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1 Introduction

We consider multiple principal, multiple agent models ofgomoral hazard. That is,
there is complete information about the types of principalgd agents. Principals offer
allocations and agents choose non-contractible effant$ payoffs are then realized.

Referring to recent researches on common agency gamesokéloon the condi-
tions under which pure strategy equilibria characterizgedibect mechanism are robust
to the introduction of richer indirect mechanisms.

We show that if principals use both stochastic allocatiors @rivate recommenda-
tions to the agents, direct mechanism equilibria remainlibga when principals can
choose more general communication schemes.

We provide two examples to show how both elements are nagdss#he result. In
the first example, we let a principal use recommendationtéus restricted to choose
deterministically his allocation. Then it exists an indiremechanism that gives to him a
higher payoff. In the second example, we allow a principalltoose randomly among
allocation without sending any recommendation to the agefgain, the principal can
improve his payoff by choosing an indirect mechanism. Bnale discuss an example
provided by Peters (2004) in detail, since it appears toradidt our theorem. In this
example, Peters (2004) wanted to show that a pure strataghbegm characterized
with direct mechanisms could be not robust to the introaunctif indirect mechanisms.
A critical feature for this result is that principals’ stegies are restricted to be deter-
ministic mechanisms. Allowing for stochastic mechanismalbdes us to recover the
robustness of equilibria in the example and the cohereniteour framework.

As menus theorems do not apply in multi-principal multiHaigeodels, and as the
methodology proposed by Pavan and Calzolari (2005) has et et extended to
multi-principal multi-agent games, our theorem can be aep forward toward a more
general characterization of equilibria in this framewérk.

In the next section we start presenting the model.

1See Peters (2001) for a presentation of the menus theoreuns discussion of their extension to
multi-principal multi-agent games. Han (2006) extendss¢htheorems to a restricted class of multi-
principal multi-agent games.



2 The Model

There aren principals dealing witkk agents, whera > 1 andk > 2. That s, we consider
a model with multiple agents. While the general model alléevsnultiple pricipals as

well, the single principal case is a special case of somedsteand will be the focus of
Sections 3 and 4.

Let Yj be a set of deterministic allocations available to principawith typical
elementy; € Y;. An allocation can be, for example, monetary transferstates, prices,
or quantities, depending on the particular interpretatibthe model. Each principgl
chooses an allocation in the getY;), the set of lotteries that can be generated over the
set of deterministic allocationg.

There is complete information about agent types. Howeweh @agent chooses an
unobservable effoe € E', whereE! is a finite set. Therefore, the model is one of pure
moral hazard. We denote the vector of efforteas (e!, €, ...,e¥) € E = xK_| E'.

We use the general communication structure for princigalhd models introduced
by Myerson (1982). Each principalchooses a message spwp(possibly the empty
set) and arecommendation spﬁtféor each agent. We restrilsv‘l'j andR'j to be finite for
eachi andj. LetR; = x!‘leij denote the set of recommendations principe&n make,

i
from the agents, principglchooses an allocation and a private recommendation to each
agent.

As in Myerson (1982), his behavior is described by the chowde 1; : Mj —
A(Yj x R;j). Thatis, principalj may choose a stochastic mechanism, which provides
a lottery over allocations and recommendations for somesagesarrayn;. When the
choice ruler; is not deterministic , we assume that the lottery over atlooa is realized
only after agents have chosen their efforts. However, palg chooses a realization
from the lottery over recommendations, and reports thezagtein rij to agenti. Po-

with Mj = x_ M}, as before. After receiving the message amgy— (mjl, ,m‘f)

tentially, this allows a principal to induce a correlatedidigrium in the agents’ efforts
game.

With a slight abuse of notation, le (y;,r; |m;) denote the probability that alloca-
tiony; and recommendation array are chosen, given a message amgy A mech-
anism for the principal is thus given by(Mj,Rj,n,-). We denote by the set of all



available mechanisms to princippl Let ' = xjcnlj, with y a generic element df.
Mechanisms are publicly observed, but a message from agentrincipal j, and a
recommendation from principglto agent, are observed only byand j. As is usual
in the literature, principals commit to their mechanismfobeagents send messages.

There are two stages at which agentoves in the game. First, he sends a message
arraym = (m,...,m},) to the principals. Then, after observing only his private-re
ommendations' = (r},...,r\), he chooses an effoet € E'. Given the mechanismg
let

WA (MY 1)

denote the message strategy of agewhereM' = XjeNMij, and let
§:M xR —A(E ()

denote his strategy in the efforts game, where- x jcnR|.
The time structure of the interaction is provided in Figurard follows the one
considered by Myerson (1982).

Each principalj Each agent Each principalj sends Each agent Payoffs
announces his chooses his recommendation! choose® ~ are realized
mechanism messagesy’ to each agenit after observing'
(M, Ry, )
| | | | —
1 2 3 4 5

Figure 1: Timing of the generalized communication game

Agenti’s payoff is given by the von Neumann—Morgenstern utilitpdtionU’ (y, e)
and principalj’s payoffis given by\7,- (y,e). Given chosen mechanismdet = X?:]_T[j
denote the strategies of the principalss ><ik:1lli the message reporting strategies of
the agents, and= xX_,& the agents’ strategies in the effort game. AlsoJ&(tr, , 5)

3



denote the expected utility of ageingiven strategiest, |, d, ande(Tr, K, ) the corre-
sponding expected utility of principal

In this complete information framework, a direct mechanisrdefined as follows.
Principals do not solicit messages from agents, and dyrasctfjgest the actions they
should take. Thatigyli = 0andR, = E' foreveryj=1,...,nand foreverj =1,... k
Finally, ; € A(Yj x E). A mixed strategy for an agent in a direct mechanism is given
byd: (E)" — A(E).

3 Single Principal

In the special case of a single principal, a revelation gpiecholds (see, e.g., Myerson
(1982)). That is, any outcome (i.e., a joint distributiorepallocations and efforts) that
can be sustained as an equilibrium in the agents’ effort garaa indirect mechanism
can also be sustained as an equilibrium of the agents’ eféorte in an incentive com-
patible direct mechanism. In the direct mechanism, it isst leEsponse for an agent to
“obey” the recommendation received from the principal.

It follows that the optimal direct mechanism is optimal i tlass of all communi-
cation mechanisms. That is, an equilibrium of the game degim Figure 1 in which
the principal is restricted to choosing among direct meigms remains an equilibrium
of the game even when the principal is allowed to chooseaatimechanisms.

In this section, we provide examples to highlight two featusf the construction that
are necessary to sustain the revelation principle in thglesiprincipal case: stochastic
allocations, and recommendations. Each of the two exann@eonsider has one prin-
cipal and two agents. In each example, we show the optimatidmechanism, and
then show that, by privately communicating with one of the &gents, the principal
can sustain outcomes in an indirect mechanism that are asibfe in a direct mecha-
nism unless stochastic allocations (Example 1) and recardai®ns (Example 2) are
allowed for.

Example 1(Stochastic allocations):

Consider a game with one principal and two agents. The a@hcan choose be-
tween two allocations, and each agent chooses between tortsdévels. Following
our notation, we hav¥ = {y1,y»}, E! = {a;,ay} andE? = {b1,b2}.
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The payoffs are given by the following matrices. In each,cdlé first element
corresponds to the utility of the principal, and the second third to the utilities of

agents 1 and 2 respectively.

Y=wn Y=Yz
b1 b2 bl b2
a | (1,-4,4) (1,4,-4) a | (1,11) (x,0,0)
a| (1,4,-4) (1,-4,4) ay | (x,0,0) (1,—-1,-1)
wherex > 1.

Suppose the principal offers only deterministic allocasion any mechanism. A
mechanism is then characterized by:

M =Y xA(R),

whereM is the message space dRthe recommendation space. Hence, a direct mech-
anism with deterministic allocation is defined ¥y A (E* x E?).

In a direct mechanism with deterministic allocations, rmeandations have norole.
For each of the allocationg, y», there is a unique correlated equilibrium in the agents’
effort game.

If the allocation isy1, the payoff of the principal is trivially 1, regardless ofeaqs’
efforts. Agents play the following effort game:

ag (17 _47 4)

(1,4, -4)

(1,4, -4)
(1,-4,4)

ap

This game has a unique correlated equilibrium in which agegtially randomize be-
tween their two strategies. Hence, incentive compatybility; is chosen requires that
the principal choose recommendations from the joint digtron that places a probabil-
ity %f on each of the four effort combinations.



If the principal chooses the allocatigp, the effort game is given by

y=y2
b1 by
a|(1,1,1) (x,0,0)
a| (x,0,0) (1,-1,-1)

Each agent has a strictly dominant strategyfor agent 1 andb; for agent 2). Hence,
there is again a unique correlated equilibrium in which thagypal’s payoff is still 1.
Incentive compatibility ify, is chosen requires that = a; andr? = by, wherer' is the
recommendation sent to agent

Hence, using a direct mechanism with deterministic aliocat the payoff of the
principal is 1. We now show that using an indirect mechanisth deterministic allo-
cations, he can do better. Therefore, stochastic allatstiwe necessary to sustain the
revelation principle.

Consider the following indirect mechanisi! = {my, mp}, andM? =Rl = R = 0,
whereM' is the message space of ageandR' the set of recommendations that may be
provided to agent. That is, the principal communicates only with agent 1, affere
no recommendations.

The principal uses the following deterministic allocatite Tt if agent 1 sends
message, the allocation igy, fork=1,2.

Since agent 1 does not observe any new information (i.ecammendation) after
sending his message, and agent 2 observes no informatiorebefoosing his effort,
the following simultaneous-move game is induced betweeragents:

by by
(my,a1) | (1, —4,4) (1,4, -4)
(my,ap) | (1,4, —4) (1,—4,4)
(mg,a1) | (L,L,1) (%00
(M2,8) | (%,0,0) (1,-1,-1)




In the absence of recommendations, agents play a Nashkeguii of this game. We
now show that every Nash equilibrium of this game places #ipegrobability on the
outcome(0,0).

First, by inspection, we observe that there is no pure styagguilibrium in this
game. Therefore, in any Nash equilibrium, agent 2 must plath b; and by with
strictly positive probability. Further, strated@y,ay) for agent 1 is strictly dominated
by (mp,ay).

Now, agent 1 must also be mixing in equilibrium (else agentil2 ot mix over
{b1,b2}). Suppose that in equilibrium agent 1 mixes over ofmy,a;) and (ny, ap).
Then, agent 2 must be playing eachbgfandb, with probability% (else agent 1 is not
indifferent between his two strategies). But, against shiategy of agent 2mp,a;) is
a strict best response for agent 1.

Hence, in every Nash equilibrium of this game, agent 1 musy fiinp,a1) with
positive probability, and agent 2 must play bdthand b, with positive probability.
Therefore, the outcom@, 0) has positive probability.

However, the outcom¢0,0) provides a payofik > 1 to the principal. Since the
payoff from every other outcome is 1, the expected payofthef principal from any
equilibrium of the indirect mechanism strictly exceeds lhafis, the principal does
strictly better with an indirect mechanism than with a direechanism. [

Therefore, even with complete information and in the preseari recommendations,
stochastic allocations are necessary for the revelatimeipte to go through. In this
example, the principal uses an indirect mechanism effelgtito provide agent 1 with
private information about allocations, and create unaastabout allocations for agent
2. This uncertainty, in turn, affects the strategy of agenmt the agents’ effort game,
leading to an eventual outcome that is not sustainable irrectdmechanism unless
stochastic allocations are permitted.

Strausz (2003) provides an example to show that, in a setfipyire adverse se-
lection, even with one principal and one agent, it is no lorigee that any payoff im-
plementable by a deterministic indirect mechanism can kelned with a deterministic
direct mechanism. However, as Strausz shows, the prinalpalys does weakly bet-
ter with a direct mechanism, so that the optimality of dire@chanisms remains in



the single-principal, single-agent setting. He providdarther example to show that
a second agent with veto power may veto a direct deterngnistichanism and prefer
an indirect mechanism. Our example above shows that, wite pwral hazard and
two agents, the principal may strictly prefer a determiaigtdirect mechanism to a
deterministic direct mechanism.

Next, we provide an example to show that recommendationsar@ssary to sustain
the revelation principle. In their absence, a principal @gain do better with an indirect
mechanism than with a direct mechanism.

Example 2(Recommendations):
Again,n= 1 andk = 2. As beforeY = {y1,y>}, E' = {a1, a,} andE2 = {b1,b2}.

The payoffs are given by the following matrices. In each,ddlé first element
corresponds to the utility of the principal, and the second third to the utilities of
agents 1 and 2 respectively.

y=w y=Yy2
by 07) by 07)
a| (0,0,10) (50,6,6) a1 | (0,0,—10) (—200,0,0)
a | (0,-10,—10) (—10,0,10) a| (0,100)  (4,1,6)

Suppose that the principal offers no recommendations é&ih= R? = 0), but can
choose a lottery over allocations, so tyat py: + (1— p)y2. Then, a mechanism is
characterized byt: M — A(Y).

In a direct mechanism, the agents’ effort game is as follows:

by by
a1 | (0,0,20p—10) (250p— 200, 6p, 6p)

Forp< % b, strictly dominated;. Forp < % agent 1's best responseas so that
the unique equilibrium igay, by), with resultant utility for the principal 4 14p. Thus,
the principal’s utility is maximized ap = 0 and a value of 4. Fop € (%, %), agent1’s



best response &, which results in equilibriuntas, by) and a utility of 25@ — 200 for
the principal. This has a supremumpat 5—7_’ and a value o#@.

Whenp = % agent 1's best responseais and agent 2 is indifferent oveg, b,. The
maximal utility the principal can obtain is 0, when agent @yslb,. Finally, for p > %
the unique equilibrium of the agents’ subgamésis b;), with principal utility being 0.

Hence, the optimal allocation for the principal yg, with resultant equilibrium
(az,b2) in the agents’ game, and a utility of 4 for the principal.

Now, consider the following indirect mechanism. The pnraticommunicates with
agent 1, with the message space béihig= {m;,m}. The allocation rule, as in Exam-
ple 1, isTi(my) = yk for k=1,2.

As in example 1, a simultaneous-move game is induced bettheaagents, and can
be represented as follows.

by 07)
(m,a1)| (0,0,10) (50,6, 6)
(mg,a1) | (0,0,-10) (—2000,0)
(my,a) | (0, —10, —10) (—10,0, 10)
(mp,a2) | (0,10,0) (4,1,6)

The agents’ game exhibits the following unique Nash equilib:
e Agent 1 mixes betweefmy, a;) and(my, az), with probabilities3/s and 2/s.
e Agent 2 mixes betweely andb, with probabilities,1/3 and 2/3.

Thus, the principal’s expected payoff from the indirect heatsm is316/15 > 4.
That is, the principal has a higher payoff from the indireetmanism than is achievable
in a direct mechanism.

Allowing for recommendations, we can resurrect the equililn of the indirect
mechanism in a direct mechanism. A direct mechanism witbrmegendations in this
example may be characterized as a functiory x EX x E2 — [0,1], where(y, a, b)
is the probability the principal chooses allocatypand recommends effoatto agent 1
andb to agent 2.



In the equilibrium of the indirect mechanism above, the Itest distribution over
allocations and efforts ig(y1,a1,b1) = /5, T(y1,a1,b2) = 2/5, (Y2, a2, b1) = 2/15 and
(Y2, 8z, b) = 4/15. Suppose the principal plays this strategy in the directharism.
That is, the principals choose allocations and efforts afing toTi(-), and announces
the resulting recommendations to the agents.

It is straightforward to check that neither agent has anntice to deviate, so the
mechanism is incentive compatible. For example, when agyentold “b,”, his poste-
rior beliefs place probability/s on (y1,a;1) and 2/s on (y»,ap). Given these beliefd),
is a (weak) best response. The principal obtains the u?ﬂg@yas before. n

In this example, the principal uses an indirect mechanisootomunicate privately
with agent 1, thereby sustaining a correlated outcome diaagions and efforts. Such
correlation can be replicated in the direct mechanism drih& principal sends recom-
mendations.

4 Multiple Principals

With multiple principals, the principals are now playing ange with each other, and
their choices of mechanisms must correspond to a Nash lequiti of this game. Fur-
ther, agents choices of messages and efforts must repasgintuation equilibria of
the game, given the mechanisms chosen by principals andhreeadations received
by agents.

We first observe that, with multiple principals and stocttastechanisms, agent’s
obedience of principals’ recommendations is a troublespat®n. An agent may be
recommended different actions by different principalsr &mample, if two principals
are both randomizing over recommendations, since pritgigfaoose their strategies
independently, there is a strictly positive probabilitatian agent will receive different
recommendations from the principals. Which one should ley@b

Given this difficulty, we bypass the issue of agents obeyewpmmendations re-
ceived from principals. Instead, for incentive compaiipilvith multiple principals,
we only require that, given the strategies of principals aiibr agents, agents play an
equilibrium of the effort game.
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Though there is complete information among principalsgeiagents receive pri-
vate recommendations from principals, agents may havaterimformation at stage 4
(see Figure 1), when they play the effort game. Hence, inpivé sf perfect Bayesian
equilibrium, we require that each agegnplays a best response following any recom-
mendation array' = (r},...,r},) he may receive.

Multiple principals introduce a new complication into thrarhework, since princi-
pals too must play equilibrium strategies in the mechanissigh game. Since princi-
pals must choose mechanisms independently, there can lmernetation in the resultant
distribution over allocations in any equilibrium of a ditesechanism. However, as Ex-
ample 3 shows, such correlation can be induced in an indimechanism, if principals
privately communicate with the same agents.

Example 3 (Multiple principals and correlated allocations)

Suppose there are two principals and two agents. The albbocaets arey; =
{c1,¢p} for principal 1 andY, = {dj,dp} for principal 2, and the feasible efforts are
E! = {a} for agent 1 and? = {a,} for agent 2. Hence moral hazard plays no role.

The payoffs are given by the following matrix

da dz ds

c1 (1,1,0,0) (3,2,1,1) (-1,-1,0,0)
C2 (2,3,1,1) (1,1,0,0) (-1,-1,0,0)
cs|(-1,-1,0,0) (-1,-1,0,0) (-1,-1,0,0)

where in each cell the first number represents the utilithefirst principal, the second,
the utility of the second principal and the two last numbedidates respectively the
utlity of the first and the second agent.

Consider the following indirect mechanism. Principals a2h offer the same mes-
sage spachlj = {mi,m?,m’} to agent 1 and 2. Lé¥1? = R' = R? = 0 (so that agent 2
is not able to send any messages, and neither agent recejvescammendations). The
allocation rule used by the principals is: For eaehl, 2,, principal 1 setstl(mil, m%) =
m(my, mé) = ¢, and if any of the two agents send the messafjene takes the decision

11



cs. Principal 2 sets the same decision rute:(m,,m}) = 1o (m,,m}) = dj, andds if
one of the agents sends.

In equilibrium, agent 1 plays each ¢fr2, m}) and (mi,m3) with probability 1/2,
and agent 2 play(;m%,m%) with probability one. If one of the principal deviates, then
the agents choose to semﬁ to the no-deviating principal. Hence no principal has an
incentive to deviate. Let us remark that given the stratdgye other agent, such a
strategy is optimal for every agent.

This strategies guarantee to the agents a payoff of 1 ane farihcipals a payoff of

5/2.

The resultant distribution over allocations and effortacgls a probabilityt/2 each
on (c1,dz2) and(cp,dg). Such a distribution is not achievable with direct mechausis
in any game in which principals 1 and 2 play independentlyhéf allocationgc;, dp)
and(cp,d;) are reached with positive probability, then the same myspéato(cy,d;)
and(cp, dy).

Let us remark that moral hazard plays no role in our exam@ecé recommenda-
tions do not play any role and cannot help to create corogldietween decision as in
the second example.

This example illustrates a well known result in contracotlye whenever one con-
sider multi-principal games, there may exist equilibristatned by indirect mechanisms
only. In the example agent 1 acts as a correlation deviceethating correlation cannot
be reproduced if principals play direct mechanisms only.

In the single-principal setting, every equilibrium of aalit mechanism can trivially
be sustained as an equilibrium of a direct mechanism thieffisatincentive compati-
bility. Hence, one implication of the revelation principtethat every equilibrium of a
direct mechanism remains an equilibrium when the prinagallowed to choose over
indirect mechanisms instead. We show that this implicagjoes through with multi-
ple principals, as long as the recommendations offereddarequilibrium of the direct
mechanism are uncorrelated with the allocations.

Recall that a mechanism offered by principas defined by(Mj, R;, 11j), where:

M;j = x}{_;M! andM! is the message space for agettt communicate with principg,

12



Rj = x{_;R, andR| is the set of recommendations principahay make to agerit and
M - Mj — A(Yj x R;j) is the allocation rule used by princippl

A direct mechanism is defined @, E, 1), wherer; € A(Yj x E). If the probabil-
ities over allocations and recommendations are indepéndensay the recommenda-
tions are uncorrelated with allocations.

Definition 1 In a direct mechanism, a strategy of principal j has no correlation
between recommendations and allocations if there exisgimalrdensitiegr; y € A(Y;)
andT e € A(E) such thatr(y,e) dy= 11 y(y) T e(e) for each ye Yj and ec E.

A special case of recommendations uncorrelated with diloesiis when recom-
mendations are deterministic rather than stochastic. kample, suppose that each
agent can put in a binary effort, say high or low. In additisappose that in equilib-
rium, each principal wishes that each agent choose hight efthen, recommendations
are deterministic, and regardless of allocation strasegatisfy our definition of being
uncorrelated with allocations.

In a direct mechanism, when recommendations are detettiojrilee same outcomes
are achieved in equilibrium as if they were publicly obseérv8ince obedience has not
been assumed, the agents’ equilibrium strategies givemrdatistic recommendations
only need to be mutual best responses in the efforts gamet i§harincipals’ direct
mechanisms induce Nash equilibria in the agents’ effort gyaffherefore, the over-
all outcome represents a subgame-perfect equilibriumeofjime in which principals
design direct mechanisms.

Letl,, be the direct mechanism game among the principals. In thmeggarincipals
may choose any direct mechanism at stage 1 (see Figure Ye strategy choice of
each principalj is restricted tor; € A(Yj x E). LetT'; be the indirect mechanism
game. In this game, principals may choose indirect mechemnas well, so that stage
2 (at which agents send messages to principals) may havéraleaHere, principal
choosegMj, R;, j), where (with a slight abuse of notatiom) : M; — A(Yj x R;).

In an equilibrium of eithel,, or I';, we require that (i) each principal plays a
best response, given other principals’ strategies andtgigstnategies, and (ii) each
agenti plays a best response for every recommendation afrag may receive, given
principals’ strategies and other agents’ strategies.

13



Formally,

Theorem 1 Suppose the direct mechanism game has an equilibrium in which (i)
each principal j playsr (i) each agent | play™, and (iii) for each principal j,
T has no correlation between allocations and recommendatiofhen, in the indi-
rect mechanism ganig;, it remains an equilibrium for each principal j to offer the
mechanisn{0, E, ;) and for each agent i to play*. Thus, the joint distribution over
allocations and efforts that obtains in the equilibrium bé&tdirect mechanism game
remains an equilibrium outcome of the indirect mechanismea

Proof.

Consider the gamg; . Suppose that, in this game, every principalfers a mech-
anism(Mj , Rj,T[j) = (0, E,Tfjk), wherert; is his equilibrium strategy in the direct mech-
anism game ,,. It is immediate thad* = x}‘zléi* must remain a continuation equilib-
rium in the agents’ efforts game.

Hence, we need only to show that no princigahas an incentive to unilaterally
deviate from the mechanis(ri), E,Tfj“,>. Suppose, therefore, that some princigdias

an incentive to deviate tM;/, Ry, Tt # <® E, ) while all other principalg # j’
continue to offer mechanlsrT(SD E n*) Suppose the agents plzéja, ) in response

to these mechanisms, and the mechanisms and the agentssBMeglesS induce a
(possibly correlated) distribution over allocationand effortse. LetV (y, e) denote this
distribution. Since agent has an incentive to deviate to the indirect mechanism, his

utility from such a deviatiory; (V(y, e)) must exceed his utility from the equilibrium of
the direct mechanism.

Now, every principal # j’ is using recommendations uncorrelated with allocations.
Since each agemtobserves only the mechanisms and his own recommendatiay arr
= (rl,..., ) the efforts chosen must also be uncorrelated with the atiloes of
principalsj # j’. Hence, we can writau(y,e) = Vj(yj,e) < AT, (Yj ) where
TG | (yj) is the marginal distribution over the allocations of priadij, given his strategy

us

Now, it is straightforward for principaj to induce the same joint distribution in
the direct mechanism game. Rather than play the stratpdye plays the strategy; .

14



Since this strategy induces the same joint distributionr efferts and allocations as in
the continuation equilibrium of the indirect mechanism gaihmust be a best response
for each agent to obey the recommendation of principgland to ignore the recom-
mendations of the others (else agemtould have a profitable deviation in the indirect
mechanism game, rather than playﬁ'n)g But if every ageni obeys the recommen-
dation of principalj, and principalj playsv(y,e) in the direct mechanism game, the
same joint distribution over allocations and efforts isuoéd as in the indirect mecha-
nism game. Hence, if principglhas a profitable deviation in the indirect mechanism
game, he has a profitable deviation in the direct mechanisnege well, contradicting
the assumption that* = x{1 ;75 is an equilibrium of the latter gamen

Remarks:

1. Peters (2003), Theorem 1, shows that in a common ageacynultiple-principal,
single-agent) setting, pure strategy equilibria of dimaetchanisms are robust to
the introduction of more complex communication schemes:. tBeporem above
provides an analog with multiple principals and multipleaty. Note, however,
that our setting is different from that of Peters (2003) du¢he explicit use of
recommendations.

2. Our theorem uses the same intuition as that of Myerson2(198uppose ev-
ery principal uses recommendations uncorrelated withcatlons in the direct
mechanism game, and one principal now deviates to an inidirechanism. The
deviating principal may play a strategy which implies a etation between rec-
ommendations and allocations. Nevertheless, it is ineerdgompatible (in the
sense of being a best response to other agents’ strategiesgdh agent to obey
the deviating principal in the indirect mechanism game. d¢erthe problem of
replicating an outcome from the indirect mechanism gaméendirect mecha-
nism game reduces to the same problem as with a single paincip

3. There may well be multiple equilibria in the agents’ effgame. All we show is
that obeying the recommendation of the deviating principane such equilib-
rium.

4. The indirect mechanism game may have other equilibrighiichvmore than one
principal offers an indirect mechanism (see Example 3).
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Importantly, our theorem cannot be straightforwardly eged to games with in-
complete information. The intuition is the following: evénrecommendations are
uncorrelated with allocations, a recommendation fromg@pal j to agent may com-
municate information about the type of some other agenthis may lead to a corre-
lation between agents’ efforts and principals’ allocasiomwhich is difficult for a single
principal to replicate in a direct mechanism.

5 Discussion

In a recent paper, Peters (2004) provides two thought-prngoexamples in a set-
ting with two principals and two agents. His first examplegegjs that “In a multiple
agency environment [...] pure strategy equilibria are wbust against the possibility
that principals might deviate to more complex indirect neetems” The second ex-
ample shows that a “no externality” assumption (see Pe2&@&3) sufficient to imply
the Revelation Principle in a multi-principal, single ageontext fails to do so when
there are many agents.

We show in this section that his first example can be recahailgh the discus-
sion above, if one removes the restriction to determingitiect mechanisms. We first
briefly present the example, using Peters’ notation to kieeptesentation as simple as
possible.

Peters (2004), Example 1

As shown in Figure 2 below, the direct mechanism game begitisprincipalsPy
and P, simultaneously choosing allocations in the sp¥ce- Yo = {A,B}. In Peters’
framework, there are no recommendations. Thus, at the destage, agent&; andAy
observe the principals’ allocation rules, and simultars§oahoose a level of effort in
the sete! = E? = {1,2}. For convenience, participation constraints of the agards
ignored (it is easy to scale agent payoffs if necessary).

The game is summarized in Table 1. The principals’ choiciestivhich cell of the
larger matrix is chosen. The agents then play theZ2subgame in that cell. Payoffs
should be interpreted in the following way: the first paysfthe payoff to principal 1,
who chooses the row in the big matrix. The second payoff igptff to principal 2,

2peters (2004, p. 184).
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Principals Agents see
announce their allocations
take-it or leave-it and choose Payoffs
offersy; € {A,B} effortse € {1,2} are realized
| | | -t
1 2 3

Figure 2: Peters (2004), Example 1: direct mechanism ictiera

who chooses the column in the big matrix. The third payofbiagent 1, who chooses
the row in the inner matrix in each cell, and the last one isgena 2, who chooses the

column in the inner matrix in each cell.

A B

e=1 e=2 e=1 e=2

A e=1 « e=1 (33-39 (G43-)
e=2 x e=2 (3353 (d-33

e=1 e=2 e=1 e=2

B| e=1 (0,0-3,2) (0,03,-3) e=1 (3,0-1,-1) (1,1,1,1)
e=2 (0,0,3,-3) (0,0,-3.2) e=2 (1,1,1,1) (0,3,-1,-1)

Table 1: Reduced form of the example in Peters (2004)

Principals’ decisions are restricted to deterministierdf That is, principals are not

allowed to use lotteries over the allocatiofs B}. Given this restriction, in the direct
mechanism game in Figure 2, there exist three equilibrinerdirect mechanism game:

e P; andP, both play B;A; plays 1 andA; plays 2; each player gets a payoff of 1.
e P; andP, both play B;A; plays 2 andA; plays 1; each player gets a payoff of 1.

e P; andP, both play B;A; andA; randomize and play 1 with probability2; Py
andP, both get a payoff of/4, A; andA; get a payoff of 0.
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This framework is used to show that if a principal can comroatd with the agents
before choosing his allocation, the first two pure strategylédria do not survive. More
specifically, Peters considers the case whrasks each agent= 1,2 to send a mes-
sagem), € {A B} and designs the following mechanism (whesg-) denotes his allo-
cation strategy):

B if mi=ne,

A otherwise.

(i n?) - {

Whenever the agents do not coordinate on their messBgelspose®\. Since there are
no recommendations, we can think about agents choosingagesand efforts simul-
taneously.

If principal 2 continues to pla, the deviation is profitable for principal 1. The
continuation game associated with the strategi@sB} has multiple equilibria. In the
first class of equilibria (referred to &), agents both repoR (alternatively, both report
A) and randomize equally over efforts, inducing a payif for P1.2 In the second
equilibrium (E2) agents randomize equally ovieoth messages and actions. That is,
they select each message—action pair with probabilig, IThese behaviors induce a
payoff of 17/16 for P, and—1/16 for each agent.

Finally, the strategy profilEs has each agent randomizing equally over the message—
action pairs(my, 1) and(mp, 2). The corresponding payoffs at&/16 for Py, 1/s for A
and—5/4for Ay. However E;3 turns out to not be an equilibrium, since the best-replies of
agent 2 to the strategy of agent 1 é&me, 1) and(my, 2), instead ofmy, 1) and(my, 2).

Nevertheless, the strategy is a profitable deviation in Peters’ example given that,
in every continuation equilibrium, the deviating prindiparns a payoff strictly greater
than 1. In particular, the example emphasizes that the faybfl,1,1) cannot be
sustained at equilibrium whd®, is allowed to communicate with agents. n

We now show that allowing for stochastic allocations in t&mple, even with-
out introducing recommendations, recovers the resultdahgiayoffs associated with
principal 1's deviation tgi; can be supported using direct mechanisms.

3For every player, this equilibrium is payoff-equivalentie mixed strategy equilibrium of the take-it
or leave-it offer game.
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To develop this argument, we first observe that, in the daualidiscussed above,
principal 2 always chooses the stratdgy Thus, we can restrict our analysis to the
second column of table 1. We can therefore focus on the opéat@n of principal 1,
and effectively interpret this example as a single principaulti-agent game.

Suppose, in particular, that principal 1 randomizes egustweenA andB (with
principal 2 playingB). Agents observe the stochastic allocation, but not thizegeon
of the randomization, before they act. Then, the agentsfégetigely faced with the
following continuation game, where the first number in eaghis the principal’s ex-
pected payoff, and the remaining two numbers are the expeetgoffs to agents 1 and
2, respectively.

e=1 e=2
e=1]|(31/16,-5/4,1/8) (15/16,9/8,—1/4)
e=2|(15/16,9/8,—1/4) (7/16,—5/4,1/8)

The agents’ subgame exhibits only a mixed strategy eqiuhfrwith both agents
equally randomizing over actions. This randomizationdgethe principal a payoff of
1, and the agents a payoff >

Hence, if the principal is allowed to randomize over allomas, the outcomél, 1, 1)
cannot be supported as an equilibrium in the direct mechagane either (i.e., this al-
location results from a sub-optimal choice of principal iveg the strategy of principal
2).

6 Conclusion

The literature on competing mechanisms with multiple agjefiten makes seemingly
restrictive assumptions about the set of mechanisms tleateasible for principals:
models focus on “take-it or leave-it” offers or direct meglsans in which agents report
information about their preferencéswe provide some support for this approach in a

4Since principal 2’s strategy is fixed Bt his payoffs are ignored. As mentioned above, this is now
equivalent to a single principal, two-agent game.

5|f participation constraints (e.g., a reservation of tibf zero for the agents) are a factor, note that
the agents payoffsin each cell of the original game can breased byl% without affecting the equilibria.

6See for example Dogan (2004), McAfee (1993), and Prat arstiéhini (2003).
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complete information scenario: equilibria defined in direechanisms remain equilib-
ria in more general games in which principals can use richermgunication schemes,
if one correctly defines the strategy spaces. Neverthetssshown in the common
agency literaturé, our approach does not allow to characterize every equitibrof
multi-principal multi-agent games. If we focus on directahanisms, we may lose
some interesting equilibria.
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