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Abstract 
We propose a generalization of the Dynamic Conditional Correlation multivariate GARCH model of 
Engle (2002) and of the Asymmetric Dynamic Conditional Correlation model of Cappiello et al. 
(2006). The model we propose introduces a block structure in parameter matrices that allows for 
interdependence with a reduced number of parameters. Our model nests the Flexible Dynamic 
Conditional Correlation model of Billio et al. (2006) and is named Quadratic Flexible Dynamic 
Conditional Correlation Multivariate GARCH. In the paper, we provide conditions for positive 
definiteness of the conditional correlations. We also present an empirical application to the Italian 
stock market comparing alternative correlation models for portfolio risk evaluation. 
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1 Introduction

In the last few years, the empirical and theoretical analysis concerning multi-
variate GARCH models attracted a growing interest for two main reasons: the
availability of more and more powerful computers that enabled the estimation
of complex models with an elevate number of parameters and the introduction
of a new class of models: the Dynamic Conditional Correlation multivariate
GARCH (DCC) by Engle (2002). Several generalizations of the Engle’s model
as been proposed (among others Cappiello et al. 2006, and Franses and Hafner,
2003, Billio et al., 2006) and some theoretical studies have also been developed
(McAleer et al., 2006). These papers focused both on the developments of new
parameterizations and on their use in empirical applications, demonstrating an
high capability to adapt to practical problems.

In this paper we introduce a new DCC-type model that generalized the Flex-
ible DCC of Billio et al. (2006), FDCC. We start from the empirical evidence
that in asset allocation problems we need flexible and feasible models to con-
struct optimal portfolios. Asset managers generally invest by differentiating
their portfolio by area, branches or sectors and type of instruments. This fact
suggests to develop the block structure in the parameters of the FDCC model,
thus allowing for constant dynamics only among block of assets belonging to
the same category. Our model generalizes the FDCC structure by allowing for
possible interactions in the correlation dynamics among classes of assets.

In Section 2 we review current DCC type models and in section 3 we in-
troduce the Quadratic FDCC model also providing conditions for positive defi-
niteness and stationarity. Section 3 reports an empirical example based on the
sectorial indices of the Italian Stock Market (MIBTEL). Section 4 concludes.

2 Modeling Dynamic Conditional Correlations

The starting point for the analysis of dynamic correlation models is the Con-
stant Condition Correlation model of Bollerslev (1991). In his paper, Bollerslev
assumed that the variance-covariance matrix of εt (a K-dimension set of asset
returns) could be factorized as follows:

Ht = DtRDt (1)

whereR is a correlation matrix andDt is a diagonal matrix of conditional volatil-
ities. For the sake of exposition we assume that the mean is not relevant. For
each series a GARCH-type model could be fitted for estimating the conditional
variance without any constraint on a common structure. Each conditional vari-
ance could be modelled with a standard GARCH model or with more advanced
parameterisations such as GARCH models with asymmetry effects as in Glosten
et al. (1993) and in Caporin and McAleer (2006), or EGARCH representations
as in Nelson (1991).
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The representation with constant conditional correlations allows for a two-
step estimation procedure: at first, we estimate the conditional variances, which
can then be filtered out by premultiplying εt by D−1

t ; then, the correlation
matrix can be estimated. Furthermore, we can estimate the correlation with
the simple sample estimator

R =
D−1
t εtε

′

tD
−1
t

T
(2)

Unfortunately, the assumption of constant correlations is really questionable.
In fact, it is well-known that correlations are not stable over long periods. Engle
(2002) introduced a limited dynamics into the correlations in order to overcome
this limitation. Engle restated the decomposition (1) as:

Ht = DtRtDt (3)

Rt = (Q
∗

t )
−1

Qt (Q
∗

t )
−1

where he assumed that the time-dependent correlation has a quadratic structure
(which was added to ensure that we have, at the end, a correlation matrix).
Furthermore, Qt has the following expression

Qt = [1− α (1)− β (1)] Γ + α (L)ηt−1η
′

t−1 + β (L)Qt−1

where: ηt = D−1
t εt; the polynomial parameters are defined as α (L) =

∑q

i=1 αiL
i,

β (L) =
∑p

i=1 βiL
i and must satisfy α (1)+β (1) < 1 in order to rule out explo-

sive patterns and Γ = T−1
∑T

i=1 ηtη
′

t is the unconditional (sample) correlation
matrix. The dynamics is thus very similar to a GARCH-type equation. Further-
more, the unconditional correlations are equal to the sample correlations (i.e.
unconditionally Q = [1− α (1)− β (1)] Γ + α (L)Q + β (L)Q =⇒ Q = R = Γ
); we will refer to this result as the ”correlation targeting” property. Finally,
Q∗t = diag(

√
q11,t,

√
q22,t, ...

√
qnn,t).

A very similar approach is included in the paper of Tse and Tsui (2002),
the only difference is in the term ηt−1η

′

t−1 which is substituted by a short term
correlation estimate m−1

∑m

j=1 ηt−jη
′

t−j with m ≥ K.
This model is clearly parsimonious since it requires just two parameters to

introduce dynamics into correlations. However, it implies several strong restric-
tions: first, there is no interdependence among variances, among correlations
and between variances and correlations; second, the dynamics is constant over
all correlations.

We can solve the first point only moving from the DCC model to stan-
dard multivariate GARCH models like the Vech or the BEKK of Engle and
Kroner (1995). These two models allow for interdependence among variances
and covariances and thus they implicitly assume dynamic correlations, even
if their focus being on dynamic covariances. Unfortunately, BEKK and Vech
models are useless in systems with more that 4 or 5 variables since they have
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serious optimization problems leading to unstable and inconsistent parameter
estimates. Differently, the empirical interest is in models with many assets,
possibly more than 100. One solution is then to split the problem, estimating
conditional variances on a univariate basis and focusing in a second step on the
correlations. Clearly, the use of a two-step approach provides important compu-
tational advantages, but it excludes any direct interaction among covariances.
The introduction of lagged cross-sectional dependence between the variances
could follow standard models, as the VARMA-GARCH of Ling and McAleer
(2003). We will not directly address this issue since the focus of the paper is
on correlation modelling. Anyway, we underline that the correct specification
of the variance dynamics is fundamental. In fact, the dynamic evolution of
the correlation could be influenced by a possible misspecification of the variance
equations. We thus face a trade-off between the use of an advanced and possibly
multivariate specification of the variance evolution and the model feasibility.

Within the dynamic correlation literature, the most common approach con-
siders univariate specification of the variances, possibly including asymmetric
terms following the GJR model of Glosten et al. (1993). In the empirical appli-
cation we will follow this strategy.

The second limitation, given by the constancy of the dynamics over all the
correlations, has been already addressed in the econometric literature. The DCC
model was generalized by Engle (2002), who suggested the following Generalized
DCC trying to solve the constraint of equal dynamics for all correlations

Qt = [ii
′ −A−B] ◦ Γ +A ◦ ηt−1η′t−1 +B ◦Qt−1 (4)

where ◦ is the Hadamard product (elementwise matrix multiplication), A and
B are square matrices and positive definiteness is guaranteed by their positive
definiteness (see Ding and Engle, 2001). This model solved one of the draw-
back of the original DCC but, unfortunately, the number of parameters greatly
increases and makes the model empirically unattractive.

Additional extensions shortly appeared in the literature:
i) Cappiello et al. (2006) provide a different extension of the DCC model by

introducing asymmetry in the correlation dynamics and translating the model
into a quadratic form

Qt =
(
Γ−A′ΓA−B′ΓB −G′F̄G

)
+A′ηt−1η

′

t−1A+B′Qt−1B +G′ξt−1ξ
′

t−1G
(5)

where ξt = I (ξt < 0) ◦ ξt, A, B, G are diagonal parameter matrices, Γ
is again the sample covariance matrix of the standardized residuals and F̄ is
the sample covariance matrix of ξt; this model adds flexibility to the previous
one, however the number of parameters increases with system dimension and
the positive definiteness is obtained by constraining the matrix Q̄ − A′Q̄A −
B′Q̄B −G′F̄G to be positive definite, which is quite a complex task;
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ii) Franses and Hafner (2003) suggested another Generalized DCC model

Qt =

[

1−
n∑

i=1

αi − β

]

Γ + αα′ ◦ ηt−1η′t−1 + βQt−1 (6)

with α being a vector of dimension n. Here the positive definiteness is
guaranteed without constraints but the correlation targeting property is no more
valid;

iii) McAleer et al. (2006) generalize the model providing a representation in
which all the dynamic correlations can have a different dynamic pattern; their
approach is particularly useful from a theoretical point of view, since it provides
regularity conditions for the moments and the asymptotic properties of the quasi
maximum likelihood estimator applied to dynamic correlation models (and the
DCC models of Engle (2002) are special cases);

iv) Billio et al. (2006) suggest two special cases of the Generalized DCC of
Engle (2002) and Franses and Hafner (2003), by requiring that the parameter
matrices or parameter vectors is partitioned. The intuition behind this choice is
that the dynamics cannot be common for all correlations but a too generalized
parameterization is not feasible; therefore, they suggest to group variables in
coherent sets mirroring the empirical needs of sectorial or geographical asset
allocation (i.e. stocks from Europe and Asia or belonging to the Energy and
Financial sectors); in formula (4), they required that

A =






αi,11i (m1) i (m1)
′ αi,12i (m1) i (m2)

′ · · · αi,w1i (m1) i (mw)
′

αi,12i (m2) i (m1)
′ αi,22i (m2) i (m2)

′ αi,w2i (m2) i (mw)
′

...
. . .

...
αi,w1i (mw) i (m1)

′
αi,w2i (mw) i (m2)

′ · · · αi,wwi (mw) i (mw)
′






(7)
where m1,m2, ...mw are the number of assets in each group (similarly for B); in
that case the correlation matrix is positive definite if so is the matrix [ii′ −A−B]◦
Γ; the constraints are heavy but feasible if off-diagonal blocks are filled up with
zeros (i.e. only αi,jj �= 0); they named this particular DCC the Block-Diagonal
DCC (BDDCC) model. To solve this further limitation they generalize the
model of Franses and Hafner (2003) adding the constant

Qt = cc′ ◦ Γ + αα′ ◦ ηt−1η′t−1 + ββ′ ◦Qt−1 (8)

and requiring the parameter vectors to be partitioned vectors, as α = {α1, α1, α1, α1, α2, α2, α3, α3, α3, };
in that case they gain the positive definiteness but loose, in general, the correla-
tion targeting property, as in the Franses and Hafner (2003) model. Differently
from their approach, Billio et al. (2006) can impose positive definiteness with
the following constraints αiαj+βiβj+cicj = 1 for i, j = 1...n; they labeled this
model the Flexible DCC; in both cases the parameters of the GARCH part (not
the constant) must satisfy a ”stationarity” constraint αiαj+βiβj < 1. McAleer
(2005) and Bauwens et al. (2006) provide an extensive survey on multivariate
correlation models.
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3 The Quadratic Flexible DCC Model

In this paper we introduce a new DCC-type mode which generalize the Flexible
DCC: the Quadratic Flexible DCC can be also considered a special case of the
Asymmetric DCC of Engle, Cappiello and Sheppard (2006). We suggest the
following parameterization of Qt:

Qt = C ′ΓC +A′ηt−1η
′

t−1A+B′Qt−1B (9)

where A, B and C are symmetric matrices. This model nests the FDCC which
correspond to a Quadratic FDCC with diagonal partitioned parameter matrices.
As the FDCC this model generally looses the correlation targeting property
which can however be imposed with a set of restrictions. The quadratic structure
of the model guarantees the positive definiteness of Qt, given a suitable starting
point. A comment on parameter constraint is worthwhile: in standard DCC
the α and β parameters must satisfy a constraint (α + β < 1) that rules out
explosive correlation patterns; the QFDCC model requires a similar constraint
but it must be imposed on the eigenvalues of A+B. In fact, the QFDCC can be
thought as a particular BEKK model once the variance effect has been filtered
out. Then, following Engle and Kroner (1995) we can recast the QFDCC in
a companion V ech-type form and use their Proposition 2.7. Consequently, the
QFDCC model provides stationary correlations if: i) C ′ΓC is positive definite;
ii) the eigenvalues of A+B are in modulus less than 1.

In the QFDCC model we can adapt block structures to the parameter ma-
trices as in (7). Finally, by removing the assumption of diagonal parameter
matrices, as in the Asymmetric DCC, the QFDCC model allows for interdepen-
dence among correlations. Clearly, a completely unrestricted model is unfeasible
from an estimation point of view. For this reason, we suggest several special
cases: with diagonal parameter matrices as in the A-DCC (5); with partitioned
diagonal matrices, similarly to the FDCC (8); finally, block-partitioned repre-
sentations could be adopted as in BDDCC (7 ). We present a particular example
for this last case.

Assume that we are considering a system with K = 5 assets grouped into
two sets of n1 = 3 and n2 = 2 assets, respectively. Also assume the following
structures for the parameter matrices

A =






0 0 0 a2 a2
0 0 0 a2 a2
0 0 0 a2 a2
a2 a2 a2 a1 0
a2 a2 a2 0 a1






B =






0 0 0 b2 b2
0 0 0 b2 b2
0 0 0 b2 b2
b2 b2 b2 b1 0
b2 b2 b2 0 b1






(10)

C =






1 0 0 c2 c2
0 1 0 c2 c2
0 0 1 c2 c2
c2 c2 c2 c1 0
c2 c2 c2 0 c1





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Then, by substitution on (9) we can verify that: i) the interdependence between
correlations can be handled with a very limited number of parameters; i) the
QFDCC model allows the combination of constant correlations for some assets
and dynamic correlations for others (simply imposing the restrictions c2 = b2 =
a2 = 0). Furthermore, we can estimated a generalized model and run some
likelihood ratio test for nested models. Finally, the QFDCC can be generalized
adding asymmetry terms following the strategy proposed by Cappiello et al.
(2006).

3.1 Estimation and Testing

Maximum likelihood is the standard tool for the estimation of dynamic condi-
tional correlation models presented in this work. Following Engle (2002), let θ1
be the parameter set of the univariate GARCH models and θ2 the parameter
set of the dynamic correlation structure. We can represent the likelihood of the
model as follows:

LogL (θ1, θ2|Xt) = −
1

2

T∑

t=1

[
k log (2π) + log (|Ht|) + εtH−1

t ε′t
]

(11)

Further, exploiting the relation (3) we can write:

LogL (θ1, θ2|Xt) = −
1

2

T∑

t=1

[
k log (2π) + log (Rt) + 2 log (|Dt|) + εtD−1

t R−1t D−1
t ε′t

]

(12)
Engle suggested a first estimation stage where the correlation matrix has to be
replaced by an identity matrix

LogL (θ1|Xt) = −
1

2

T∑

t=1

[
k log (2π) + log (In) + 2 log (|Dt|) + εtD−1

t I−1n D−1
t ε′t

]

(13)
This step is equivalent to univariate estimation of GARCH models. In a second
step, conditionally on the parameters estimated in the first step, we have the
following log-likelihood

LogL
(
θ2|θ̂1,Xt

)
= −1

2

T∑

t=1

[
k log (2π) + log (Rt) + 2 log (|Dt|) + ηtR−1t η′t

]

(14)
where ηt = D−1

t εt are the first stage standardized residuals.
According to the results of Comte and Lieberman (2003), Ling and McAleer

(2003) and McAleer et al. (2006), the maximum likelihood estimators are con-
sistent and asymptotically normally distributed.

Given the relations between Engle’s DCC, the Flexible DCC and the Quadratic
FDCC model we can apply several likelihood tests for parameter restrictions.
The LR tests have an asymptotic chi-square distribution under the assump-
tions and regularity conditions stated in Comte and Lieberman (2003), Ling
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and McAleer (2003) and McAleer et al. (2006). We stress that our working hy-
pothesis will never be an unrestricted QFDCC, which is not feasible, but instead
we consider the Block QFDCC (with block partitioned parameter matrices). In
order to evidence all the possible bivariate model comparison we consider the
two-block example. In that case, A is defined as follows

A =

[
a1in1i

′

n1
a12in1i

′

n2

a12in2i
′

n1
a2in2i

′

n2

]
=

[
A1 A′12
A12 A2

]
,

and similarly B and C. We can then test the block structured benchmark model
against a set of alternative parameterizations:

i) Block QFDCC against Block Diagonal QFDCC: this is obtained by re-
stricting to 0 all off-block diagonal coefficients, a12 = b12 = c12 = 0;

ii) the benchmark model with respect to a structure with diagonal blocks
restricted to be diagonal: in that case, we assume that the correlations belonging
to a given diagonal block have no feedback effects (that is, they are simply
characterized by the same dynamic behavior): in that case we impose A1 =
a1In1 , and similar representations are used for A2, B1, B2, C1, C2;

iii) Block QFDCC against a Diagonal QFDCC: this is the restriction that
implies an FDCC model where there is no interdependence across correlations;
this is equivalent to merging restrictions i) and ii);

iv) our benchmark model can be also compared to Engle’s DCC model;
this is equivalent to the following set of restrictions: A1 = A2 = aIn1+n2 ,
B1 = B2 = bIn1+n2 , (similar to i) and ii) but excluding the constant term C),
c1 = c2 =

√
1− a2 − b2 (given that we are using a quadratic form), and c12 = 0;

v) a CCC model, that is A = B = 0 and C = In.
Additional restrictions could be considered for testing mixed models such as

the one proposed in (10). In addition, the information criteria can be used to
compare the QFDCC with non-nested models like the Franses and Hafner DCC.

4 Portfolio Risk Evaluation with DCC-type mod-

els

Dynamic correlation models may provide useful insights in several financial ap-
plications including asset allocation within a Markowitz approach, forecast eval-
uation analysis and portfolio risk evaluation. In this paper we focus on this last
case using a set of stock market indices. In details, we consider the main Italian
stock market index, the Mibtel, and its sectorial decomposition which we report
in Table 1.

[INSERT Figure 1 - Mibtel sectorial decomposition]

The data were downloaded from Datastream and cover the range January
1991 to September 2003 at the daily frequency. The index has two levels of
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disaggregation. In the first, the index is decomposed in three main groups In-
dustrial, Service and Finance. These three indices are further disaggregated into
a group of 20 sub-sectors. The whole sample consists of about 3400 observa-
tions. Following a standard practice, we fitted univariate GARCH models with
asymmetry following Glosten et al. (1997) on the log-returns of the sub-sector
indices. Table 2 reports the estimated parameters and the quasi maximum like-
lihood standard errors. All sub-sectors conditional variances show a relevant
asymmetric effect and only three reports a GARCH coefficient lower than 0.7.
Given the comments reported in section 2 and the focus on correlation dynamics,
we did not consider further GARCH specifications.

[INSERT Table 1 - Univariate GARCH estimates]

Following the approach of Engle (2002), after the estimate of the conditional
variance models, we compute the standardized residuals. On the resulting series
we fit then dynamic correlation models. As benchmark model we computed the
sample (unconditional) correlation matrix on the standardized residuals. This
estimate is equivalent to a Constant Conditional Correlation model. In this case
the correlation model likelihood is equal to -9842.368.

We also computed the unconditional correlations (again on the standard-
ized residuals) using a rolling window of 250 observations. Some patterns are
reported in Figures 1 and 2. This graphical analysis evidences that correlations
are not stable over time and, more interestingly, that correlations show similar
patterns between sub-sectors groups.

[Insert Figures 2 and 3- rolling correlations]

This graphical analysis suggests that the QFDCC should be considered as
a valid alternative to the excessively restricted DCC and CCC representations.
Tables 2 and 3 reports parameters estimates for the whole sample for DCC
and for the diagonal QFDCC models. The log-likelihoods suggest that the
QFDCC model should be preferred to the DCC (it provides a small but signifi-
cant increase in the likelihood). However, the improvements achieved with the
QFDCC (and only with a diagonal representation) are very relevant, suggesting
that even small increases in model flexibility may provide valid and preferred
representations. Standard likelihood ratio tests strongly support these findings.

[INSERT Table 2and 3 parameter estimates of DCC and QFDCC]

Our final purpose is to compare the performances of CCC, DCC and QFDCC
in evaluating portfolio risk. For this reason, we focus on the last two years of
our sample and we estimate the various models in a rolling window of 250 ob-
servations and a step of 10 observations. This correspond roughly to a portfolio
allocation and evaluation which is updated every two weeks. In order to get
directly comparable portfolios in term of returns and avoid any discussion on
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the estimation of mean expected returns, we consider equally weighted portfo-
lios (i.e. the 5% of the global portfolio is invested in each of the 20 sub-sectors
indices of the Mibtel). The various portfolios are then equivalent in terms of
returns but not in their exposition to market risk which is influenced by the sec-
ond order moments. We compare the correlation models using the Value-at-Risk
measure with a backtesting procedure.

The VaR is the quantile of portfolio returns (rt) satisfying

∫ V aR(t,α)

−∞

rtf (rt) drt = α. (15)

The backtesting analysis considers a comparison over the last 250 days and
focuses mainly on exceptions: i.e. the number of cases in which the portfolio
returns underperform the VaR measure. In that case, we also computed the
RiskMetrics model (RM) (JP Morgan, 1996), which is the alternative bench-
mark model extremely popular in the literature. The RM model considers that
variances and correlations follow an exponentially weighted moving average.
Define the returns on a sub-sector index as ri,t, denote the variance-covariance
matrix of the 20 indices by Σt, and let ω be the row-vector of portfolio weights
(each element of the vector is equal to 1/20 (we are considering an equally
weighted portfolio). Then, time varying portfolio returns are:

rt = ω






r1,t
r2,t
...

r20,t






(16)

while portfolio variances are:

σ2t = ωΣtω
′. (17)

Note that portfolio weights are repositioned at the equally weighted level
every 10 days while the variance-covariance matrix is estimated with a CCC (i.e.
with constant correlations), a DCC, a QFDCC and finally with the RiskMetrics
model. In this last case, we estimate the elements of Σt using the recursive
formula

σi,tσj,t = λσi,tσj,t + (1− λ) ri,trj,t i, j = 1...20 (18)

and λ set to 0.97. Table 4 reports the exceptions realized by the three correlation
models and by the RM.

[Table 4 - exceptions]

Among the various models, only the QFDCC and the RM models provide
an exception number very close to the theoretical value. Differently, CCC and
DCC report the same result, which is too conservative. They provide a lower
exception number, which indicates that the portfolio variances provided by these
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two approaches are larger than the one provided by RM and QFDCC. This fact
is not negative if our final purpose is to adequately cover market risk exposure.
However, a more conservative VaR methodology necessarily implies a larger
opportunity cost: larger VaR is equivalent to a larger amount of immobilized
resources.

A comparison between correlation models cannot be based only on counting
the exceptions, but further metric must be considered. The literature focuses
on two standard approaches: testing for VaR model failures, following Kupiec
(1995); comparing models with loss functions, following Lopez (1998). In this
paper we combine these standard techniques with some additional measures
proposed in Caporin (2003). Kupiec (1995) suggests two tests for the evalua-
tion of VaR measures: the Proportion of Failure test and the Test Until First
Failure. Both tests are based on the assumption that exceptions follow a bi-
nomial distribution and are asymptotically distributed as a chi-square variable
with one degree of freedom. Both tests are used to verify the null hypothesis
that VaR measures are correctly specified. Table 7 reports the tests for the
various correlation models.

[Table 5 - tests for VaR]

Even in this case, the CCC and DCC models provide the worst results:
larger test statistics, closer to the rejection area; rejection of the null hypothesis
in the 10% VaR case; finally, the tests allow to infer that the two models provide
exactly the same exceptions. Differently, RM and QFDCC provide comparable
test statistics.

Unfortunately, it is well-know that these tests have limited power in distin-
guishing among various models for VaR, see among other Lopez (1998). Loss
functions represents an alternative approach that can be used to compare VaR
models. These loss functions can be appropriately designed in order to overcome
the tests limitations. Lopez (1998) suggests a loss function based on regulatory
needs:

LfL =
T∑

t=1

[
1 + (rt − V aRt)

2
]
It (rt < V aRt) (19)

where It is an indicator function that selects exceptions. This loss function pe-
nalizes the VaR models that provide largest losses at the exceptions. However, a
bank would prefer a VaR model that: (i) satisfy Basel Accord requirements, (ii)
reduces losses at the exceptions, (iii) and also reduces the opportunity cost of
VaR (the VaR also measures the amount of money that a financial institutions
must immobilize to cover market risk exposure). A VaR model that satisfies
points i) and ii) and that provides lower bounds than the other is clearly pre-
ferred, since it translates in lower immobilization of liquidity resources).

Lopez loss function focus only on point (i); additional metrics are therefore
needed. Caporin (2003) introduces alternative loss functions that can be used
to compare models in terms of (ii) and (iii). The loss functions focus on the
distances between the VaR bounds and the realized portfolio returns. Therefore
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they can be used on the whole return path and not only on the exceptions. We
report here two loss functions, that can be thought as first and second order
losses

LfF =
T∑

t=1

|rt| − |V aRt|
|V aRt|

(20)

LfS =
T∑

t=1

(|rt| − |V aRt|)2
|V aRt|

(21)

LfC = LfF + LfS . (22)

[Table 6 - loss functions]

If the attention is given only to the exceptions, then the Lopez loss function
should be used. In that case, the RM model provide the best result at the 1%
level, while the optimal model is the DCC at the 5% and 10% Value-at-Risk
level; at the opposite, the QFDCC is the worst case. This in turn implies that,
at the exceptions, the QFDCC provide a lower portfolio variance compared to
the other models; it is less conservative than the other models and this give rise
to larger losses. If we move from the exception cases to the whole path of the
portfolio variances, we should consider the alternative loss functions previously
introduced. These loss functions have been calculated over the full back-testing
period and not only over the exceptions. In that case, we note that the result
is completely reversed: the QFDCC model is the optimal choice at 1% and 5%
cases while the RM is the best model for a 10% VaR. Collecting these results we
can state the following: regulators should prefer a Lopez loss function approach
for comparing VaR models while financial institutions should push for the use
of different loss functions. In fact, a more flexible approach which satisfies the
Basel Accord Requirements and provides lower VaR bounds could reduces the
opportunity cost of immobilizing resources.

Finally, we consider a further analysis on VaR bounds using correlations
among them and awe also compare the VaR levels at various quantiles. The
purpose of this additional analysis is to verify if the correlation models we con-
sidered provide VaR bounds close one to the other. A high correlation between
two sequences of exceptions suggest that the two models detect the very same
VaR exceptions. Similarly, a high correlation between VaR bounds evidences
that the proposed models provide similar portfolio variance dynamics. Table 7
reports the correlations among VaR bounds and among the sequences of excep-
tions at 1%, 5% and 10% VaR, respectively.

[Table 7 correlations]

It clearly emerges that: CCC and DCC models provide the same exceptions
as we previously noted; QFDCC model is close to the DCC one; and, finally,
that the RM model is far from the DCC-type models, in particular at 1% and
5% VaR levels.
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Finally, table 8 reports the VaR exceptions at various quantiles, from 1% to
30%, together with the theoretical exception values. We can note that all the
models are much more conservative increasing the quantile probability.

[Table 8 quantiles and exceptions]

Summarizing our findings, we can state that the QFDCC model provides
a significant increase in the log-likelihood compared to standard alterative cor-
relation models. Furthermore, if the comparison is based on a portfolio risk
evaluation framework, the QFDCC model produces exceptions closer to the
theoretical values. Finally, using loss functions we verify that the CCC and
DCC models generally provide wider VaR bounds that satisfy Basel Accord
requirements but also imply a higher opportunity cost.

5 Conclusions

This paper introduces a new dynamic conditional correlation model, the Quadratic
Flexible DCC, that generalizes the DCC model of Engle (2002) and the FDCC
model of Billio et al. (2006). The model allows for interaction among corre-
lations with a quadratic structure similar to the one included in the BEKK-
GARCH model of Engle and Kroner (1995). Furthermore, differently from the
DCC, a constant is included to guarantee more flexibility. Finally, the param-
eters are imposed to be constant across clusters of assets that can be defined a
priori.

Following this approach, the parameter number greatly reduces and parame-
ter matrices become partitioned matrices. The use of block-structure parameter
matrices provides relevant advantages and a limited increase in model complex-
ity. The proposed approach could be used in most multivariate GARCH models,
including the BEKK of Engle and Kroner (1995), and in most of the parameter-
izations described in McAleer (2005) and Bauwens et al. (2006). Furthermore,
the use of block-structures and quadratic forms could also be considered within
a multivariate stochastic volatility framework extending the models presented
by Asai et al. (2006).

The QFDCC model is designed to be used in empirical finance applications
involving asset management and risk evaluation. This paper provided an empiri-
cal analysis in this second area, considering the VaR computation with different
approaches, including CCC, DCC, QFDCC and the RiskMetrics models. In
that particular case, the QFDCC model provides the best results on most cases
providing a number of exceptions in line with Basel Accord requirements and a
narrower VaR bounds.
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Figure 1: MIBTEL index decomposition by sectors and sub-sectors 
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Figure 2: rolling correlations over a 250 observation window for a selected Industrial sub-sectors 
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Figure 3: rolling correlations over a 250 observation window for a selected Financial sub-sectors 
 
 
 ω α γ β  ω α γ β 

0.239 0.031 0.225 0.703 0.065 0.000 0.108 0.887 
FOOD 

0.007 0.003 0.005 0.007 
DISTRIBUTION 

0.006 0.029 0.014 0.027 
0.068 0.031 0.127 0.883 0.578 0.374 0.132 0.260 

CARS 
0.002 0.004 0.004 0.004 

MEDIA 
0.015 0.016 0.015 0.015 

0.103 0.035 0.128 0.823 0.239 0.000 0.188 0.804 
PAPER 

0.006 0.005 0.005 0.010 
PUB. UTIL. SERV. 

0.010 0.006 0.007 0.006 
0.077 0.025 0.224 0.835 0.159 0.060 0.142 0.720 

CHEMICALS 
0.002 0.002 0.006 0.003 

TRANS & 
TOURISM 0.005 0.004 0.007 0.007 

0.099 0.011 0.251 0.783 0.228 0.041 0.189 0.733 
CONSTRUCTION 

0.002 0.003 0.007 0.005 
INSURANCE 

0.135 0.034 0.044 0.129 
0.100 0.000 0.185 0.839 0.145 0.043 0.124 0.815 

ELECRONICS 
0.004 0.006 0.005 0.007 

BANKS 
0.007 0.005 0.005 0.007 

0.154 0.067 0.350 0.652 0.052 0.000 0.140 0.893 PLANTS & 
MACHINE 0.005 0.004 0.013 0.009 

FINANCE 
HOLDINGS 0.002 0.007 0.004 0.008 

0.056 0.000 0.046 0.948 0.217 0.000 0.148 0.880 INDUSTRIALS 
MISC 0.004 0.005 0.005 0.008 

FINANCE MISC. 
0.005 0.003 0.005 0.004 

0.301 0.034 0.208 0.724 0.168 0.032 0.256 0.667 MINERALS 
METALS 0.009 0.003 0.006 0.006 

REAL ESTATE 
0.006 0.005 0.008 0.010 

0.182 0.004 0.184 0.731 0.053 0.006 0.112 0.909 TEXILE 
CLOTHING 0.006 0.006 0.008 0.011 

FINANCE 
SERVICES 0.002 0.003 0.003 0.003 

Table 1: GARCH parameter estimates and quasi maximum likelihood standard errors (in italics) for 
each MIBTEL sub-sector – ω is the constant of the variance equation, α represents the ARCH term, 
β is the GARCH coefficient and γ is the asymmetric effect (the ARCH component is α+γ for 
negative returns and α for positive returns) – we imposed the restrictions 0<α+½γ+β<1. 
 



 
Parameters Estimates St. Dev. z-statistics 
α 0.021 0.005 4.196 
β 0.489 0.199 2.455 
 Log Likelihood: -9810.0459 
Table 2: DCC estimates over the full sample with Quasi Maximum Likelihood standard errors 
 
Parameters Estimates St.  Dev. z-statistics 

c1 0.706 0.062 11.395 
c2 0.991 0.193 5.134 
c3 0.039 0.003 12.984 
a1 0.094 0.023 4.098 
a2 0.065 0.034 1.904 
a3 0.019 0.006 3.156 
b1 0.631 0.234 2.696 
b2 0.977 0.009 108.595 
b3 0.917 0.048 19.095 
 Log-Likelihood -9320.9534 

Table 3: Diagonal QFDCC estimates over the full sample with Quasi Maximum Likelihood 
standard errors 
 

VaR α-level 1% 5% 10% 
Theoretical 2.5 12.5 25 
RiskMetrics 2 11 18 

CCC 2 8 13 
DCC 2 8 13 

QFDCC 3 11 21 
Table 4: Number of exception over last 250 observations for a set of VaR confidence levels 
 
VaR Level 1% 5% 10% 

TEST 
Model 

Failure Frequency 
RiskMetrics 0.108 0.197 2.389 

CCC 0.108 1.944 7.627 
DCC 0.108 1.944 7.627 

QFDCC 0.095 0.197 0.748 
 Time Until First Failure 

RiskMetrics 0.050 1.603 0.856 
CCC 0.717 2.140 1.336 
DCC 0.717 2.140 1.336 

QFDCC 0.338 1.603 0.652 
Table 5: Tests over VaR exceptions over last 250 observations – the table reports the test statistics 
which are both asymptotically distributes ad a χ2(1) – critical levels are 3.84 at the 1% and 6.63 at 
the 5% confidence level. 
 
 
 
 
 
 



VaR Level 1% 5% 10% 
LOSS FUNCTIONS 

Model 
Lopez loss function 

RiskMetrics 29.883 147.866 168.856 
CCC 41.256 128.127 154.265 
DCC 41.187 127.340 153.604 

QFDCC 52.075 146.091 190.107 
 Absolute loss (first order) 

RiskMetrics 172.564 140.173 110.050 
CCC 182.351 154.054 127.737 
DCC 182.200 153.839 127.464 

QFDCC 171.749 139.017 108.577 
 Quadratic loss (second order) 

RiskMetrics 595.730 474.185 426.458 
CCC 661.147 514.186 451.890 
DCC 660.250 513.705 451.659 

QFDCC 591.363 473.593 428.416 
 First + Second order loss 

RiskMetrics 768.294 614.358 536.508 
CCC 843.497 668.240 579.627 
DCC 842.449 667.544 579.123 

QFDCC 763.112 612.611 536.993 
Table 6: Loss functions over the 250 observations for the four fitted variance and correlation 
models 
 

 RiskMetrics CCC DCC QFDCC 
Between VaR Levels 

RiskMetrics 1 0.656 0.656 0.626 
CCC --- 1 0.998 0.987 
DCC --- --- 1 0.987 

QFDCC --- --- --- 1 
Between 1% VaR exceptions 

RiskMetrics 1 0.496 0.496 0.402 
CCC --- 1 1 0.815 
DCC --- --- 1 0.815 

QFDCC --- --- --- 1 
Between 5% VaR exceptions 

RiskMetrics 1 0.848 0.848 0.810 
CCC --- 1 1 0.848 
DCC --- --- 1 0.848 

QFDCC --- --- --- 1 
Between 10% VaR exceptions 

RiskMetrics 1 0.701 0.701 0.697 
CCC --- 1 1 0.773 
DCC --- --- 1 0.773 

QFDCC --- --- --- 1 
Table 7: Correlation matrices between VaR levels and exceptions over last 250 observations – CCC 
and DCC have exactly the same exceptions at all confidence levels 
 



 
α (%) Theoretical RiskMetrics CCC DCC QFDCC 

1 2.5 2 2 2 3 
2 5 7 3 3 6 
3 7.5 7 6 6 9 
4 10 8 6 6 9 
5 12.5 11 8 8 11 
10 25 18 13 13 21 
15 37.5 25 27 26 29 
20 50 37 31 31 37 
25 62.5 47 43 43 45 
30 75 57 52 52 58 

Table 8: The table reports the theoretical and empirical number of exceptions for several confidence 
levels for the fitted models 
 


