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1 Introduction

We consider multiple principal, multiple agent models of pure moral hazard. That is,

there is complete information about the types of principalsand agents. Principals offer

allocations and agents choose non-contractible efforts, and payoffs are then realized.

Referring to recent researches on common agency games, we look for on the condi-

tions under which pure strategy equilibria characterized by direct mechanism are robust

to the introduction of richer indirect mechanisms.

We show that if principals use both stochastic allocations and private recommenda-

tions to the agents, direct mechanism equilibria remain equilibria when principals can

choose more general communication schemes.

We provide two examples to show how both elements are necessary for the result. In

the first example, we let a principal use recommendations buthe is restricted to choose

deterministically his allocation. Then it exists an indirect mechanism that gives to him a

higher payoff. In the second example, we allow a principal tochoose randomly among

allocation without sending any recommendation to the agents. Again, the principal can

improve his payoff by choosing an indirect mechanism. Finally, we discuss an example

provided by Peters (2004) in detail, since it appears to contradict our theorem. In this

example, Peters (2004) wanted to show that a pure strategy equilibrium characterized

with direct mechanisms could be not robust to the introduction of indirect mechanisms.

A critical feature for this result is that principals’ strategies are restricted to be deter-

ministic mechanisms. Allowing for stochastic mechanisms enables us to recover the

robustness of equilibria in the example and the coherence with our framework.

As menus theorems do not apply in multi-principal multi-agent models, and as the

methodology proposed by Pavan and Calzolari (2005) has not been yet extended to

multi-principal multi-agent games, our theorem can be one step forward toward a more

general characterization of equilibria in this framework.1

In the next section we start presenting the model.

1See Peters (2001) for a presentation of the menus theorems and a discussion of their extension to
multi-principal multi-agent games. Han (2006) extends these theorems to a restricted class of multi-
principal multi-agent games.
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2 The Model

There aren principals dealing withk agents, wheren≥ 1 andk≥ 2. That is, we consider

a model with multiple agents. While the general model allowsfor multiple pricipals as

well, the single principal case is a special case of some interest, and will be the focus of

Sections 3 and 4.

Let Yj be a set of deterministic allocations available to principal j, with typical

elementy j ∈Yj . An allocation can be, for example, monetary transfers, taxrates, prices,

or quantities, depending on the particular interpretationof the model. Each principalj

chooses an allocation in the set∆
(

Yj
)

, the set of lotteries that can be generated over the

set of deterministic allocationsYj .

There is complete information about agent types. However, each agenti chooses an

unobservable effortei ∈ Ei , whereEi is a finite set. Therefore, the model is one of pure

moral hazard. We denote the vector of efforts ase=
(

e1,e2, ...,ek
)

∈ E = ×k
i=1Ei .

We use the general communication structure for principal-agent models introduced

by Myerson (1982). Each principalj chooses a message spaceMi
j (possibly the empty

set) and a recommendation spaceRi
j for each agent. We restrictMi

j andRi
j to be finite for

eachi and j. Let Rj =×k
i=1Ri

j denote the set of recommendations principalj can make,

with M j = ×k
i=1Mi

j , as before. After receiving the message arraymj =
(

m1
j , · · · ,m

k
j

)

from the agents, principalj chooses an allocation and a private recommendation to each

agent.

As in Myerson (1982), his behavior is described by the choicerule π j : M j →

∆
(

Yj ×Rj
)

. That is, principalj may choose a stochastic mechanism, which provides

a lottery over allocations and recommendations for some message arraymj . When the

choice ruleπ j is not deterministic , we assume that the lottery over allocations is realized

only after agents have chosen their efforts. However, principal j chooses a realization

from the lottery over recommendations, and reports the realization r i
j to agenti. Po-

tentially, this allows a principal to induce a correlated equilibrium in the agents’ efforts

game.

With a slight abuse of notation, letπ j
(

y j , r j
∣

∣mj
)

denote the probability that alloca-

tion y j and recommendation arrayr j are chosen, given a message arraymj . A mech-

anism for the principalj is thus given by
(

M j ,Rj ,π j
)

. We denote byΓ j the set of all
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available mechanisms to principalj. Let Γ = × j∈nΓ j , with γ a generic element ofΓ.

Mechanisms are publicly observed, but a message from agenti to principal j, and a

recommendation from principalj to agenti, are observed only byi and j. As is usual

in the literature, principals commit to their mechanisms before agents send messages.

There are two stages at which agenti moves in the game. First, he sends a message

arraymi =
(

mi
1, . . . ,m

i
n

)

to the principals. Then, after observing only his private rec-

ommendationsr i =
(

r i
1, . . . , r

i
n

)

, he chooses an effortei ∈ Ei . Given the mechanismsγ,

let

µi : ∆
(

Mi) (1)

denote the message strategy of agenti, whereMi = × j∈NMi
j , and let

δi : Mi ×Ri → ∆
(

Ei) (2)

denote his strategy in the efforts game, whereRi = × j∈NRi
j .

The time structure of the interaction is provided in Figure 1and follows the one

considered by Myerson (1982).

Each principalj
announces his
mechanism
(M j ,Rj ,π j)

Each agenti
chooses his
messages,mi

Each principalj sends
recommendationr i

j
to each agenti

Each agenti
choosesei

after observingr i

Payoffs
are realized

-

1 2 3 4 5

t

Figure 1: Timing of the generalized communication game

Agent i’s payoff is given by the von Neumann–Morgenstern utility functionŪ i(y,e)

and principalj ’s payoff is given byV̄j(y,e). Given chosen mechanismsγ, letπ =×n
j=1π j

denote the strategies of the principals,µ = ×k
i=1µi the message reporting strategies of

the agents, andδ =×k
i=1δi the agents’ strategies in the effort game. Also, letU i(π,µ,δ)
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denote the expected utility of agenti given strategiesπ,µ,δ, andV j(π,µ,δ) the corre-

sponding expected utility of principali.

In this complete information framework, a direct mechanismis defined as follows.

Principals do not solicit messages from agents, and directly suggest the actions they

should take. That is,Mi
j = /0 andRi

j = Ei for every j = 1, . . . ,n and for everyi = 1, . . . ,k.

Finally, π j ∈ ∆
(

Yj ×E
)

. A mixed strategy for an agent in a direct mechanism is given

by δ :
(

Ei
)n

→ ∆
(

Ei
)

.

3 Single Principal

In the special case of a single principal, a revelation principle holds (see, e.g., Myerson

(1982)). That is, any outcome (i.e., a joint distribution over allocations and efforts) that

can be sustained as an equilibrium in the agents’ effort gamein an indirect mechanism

can also be sustained as an equilibrium of the agents’ effortgame in an incentive com-

patible direct mechanism. In the direct mechanism, it is a best response for an agent to

“obey” the recommendation received from the principal.

It follows that the optimal direct mechanism is optimal in the class of all communi-

cation mechanisms. That is, an equilibrium of the game depicted in Figure 1 in which

the principal is restricted to choosing among direct mechanisms remains an equilibrium

of the game even when the principal is allowed to choose indirect mechanisms.

In this section, we provide examples to highlight two features of the construction that

are necessary to sustain the revelation principle in the single-principal case: stochastic

allocations, and recommendations. Each of the two exampleswe consider has one prin-

cipal and two agents. In each example, we show the optimal direct mechanism, and

then show that, by privately communicating with one of the two agents, the principal

can sustain outcomes in an indirect mechanism that are not feasible in a direct mecha-

nism unless stochastic allocations (Example 1) and recommendations (Example 2) are

allowed for.

Example 1(Stochastic allocations):

Consider a game with one principal and two agents. The principal can choose be-

tween two allocations, and each agent chooses between two efforts levels. Following

our notation, we haveY = {y1,y2}, E1 = {a1,a2} andE2 = {b1,b2}.
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The payoffs are given by the following matrices. In each cell, the first element

corresponds to the utility of the principal, and the second and third to the utilities of

agents 1 and 2 respectively.

y = y1

b1 b2

a1 (1,−4,4) (1,4,−4)

a2 (1,4,−4) (1,−4,4)

y = y2

b1 b2

a1 (1,1,1) (x,0,0)

a2 (x,0,0) (1,−1,−1)

wherex > 1.

Suppose the principal offers only deterministic allocations in any mechanism. A

mechanism is then characterized by:

π̃ : M →Y×∆(R) ,

whereM is the message space andR the recommendation space. Hence, a direct mech-

anism with deterministic allocation is defined byY×∆
(

E1×E2
)

.

In a direct mechanism with deterministic allocations, recomemndations have no role.

For each of the allocationsy1,y2, there is a unique correlated equilibrium in the agents’

effort game.

If the allocation isy1, the payoff of the principal is trivially 1, regardless of agents’

efforts. Agents play the following effort game:

y = y1

b1 b2

a1 (1, −4, 4) (1, 4, −4)

a2 (1, 4, −4) (1, −4, 4)

This game has a unique correlated equilibrium in which agents equally randomize be-

tween their two strategies. Hence, incentive compatibility if y1 is chosen requires that

the principal choose recommendations from the joint distribution that places a probabil-

ity 1
4 on each of the four effort combinations.
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If the principal chooses the allocationy2, the effort game is given by

y = y2

b1 b2

a1 (1, 1, 1) (x, 0, 0)

a2 (x, 0, 0) (1, −1, −1)

Each agent has a strictly dominant strategy (a1 for agent 1 andb1 for agent 2). Hence,

there is again a unique correlated equilibrium in which the principal’s payoff is still 1.

Incentive compatibility ify2 is chosen requires thatr1 = a1 andr2 = b1, wherer i is the

recommendation sent to agenti.

Hence, using a direct mechanism with deterministic allocations, the payoff of the

principal is 1. We now show that using an indirect mechanism with deterministic allo-

cations, he can do better. Therefore, stochastic allocations are necessary to sustain the

revelation principle.

Consider the following indirect mechanism:M1 = {m1,m2}, andM1 = R1 = R2 = /0,

whereMi is the message space of agenti andRi the set of recommendations that may be

provided to agenti. That is, the principal communicates only with agent 1, and offers

no recommendations.

The principal uses the following deterministic allocationrule π̃: if agent 1 sends

messagemk, the allocation isyk, for k = 1,2.

Since agent 1 does not observe any new information (i.e., a recommendation) after

sending his message, and agent 2 observes no information before choosing his effort,

the following simultaneous-move game is induced between the agents:

b1 b2

(m1,a1) (1, −4, 4) (1, 4, −4)

(m1,a2) (1, 4, −4) (1, −4, 4)

(m2,a1) (1, 1, 1) (x, 0, 0)

(m2,a2) (x, 0, 0) (1, −1, −1)
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In the absence of recommendations, agents play a Nash equilibrium of this game. We

now show that every Nash equilibrium of this game places a positive probability on the

outcome(0,0).

First, by inspection, we observe that there is no pure strategy equilibrium in this

game. Therefore, in any Nash equilibrium, agent 2 must play both b1 and b2 with

strictly positive probability. Further, strategy(m2,a2) for agent 1 is strictly dominated

by (m2,a1).

Now, agent 1 must also be mixing in equilibrium (else agent 2 will not mix over

{b1,b2}). Suppose that in equilibrium agent 1 mixes over only(m1,a1) and(m2,a2).

Then, agent 2 must be playing each ofb1 andb2 with probability 1
2 (else agent 1 is not

indifferent between his two strategies). But, against thisstrategy of agent 2,(m2,a1) is

a strict best response for agent 1.

Hence, in every Nash equilibrium of this game, agent 1 must play (m2,a1) with

positive probability, and agent 2 must play bothb1 and b2 with positive probability.

Therefore, the outcome(0,0) has positive probability.

However, the outcome(0,0) provides a payoffx > 1 to the principal. Since the

payoff from every other outcome is 1, the expected payoff of the principal from any

equilibrium of the indirect mechanism strictly exceeds 1. That is, the principal does

strictly better with an indirect mechanism than with a direct mechanism.

Therefore, even with complete information and in the presence of recommendations,

stochastic allocations are necessary for the revelation principle to go through. In this

example, the principal uses an indirect mechanism effectively to provide agent 1 with

private information about allocations, and create uncertainty about allocations for agent

2. This uncertainty, in turn, affects the strategy of agent 1in the agents’ effort game,

leading to an eventual outcome that is not sustainable in a direct mechanism unless

stochastic allocations are permitted.

Strausz (2003) provides an example to show that, in a settingof pure adverse se-

lection, even with one principal and one agent, it is no longer true that any payoff im-

plementable by a deterministic indirect mechanism can be matched with a deterministic

direct mechanism. However, as Strausz shows, the principalalways does weakly bet-

ter with a direct mechanism, so that the optimality of directmechanisms remains in
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the single-principal, single-agent setting. He provides afurther example to show that

a second agent with veto power may veto a direct deterministic mechanism and prefer

an indirect mechanism. Our example above shows that, with pure moral hazard and

two agents, the principal may strictly prefer a deterministic indirect mechanism to a

deterministic direct mechanism.

Next, we provide an example to show that recommendations arenecessary to sustain

the revelation principle. In their absence, a principal canagain do better with an indirect

mechanism than with a direct mechanism.

Example 2(Recommendations):

Again,n = 1 andk = 2. As before,Y = {y1,y2}, E1 = {a1,a2} andE2 = {b1,b2}.

The payoffs are given by the following matrices. In each cell, the first element

corresponds to the utility of the principal, and the second and third to the utilities of

agents 1 and 2 respectively.

y = y1

b1 b2

a1 (0,0,10) (50,6,6)

a2 (0,−10,−10) (−10,0,10)

y = y2

b1 b2

a1 (0,0,−10) (−200,0,0)

a2 (0,10,0) (4,1,6)

Suppose that the principal offers no recommendations (so thatR1 = R2 = /0), but can

choose a lottery over allocations, so thaty = py1 +(1− p)y2. Then, a mechanism is

characterized byπ : M → ∆(Y).

In a direct mechanism, the agents’ effort game is as follows:

b1 b2

a1 (0, 0, 20p−10) (250p−200, 6p, 6p)

a2 (0, p, −10p) (4−14p, 1− p, 4p+6)

For p < 5
7, b2 strictly dominatesb1. For p < 1

7, agent 1’s best response isa2, so that

the unique equilibrium is(a2,b2), with resultant utility for the principal 4−14p. Thus,

the principal’s utility is maximized atp = 0 and a value of 4. Forp∈ (1
7, 5

7), agent 1’s
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best response isa1, which results in equilibrium(a1,b2) and a utility of 250p−200 for

the principal. This has a supremum atp = 5
7, and a value of−150

7 .

Whenp= 5
7, agent 1’s best response isa1, and agent 2 is indifferent overb1,b2. The

maximal utility the principal can obtain is 0, when agent 2 playsb2. Finally, for p > 5
7,

the unique equilibrium of the agents’ subgame is(a1,b1), with principal utility being 0.

Hence, the optimal allocation for the principal isy1, with resultant equilibrium

(a2,b2) in the agents’ game, and a utility of 4 for the principal.

Now, consider the following indirect mechanism. The principal communicates with

agent 1, with the message space beingM1 = {m1,m2}. The allocation rule, as in Exam-

ple 1, isπ̃(mk) = yk for k = 1,2.

As in example 1, a simultaneous-move game is induced betweenthe agents, and can

be represented as follows.

b1 b2

(m1,a1) (0, 0, 10) (50, 6, 6)

(m2,a1) (0, 0, −10) (−200, 0, 0)

(m1,a2) (0, −10, −10) (−10, 0, 10)

(m2,a2) (0,10,0) (4,1,6)

The agents’ game exhibits the following unique Nash equilibrium:

• Agent 1 mixes between(m1,a1) and(m2,a2), with probabilities3/5 and 2/5.

• Agent 2 mixes betweenb1 andb2 with probabilities,1/3 and 2/3.

Thus, the principal’s expected payoff from the indirect mechanism is316/15 > 4.

That is, the principal has a higher payoff from the indirect mechanism than is achievable

in a direct mechanism.

Allowing for recommendations, we can resurrect the equilibrium of the indirect

mechanism in a direct mechanism. A direct mechanism with recommendations in this

example may be characterized as a functionπ : Y×E1×E2 → [0,1], whereπ(y,a,b)

is the probability the principal chooses allocationy and recommends efforta to agent 1

andb to agent 2.
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In the equilibrium of the indirect mechanism above, the resultant distribution over

allocations and efforts isπ(y1,a1,b1) = 1/5, π(y1,a1,b2) = 2/5, π(y2,a2,b1) = 2/15 and

π(y2,a2,b2) = 4/15. Suppose the principal plays this strategy in the direct mechanism.

That is, the principals choose allocations and efforts according toπ(·), and announces

the resulting recommendations to the agents.

It is straightforward to check that neither agent has an incentive to deviate, so the

mechanism is incentive compatible. For example, when agent2 is told “b2”, his poste-

rior beliefs place probability3/5 on (y1,a1) and 2/5 on (y2,a2). Given these beliefs,b2

is a (weak) best response. The principal obtains the utility316
15 , as before.

In this example, the principal uses an indirect mechanism tocommunicate privately

with agent 1, thereby sustaining a correlated outcome over allocations and efforts. Such

correlation can be replicated in the direct mechanism only if the principal sends recom-

mendations.

4 Multiple Principals

With multiple principals, the principals are now playing a game with each other, and

their choices of mechanisms must correspond to a Nash equilibrium of this game. Fur-

ther, agents choices of messages and efforts must representcontinuation equilibria of

the game, given the mechanisms chosen by principals and recommendations received

by agents.

We first observe that, with multiple principals and stochastic mechanisms, agent’s

obedience of principals’ recommendations is a troublesomenotion. An agent may be

recommended different actions by different principals. For example, if two principals

are both randomizing over recommendations, since principals choose their strategies

independently, there is a strictly positive probability that an agent will receive different

recommendations from the principals. Which one should he obey?

Given this difficulty, we bypass the issue of agents obeying recommendations re-

ceived from principals. Instead, for incentive compatibility with multiple principals,

we only require that, given the strategies of principals andother agents, agents play an

equilibrium of the effort game.
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Though there is complete information among principals, since agents receive pri-

vate recommendations from principals, agents may have private information at stage 4

(see Figure 1), when they play the effort game. Hence, in the spirit of perfect Bayesian

equilibrium, we require that each agentj plays a best response following any recom-

mendation arrayr i =
(

r i
1, . . . , r

i
n

)

he may receive.

Multiple principals introduce a new complication into the framework, since princi-

pals too must play equilibrium strategies in the mechanism design game. Since princi-

pals must choose mechanisms independently, there can be no correlation in the resultant

distribution over allocations in any equilibrium of a direct mechanism. However, as Ex-

ample 3 shows, such correlation can be induced in an indirectmechanism, if principals

privately communicate with the same agents.

Example 3: (Multiple principals and correlated allocations)

Suppose there are two principals and two agents. The allocation sets areY1 =

{c1,c2} for principal 1 andY2 = {d1,d2} for principal 2, and the feasible efforts are

E1 = {a1} for agent 1 andE2 = {a2} for agent 2. Hence moral hazard plays no role.

The payoffs are given by the following matrix

d1 d2 d3

c1 (1,1,0,0) (3,2,1,1) (−1,−1,0,0)

c2 (2,3,1,1) (1,1,0,0) (−1,−1,0,0)

c3 (−1,−1,0,0) (−1,−1,0,0) (−1,−1,0,0)

where in each cell the first number represents the utility of the first principal, the second,

the utility of the second principal and the two last numbers indicates respectively the

utlity of the first and the second agent.

Consider the following indirect mechanism. Principals 1, 2each offer the same mes-

sage spaceM j = {m1
j ,m

2
j ,m

3
j} to agent 1 and 2. LetM2 = R1 = R2 = /0 (so that agent 2

is not able to send any messages, and neither agent receives any recommendations). The

allocation rule used by the principals is: For eachi = 1,2,, principal 1 setsπ1(mi
1,m

1
1) =

π1(mi
1,m

2
1) = ci , and if any of the two agents send the messagem3

1, he takes the decision

11



c3. Principal 2 sets the same decision rule:π2
(

mi
2,m

1
2

)

= π2
(

mi
2,m

1
2

)

= di, andd3 if

one of the agents sendsm3
2.

In equilibrium, agent 1 plays each of
(

m2
1,m

1
2

)

and
(

m1
1,m

2
2

)

with probability 1/2,

and agent 2 plays
(

m1
1,m

1
2

)

with probability one. If one of the principal deviates, then

the agents choose to sendm3
j to the no-deviating principal. Hence no principal has an

incentive to deviate. Let us remark that given the strategy of the other agent, such a

strategy is optimal for every agent.

This strategies guarantee to the agents a payoff of 1 and to the principals a payoff of
5/2.

The resultant distribution over allocations and efforts places a probability1/2 each

on (c1,d2) and(c2,d1). Such a distribution is not achievable with direct mechanisms:

in any game in which principals 1 and 2 play independently. Ifthe allocations(c1,d2)

and(c2,d1) are reached with positive probability, then the same must happen to(c1,d1)

and(c2,d2).

Let us remark that moral hazard plays no role in our example, hence recommenda-

tions do not play any role and cannot help to create correlation between decision as in

the second example.

This example illustrates a well known result in contract theory: whenever one con-

sider multi-principal games, there may exist equilibria sustained by indirect mechanisms

only. In the example agent 1 acts as a correlation device, theresulting correlation cannot

be reproduced if principals play direct mechanisms only.

In the single-principal setting, every equilibrium of a direct mechanism can trivially

be sustained as an equilibrium of a direct mechanism that satisfies incentive compati-

bility. Hence, one implication of the revelation principleis that every equilibrium of a

direct mechanism remains an equilibrium when the principalis allowed to choose over

indirect mechanisms instead. We show that this implicationgoes through with multi-

ple principals, as long as the recommendations offered in the equilibrium of the direct

mechanism are uncorrelated with the allocations.

Recall that a mechanism offered by principalj is defined by(M j ,Rj ,π j), where:

M j =×k
i=1Mi

j andMi
j is the message space for agenti to communicate with principalj,

12



Rj =×k
i=1Ri

j , andRi
j is the set of recommendations principalj may make to agenti, and

π j : M j → ∆(Yj ×Rj) is the allocation rule used by principalj.

A direct mechanism is defined by( /0,E,π j), whereπ j ∈ ∆(Yj ×E). If the probabil-

ities over allocations and recommendations are independent, we say the recommenda-

tions are uncorrelated with allocations.

Definition 1 In a direct mechanism, a strategyπ j of principal j has no correlation

between recommendations and allocations if there exist marginal densitiesπ j ,y ∈ ∆(Yj)

andπ j ,e∈ ∆(E) such thatπ j(y,e)dy= π j ,y(y) π j ,e(e) for each y∈Yj and e∈ E.

A special case of recommendations uncorrelated with allocations is when recom-

mendations are deterministic rather than stochastic. For example, suppose that each

agent can put in a binary effort, say high or low. In addition,suppose that in equilib-

rium, each principal wishes that each agent choose high effort. Then, recommendations

are deterministic, and regardless of allocation strategies, satisfy our definition of being

uncorrelated with allocations.

In a direct mechanism, when recommendations are deterministic, the same outcomes

are achieved in equilibrium as if they were publicly observed. Since obedience has not

been assumed, the agents’ equilibrium strategies given deterministic recommendations

only need to be mutual best responses in the efforts game. That is, principals’ direct

mechanisms induce Nash equilibria in the agents’ effort game. Therefore, the over-

all outcome represents a subgame-perfect equilibrium of the game in which principals

design direct mechanisms.

Let ΓD be the direct mechanism game among the principals. In this game, principals

may choose any direct mechanism at stage 1 (see Figure 1), so the strategy choice of

each principalj is restricted toπ j ∈ ∆(Yj ×E). Let ΓG be the indirect mechanism

game. In this game, principals may choose indirect mechanisms as well, so that stage

2 (at which agents send messages to principals) may have a real role. Here, principalj

chooses(M j ,Rj ,π j), where (with a slight abuse of notation)π j : M j → ∆(Yj ×Rj).

In an equilibrium of eitherΓD or ΓG , we require that (i) each principal plays a

best response, given other principals’ strategies and agents’ strategies, and (ii) each

agenti plays a best response for every recommendation arrayr i he may receive, given

principals’ strategies and other agents’ strategies.
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Formally,

Theorem 1 Suppose the direct mechanism gameΓD has an equilibrium in which (i)

each principal j playsπ∗
j (ii) each agent j playsδi∗, and (iii) for each principal j,

π∗
j has no correlation between allocations and recommendations. Then, in the indi-

rect mechanism gameΓG , it remains an equilibrium for each principal j to offer the

mechanism( /0,E,π j) and for each agent i to playδi∗. Thus, the joint distribution over

allocations and efforts that obtains in the equilibrium of the direct mechanism game

remains an equilibrium outcome of the indirect mechanism game.

Proof.

Consider the gameΓG . Suppose that, in this game, every principalj offers a mech-

anism
(

M j ,Rj ,π j
)

= ( /0,E,π∗
j ), whereπ∗

j is his equilibrium strategy in the direct mech-

anism gameΓD . It is immediate thatδ∗ = ×k
i=1δi∗ must remain a continuation equilib-

rium in the agents’ efforts game.

Hence, we need only to show that no principalj ′ has an incentive to unilaterally

deviate from the mechanism
(

/0,E,π∗
j ′

)

. Suppose, therefore, that some principalj ′ has

an incentive to deviate to
(

M̃ j ′ , R̃j ′, π̃ j ′
)

6=
(

/0,E,π∗
j

)

, while all other principalsj 6= j ′

continue to offer mechanisms
(

/0,E,π∗
j

)

. Suppose the agents play
(

µ̃, δ̃
)

in response

to these mechanisms, and the mechanisms and the agents’ effort strategies̃δ induce a

(possibly correlated) distribution over allocationsy and effortse. Let ν̃(y,e) denote this

distribution. Since agentj has an incentive to deviate to the indirect mechanism, his

utility from such a deviation,Vj(ν̃(y,e)) must exceed his utility from the equilibrium of

the direct mechanism.

Now, every principalj 6= j ′ is using recommendations uncorrelated with allocations.

Since each agenti observes only the mechanisms and his own recommendation array

r i = (r i
1, . . . , r

i
k), the efforts chosen must also be uncorrelated with the allocations of

principals j 6= j ′. Hence, we can write ˜nu(y,e) = ν̃ j(y j ,e)×
(

× j 6= j ′π∗
y, j(y j)

)

, where

π∗
y, j(y j) is the marginal distribution over the allocations of principal j, given his strategy

π∗
j .

Now, it is straightforward for principalj to induce the same joint distribution in

the direct mechanism game. Rather than play the strategyπ∗
j , he plays the strategỹν j .

14



Since this strategy induces the same joint distribution over efforts and allocations as in

the continuation equilibrium of the indirect mechanism game, it must be a best response

for each agenti to obey the recommendation of principalj, and to ignore the recom-

mendations of the others (else agenti would have a profitable deviation in the indirect

mechanism game, rather than playingδ̃). But if every agenti obeys the recommen-

dation of principalj, and principalj playsν̃ j(y,e) in the direct mechanism game, the

same joint distribution over allocations and efforts is induced as in the indirect mecha-

nism game. Hence, if principalj has a profitable deviation in the indirect mechanism

game, he has a profitable deviation in the direct mechanism game as well, contradicting

the assumption thatπ∗ = ×n
i=1π∗

j is an equilibrium of the latter game.

Remarks:

1. Peters (2003), Theorem 1, shows that in a common agency (i.e., multiple-principal,

single-agent) setting, pure strategy equilibria of directmechanisms are robust to

the introduction of more complex communication schemes. Our theorem above

provides an analog with multiple principals and multiple agents. Note, however,

that our setting is different from that of Peters (2003) due to the explicit use of

recommendations.

2. Our theorem uses the same intuition as that of Myerson (1982). Suppose ev-

ery principal uses recommendations uncorrelated with allocations in the direct

mechanism game, and one principal now deviates to an indirect mechanism. The

deviating principal may play a strategy which implies a correlation between rec-

ommendations and allocations. Nevertheless, it is incentive compatible (in the

sense of being a best response to other agents’ strategies) for each agent to obey

the deviating principal in the indirect mechanism game. Hence, the problem of

replicating an outcome from the indirect mechanism game in the direct mecha-

nism game reduces to the same problem as with a single principal.

3. There may well be multiple equilibria in the agents’ effort game. All we show is

that obeying the recommendation of the deviating principalis one such equilib-

rium.

4. The indirect mechanism game may have other equilibria in which more than one

principal offers an indirect mechanism (see Example 3).
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Importantly, our theorem cannot be straightforwardly extended to games with in-

complete information. The intuition is the following: evenif recommendations are

uncorrelated with allocations, a recommendation from principal j to agenti may com-

municate information about the type of some other agenti′. This may lead to a corre-

lation between agents’ efforts and principals’ allocations, which is difficult for a single

principal to replicate in a direct mechanism.

5 Discussion

In a recent paper, Peters (2004) provides two thought-provoking examples in a set-

ting with two principals and two agents. His first example suggests that “In a multiple

agency environment [...] pure strategy equilibria are not robust against the possibility

that principals might deviate to more complex indirect mechanisms”.2 The second ex-

ample shows that a “no externality” assumption (see Peters,2003) sufficient to imply

the Revelation Principle in a multi-principal, single agent context fails to do so when

there are many agents.

We show in this section that his first example can be reconciled with the discus-

sion above, if one removes the restriction to deterministicdirect mechanisms. We first

briefly present the example, using Peters’ notation to keep the presentation as simple as

possible.

Peters (2004), Example 1:

As shown in Figure 2 below, the direct mechanism game begins with principalsP1

andP2 simultaneously choosing allocations in the spaceY1 = Y2 = {A,B}. In Peters’

framework, there are no recommendations. Thus, at the second stage, agentsA1 andA2

observe the principals’ allocation rules, and simultaneously choose a level of effort in

the setE1 = E2 = {1,2}. For convenience, participation constraints of the agentsare

ignored (it is easy to scale agent payoffs if necessary).

The game is summarized in Table 1. The principals’ choices affect which cell of the

larger matrix is chosen. The agents then play the 2×2 subgame in that cell. Payoffs

should be interpreted in the following way: the first payoff is the payoff to principal 1,

who chooses the row in the big matrix. The second payoff is thepayoff to principal 2,

2Peters (2004, p. 184).
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Principals
announce their
take-it or leave-it
offersy j ∈ {A,B}

Agents see
allocations
and choose
effortsei ∈ {1,2}

Payoffs
are realized

-

1 2 3

t

Figure 2: Peters (2004), Example 1: direct mechanism interaction

who chooses the column in the big matrix. The third payoff is to agent 1, who chooses

the row in the inner matrix in each cell, and the last one is to agent 2, who chooses the

column in the inner matrix in each cell.

A B

A

e= 1 e= 2

e= 1 ∗ ∗

e= 2 ∗ ∗

e= 1 e= 2

e= 1
(

7
8, 7

8,−3
2, 5

4

) (

7
8, 7

8, 5
4,−3

2

)

e= 2
(7

8, 7
8, 5

4,−3
2

) (7
8, 7

8,−3
2, 5

4

)

B

e= 1 e= 2

e= 1
(

0,0,−3
2 , 5

4

) (

0,0, 5
4,−3

2

)

e= 2
(

0,0, 5
4,−3

2

) (

0,0,−3
2, 5

4

)

e= 1 e= 2

e= 1 (3,0,−1,−1) (1,1,1,1)

e= 2 (1,1,1,1) (0,3,−1,−1)

Table 1: Reduced form of the example in Peters (2004)

Principals’ decisions are restricted to deterministic offers. That is, principals are not

allowed to use lotteries over the allocations{A,B}. Given this restriction, in the direct

mechanism game in Figure 2, there exist three equilibria in the direct mechanism game:

• P1 andP2 both play B;A1 plays 1 andA2 plays 2; each player gets a payoff of 1.

• P1 andP2 both play B;A1 plays 2 andA2 plays 1; each player gets a payoff of 1.

• P1 andP2 both play B;A1 andA2 randomize and play 1 with probability1/2; P1

andP2 both get a payoff of5/4, A1 andA2 get a payoff of 0.

17



This framework is used to show that if a principal can communicate with the agents

before choosing his allocation, the first two pure strategy equilibria do not survive. More

specifically, Peters considers the case whereP1 asks each agenti = 1,2 to send a mes-

sagemi
1 ∈ {A,B} and designs the following mechanism (whereπ1(·) denotes his allo-

cation strategy):

π1(m
1
1,m

2
1) =

{

B if m1
1 = m2

1,

A otherwise.

Whenever the agents do not coordinate on their messages,P1 choosesA. Since there are

no recommendations, we can think about agents choosing messages and efforts simul-

taneously.

If principal 2 continues to playB, the deviationπ1 is profitable for principal 1. The

continuation game associated with the strategies{π1,B} has multiple equilibria. In the

first class of equilibria (referred to asE1), agents both reportB (alternatively, both report

A) and randomize equally over efforts, inducing a payoff5/4 for P1.3 In the second

equilibrium (E2) agents randomize equally overboth messages and actions. That is,

they select each message–action pair with probability 1/4. These behaviors induce a

payoff of 17/16 for P1 and−1/16 for each agent.

Finally, the strategy profileE3 has each agent randomizing equally over the message–

action pairs(m1,1) and(m2,2). The corresponding payoffs are19/16 for P1, 1/8 for A1

and−5/4 for A2. However,E3 turns out to not be an equilibrium, since the best-replies of

agent 2 to the strategy of agent 1 are(m2,1) and(m1,2), instead of(m1,1) and(m2,2).

Nevertheless, the strategyπ1 is a profitable deviation in Peters’ example given that,

in every continuation equilibrium, the deviating principal earns a payoff strictly greater

than 1. In particular, the example emphasizes that the payoffs (1,1,1,1) cannot be

sustained at equilibrium whenP1 is allowed to communicate with agents.

We now show that allowing for stochastic allocations in thisexample, even with-

out introducing recommendations, recovers the result thatall payoffs associated with

principal 1’s deviation topi1 can be supported using direct mechanisms.

3For every player, this equilibrium is payoff-equivalent tothe mixed strategy equilibrium of the take-it
or leave-it offer game.
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To develop this argument, we first observe that, in the equilibria discussed above,

principal 2 always chooses the strategyB. Thus, we can restrict our analysis to the

second column of table 1. We can therefore focus on the optimal action of principal 1,

and effectively interpret this example as a single principal, multi-agent game.

Suppose, in particular, that principal 1 randomizes equally betweenA andB (with

principal 2 playingB). Agents observe the stochastic allocation, but not the realization

of the randomization, before they act. Then, the agents are effectively faced with the

following continuation game, where the first number in each cell is the principal’s ex-

pected payoff, and the remaining two numbers are the expected payoffs to agents 1 and

2, respectively.4

e= 1 e= 2

e= 1 (31/16,−5/4,1/8) (15/16,9/8,−1/4)

e= 2 (15/16,9/8,−1/4) (7/16,−5/4,1/8)

The agents’ subgame exhibits only a mixed strategy equilibrium, with both agents

equally randomizing over actions. This randomization yields the principal a payoff of
17
16, and the agents a payoff− 1

16.5

Hence, if the principal is allowed to randomize over allocations, the outcome(1,1,1)

cannot be supported as an equilibrium in the direct mechanism game either (i.e., this al-

location results from a sub-optimal choice of principal 1, given the strategy of principal

2).

6 Conclusion

The literature on competing mechanisms with multiple agents often makes seemingly

restrictive assumptions about the set of mechanisms that are feasible for principals:

models focus on “take-it or leave-it” offers or direct mechanisms in which agents report

information about their preferences.6 We provide some support for this approach in a

4Since principal 2’s strategy is fixed atB, his payoffs are ignored. As mentioned above, this is now
equivalent to a single principal, two-agent game.

5If participation constraints (e.g., a reservation of utility of zero for the agents) are a factor, note that
the agents payoffs in each cell of the original game can be increased by1

16 without affecting the equilibria.
6See for example Doğan (2004), McAfee (1993), and Prat and Rustichini (2003).
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complete information scenario: equilibria defined in direct mechanisms remain equilib-

ria in more general games in which principals can use richer communication schemes,

if one correctly defines the strategy spaces. Nevertheless,as shown in the common

agency literature,7 our approach does not allow to characterize every equilibrium of

multi-principal multi-agent games. If we focus on direct mechanisms, we may lose

some interesting equilibria.
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