adoption leads to high costs but to a temporary

advantageous position against competitors (see for example Götz (1999) and Chamley and

Gale (1994)). We change these two approaches and consider instead the game played between

the firms adopting new technologies and the firms that create and price the new technologies.

Hence, in our model as opposed to the existing literature, the price of the different available

technologies is endogenous. This allows us to study how the timing of the adoption of new

technologies is affected by the competition resulting from the interaction between supply and

demand.

In our model there is an exogenous process that determines the evolution of a technol-
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ogy parameter. Technologies differ in how productive they are, so different values of the

technology parameter means different technologies. The firms selling technologies own the

technologies and have no influence in their evolution. Their only role is to price the different

available technologies. Firms buying technologies have to decide at which point in time to

adopt a new technology. The game is then the following: sellers have the tradeoff between

price and time, with higher price means higher income but at a later date. On the other

hand, the buyers have the tradeoff between early adoption, which implies an earlier increase

in productivity, and late adoption, which implies a greater increase in productivity since a

more advanced technology is adopted. Our model explains then how these trade offs are

solved when we consider three different market structures that are distinct in how the market

power is shared among the buyers and the suppliers.

In the first market structure we consider there is only one firm selling technologies and

many firms willing to buy technologies. Hence, in this setting the supply side holds all the

market power and buyers act as a price takers. In the second market setting there are many

firms supplying technologies and only one firm interested in buying it. In this setting the

demand side holds all the market power and, therefore, sellers compete in prices and make

profits equal to their outside option of not participating in the market. In the last market

setting we consider there is one firm on each side of the market. In this last setting suppliers

and buyers compete for the surplus in the economy.

With our model we explore how the different market structures affect the adoption of

new technologies. This helps us in understanding why in some industries there is a huge

gap between the release of a new technology and its adoption while in some others new

technologies are adopted instantly as soon as they are released.

The present paper tries to shed light on the issue mentioned above, speed of adoption, with

respect to different market structures. Rather than focusing on the nature of the technology

itself or other factors, we chose to study how market power can explain these two issues. We

do not claim market power is the only reason why we observe different types of behavior.

However, as we shall show, it is a factor that can explain these differences by itself and should

be taken into account. Furthermore, this is the first paper that to our knowledge deals with

the interaction between sellers of technologies and buyers of technologies. Hence, as a first

step to understanding the interaction between supply and demand in technology markets,

some simplifying assumptions are required. We assume that each buyer can only buy a new

technology once. Similarly, each seller is only allowed to sell a technology once. Doraszelski

(2004) and Dixit and Pindyck (1994) presented a model of technology adoption where there is

only demand and the pricing of technologies is exogenous. They assume, as we do, that firms

only buy a new technology once. Doraszelski (2001) shows that the firm’s decision problem,
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if we allow the firm to buy new technologies more than once, is of the same form after each

adoption of a new technology. Unfortunately, the assumption that each seller can only sell

technologies once is harder to justify and made only for analytical convenience.

In our results we find that if there is competition between suppliers and buyers, then the

adoption of new technologies occurs at a slower pace than when either suppliers or buyers

hold all the market power. This suggests that competition between both sides of the market,

instead of competition within each side, can delay the adoption of new technologies. A

striking result is that when only one side of the market holds all the power adoption occurs

at the same pace independently of which one that is. When only one side of the market holds

all the power the total surplus in the economy is maximized. Hence, from the point of view

of the speed of adoption of new technologies the only actual difference between the situation

where only one side holds all the market power is how the total surplus in the economy is

divided between the sides of the market.

From the theoretical point of view, many models study the optimal timing of technology

adoption. Jovanovic and Nyarko (1996) present a model where the decision maker increases

productivity by either learning by doing or by switching to a better technology. The effect

of learning by doing for any given technology is bounded and hence there comes a point in

which the only way to improve productivity is by upgrading to a better technology. Adopting

a new technology is not costly in monetary terms but in productivity terms. When a new

technology is adopted, it takes time to learn how to use it. Hence, a new technology brings

more possibilities of growth for the long run but decreases productivity in the short run.

Karp and Lee (2001) extend this model by introducing discount factors.

Farzin et al. (1998) present a model where the increase in productivity caused by the

adoption of the newest technology is know only in expected terms. Adopting a new technology

has a sunk cost that is independent of the productivity level of the new technology. In a recent

work by Doraszelski (2004) a distinction between technological breakthroughs and engineering

refinements is introduced.

Götz (1999) introduces a model of monopolistic competition where the technological

improvement happens just once and the cost of adopting such technological improvement

decreases over time. In Götz’s model delaying the adoption of a new technology gives a

comparative advantage in the long run but it is disadvantageous in the short run.

In a paper by Chamley and Gale (1994) a population faces the decision of whether to

adopt a new technology or not. The performance of the new technology is unknown but there

are information externalities arising when other players adopt the technology. Delaying the

adoption of a new technology has benefits given the extra information about that technology
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that is accumulated over time. However, an early adoption to the new technology can be

beneficial given the monopoly power that it provides.

From the empirical perspective, there is no doubt that the timing of technology adoption

has been a concern. Hoppe (2002) presents a literature review on this topic. To cite some,

Karshenas and Stoneman (1993) present a study on the diffusion of CNC (computer numer-

ically controlled machine tools) in the UK engineering industry. Factors determining the

delaying in the adoption of the new technology were found to be, among others, the learning

effects and the cost of the new technology. Weiss (1994) studied the adoption of a new process

technology called the surface-mount technology by printed circuit board manufacturers.

In the remainder of this section we present a survey on the relevant literature. In section

3.2 the model is presented. Section 3.3 presents our findings for the three different market

structures considered. In section 3.4 we present a comparative statics analysis. Finally,

section 3.5 concludes.

3.2 The Model

Consider a continuous time model where the two sides of the market, suppliers and buyers,

play a repeated game. On the supply side of the market there are firms selling technologies,

sellers, while on the demand side of the market there are firms buying technologies, buyers.

An exogenous process determines the evolution of new technologies, which are sold by the

sellers to the buyers. The seller firms have to put a price to these technologies while buyer

firms produce output given an initial level of technology and decide when to buy a better

technology. We define ns ≥ 1 to be the number of sellers and nd ≥ 1 to be the number of

buyers. All firms are assumed to be risk neutral.

Three different market settings are considered. These three market settings are explained

in detail in their respective subsections, but here we briefly introduce them to the reader.

In the first market setting we considered, the supply side holds all the market power and

firms in the demand side act as price taker. Consequently, for this setting we assume there is

one firm supplying technologies and many firm interested in buying them. Alternatively to

one firm selling technologies one can assume that many sellers collude to gain all the market

power. In the second market setting, the demand holds all the market power and, hence, it

extracts all the surplus in the economy. Hence, in this setting there is one firm interested in

buying technologies and many firms producing technologies. The third setting we consider

has the supply, that consists of a single firm, and demand, that also consists of a single firm,

competing for the surplus in the economy.
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As an illustrative example, consider the case of a research lab developing new patents.

Sellers then can embed these new patents into products that they then release onto the

market. To be a bit more precise consider the case of micro processors for computers. Intel

develops new micro processors that are then sold by computer manufactures to consumers.

In this example, Intel is represented in the model by the exogenous process determining

the evolution of technologies, computer manufactures are represented by the firms selling

technologies and consumers deriving utility from buying computers is represented in the

model by the firms in the demand side that produce output given a level of technology.

Technologies are denoted by a parameter θ where higher θ means better, more efficient,

technology. Seller firms own these technologies. Buyer firms are all endowed with the same

initial level of technology, denoted by θ0. As a simplification, we assume that only two

different levels of technology coexists in the economy at any given point in time t. These are

the initial level of technology, θ0, and the newest technology θ(t). Sellers have no control over

the evolution or the level of technology available in the economy. It owns the technologies

and its only role is to put a price to the newest technology. If a firm from the supply side

sells a given technology θ then it has to pay a fix cost of C > 0 for the transaction to take

place. All sellers have access to the same set of technologies and pay the same amount C

when selling a technology to a firm in the demand side.

From t to t+dt the state of the newest technology, θ(t), evolves according to a Geometric

Brownian Motion:

dθ(t) = αθ(t)dt+ σθ(t)dz(t),

where α, σ > 0 and z is a Brownian Motion (defined in the Appendix 3.A.1). The fact that

the technologies evolve following a Geometric Brownian Motion and the values of θ0, α, σ

and z are all common knowledge.

The assumption that the evolution of technologies follows a Geometric Brownian Motion is

made simply for analytical convenience. Closed form solutions can be found for this dynamics

but not for other dynamics that could be used, like Poisson processes or standard Brownian

Motion. As it will be clear later when the analysis is presented, the specific motion assumed

for the technology has no qualitative implications for our results.

Note that at any point in time there may be technological regress, θ(t+ dt) < θ(t). This

fact has no implications for the model and our results as if it is optimal not to buy the

technology θ at a given price then it is not optimal to buy technology θ̃ < θ at this same

price. To interpret the technological regress we can assume that when there is technological

regress these new technologies are inventions that simply did not work out and were never

made public.

71

Rivas, Javier (2008), Cooperation in Repeated Games, Bounded Rational Learning and the Adoption of Evolving Technologies 
European University Institute

 
10.2870/26189



The problem for the buyers at each point in time is whether to adopt the newest technology

or to stick with the technology currently in use. Following Doraszelski (2004) and Dixit and

Pindyck (1994) we assume that the adoption of a new technology is a one-time irreversible

decision. Hence, once a buyer has adopted a new technology, it is stuck forever with that

technology. Doraszelski (2001) shows that the firm’s decision problem, if we allow the firm

to buy new technologies more than once, is of the same form after each adoption of a new

technology. From a mathematical point of view, the problem of the firms on the demand side

is an optimal stopping problem. Similarly, we assume that each seller only sells technologies

once. Hence, in the market settings where there is only one firm supplying technologies,

once this firm has sold a technology no further adoption of technologies occurs. This latter

assumption is made for analytical convenience as it reduces the strategy space in a more

tractable way.

The timing of the game played between sellers and buyers is as follows: At time t = 0

each seller i ∈ {1, . . . , ns} decides on a price to charge for the newest technology Ii ≥ 0.

Then, at every period t > 0 and given the current level of technology θ(t), each buyer decides

whether to buy technology θ(t) at price I = mini∈{1,...,ns} Ii or to wait.

Let Ii ≥ 0 be the price charged by seller i ∈ {1, . . . , ns}. Let H(t) be the history of prices,

technologies, and decisions of the buyers up to period t. Hence, the element h(k) ∈ H(t) for

k ≤ t consists of the level of technology at time k, θ(k), the prices of all sellers {Ii}nsi=1 and

the decision of all buyers at time k of whether to buy the technology θ(k) at given prices

{Ii}nsi=1 or not.

A strategy for a seller i ∈ {1, . . . , ns} consists of a price Ii that depends on previous

history H(t): Ii : N2 → R. Note that we are using Ii for both the action and the strategy.

This should not give rise to any confusion in our context. The price in the economy of the

newest technology is given by I = mini∈{1,...,ns} Ii. A strategy for a buyer consists of the

function S : H×I × θ → d where d = {buy, wait} is the decision of the firm of whether to

buy the technology θ at a price I or to wait. The equilibrium concept we use throughout the

paper is the standard Nash equilibrium (henceforth NE).

After adopting a new technology θ, the discounted stream of profits of a buyer is given

by ∫ ∞
0

π(θ)e−rsds− I =
π(θ)
r
− I

where π(θ) is the instantaneous profit of a firm on the demand side from using a technology θ

and r > 0 is the interest rate. We assume π to be strictly increasing. Whenever necessary we

use a specific functional form for π. We chose to focus on the more natural example, the one

72

Rivas, Javier (2008), Cooperation in Repeated Games, Bounded Rational Learning and the Adoption of Evolving Technologies 
European University Institute

 
10.2870/26189



that can be derived from the Cobb-Douglas production function (see Farzin et. al. (1998)).

In this case we have that π(θ) = φθb where φ > 0 and b > 1.

When a seller sells a technology θ it has to pay a fixed cost C > 0 for the transaction to

take place. In order to make the selling of technologies possible we assume C < π(θ0)/r. If

technology θ is sold at price I at time t then the present value of the profits of a buyer are

given by

(I − C)E(e−rt).

In case a set of firms want to buy a given level of technology at the same price, then

each of these buyers has equal probability of making the purchase. Similarly in case a set of

firms wants to sell a given technology at the same price, then each of these sellers has equal

probability of selling the technology.

We define θ∗ as the value of θ at which the first purchase of a new technology takes place.

Hence, θ∗ is a function of the price I. In Farzin et. al. (1998) Doraszelski (2004) and Dixit

and Pindyck (1994) θ∗ represents the level at which it is optimal to switch technology. In

our paper the interpretation of θ∗ is the same as in theirs. Moreover, the value of θ∗ is our

measure of the speed at which new technologies are adopted. Higher θ means that more time

has to pass before a new technology is adopted and hence we say that the adoption occurs

at a slower pace.

3.3 Speed of Adoption of Technologies

3.3.1 The Supply Side Holds All the Market Power

In this setting there is one seller while there are at least 2 firms interested in buying the

technology. That is, ns = 1 and nd > 1. As mentioned before, if two or more buyers want

to buy the technology θ at a given price I then each of these firms has equal probability

of being the one that actually buys the new technology. Given that the seller only sells a

technology once and that the instant initial profits of the buyers equal π(θ0), the seller sets

up a price such that in the NE the buyer that buys the technology does not increase its

profits. Otherwise there will be another buyer willing to pay more for the technology and

still make positive profits. Moreover, the profits of the buyer must be at least the same as

its profits from not buying the technology as otherwise this firm is better off by not buying

a new technology and sticking to the original one, θ0. Hence, in the NE of the game at hand

we must have that,

π(θ∗)
r
− I =

π(θ0)
r

. (3.1)
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In the NE of the game the strategy of the buyers is such that (3.1) must hold. Another

condition for a NE is that the seller must play a best response to the other firms strategies.

Since in equilibrium (3.1) must hold, if we solve the maximization problem of the seller

subject to (3.1) the trigger level θ∗ obtained will be part of the NE of the game.

The problem of the seller is to maximize its expected profits given the trigger level θ∗

from equation (3.1). Let τ denote the hitting time of θ on θ∗. That is, τ is the infimum

point in time where θ ≥ θ∗. Then E(e−rτ ) gives the expected discount factor at which the

seller values selling the technology. For a given θ∗ we can compute the value of E(e−rτ ) using

the analysis found in Dixit and Pindyck (1999). For the readers convenience we reproduce

this analysis in Appendix 3.A.2. When θ follows a Geometric Brownian Motion the expected

discount factor is given by

E(e−rτ ) =
(
θ

θ∗

)β
,

where β > 1 is given by

β =
1
2
− α

σ2
+

√(
α

σ2
− 1

2

)2

+
2r
σ2
. (3.2)

In this paper, we use E(e−rτ ) as the measure for the speed at which new technologies are

adopted. A higher expected discount factor means a higher delay in the adoption of a new

technology. Since E(e−rτ ) depends ultimately on θ∗, higher θ∗ means slower adoption.

The problem of the seller is to choose I, to maximize profits given the effect of I on θ∗

and, hence, on E(e−rτ ). The problem of the firm in the supply side is then

max
I

(I − C)E(e−rτ ).

Which, after plugging in the value of E(e−rτ ) leads to

max
I

θ∗−β(I)(I − C)

where θ∗(I) is given implicitly in equation (3.1).

The first order condition yields

1
β(I − C)

=
π−1′(π(θ0)) + rI)
π−1(π(θ0) + rI)

r. (3.3)

In order for the optimal price I not to explode we need to impose the following condition

on β.
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Assumption 1.

β > lim
x→∞

π−1(x)
xπ−1′(x)

Assumption 1 is satisfied by the Cobb-Douglas profit function if and only if β > b. From

equation 3.3 we can get the equilibrium value of I. From I, we can then compute the value

of θ∗ in equilibrium using equation (3.1).

Using the Cobb-Douglas production function and from (3.3), after some rearrangement

we get that the equilibrium levels of θ∗ and I are given by

θ∗ =
[

β

β − b

(
θb0 +

r

φ
C

)]1/b

, (3.4)

I =
b

β − b
φθb0
r

+
β

β − b
C.

Note that although all agents are risk neutral, changing σ, which is the variance of the

technology parameter, changes the optimal levels. This is because increasing σ decreases

E(e−rτ ) and hence allows for a higher price for the new technologies while keeping θ constant.

We explore this issue and perform other comparative statics in Section 3.4.

3.3.2 The Demand Side Holds All the Market Power

In this subsection we consider the case where the demand side has all the market power.

In this setting there is only one buyer and many, ns ≥ 2, sellers competing in price. As

mentioned earlier, if two or more sellers offer the technology at the same price and a buyer

decides to buy a new technology, then each seller has equal probability of being the one that

actually sells the technology to the buyer. Therefore, given that there is only one firm buying

technologies and that the firm buying technologies can only buy a new technology once, sellers

compete to the point where in equilibrium their profits from selling the technology must be

zero. Otherwise, standard competition a la Bertrand arguments apply and a seller could

decide on lowering the price of the technology to attract the buyer and still make positive

profits. Hence, an equilibrium condition is then

I = C. (3.5)

In this setting, and similarly to what occurred in the previous setting, in the NE the

zero profit condition (3.5) must hold. Hence, for computing the optimal level of θ∗ we must

compute the best response of the buyer given equation (3.5). The problem of the buyer is

then

max
θ∗

E
(∫ τ

0 π(θ0)e−rsds+
∫∞
τ π(θ∗)e−rsds− Ie−rτ

)
.
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where I = C. The expected value is taken over all possible values of τ . The first term of

the objective function represents the profits of the firm before it buys the technology at time

τ . During this first periods it produces using its initial level of technology θ0. The second

term in the objective function is the profits once the firm bought a new technology at time τ .

From this point in time onwards the firm produces using the technology purchased at time

τ . Finally, the third term discounts the cost of buying the technology at time τ .

After some algebra and plugging in equation (3.5) we can rewrite the maximization prob-

lem of the buyer as (derivation found in the Appendix 3.A.3).

max
θ∗

θ∗−β (π(θ∗)− π(θ0)− rC) .

Taking the first order condition we get that

π(θ∗)β − π′(θ∗)θ∗ = β(π(θ0) + rC). (3.6)

The equilibrium level of θ∗ is then given implicitly by equation (3.6). If we use the

Cobb-Douglas production function we get that the optimal levels are given by

θ∗ =
[

β

β − b

(
θb0 +

rC

φ

)]1/b

, (3.7)

I = C.

Note that the equilibrium level of θ∗ when the demand holds all the market power is the

same as the one obtained when the supply holds all the market power. This is due to the fact

that when only one side of the market holds all the power, the total surplus of the economy

is maximized, the Pareto optimal allocation is achieved. The only actual difference between

the two settings lies on which side extracts all this surplus. We prove this statement below

by showing that the trigger level θ∗ under the two market settings above (given by equations

(3.4) and (3.7)) coincides with the Nash bargaining solution.

Proposition 1. The value of θ∗ when only one side of the market holds all the power (sections

3.3.1 and 3.3.2) is Pareto Optimal in that it maximizes total surplus in the economy.

Proof. We solve for the Pareto optimal value of θ∗ by solving for the Nash bargaining solution.

For this purpose we need to solve the the maximization of the Nash bargaining function (Nash

(1950)):

max
(θ∗,I)

[
(I − C)

(
θ
θ∗

)β] [(π(θ∗)
r − I − π(θ0)

r

) (
θ
θ∗

)β]
.
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The first order conditions of the problem above lead to

π(θ∗)− π(θ0)− 2rI + rC = 0,

−2β(π(θ∗)− π(θ0)− rI) + θπ′(θ∗) = 0.

Using the Cobb-Douglas production function and after some algebra we get that

θ∗ =
[

β

β − b

(
θb0 +

rC

φ

)]1/b

, (3.8)

I =
θb0(β − φ(β − b)) + rC

φ (β + r(β − b))
2r(β − b)

.

Comparing the values of θ∗ in equations (3.4) and (3.8) gives the desired result.

In the next result we formalize the fact that the speed of adoption is the same indepen-

dently on which side of the economy holds all the market power.

Proposition 2. Independently on whether nd > 1 = ns or ns > 1 = nd (sections 3.3.1 and

3.3.2 respectively) we have that

θ∗ =
[

β

β − b

(
θb0 +

rC

φ

)]1/b

.

Proof. Follows from (3.4) and (3.7).

3.3.3 Competition between Supply and Demand

For this setting we assume that there is only one seller and only one buyer. We solve for the

NE of the game by backwards induction. First, we compute the best response of the buyer

for any given pair I, θ. This will give us a value of θ∗ given any price I and level of technology

θ. Then, given this trigger level θ∗ as a function of I, θ, we compute the optimal price I.

This will give us the unique levels of θ∗ and I in the NE of the game.

The problem of the buyer is similar to the problem it faced in the setting where the buyer

holds all the market power. The only difference is that now I is taken as exogenous:

max
θ∗

E
(∫ τ

0 π(θ0)e−rsds+
∫∞
τ π(θ∗)e−rsds− Ie−rτ

)
.

After some algebra, the derivations of which are found in Appendix 3.A.4, the maximiza-

tion problem becomes

max
θ∗

θ∗−β
[
π(θ∗)
r − π(θ0)

r − I
]
.
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The first order condition of the problem leads to

π(θ∗)β − π′(θ∗)θ∗ = β(rI + π(θ0)). (3.9)

Equation (3.9) is the implicit function for the optimal trigger level θ∗ as a function of the

price I. We now turn to the problem of the seller. The objective function is, in this case,

max
I

θ∗−β(I)(I − C).

From equation (3.9) we get the value of I as a function of θ∗. In order to simplify

computations, we maximize over θ∗ instead of over I and consider the function I given

implicity in equation (3.9). Therefore, the problem of the seller then becomes

max
θ∗

θ∗−β (π(θ∗)β − π′(θ∗)θ∗ − π(θ0)β − βrC) .

The first order condition leads to

−π(θ∗)β2 + π′(θ∗)θ∗(2β − 1)− π′′(θ∗)θ∗2 + π(θ0)β2 + β2rC = 0. (3.10)

The system of equations (3.9) and (3.10) implicitly determine then the optimal levels

of θ∗ and I. Again we use the specific functional form for the profit function to get more

information about the process of adoption of new technologies. If we assume a Cobb-Douglas

production function we get that

θ∗ =

[(
β

β − b

)2(
θb0 +

rC

φ

)]1/b

, (3.11)

I =
b

β − b
φθb0
r

+
β

β − b
C.

Hence, as we can infer from (3.11), under competition between supply and demand, the

adoption of technologies is expected to occur at a slower rate.

Proposition 3. The value of θ∗ under competition between supply and demand (section

3.3.3) is higher than when one side of the market holds all the power (sections 3.3.1 and

3.3.2).

Proof. Follows from (3.4), (3.7) and (3.11).

An important observation is that while the adoption of new technologies occurs at a slower

pace under competition between supply and demand, the level of technology adopted in that

market setting is higher. This might lead one to think that the long run productivity of the
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firm on the demand side is higher under competition between supply and demand. This is

due to our simplifying assumption that firms can only buy a new technology once. As we

mentioned already, Doraszelski (2001) shows that the firm’s decision problem, if we allow

the firm to change technologies more than once, is of the same form after each adoption of a

new technology. Hence, allowing the firms to buy new technologies more than once will still

mean that the switch to better technologies occurs later under competition between supply

and demand. Thus, long run productivity is still lower under competition between supply

and demand.

3.4 Comparative Statics

In Figure 3.1 some comparative static results are presented. The figure depicts the level of

technology adopted, θ∗, and the expected discount factor, which is our measure of the speed

at which new technologies are adopted. We explore the changes in these two variables when

the variance of the process governing the evolution of technologies σ, the trend or the expected

evolution of technology α, and the interest rate r, change. The value of the parameters φ, b, r

and θ0 are set to the same values as in Farzin et. al. (1998). The value of θ, α and σ are set

such that the expected discount factor implies a delay in the adoption of new technologies of

around 16 periods, which is about the value Farzin et al. (1998) use (17.79 periods in their

paper). The value the parameters we use are then φ = 151.32, b = 1.25, r = 0.1, θ0 = 1, θ =

θ0, α = 0.05 and σ = 0.01.

From Figure 3.1 there are three facts that are worth noting. First, an increase in either

α or σ has bigger effect in the level of the technology adopted when there is competition

between supply and demand. Hence, when only one side of the market holds all the power

the level of technology adopted is less sensitive to the process governing the evolution of

technologies. Markets for different technologies should exhibit more diverse behavior under

competition between supply and demand than when only one side holds all the market power.

A second feature that deserves attention is that as the interest rate rises, the level of

technology that is adopted tends to converge to the same value under both competition

between supply and demand and the case when only one side holds all the market power. This

means that in economies with high interest rates, the structure of the market for technologies

has less effect than when compared with low interest rate economies.

A third fact which the numerical analysis reveals is that the effects of the variance of

the process for technology, σ, has a small effect if any on the speed of adoption. That is,

industries where there the evolution of technologies is very random with big improvements

in short timespace and periods with almost no improvements should not influence the speed
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at which the adoption occurs.

3.5 Conclusions

In this paper we investigated how different market structures affect the speed at which new

technologies are adopted. A game between the demand side, firms buying technology, and

the supply side, firms selling technology, was presented. Three different market scenarios

were considered, one in which the supply holds all the market power, another in which the

demand holds all the market power, and a third setting where there is competition between

both supply and demand.

In our results, we explained how these three different market structures affect the adoption

of technologies. The speed of adoption when one side of the market holds all the market

power is the same independently of which side holds the power. However, when no side of

the economy has all the market power, the competition between supply and demand case,

then the adoption occurs at a slower pace. This suggests that competition between the two

sides of the market might decrease the speed of adoption and that competition within each

side might increase the speed of adoption.

The literature so far has only focused on the optimal timing of adoption of new technolo-

gies from the perspective of a firm that faces an exogenous process of technological change

where the price of new technologies is also exogenous. To our knowledge, this is the first

paper that incorporates the pricing of new technologies as something endogenous that results

from the interaction between firms buying the technology and firms selling the technology.

Our results show interesting insights about the effects of the market structure on the adoption

of new technologies. The results found explain empirical phenomena often attributed to the

differences in the technologies themselves. We show that market structure itself can account

for, at least some, of this observed phenomena.
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Appendix

3.A.1 Brownian Motion

Let z be a continuous random variable. Denote by z(t) the value of z at time t. We say that

z is a Brownian Motion if

1. z(0) = 0,
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2. z(t) is almost surely continuous for all t and

3. z(t)− z(t− s) ∼ N (0, t− s).

3.A.2 Derivation of the Expected Discount Factor

Note that, for a given θ∗, the only variable the expected discount factor depend on is the

current level of technology θ. Then we can define the function f as

f(θ) = E(e−rτ ).

If θ = θ∗ then it is obvious that τ = 0 and hence f(θ∗) = 1. Assume then that θ < θ∗.

Choose dt small enough so that θ won’t surpass θ∗ in the next time interval. Then we have

that the problem of computing the hitting time restarts at the point θ + dθ. That is,

f(θ) = e−rdtE(f(θ + dθ))

= e−rdt [f(θ) + E(df(θ))] . (3.12)

Given that θ follows a Geometric Brownian Motion we can expand df(θ) using Itô’s

Lemma. In this case we get

df(θ) = (αθdt+ σθtz)f ′(θ) +
1
2
σ2θ2f ′′(θ)dt.

Note that E(dz) = 0. Furthermore, using the Taylor expansion and ignoring the terms

of order dt2 and higher we can state that e−rdt = 1− ρdt. Hence,

e−rdtE(df(θ)) = (1− ρdt)αθf ′(θ)dt+
1
2
σ2θ2f ′′(θ)dt.

Therefore, ignoring once more the terms of order equal or higher than dt2, we get that

0 = −ρf(θ) + αθf ′(θ) +
1
2
σ2θ2f ′′(θ). (3.13)

Equation (3.13) is a second order linear differential equation in f with the boundary

conditions f(θ∗) = 1 and f(θ) → 0 as the difference θ∗ − θ becomes large. The general

solution to the second order linear differential equation is given by

f(θ) = C1θ
β + C2θ

β′

where β and β′ are the roots to the characteristic equation in x

0 = −ρ+ αx+
1
2
σ2x(x− 1).
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Let β be the positive root exceeding unity to the above equation, that is

β =
1
2
− α

σ2
+

√(
α

σ2
− 1

2

)2

+
2r
σ2
. (3.14)

Using the terminal conditions we can set C1 = θ∗−β and C2 = 0. This leads to

f(θ) =
(
θ

θ∗

)β
where β is given in equation (3.14). Recalling that f(θ) = E(e−rτ ) gives the desired result.

3.A.3 Problem of the Firm from the Demand Side when the Demand Holds

All the Market Power

The problem of the buyer is given by

max
θ∗

E
(∫ τ

0 π(θ0)e−rsds+
∫∞
τ π(θ∗)e−rsds− Ie−rτ

)
.

After computing the integrals above the maximization problem becomes

max
θ∗

{
π(θ0)E

(
1
−re
−rτ
)

+ π(θ∗)E
(

limx→∞
1
−re
−rx − 1

−re
−rτ
)
− IE(e−rτ )

}
.

Which in turn can be rewritten as

max
θ∗

{
π(θ0)
r E (1− e−rτ ) + π(θ∗)

r E(e−rτ )− IE(e−rτ )
}
. (3.15)

Plugging in the value of E(e−rτ ), using the fact that I = C and dropping the constants

from the maximization problem we get that

max
θ∗

θ∗−β (π(θ∗)− π(θ0)− rC) .

3.A.4 Problem of the Firm from the Demand Side Under Competition be-

tween Supply and Demand

The same analysis applies here as in Appendix 3.A.3 to get equation (3.15). From this

equation, by pugging the value of E(e−rτ ) and dropping the constants from the maximization

problem we get that

max
θ∗

θ∗−β
(
π(θ∗)
r − π(θ0)

r − I
)
.
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Figure 3.1: Comparative Statics

The thick green line corresponds to the case where there is competition between supply and demand while

the thin blue line corresponds to the case where the market power lies with only one side of the economy.
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