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1 Introduction

The objective of this paper is to analyze the value of information in the setup of a

competitive economy under uncertainty in which agents trade in asset markets to

reallocate risk. It is well known that while information always has positive value in

a single-agent decision-making context, this is not necessarily the case in a market

setting. Indeed, if the true state of the world is revealed before markets open, no

mutually beneficial risk sharing trade is possible. Thus at a competitive equilibrium

all agents are worse off, when their welfare is evaluated ex-ante (i.e. prior to the

receipt of any signal). More generally, if markets are complete, information cannot

have positive value in the sense that no signal, whether fully or partly informative,

can lead to an improvement in ex-ante welfare.

The negative effect on welfare of an increase in publicly available information has

come to be known as the Hirshleifer effect, after Hirshleifer (1971) who produced

an early example of it. The Hirshleifer effect can be understood as follows. In the

absence of a signal, agents face a single budget constraint. On the other hand, if

trade occurs after the receipt of a signal, agents must satisfy a budget constraint

for each realization of the signal, which restricts transfers of income across states for

different values of the signal (see Gottardi and Rahi (2001)).

If markets are incomplete, a second welfare effect arises. With additional informa-

tion agents can achieve a larger set of state-contingent payoffs by conditioning their

portfolios on this information. We refer to this as the Blackwell effect, after Blackwell

(1951) who compared the value of different information structures in single-agent de-

cision problems. Roughly speaking, we can think of the value of information in a

competitive market economy as having a negative component due to the Hirshleifer

effect, and a positive component due to the Blackwell effect. The Hirshleifer effect

is stronger the greater is the degree of market completeness. The Blackwell effect,

on the other hand, is stronger the more incomplete markets are, and is absent when

markets are complete.

There is an extensive literature on the value of information in a competitive pure

exchange setting. A long line of papers has followed Hirshleifer’s lead in comparing

competitive equilibrium allocations associated with differing levels of information

(see, for example, Green (1981), Hakansson et al. (1982), Milne and Shefrin (1987),

and Schlee (2001)).1 These papers either derive conditions under which better infor-

1Eckwert and Zilcha (2001, 2003) extend this analysis to a class of production economies.
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mation leads to an ex-ante Pareto inferior allocation or construct special examples

in which information has positive value.

In this paper we provide general conditions under which the value of information

is positive. We depart from the literature cited above in that we compare agents’

welfare at a competitive equilibrium allocation with their welfare at a feasible (not

necessarily equilibrium) allocation that is measurable with respect to a public signal.

Also in contrast to the literature, we evaluate welfare not ex-ante, but ex-post, i.e.

conditionally on each realization of the signal. This captures the Hirshleifer effect in

that utility transfers across different signal realizations are entirely precluded when

we consider a welfare improvement ex-post.2 Such a welfare improvement can then

be attributed to the Blackwell effect dominating the Hirshleifer effect.

More precisely, we consider a class of two-period exchange economies parametrized

by endowments, where agents have von Neumann-Morgenstern preferences and given,

symmetric information over the realization of the uncertainty. We show that, pro-

vided markets are sufficiently incomplete, for an arbitrary competitive equilibrium of

a generic economy, there is a finer information structure such that a feasible alloca-

tion measurable with respect to this information structure ex-post Pareto dominates

the given equilibrium allocation. In particular, we demonstrate that an ex-post

Pareto improvement can generically be attained with an arbitrarily small increase in

information.

Our welfare analysis is in the spirit of the literature on constrained inefficiency

where welfare comparisons are made between competitive equilibrium allocations

and allocations attainable subject to appropriately specified constraints (see, for

example, Diamond (1967) and Greenwald and Stiglitz (1986) for some early studies

in this vein). Generic inefficiency results have been obtained for incomplete market

economies by Geanakoplos and Polemarchakis (1986) and Citanna et al. (1998)),

among others. Our paper is the first to establish such a result with respect to changes

in public information. Moreover, the proof poses some new technical difficulties.

These arise primarily because first order welfare effects are zero, for reasons that we

explain later. Hence we need to consider second order effects in order to show that

a welfare improvement can be found.

2In this regard, we should also mention Campbell (2004), who shows that with complete markets
any increase of information in the sense of Blackwell (1951) has a negative effect on agents’ welfare.
The result is obtained by comparing welfare at allocations associated with different information
structures when these allocations have to be feasible and, in addition, satisfy ex-post individual
rationality constraints.
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The paper is organized as follows. Section 2 describes the economy. The welfare

notion is presented in Section 3; the main inefficiency result is then stated and proved.

The proofs of some instrumental Lemmas are collected in the Appendix.

2 The Economy

There are two periods, 0 and 1, and a single physical consumption good. The econ-

omy is populated by H ≥ 2 agents, with typical agent h ∈ H (here, and elsewhere,

we use the same symbol for a set and its cardinality). No consumption takes place at

date 0 and agents have no endowment in that period. Uncertainty, which is resolved

at date 1, is described by S states of the world. The probability of state s ∈ S is

denoted by πs.

Agent h ∈ H has an endowment at date 1 given by ωh ∈ RS
++, and preferences

over date 1 consumption described by a von Neumann-Morgenstern utility function

uh : R++ → R, which is assumed to satisfy the following standard conditions:

Assumption 1

(i) uh is C2.

(ii) uh
′
> 0 and uh

′′
< 0.

(iii) limc→0 u
h′[c] =∞.

Asset markets, in which J ≥ 2 securities are traded, open at date 0. At date 1

assets pay off, and agents consume. Asset payoffs in state s are denoted by rs ∈ RJ .

Thus a portfolio y ∈ RJ yields a payoff rs · y in state s. Let R be the S × J matrix

whose s’th row is r>s (by default all vectors are column vectors, unless transposed).

We impose the following, fairly standard, regularity conditions on the payoff matrix

R:

Assumption 2

(i) There is an asset, say asset J , whose payoff is nonnegative in every state and

positive in at least one state.

(ii) R is in general position, i.e. every J × J submatrix of R is nonsingular.
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Property (i), together with the monotonicity assumption on utility functions, ensures

that the equilibrium price of asset J is positive. It also guarantees that budget

constraints are satisfied with equality. Property (ii) requires that asset payoffs vary

sufficiently across states.

Asset prices are given by a vector p ∈ RJ . By Assumption 2, we can choose

asset J as the numeraire, i.e. set pJ = 1. Let yh ∈ RJ denote the portfolio of agent

h. Since portfolios uniquely determine consumption (the consumption of agent h in

state s is given by ωhs + rs · yh), an allocation is completely specified by a collection

of portfolios, one for each agent h ∈ H.

A competitive equilibrium is defined as follows:

Definition 1 A competitive equilibrium consists of an allocation {yh}h∈H , and a

price vector p, satisfying the following two conditions:

(a) Agent optimization: ∀h ∈ H, yh solves

maxy
∑

s πs u
h[ωhs + rs · y]

subject to p · y = 0.

(1)

(b) Market clearing: ∑
h

yh = 0. (2)

We consider a set of economies parametrized by the agents’ endowments ω :=

{ωh}h∈H ∈ RSH
++. The space of economies is then RSH

++ and by “generically” we mean

“for an open, dense subset of RSH
++.”

3 Blackwell Inefficiency

At any competitive equilibrium the information of agents over the realization of the

uncertainty is given by the probability distribution over S, {πs}s∈S. We intend to

investigate whether an increase in the information available to agents can be found

such that a feasible allocation consistent with this information structure Pareto dom-

inates a given equilibrium allocation. Taking {πs}s∈S as the prior over S, we model

an increase in information about the realization of s by a public signal correlated
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with s. As is well-known for economies in which allocations depend on such a signal,

various efficiency criteria can be defined depending on the stage at which utilities are

evaluated (see Holmström and Myerson (1983)). As mentioned in the Introduction,

the literature on the value of information in a market economy adopts the ex-ante

efficiency criterion, where agents’ welfare is evaluated unconditionally, before the re-

ceipt of any signal. In contrast, we use the notion of ex-post efficiency, where agents’

welfare is evaluated conditionally on the realization of the signal.

We show that, for any competitive equilibrium of a generic economy, an appro-

priate public signal and a corresponding feasible portfolio allocation can be found in

such a way as to make everyone better off ex-post (and hence also ex-ante). In other

words, as described in the Introduction, it is generically possible to find an increase

in agents’ information such that the Blackwell effect dominates the Hirshleifer ef-

fect. We refer to this informational inefficiency property of competitive equilibria as

Blackwell inefficiency.

We now formally describe the set of signals we consider, and the corresponding

feasible allocations. Since our objective is to demonstrate the existence of a signal

with an associated Pareto improvement, there is no loss of generality in imposing

any restriction on the set of signals that is convenient for our analysis. Accordingly

we assume that all signals have the same support Σ, with a generic element of Σ

denoted by σ. Furthermore, we assume that the cardinality of Σ, also denoted by

Σ, is at least 3, and that the marginal distribution of all signals over Σ is uniform.3

To ensure consistency with the probability structure of the underlying state space S,

the marginal distribution over S must also be the same for all signals and equal to

{πs}s∈S. Having fixed the state spaces S and Σ, each signal is completely described

by the probabilities π := {πsσ}s∈S,σ∈Σ ∈ RSΣ
++, where πsσ denotes Prob(s, σ); let

πs|σ := Prob(s|σ) and πσ := Prob(σ). The set of possible signals is thus given by the

set:4

Π :=

{
π ∈ RSΣ

++

∣∣∣ ∑
σ∈Σ

πsσ = πs, ∀s ∈ S;
∑
s∈S

πsσ = πσ, ∀σ ∈ Σ

}
,

where we use the vector π to identify a signal, and πσ := 1
Σ

.5 The agents’ infor-

3Since we are interested in evaluating agents’ welfare ex-post, conditional on each σ ∈ Σ, the
marginal distribution over Σ must be the same (though not necessarily uniform) for all signals in
order for the welfare comparison to make sense. See also footnote 6 below.

4Note that the adding-up restriction
∑
s,σ πsσ = 1 follows from the adding-up restriction on πs.

5For convenience we will continue to use the notation πσ in the rest of the paper. The assumption
that the marginal distribution of the signals over Σ is uniform, i.e. πσ := 1

Σ , σ ∈ Σ, is used only
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mation at any competitive equilibrium is described by the “initial” signal π ∈ Π,

which is completely uninformative about s, i.e. satisfies the independence condition

πsσ = πsπσ, for all s ∈ S, σ ∈ Σ. Any other signal π ∈ Π represents a purely in-

formational change relative to π and an increase in information over π. Notice that

this construction allows us to examine smooth perturbations of the information of

agents at an equilibrium, or local changes in information, by considering values of π

in a neighborhood of π.

Given any signal π, we can define an associated portfolio allocation as an al-

location that is measurable with respect to the signal:
{
yhσ
}
h∈H ∈ RJH , for each

σ ∈ Σ. We say then that the associated portfolio allocation is feasible if it satisfies,

in addition, the resource feasibility condition:∑
h

yhσ = 0, ∀σ ∈ Σ. (3)

We are now ready to provide a formal definition of our notion of informationally

inefficiency:

Definition 2 A competitive equilibrium {{yh}h∈H , p} is Blackwell inefficient if there

exists a signal π ∈ Π and a corresponding feasible allocation {yhσ}h∈H,σ∈Σ such that∑
s

πs|σ u
h[ωhs + rs · yhσ] ≥

∑
s

πs u
h[ωh + rs · yh], ∀h ∈ H, σ ∈ Σ, (4)

where at least one of these inequalities is strict.

We will prove that, generically, competitive equilibria are Blackwell inefficient.

But first we wish to show that the welfare improvement allowed by the increase in

the agents’ information is indeed the consequence of the larger hedging possibili-

ties available to agents. The next Lemma establishes that when asset markets are

complete, so that agents’ hedging possibilities cannot be expanded by an increase

in information, competitive equilibria are always Blackwell efficient. In fact, an im-

provement cannot be found even according to the weaker, ex-ante welfare criterion.

To this end we introduce the following variant of Definition 2:

Definition 3 A competitive equilibrium {{yh}h∈H , p} is ex-ante Blackwell inefficient

if there exists a signal π ∈ Π and a corresponding feasible allocation {yhσ}h∈H,σ∈Σ such

once, in the proof of Lemma A.3 in the Appendix.
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that ∑
s,σ

πsσ u
h[ωhs + rs · yhσ] ≥

∑
s,σ

πsσ u
h[ωh + rs · yh], ∀h ∈ H, (5)

where at least one of these inequalities is strict.

Given the restriction, implied by π ∈ Π, that πσ = πσ, for all σ ∈ Σ, (4) can be

written as∑
s

πsσ u
h[ωhs + rs · yhσ] ≥

∑
s

πsσ u
h[ωh + rs · yh], ∀h ∈ H, σ ∈ Σ, (6)

which clearly implies (5). Hence ex-ante Blackwell efficiency implies Blackwell effi-

ciency.6

Lemma 1 Suppose markets are complete. Then a competitive equilibrium is ex-ante

Blackwell efficient.

Note that, since probabilities vary in the welfare comparison considered in the Black-

well efficiency notion, the result is not an immediate consequence of the first welfare

theorem, and requires an additional argument.7

Proof of Lemma 1:

Consider a competitive equilibrium {{yh}h∈H , p}, and suppose it is ex-ante Blackwell

inefficient. Then there is a π̂ ∈ Π and a feasible allocation {yhσ}h∈H,σ∈Σ such that

condition (5) holds at π = π̂, i.e.∑
s,σ

π̂sσ u
h[ωhs + rs · yhσ] ≥

∑
s,σ

πsσ u
h[ωh + rs · yh], ∀h ∈ H, (7)

6This property does not hold in the absence of the invariance property of the marginal distribu-
tion of π over Σ, which we have employed in order to get (6).

7This result also differs from sunspot ineffectivity results (e.g. Cass and Shell (1983)), since the
public signal σ is typically correlated with the uncertainty over fundamentals described by s and
hence does not constitute sunspot uncertainty.
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with at least one strict inequality. Since∑
s,σ

πsσ u
h[ωh + rs · yh] =

∑
s

πs u
h[ωh + rs · yh]

=
∑
s

π̂s u
h[ωh + rs · yh]

∑
σ

π̂σ|s

=
∑
s,σ

π̂sσ u
h[ωh + rs · yh],

condition (7) can be equivalently written as∑
s,σ

π̂sσ u
h[ωhs + rs · yhσ] ≥

∑
s,σ

π̂sσ u
h[ωh + rs · yh], ∀h ∈ H.

This means that, keeping π fixed at π̂, the (random) allocation {yhσ}h∈H,σ∈Σ ex-ante

Pareto dominates {yh}h∈H . However, since by assumption markets are complete,

the competitive equilibrium allocation {yh}h∈H is ex-ante Pareto efficient and this

property, characterized by the equality of the agents’ marginal rates of substitution

across states,

uh
′
[ωhs + rs · yh]

uh′[ωhŝ + rŝ · yh]
=
uĥ
′
[ωĥs + rs · yĥ]

uĥ
′
[ωĥŝ + rŝ · yĥ]

, ∀h, ĥ ∈ H; s, ŝ ∈ S,

is independent of the value of π. Hence, there cannot be an allocation which ex-ante

Pareto dominates {yh}h∈H , for any π. This is a contradiction. 2

We can now state and prove our main result.

Theorem Suppose S > J + H and J > H + 1. Then, for a generic subset of

economies, every competitive equilibrium is Blackwell inefficient.

The Theorem states that for any equilibrium allocation of a generic economy, there

exists a signal such that a feasible allocation measurable with respect to that signal is

ex-post Pareto improving. The argument in the proof shows that an ex-post Pareto

improvement can in fact be attained, for a generic economy, with an infinitesimal

increase in information. The result requires markets to be sufficiently incomplete.

The proof is based on the following idea. We identify the conditions an allocation

must satisfy to be locally Blackwell efficient. Then we evaluate these conditions at

a competitive equilibrium allocation and show that, generically, they cannot hold.
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From this it follows that it is generically possible to achieve a Pareto improvement

by considering a local perturbation of the signal structure away from a completely

uninformative one.

The main difficulty we face in the proof lies in the fact that the first order nec-

essary conditions (FONCs) for Blackwell efficiency are always satisfied at an equi-

librium allocation (for reasons explained in Step 3 of the proof, first order changes

in information and in agents’ portfolios cannot lead to a welfare improvement). We

have then to turn our attention to the second order necessary conditions (SONCs)

and show that they, generically, cannot hold. While FONCs can be employed without

having to establish constraint qualification (as in Citanna et al. (1998), for example),

this is not the case for SONCs. Indeed, for SONCs, there are no usable constraint

qualification conditions other than nondegeneracy of the constraint set, i.e. full rank

of the Jacobian of the constraints (which we establish in Lemma A.3 in the Ap-

pendix).8

Proof of Theorem:

The proof requires that two full rank properties, involving agents’ utilities and

marginal utilities, be satisfied at a competitive equilibrium. These properties are es-

tablished in Lemmas A.1 and A.2 in the Appendix for a generic subset of economies.

For our analysis below we consider an economy in the intersection of these two generic

subsets, which we denote by Ω̂. Clearly, Ω̂ is also a generic subset.

The proof is organized in five steps. In Step 1 we write down the system of

equations that a competitive equilibrium must satisfy. In Step 2 we derive the first

and second order necessary conditions for an equilibrium to be Blackwell efficient.

Then, in Step 3, we show that the FONCs are always satisfied at an equilibrium.

Step 4 is devoted to a detailed study of the SONCs, which are shown to imply a key

condition, labeled condition (C). Finally, in Step 5, we show that condition (C) is

never satisfied at an equilibrium of an economy in Ω̂. Therefore, the SONCs do not

hold, so an equilibrium cannot be Blackwell efficient.

We first introduce some shorthand notation for matrices which will be used in

the proof. Given an index set I with typical element i, and a collection {zi}i∈I
of vectors or matrices, we denote by diagi∈I [zi] the (block) diagonal matrix with

typical entry zi, where i varies across all elements of I. For a given vector or matrix

8In particular, the Karush-Kuhn-Tucker conditions do not suffice. For details see Simon (1986)
or, for a full treatment, Hestenes (1975) or Berkovitz (2002).
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z, diagi∈I [z] is then the diagonal matrix with the term z repeated #I times. In a

similar fashion, we write [. . . zi . . .i∈I ] to denote the row block with typical element

zi, and analogously for column blocks.9 We denote by IK the K×K identity matrix,

and let 1>K := (1 1 . . . 1)1×K . We use the same symbol 0 for the zero scalar and the

zero matrix; in the latter case we occasionally indicate the dimension in order to

clarify the argument. A “∗” stands for any term whose value is immaterial to the

analysis.

We will sometimes need to consider states or agents in a particular sequence. For

this purpose we order the set S (and similarly the sets Σ and H) as {s1, s2, . . .}, s1

being the first state and so on.

Step 1: Characterization of equilibria

The first order conditions of the utility-maximization program (1) are:10

∑
s

πs u
h′[ωhs + rs · yh] rs − λh p = 0, ∀h ∈ H (8)

p · yh = 0, ∀h ∈ H, (9)

where λh is the Lagrange multiplier associated with the budget constraint. By Wal-

ras’ law, the market-clearing equation for one asset is redundant. Hence, the market-

clearing condition (2) reduces to ∑
h

ŷh = 0, (10)

where ŷh is the vector obtained from yh by deleting the last element.

Any competitive equilibrium {{yh}h∈H , p}, together with the associated Lagrange

multipliers {λh}h∈H , must satisfy the equation system (8)–(10).

Step 2: Characterization of Blackwell efficiency

Take an arbitrary equilibrium of an economy in the generic set Ω̂ and denote it by

{{yh}h∈H , p}, with corresponding Lagrange multipliers {λh}h∈H . Denote the utility

levels of agent h at the equilibrium allocation {yh}h∈H by uhs := uh[ωh + rs · yh] in

state s, with expected utility uh :=
∑

s πs u
h[ωh + rs · yh]. Analogously, let uhs

′
:=

9We drop reference to the index set if it is obvious from the context: for example diagh∈H is
shortened to diagh, and [. . . zs . . .s 6=s1 ] is shorthand for [. . . zs . . .s∈S,s 6=s1 ].

10Due to Assumption 1, equilibrium consumption is strictly positive in every state.
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uh
′
[ωhs + rs · yh], and uhs

′′
:= uh

′′
[ωhs + rs · yh].

Let y := {yhσ}h∈H,σ∈Σ, with y = y meaning that yhσ = yh, for all h, σ, and

ξ := (π, y) ∈ Π × RJHΣ. If the equilibrium {{yh}h∈H , p} is Blackwell efficient, then

ξ := (π, y) is a solution to the following program:

max
ξ

∑
s

πsσ1

(
uh1 [ωh1

s + rs · yh1
σ1

]− uh1

)
(P)

subject to

Φ1 :=
∑
s

πsσ

(
uh[ωhs + rs · yhσ]− uh

)
≥ 0, ∀h ∈ H, σ ∈ Σ, (h, σ) 6= (h1, σ1)

Φ2 :=
∑
h

yhσ = 0, ∀σ ∈ Σ

Φ3 :=
∑
σ

πsσ − πs = 0, ∀s ∈ S

Φ4 :=
∑
s

πsσ − πσ = 0, ∀σ ∈ Σ, σ 6= σ1

where, for notational convenience, we have multiplied each agent’s ex-post expected

utility conditional on σ by the constant πσ = πσ, yielding the expression
∑

s πsσ u
h[ωhs+

rs · yhσ] for the “agent-type” (h, σ). In program (P), both the informativeness of the

signal, as described by π, and the allocation of assets, are chosen to maximize the

ex-post expected utility of agent-type (h1, σ1),11 subject to the constraint that the

ex-post utility levels of all other agent-types are not lower than at the competitive

equilibrium (Φ1 ≥ 0), the resource feasibility constraints (Φ2 = 0), and the admissi-

bility constraints on probabilities (Φ3 = 0 and Φ4 = 0; note that these constraints

imply that
∑

s πsσ1 = πσ1). Let Φ := (Φ1, . . . ,Φ4).

The Lagrangian of the program (P) is

L(ξ; θ) =
∑
h,σ

µhσ
∑
s

πsσ

(
uh[ωhs + rs · yhσ]− uh

)
−
∑
σ

γ>σ
∑
h

yhσ −
∑
s

ηs

[∑
σ

πsσ − πs
]
−
∑
σ

νσ

[∑
s

πsσ − πσ
]
,

11For notational convenience, we have subtracted the constant πσ1u
h1 from the objective function

of the program (P).
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where

θ :=
{
µhσ, γσ, ηs, νσ

}
h∈H,s∈S,σ∈Σ

∈ RHΣ × RJΣ × RS × RΣ

is the vector of Lagrange multipliers, except for the elements µh1
σ1

and νσ1 , which are

set equal to 1 and 0 respectively.

We now apply Theorem 3.3 in Simon (1986) to the program (P). In particular,

constraint qualification holds at ξ: the Jacobian of the constraints, DξΦ(ξ), has full

row rank by Lemma A.3. Lemma A.3 also establishes that DξΦ(ξ) is row-equivalent

to the matrix M defined as

0

∣∣∣∣ 0

∣∣∣∣
 . . .

{
0(H−1)×J diagh6=h1

[p>]
}
. . .σ

———————————————
diagσ{. . . IJ . . .h}


——————————————————————————————————–

0

∣∣∣∣∣∣∣∣∣∣
diagσ 6=σ1


...

. . . (uhs − uh) . . .s
...h

———————–
1>S


∣∣∣∣∣∣∣∣∣∣

∗

——————————————————————————————————–
IS
∣∣ . . . IS . . .σ 6=σ1

∣∣ 0


(11)

A vector dξ = (dπ, dy) ∈ RSΣ × RJHΣ satisfying Mdξ = 0 is called a second order

test vector 12 for the program (P). Let M := {dξ : Mdξ = 0} be the subspace of

second order test vectors. Then, if ξ is a solution of (P), there exists a unique θ such

that

DξL(ξ; θ) = 0 (Pfoc)

(dξ)>[D2
ξξL(ξ; θ)]dξ ≤ 0, ∀dξ ∈M (Psoc)

These are respectively the first and second order necessary conditions for Blackwell

efficiency of the equilibrium {{yh}h∈H , p}. We analyze these in turn.

12This is standard terminology in the optimization literature. See, for example, Berkovitz (2002).
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Step 3: First order necessary conditions for Blackwell efficiency

Writing (Pfoc) more explicitly, we have:

∂L
∂πsσ

=
∑
h

µhσ

(
uh[ωhs + rs · yhσ]− uh

)
− ηs − νσ = 0 (12)

∂L
∂yhσ

= µhσ
∑
s

πsσu
h′[ωhs + rs · yhσ] rs − γσ = 0 (13)

It is straightforward to check that these equations are satisfied at θ = θ, where θ is

given by:

µhσ =
λ
h1

λ
h
, γσ = πσλ

h1
p, ηs =

∑
h

λ
h1

λ
h

(
uhs − uh

)
, νs = 0.

Since the value of the Lagrange multipliers θ is unique, we can use θ = θ in the

remainder of our analysis.

The reason why the FONCs are satisfied at ξ is as follows. The agents’ ex-ante

utility levels, evaluated at y = y, depend on π only via the marginal distribution over

S, {πs}s∈S, which does not change as we vary π in Π. Hence the first order effect of a

change in information on agents’ ex-ante utilities must be zero. A feasible change in

the portfolio allocation, on the other hand, may affect individual utilities but cannot

produce a Pareto improvement since, with π = π, the allocation y is constrained

efficient. This rules out the possibility of an ex-ante, and hence also ex-post, Pareto

improvement with respect to first order changes in π and y.

Step 4: Second order necessary conditions for Blackwell efficiency

We now consider the second order necessary conditions (Psoc). We evaluate all

second derivatives of L at (ξ, θ), dropping any explicit reference to (ξ, θ) for notational

ease. From (12) we see that D2
ππL = 0. Therefore,

(dξ)>(D2
ξξL)(dξ) = (dy)>(D2

yyL)dy + 2(dπ)>(D2
πyL)dy. (14)

Consider a second order test vector δξ = (δπ, δy) with the following properties:

δy = 0, (15)

δπsσ = 0, ∀s ≥ J + 1, ∀σ 6= σ1. (16)
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It is apparent from an inspection of the equation system Mδξ = 0, together with

(15) and (16), that δπ solves the equation system Lδπ = 0 where

L :=



0

∣∣∣∣∣∣∣∣ diagσ 6=σ1


...

. . . (uhs − uh) . . .s
...h

———————–
1>S


——————————————————
IS

∣∣ . . . IS . . .σ 6=σ1

——————————————————
0

∣∣ diagσ 6=σ1
{0 IS−J}


which is row-equivalent to

0

∣∣∣∣∣∣∣∣∣∣∣
diagσ 6=σ1



...

. . . (uhs − uh) . . .s≤J
...h

∣∣∣∣∣ ∗

—————————————
1>J

∣∣ ∗
—————————————

0
∣∣ IS−J


————————————————————————
IS

∣∣ . . . IS . . .σ 6=σ1


(17)

Given the dimensionality condition J > H + 1 imposed in the statement of the

Theorem, the upper right block of (17) has full row rank by Lemma A.1. Hence, the

set of second order test vectors δξ that satisfy (15)–(16) is a subspace of M′ ⊂ M
of dimension [J − (H + 1)](Σ− 1).

Now, if dξ ∈ M and δξ ∈ M′, then (dξ + xδξ) ∈ M, for all x ∈ R. For second

order test vectors of this form, (Psoc) reduces to (using (14)):

(dy)>(D2
yyL)dy+ 2(dπ+xδπ)>(D2

πyL)dy ≤ 0, ∀dξ ∈M, δξ ∈M′, x ∈ R. (18)

This condition is satisfied only if

v(dξ, δξ) := (δπ)>(D2
πyL) dy = 0, ∀dξ ∈M, δξ ∈M′.

If not, x can be chosen so that the inequality in (18) is violated. The matrix D2
πyL
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is easily calculated from (13), giving us the following condition:

v(dξ, δξ) = λ
h1 ·
∑
h,s,σ

1

λ
h
δπsσ u

h
s
′
rs · dyhσ = 0, ∀dξ ∈M, δξ ∈M′. (C)

We have shown that (Psoc) requires that condition (C) holds. Therefore (C) is a

necessary condition for Blackwell efficiency of the equilibrium {{yh}h∈H , p}.

Step 5: Analysis of the necessary condition (C)

Condition (C) implies that Ddξv lies in the row span of M . From Lemma A.3, all

the diagonal blocks of M have full row rank. Since Ddπv = 0, Ddyv must then be

in the row span of the top right block of M , i.e. there must be scalars ah ∈ R, with

ah1 = 0, and vectors bσ ∈ RJ such that

1

λ
h

∑
s

δπsσu
h
s

′
rs = bσ + ahp, ∀h ∈ H, σ ∈ Σ

so that ∑
s

δπsσ

[
uhs
′

λ
h
− uh1

s
′

λ
h1

]
rs = ahp, ∀h ∈ H, σ ∈ Σ.

Since the term on the right hand side does not depend on σ we have

∑
s≤J

(δπsσ2 − δπsσ3)

[
uhs
′

λ
h
− uh1

s
′

λ
h1

]
rs = 0, ∀h ∈ H, (19)

where we have used (16) to truncate the summation beyond the first J terms.

The vectors {rs}s≤J are linearly independent due to the general position of R

(Assumption 2). Furthermore, the term in square brackets is always nonzero, by

Lemma A.2. Therefore, δπsσ2 = δπsσ3 , for the first J states. It suffices to consider

the single restriction that applies for the J ’th state, namely

δπsJσ2 = δπsJσ3 . (20)

By the above argument, condition (C) implies that (20) is satisfied for every

second order test vector δπ ∈ M′. Adding this restriction to the equation system
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Lδπ = 0 (see (17)), we get the augmented system L̂δπ = 0, where

L̂ :=

 0
∣∣ Ŵ

—————————
IS

∣∣ . . . IS . . .σ 6=σ1


and Ŵ is given by



...

. . . (uhs − uh) . . .s≤J−1

...h

∣∣∣∣∣ ∗
∣∣∣∣∣ ∗

———————————————–
1>J−1

∣∣ ∗ ∣∣ ∗
———————————————–

0
∣∣ 0

∣∣ IS−J
———————————————–

0
∣∣ 1

∣∣ 0



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∗

——————————————————————————————————————

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
diagσ/∈{σ1,σ2}



...

. . . (uhs − uh) . . .s≤J
...h

∣∣∣∣∣ ∗

————————————
1>J

∣∣ ∗
————————————

0
∣∣ IS−J




From Lemma A.1, and the dimensionality restriction J−1 ≥ H+1, it follows that Ŵ

has full row rank, and therefore so does L̂. Thus (20) is an independent restriction

on δπ in addition to the restriction Lδπ = 0, implying that there exists a vector

δξ∗ in M′ which does not satisfy (20). But then δξ∗ does not satisfy condition (C)

either. Therefore, the equilibrium {{yh}h∈H , p} cannot be Blackwell efficient. 2
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A Appendix

Consider the system of equations (8)–(10) which any competitive equilibrium must

satisfy. We denote the endogenous variables of this equation system by

ζ := [{yh, λh}h∈H , p̂] ∈ RJH × RH × RJ−1

where p̂ is the vector obtained from p by deleting the last element. It is convenient to

write the first set of these equations, given by (8), as f(ζ;ω) = 0, and the remaining

equations, given by (9)–(10), as g(ζ;ω) = 0. Under Assumptions 1 and 2, ζ is an

equilibrium if and only if

F (ζ;ω) :=

(
f(ζ;ω)

g(ζ;ω)

)
= 0.

This system has (J +1)H+(J−1) equations, equal to the number of unknowns #ζ.

The Jacobian of the equilibrium system can be written as follows:

Dζ,ωF =

(
Dζf Dωf

Dζg 0

)
,

with

Dωf = diagh{. . . πs uh
′′
[ωhs + rs · yh] rs . . .s}

and

Dζg =

 diagh[p
>]

∣∣ 0
∣∣ [. . . ŷh . . .h]

>

——————————————–
. . . Î> . . .h

∣∣ 0
∣∣ 0


,

where Î is the (J × (J − 1)) matrix defined by

Î :=

 IJ−1
———

0

 .

By a standard argument, at any zero of F , both Dωf and Dζg have full row rank,

and hence so does Dζ;ωF .
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Lemma A.1 Suppose S > J +H. Let

W :=


...

. . .
(
uh[ωhs + rs · yh]−

∑
s∈S πsu

h[ωhs + rs · yh]
)
. . .s≤H+1

...h


.

Then, for a generic subset of economies, at an equilibrium allocation {yh}h∈H , the

(square) matrix  W
———
1>H+1


has full rank.

Proof :

For ψ ∈ RH+1 we will show that, generically, there is no solution to

Ψ(ζ, ψ;ω) :=


F (ζ;ω)

W (ζ;ω)ψ

ψ · 1H+1

ψ · ψ − 1

 = 0.

The Jacobian, Dζ,ψ,ωΨ, is row-equivalent to

∗
∣∣∣ ∗

∣∣∣ Dω

(
f

Wψ

)
———————————————

0
∣∣∣ 1>H+1

2ψ>

∣∣∣ 0

———————————————
Dζ g

∣∣ 0
∣∣ 0


.

(21)

We wish to show that this matrix has full row rank at any zero of Ψ. As we have seen

already, Dζ g has full row rank. Also, ψ is orthogonal to 1H+1 and nonzero (since

ψ · ψ = 1). Hence, due to the triangular structure of (21), it suffices to show that

the upper right block, given by

Dω

(
f

Wψ

)
=

 diagh{. . . πs uh
′′
[ωhs + rs · yh] rs . . .s}

——————————————————————————
diagh

{(
. . . ψs(1− πs)uh

′
[ωhs + rs · yh] . . .s≤H+1

) (
0 . . . 0

)} 
,
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has full row rank. The above matrix is row-equivalent to a block-diagonal matrix,

with blocks indexed by h. The h’th block is:

 . . . πs u
h′′[ωhs + rs · yh] rs . . .s≤H+1

∣∣ . . . πs u
h′′[ωhs + rs · yh] rs . . .s>H+1

—————————————————————————————————–
. . . ψs(1− πs)uh

′
[ωhs + rs · yh] . . .s≤H+1

∣∣∣ 0


(22)

This matrix is triangular as well. Its upper right block has full row rank since it has

at least J columns and, by Assumption 2, R is in general position. The lower left

block is a single row which is nonzero.

We have shown that the Jacobian Dζ,ψ,ωΨ has full row rank. Thus Ψ(ζ, ψ;ω)

is transverse to 0. By the transversality theorem, there is an open, dense subset of

endowments such that, for each ω in this set, Ψω(ζ, ψ) is transverse to zero.13 But

this is an overdetermined system of equations (with one extra equation relative to

the number of unknowns). Hence, Ψ−1
ω (0) = ∅ and this establishes the result. 2

Lemma A.2 Suppose S > J . Then, for a generic subset of economies, at an equi-

librium {{yh, λh}h∈H , p}, we have

uĥ
′
[ωĥs + rs · yĥ]

λĥ
6= uȟ

′
[ωȟs + rs · yȟ]

λȟ
,

for any pair of agents ĥ and ȟ, for all s ∈ S.

Proof :

We will prove the result for the first two agents, h1 and h2, and the first state s1.

The same argument applies to any other pair of agents and any other state. Let

q(ζ;ω) :=
uh1
′
[ωh1
s1

+ rs1 · yh1 ]

λh1
−
uh2
′
[ωh2
s1

+ rs1 · yh2 ]

λh2
.

We will show that, generically, there is no solution to

Q(ζ;ω) :=

(
q(ζ;ω)

F (ζ;ω)

)
= 0.

13Openness follows from a standard argument; see, for example, Citanna et al. (1998).
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The Jacobian of Q is

Dζ,ωQ =


Dζq

∣∣ Dωq

Dζf
∣∣ Dωf

——————
Dζ g

∣∣ 0

 ,

where the top right block is given by


 uh1

′′
[ω

h1
s1

+rs1 ·y
h1 ]

λh1

∣∣ 0
—————————————————————————
πs1u

h1
′′
[ωh1
s1

+ rs1 · yh1 ]rs1
∣∣ . . . πsuh1

′′
[ωh1
s + rs · yh1 ]rs . . .s 6=s1

∣∣∣∣∣ ∗

——————————————————————————————————————————–
0

∣∣diagh6=h1

{
. . . πsu

h′′[ωhs + rs · yh]rs . . .s
}


(23)

By Assumption 2, and the dimensionality condition S > J , it follows that the matrix

[. . . rs . . .s 6=s1 ] has rank J . Hence the top left block of (23) has full row rank. The

bottom right block of (23) clearly has full row rank. This establishes full row rank

of the whole matrix (23). Furthermore, as we noted earlier, Dζ g always has full row

rank, so the Jacobian Dζ,ωQ has full row rank as well. Thus Q(ζ;ω) is transverse to

0. By the transversality theorem, there is an open, dense subset of endowments such

that, for each ω in this set, Qω(ζ) is transverse to zero. Hence, Q−1
ω (0) = ∅ and this

establishes the result. 2

For the next lemma, we consider an economy in the generic set Ω̂, and focus on an

equilibrium of this economy, {{yh, λh}h∈H , p}. Recall that DξΦ(ξ) is the Jacobian of

the constraints of program (P) evaluated at ξ = (π, y).

Lemma A.3 Suppose S > J + H. Then DξΦ(ξ) has full row rank. Moreover,

DξΦ(ξ) is row-equivalent to M (where M is defined by (11)) and all the diagonal

blocks of M have full row rank.

Proof :

The Jacobian DξΦ(ξ) is given by
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...

. . . (uhs − uh) . . .s
...h6=h1

∣∣∣∣∣ 0

∣∣∣∣∣ 0 diagh6=h1
[πσ1λ

h
p>]

∣∣∣∣∣ 0

——————————————————————————————————————————————–

0

∣∣∣∣∣ diagσ 6=σ1


...

. . . (uhs − uh) . . .s
...h


∣∣∣∣∣ 0

∣∣∣∣∣ diagσ 6=σ1,h[πσλ
h
p>]

——————————————————————————————————————————————–
0

∣∣ 0
∣∣ {. . . IJ . . .h}

∣∣ 0
——————————————————————————————————————————————–

0
∣∣ 0

∣∣ 0
∣∣ diagσ 6=σ1

{. . . IJ . . .h}
——————————————————————————————————————————————–

IS
∣∣ . . . IS . . .σ 6=σ1

∣∣ 0
∣∣ 0

——————————————————————————————————————————————–
0

∣∣ diagσ 6=σ1
(1>S )

∣∣ 0
∣∣ 0


where we have used (8) to evaluate the expressions in the (1,3) and (2,4) blocks.

This matrix is row equivalent to



...

. . . (uhs − uh) . . .s
...h6=h1

∣∣∣∣∣
...

. . . (uhs − uh) . . .s,σ 6=σ1

...h6=h1

∣∣∣∣∣ 0 diagh6=h1
[πσ1λ

h
p>]

∣∣∣∣∣ . . .{0 diagh6=h1
[πσλ

h
p>]
}
. . .σ 6=σ1

——————————————————————————————————————————————–

0

∣∣∣∣∣ diagσ 6=σ1


...

. . . (uhs − uh) . . .s
...h


∣∣∣∣∣ 0

∣∣∣∣∣ diagσ 6=σ1,h[πσλ
h
p>]

——————————————————————————————————————————————–
0

∣∣ 0
∣∣ {. . . IJ . . .h}

∣∣ 0
——————————————————————————————————————————————–

0
∣∣ 0

∣∣ 0
∣∣ diagσ 6=σ1

{. . . IJ . . .h}
——————————————————————————————————————————————–

IS
∣∣ . . . IS . . .σ 6=σ1

∣∣ 0
∣∣ 0

——————————————————————————————————————————————–
0

∣∣ diagσ 6=σ1
(1>S )

∣∣ 0
∣∣ 0


We perform further row operations on the above matrix. Using the second last row

block, we can set the first two elements of the top row block equal to zero. Then,

since πσ is invariant with respect to σ, we can eliminate from the top row block the
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terms πσλ
h
, for all h and σ. It follows that DξΦ(ξ) is row-equivalent to the matrix

M defined by (11).

The matrix M is lower triangular. The bottom left block of M clearly has full

row rank. The middle block has full row rank by Lemma A.1.14 The top right block

can be written as
 0

∣∣ diagh6=h1
[p>]

—————————
IJ

∣∣ . . . IJ . . .h6=h1

 ∣∣∣∣∣ ∗

——————————————————————
0

∣∣ diagσ 6=σ1
{. . . IJ . . .h}


which also has full row rank. Hence M has full row rank, and consequently so does

DξΦ(ξ). 2

14The dimensionality condition S > J +H is needed in order to invoke Lemma A.1. We do not
use Lemma A.2 for this result.
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