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1 Introduction

After an era in which mathematical psychologists considered subjective measurement

methods to be fundamentally unsound, in the last fifteen years or so several progresses

have been made to comprehend and make explicit the structural assumptions needed to

represent direct measurement data. Much attention has been devoted to ratio-scaling

techniques.

In this paper we study the relationships between the recent developments in mathe-

matical psychology and a ratio-scaling procedure widely used in management decisions,

the Analytic Hierarchy Process (AHP).

As it is well known, ratio-scaling procedures have been introduced in the behavioral

sciences in the middle of the last century by psychophysicist Stanley S. Stevens (1951,

1957). In the simplest ratio-scaling experiment, also known as magnitude estimation or

magnitude estimation with a standard, an individual is asked to compare a set of stimuli

(x1, ..., xn) with a baseline stimulus x0.
1 Each comparison yields a response value αi0,

with i = 1, ..., n. Stevens assumed that the values α10, ..., αn0 could directly represent a

ratio scale, in the sense that he conjectured the existence of a ratio estimation function

of the form αi0 =
(
xi

x0

)k
, which corresponds to his famous psychophysical law that equal

physical ratios produce equal psychological ratios.

Stevens’ model has always been highly criticized by mathematical psychologists be-

cause it lacks of normative and descriptive justifications (Mitchell 1999, chapter 4). Re-

cently, however, mainly due to the work of Louis Narens (1996, 2002, 2006) and Duncan

Luce (2002, 2004), axiomatic developments of subjective measurement approaches have

been developed with stronger theoretical foundations. The new models belong to a class

of so-called separable representations, which establish the following relationships between

the stimuli and the responses of a ratio estimation exercise:

W (αi0) =
ψ(xi)

ψ(x0)
. (1)

In equation (1), ψ is called the psychophysical function and W the subjective weighting

function. The two functions indicate that two independent transformations may occur

in a ratio estimation: one of the stimuli intensities (embodied in ψ), and the other of

numbers (entailed in W ). Support for separable forms has been found in a series of recent

experiments which have been conducted to test some of their underlying properties and

which have estimated different functional specifications of ψ and W (see, among others,

Ellermeier and Faulhammer 2000, Zimmer 2005, Steingrimsson and Luce 2005a, 2005b,

1The term magnitude estimation was introduced by Stevens and Galanter (1957). (See also Stevens,
1975.) A dual scaling procedure, also widely used in psychophysics, is known as ratio production, in
which an individual is asked to produce a stimulus si which appears pi times more intense than a reference
stimulus s0. (See Luce 2004, and Steingrimmson and Luce 2006, for the axiomatic treatments of the
different cases of ratio magnitude estimation and ratio production).
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2006, 2007, Bernasconi, Choirat and Seri 2008).

While generalizing Stevens’ power law model, a characteristic of the separable forms

is that they maintain the deterministic approach of the former, in the sense that “these

theories are about idealized situations and do not involve considerations of errors” (Narens

1996, p. 109). Several mathematical psychologists have acknowledged that this is a

limitation (e.g. Luce 1997, p. 81).

A different approach which emphasizes the effects of errors in ratio-scaling procedures

is the Analytic Hierarchy Process. The AHP is a ratio-scaling technique developed by

management scientist Thomas Saaty (1977, 1980, 1986). Two main differences characterize

Saaty’s approach with regard to the most simple ratio-scaling experiment. First of all,

the AHP allows for inconsistencies in the form of random errors in the subjective ratio

judgments. Secondly, because subjective assessments can be affected by random noise, in

order to improve the validity of the ratio-scaling procedure, in the AHP a decision maker

is asked to fill out an entire (n× n) matrix of ratio judgments A = [αij ], where each αij

is taken to measure on a subjective ratio scale the relative dominance of stimulus i over

stimulus j, from the vector of stimuli (x1, ..., xn).

Combining the developments in separable forms with the errors-allowing approach of

the AHP, in Bernasconi, Choirat, Seri (2009) we propose the following representation for

the ratio assessments of an AHP response matrix A:

αij = W−1

(
ψ(xi)

ψ(xj)

)
· eij (2)

where W−1(·) is the inverse of a subjective weighting function from separable represen-

tations; ψ(xi), ..., ψ(xn) are the psychological perceptions of the stimuli intensities corre-

sponding to priority weights ui = ψ(xi)∑
ψ(xk) (for i = 1, ..., n) which, coherently with standard

AHP, are normalized to sum up to unity, i.e.
∑
ui = 1; and where eij are the multiplica-

tive error terms introduced in the AHP to account for the inconsistencies in subjective

ratio judgments typically observed in practice.

Equation (2) represents a generalization of classical AHP in the sense that in Saaty’s

standard approach W−1 is the identity. For such a case, the AHP also proposes to use as

the best approximation of the vector of the priority weights (u1, ..., un)
′ the right Perron

eigenvector u = u(A) of the response matrix A.2 It is in particular well-known by the

Perron-Frobenius Theorem that the Perron eigenvector u is the unique solution of the

system of equations

Au = λu,
∑

ui = 1

where λ denotes the Perron root (maximum eigenvalue) of A. Moreover, when eij = 1 all

i, j = 1, ..., n (and W−1(·) remains the identity), so that any row (αi1, ..., αin) of A can be

2We follow the habit of calling principal or Perron eigenvalue the largest eigenvalue of a matrix with
positive entries (that is real and unique by the Perron-Frobenius Theorem), and Perron eigenvector the
eigenvector associated with it.
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obtained from any other row by the relation αik = αjk/αji (the rank r(A) = 1), it is known

that the maximum-eigenvalue method delivers the correct priority weights ui ∝ ψ(xi) for

all i, with the maximum eigenvalue being at its minimum λ = n. Saaty’s argument is to

use the same approach even when there are some inconsistencies in the data due to the fact

that the error terms eij are only close to 1. Saaty’s method does not pay attention to the

stochastic structure of the data. Therefore, statistical approaches to estimate the priority

weights (u1, ..., un)
′ which pay more attention to the stochastic structure of the data have

also been proposed for classical AHP, which include the logarithmic least squares method

as the most standard alternative (see de Jong 1984, Crawford and Williams 1985, Genest

and Rivest 1994).

In Bernasconi, Choirat and Seri (2009) we develop a detailed analysis of representation

(2) and propose a method to estimate the priority weights (u1, ..., un)
′ even when W−1(·)

is nonlinear, which can be viewed as an approximate polynomial generalization of the log-

arithmic least squares method. Moreover, by applying the new estimation method to the

data of a ratio estimation experiment, further evidence is provided about the importance

of the nonlinearity W−1(·) to generate inconsistencies in the subjective measurement data.

In this paper we deal with a different issue, concerning the effects of the separable forms

and of the nonlinearity of the subjective weighting function W (·) for the mathematical be-

havior of Saaty’s maximum-eigenvalue method. Even if one does not regard the maximum

eigenvalue method as the best method to obtain the priority vector (u1, ..., un)
′ from ma-

trix A, looking at the mathematical properties of the maximum-eigenvalue method when

representation (2) holds with W−1(·) nonlinear is still quite relevant. When there are

no distortions, the principal eigenvector method is obviously the most natural method to

recover the priority weights. So, it is quite important to know how the natural benchmark

behaves when there are inconsistencies in the response data. Among other things, it is in

particular important to know how large the distance of the responses data from a ratio

scale is. Such an issue has been studied by Genest and Rivest (1994) for the case when

the distortions in the response matrix A are due to the error terms eij ’s. We extend their

analysis to the case in which inconsistencies in the response data may also be due to the

subjective weighting function W−1(·).
We provide several results. First of all, we measure the extent to which the priority

weights obtained by the principal eigenvector with the AHP depart from a ratio scale,

distinguishing the contributions of the error terms eij from the effects due to the non-

linearity of W−1(·). We approach the problem using the theory of matrix differentials

developed in Magnus and Neudecker (1999). We take the second order approximation of

the priority vector (u1, ..., un)
′ and of the Perron eigenvalue λ around their ideal values

holding in a system in which there are no distortions. Our analysis shows that when the

stimuli range is small the effects of the deterministic distortions due to W−1(·) and to the

stochastic terms are comparable; whereas when the stimuli are very different the deter-

ministic distortions are much larger than those due to the stochastic errors. We see this
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result providing precise normative justification for a well-known axiom which Saaty (1986)

introduced heuristically in the AHP, the so called “homogeneity” axiom, which requires

the stimuli used in the AHP to be in a range of comparability.

We also study the approximate distribution of Saaty’s maximum eigenvalue λ and

eigenvector u when equation (2) holds. For the case in whichW is linear, Genest and Rivest

(1994) have shown that λ is upward biased with respect to λ0 = n with an approximate

χ2 distribution; and they have shown how to relate this statistically-based measure of

consistency with the index of cardinal consistency proposed by Saaty for the AHP and

based on the quantity µ = (λ−n)/(n−1). In particular Genest and Rivest have shown how

the so-called 10% cut-off rule used in the AHP3 can be considered equivalent to a statistical

test of the hypothesis that the variability due to the error terms eij ’s in the response data

does not exceed some given threshold. We extend their results and show that when W is

allowed to be different from the identity, then λ has approximately a normal distribution

or a noncentral χ2 distribution whose noncentrality parameter depends on the strength of

the distortion induced by W . We show how in this case the use of the 10% cut-off rule

can lead to severely undersized tests, in particular, when the deterministic perturbations

due to W are larger than those caused by the error terms eij ’s. We derive the asymptotic

distribution of u and show that it is always normal with a bias that depends on the

subjective weighting function W and never on the error terms.

Finally, we compare the performance of the AHP with the classical ratio magnitude

estimation used in psychophysics. As alluded above, one justification of Saaty to develop

the AHP was the intuition that, since the AHP provides an entire matrix of subjective

ratio assessments with all the possible pairwise-comparisons between the stimuli (x1, ...xn),

it could improve the validity of a procedure like ratio magnitude estimation in which each

element of (x1, ...xn) is considered only once in comparison to a reference stimulus x0.

We show that when the principal eigenvector method is applied to a matrix in which the

response data obey equation (2), the above intuition is not always valid, but it depends

on how the reference stimulus x0 is actually chosen and whether the homogeneity axiom is

actually respected in the AHP. In particular, we show that when homogeneity is respected

and all the distortions in the response data are due to random noise, then the AHP is always

better than the ratio magnitude estimation to obtain an estimate of vector (u1, ..., un)
′;

whereas, when homogeneity is not respected and there are psychophysical distortions in

the data, the ratio magnitude estimation can be better. We give examples when this could

be the case.

The paper is organized as follows. We start in Section 2 with a formal presentation of a

model for the αij ’s based on equation (2). In Section 3 we derive three main theorems for

the second order expansions of the Perron eigenvector and Perron eigenvalue in reciprocally

3The 10% cut-off rule considers the degree of cardinal inconsistency in a response matrix A too large
(and hence rejects the data) when its consistency index µ is larger than one tenth of the average index µ0,
computed from the average of a randomly generated reciprocally symmetric matrix of the same size as A.
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symmetric matrices with perturbations. In Section 4 these theorems are applied to the

AHP to study the algebraic properties of Saaty’s method and to derive the asymptotic

distributions of interest. In Section 5 we conduct the comparison between the AHP and

ratio magnitude estimation. Section 6 concludes.

2 A model for the αij’s

As indicated in the Introduction, inspired by the recent separable representations in math-

ematical psychology, we consider the following model for the αij ’s of a response matrix A

obtained in the AHP:

αij = W−1

(
ψ (xi)

ψ (xj)

)
· eij . (2)

In classical AHP the equality aij ·aji = 1 is assumed. In order to maintain this equality we

first of all assume (as it is standard in the AHP) that the error term is given by eij = eσνij

where σ is a scale parameter that affects the behavior of νij , νii = 0 and νij = −νji.
Moreover, for most of this paper we also assume that the subjective weighting function

W (·) is a (monotonic) reciprocally symmetric function, namely W (1/·) = 1/W (·). We

emphasize that this assumption is implied by several derivations of separable represen-

tations, including a specification developed by Luce (2001, 2002), similar to one which

Prelec (1998) proposed in the context of utility theory for risky gambles. A more recent

specification proposed by Luce (2004) (and further discussed by Aczél and Luce 2007),

does not instead impose either symmetry or W (1) = 1. A part of the analysis below will

also cover this more general case.4

The theoretical model that is supposed to hold in classical AHP is α0,ij = ψ(xi)
ψ(xj)

. In

this case, we say that a property of separable forms which Narens (1996) called “multi-

plicativity” holds; this is equivalent to “consistency” in the sense of Saaty. A matrix A0

filled with these elements yields:

u0 =

[
ψ (xi)∑n
k=1 ψ (xk)

]
,

λ0 = n.

We remark that u0 is not an approximation of
[

xi∑n
k=1

xk

]
. This is because in the AHP

one is not interested in obtaining objective ratio measurements of the stimuli xi (which in

many cases may not even be possible, for example when the stimuli do not come form a

known scale); but one is interested in obtaining subjective ratio measurements of opinions,

beliefs, preferences. In fact, in the latter case, one could also refer to the psychophysical

4On the empirical evidence, several direct tests conducted in psychophysical experiments on loudness
production, which include Steingrimsson and Luce (2007) and Zimmer (2005) have rejected the behavioral
hypothesis underlying the specification with W (1) = 1 and have accepted one with W (1) 6= 1. Indirect
tests based on the inference of separable forms in an experiment measuring the distance-ratio between
Italian cities in Bernasconi, Choirat and Seri (2008) have not rejected W (1) = 1.
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function ψ (·) as “utility” function (e.g. Luce 2002, p. 523).

Our objective is to approximate u and λ, solutions of the system:

A · u = λ · u, (3)

as a function of the response matrix A of equation (2), when A can be considered a

perturbation of A0 in the following sense.

We suppose that both the perturbation caused by the application of W−1 and by

the multiplication by eσνij are asymptotically negligible (the parameters governing the

asymptotic behavior will be introduced later on), so that:

αij = α0,ij · exp

{
ln

[
ψ (xj)

ψ (xi)
·W−1

(
ψ (xi)

ψ (xj)

)]
+ σνij

}
= α0,ij · edεij (4)

where we define:

dεij = ln

[
ψ (xj)

ψ (xi)
·W−1

(
ψ (xi)

ψ (xj)

)]
+ σνij

for j > i. The reason for the use of the differential symbol d will be clear in the follow-

ing: we will indeed suppose that αij is a small perturbation of α0,ij so that dεij is an

infinitesimal quantity. In order to respect the property of reciprocal symmetry, we need

dεij = −dεji.

Consider the following approximation, used in Bernasconi, Choirat and Seri (2008), in

which the function W−1 is first log-transformed to w−1:

lnW [exp (·)] = w (·)
w−1 (·) = lnW−1 [exp (·)]

and w−1 is given by a polynomial in its argument (whose degree L can even be infinite):

w−1 (x) =
L∑

ℓ=0

φℓ · xℓ

with φ0 = 0, φ1 = 1 and φ2n = 0 for n ∈ N. This is generally possible: according to

the Weierstrass Approximation Theorem, any continuous function on a compact domain

can be approximated to any desired degree of accuracy by a polynomial in its arguments.

Therefore:

W−1 (x) = exp

{
L∑

ℓ=0

φℓ · [ln (x)]ℓ
}

= x · exp

{
L∑

ℓ=2

φℓ · [ln (x)]ℓ
}
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so that when ‖φℓ‖∞ = max2≤ℓ≤L |φℓ| ↓ 0, W−1 (x) → x.

Our infinitesimal error term is:

dεij = ln

[
ψ (xj)

ψ (xi)
·W−1

(
ψ (xi)

ψ (xj)

)]
+ σνij

=

L∑

ℓ=2

φℓ · [ln (ψ (xi) /ψ (xj))]
ℓ + σνij (5)

Under the hypotheses that ‖φℓ‖∞ = max2≤ℓ≤L |φℓ| ↓ 0 and σ ↓ 0, dεij is asymptotically

negligible.

In the remainder of the paper we will study the relationships between the response

matrix A and the ideal matrix A0, constructed as specified above. In the next Section,

we show some useful facts about the differentials of reciprocally symmetric matrices, using

the theory of matrix differentials in the sense of Magnus and Neudecker (1999). We start

from some general results, which are then narrowed down to the case most interesting for

the AHP.

3 Perturbations of Reciprocally Symmetric Matrices with

applications to the AHP

Consider a matrix A and a reciprocally symmetric matrix A0 such that A can be con-

sidered a perturbation of A0. We write therefore A ≃ A0 + dA + 1
2d2

A where dA and

d2
A are matrix differentials (therefore asymptotically negligible) in the sense of Magnus

and Neudecker (1999). We want to study the behavior of the Perron eigenvalue λ and

the right Perron eigenvector u = u (A) of A in system (3), taken as perturbations of the

corresponding quantities λ0 and u0 = u (A0), of the ideal system:

A0 · u0 = λ0 · u0. (6)

In particular, we want to obtain du, d2
u, dλ, d2λ in the second order approximations

of the right Perron eigenvector u ≃ u0 + du + 1
2d2

u of A and of the Perron eigenvalue

λ ≃ λ0 + dλ+ 1
2d2λ of system (3).

The following notation will be used throughout the Section. For a n−vector a let ā be

the n−vector defined by ā = [āi] =
[
a−1
i

]
. un is a n−vector composed of ones. In is the

(n, n)−identity matrix. Un is a (n, n)−matrix composed of ones. ei is a vector of zeros

with a one in the i−th position. Let:

Knn ,

n∑

i=1

n∑

j=1

eie
T

j ⊗ eje
T

i ,

where ⊗ denotes the Kronecker product, be the commutation matrix (Magnus and Neudecker

8



1999, p. 46). The notation lnA, expA and A
⊙ℓ denote the element-wise application of

natural logarithm, exponential and power function (of degree ℓ) to a matrix A. On the

other hand, A
ℓ denotes the ordinary product of the matrix A by itself, repeated ℓ times.

A
+ is the Moore-Penrose inverse of the matrix A.

Our first result yields the Perron eigenvalue and the right Perron eigenvector when A0

is a general reciprocally symmetric matrix, and the perturbation dA+ 1
2d2

A+ o
(∥∥d2

A
∥∥)

does not necessarily yield a reciprocally symmetric matrix A.

Theorem 3.1. Consider the eigenvalue problems A0 ·u0 = λ0 ·u0 and A ·u = λ ·u where

A = A0 + dA + 1
2d2

A + o
(∥∥d2

A
∥∥) and dA and d2

A are the matrix differentials in the

sense of Magnus and Neudecker (1999). λ0 is a simple eigenvalue with right eigenvector

u0 and left eigenvector v0. The right eigenvectors u0 and u are normalized as u
T

0 un = 1

and u
T
un = 1. The following expansions hold:

λ (A) = n+ dλ+
1

2
d2λ+ o

(
d2λ
)
,

u (A) = u0 + du +
1

2
d2

u + o
(∥∥d2

u
∥∥) ,

where:

dλ =
v

T

0 · dA · u0

vT

0 u0

d2λ =
v

T

0 u0 · vT

0 d2
Au0 + 2vT

0

(
u0v

T

0 dA − dAu0 · vT

0

)
· (λ0In − A0)

+
(
In − u0v

T

0

vT

0
u0

)
(dA)u0

(
vT

0 · u0

)2

du =
(
In − u0u

T

n

)
· (λ0In − A0)

+

(
In −

u0v
T

0

vT

0 u0

)
(dA)u0

d2
u = (λ0In − A0)

+ (d2
A − d2λIn

)
· u0 + 2 (λ0In − A0)

+ (dA − dλIn) · du.

Theorem 3.1 is very general, since the only restriction is that A0 must be a reciprocally

symmetric matrix. Next theorem holds when matrix A0 is also perfectly consistent, but A

needs not be reciprocally symmetric. A0 is perfectly consistent if there exists a n−vector

u such that:

A0 = uū
T,

with u
T
n · u = 1. As concerns the right Perron eigenvector u0 = u (A0), the solution is

given by u0 = u and λ0 = n, since:

u ·
[
ū

T
u

]
= λ0 · u

n · u = λ0 · u.

The fact that λ0 is the Perron eigenvalue (and u0 the correspondent Perron eigenvector)

can be shown remarking that A0 has one eigenvalue equal to n and (n− 1) eigenvalues

9



equal to 0.

Theorem 3.2. When A0 is a reciprocally symmetric consistent matrix, the following

expansion holds:

λ (A) = n+ dλ+
1

2
d2λ+ o

(
d2λ
)
,

u (A) = u0 + du +
1

2
d2

u + o
(∥∥d2

u
∥∥) ,

where:

dλ =
ū

T

0 · dA · u0

n

d2λ = 2 · ū
T

0 · dA ·
(
nIn − u0 · ūT

0

)
· dA · u0

n3
+

ū
T

0 · d2
A · u0

n

du =
1

n
·
(
In − u0 · uT

n

)
· dA · u0

d2
u =

(
nIn − u0 · ūT

0

)+ (
d2

A − d2λIn
)
· u0

+2
(
nIn − u0 · ūT

0

)+
(dA − dλIn) · du.

With reference to the model for the αij ’s discussed in Section 2, Theorem 3.2 may for

example apply when A0 is filled with elements α0,ij = ψ(xi)
ψ(xj)

, and the hypothesis on the

errors eij = eσνij with νii = 0 and νij = −νji is satisfied, but the subjective weighting

function W (·) is not necessarily reciprocally symmetric. Such a case could in particular be

relevant for the general separable forms axiomatized by Luce (2004). When W (·) is also

reciprocally symmetric with W (1/·) = 1/W (·), the expansions for the Perron eigenvalue

and Perron eigenvector can be further specialized. In particular, in what follows we take

dA and d2
A, the perturbations of A, to be determined according to equation (4) of Section

2, namely αij = α0,ij · edεij ≈ α0,ij ·
(
1 + dεij + 1

2 (dεij)
2
)
. Defining the skew-symmetric

matrix:

[dE]ij =

{
dεij if j > i

−dεij if i > j

we have A = A0 ⊙ exp (dE), dA = A0 ⊙ dE and d2
A = A0 ⊙ dE ⊙ dE, where ⊙ is the

Hadamard or Schur or element-wise product of matrices (see Magnus and Neudecker 1999,

p. 45). We obtain the following theorem.

Theorem 3.3. Consider the eigenvalue problems A0 ·u0 = λ0 ·u0 and A ·u = λ ·u where

A = A0 ⊙ exp (dE). Let A0 be a reciprocally symmetric and consistent matrix and dE be

10



a skew-symmetric matrix of perturbations. In this case:

dλ = 0

d2λ =
u

T
n · [2 (dE · dE) + n (dE ⊙ dE)] · un

n2

du =
1

n
·
(
diag [u0] − u0 · uT

0

)
· dE · un

d2
u =

(
nIn − u0 · ūT

0

)+ (
A0 ⊙ dE ⊙ dE − d2λ · In

)
· u0

+2
(
nIn − u0 · ūT

0

)+
(A0 ⊙ dE − dλ · In) · du. (7)

Theorem 3.3 is central for analyzing Saaty’s eigenvalue method whenever there are

small distortions in the responses which preserve the property of reciprocal symmetry of

the response matrix A, because it gives a measure of the perturbation which depends on

the whole matrix and not only on the individual elements αij (as for example in Saaty

1977, 1980, 1986).

In the following we will show how Theorem 3.3 can be used to study the effect of

systematic biases and individual variabilities on u and λ. The analysis to be conducted is

in this sense a generalization of Genest and Rivest (1994) whose study of the asymptotic

distributions of λ and u is restricted to the case in which W is equal to the identity. We

first discuss the properties of Saaty eigenvector-eigenvalue method when the distortions

are due both to the deterministic component entailed by the subjective weighting function

W and to the stochastic components carried by the εij ’s. Then we analyze the limiting

behavior of λ and u under various hypotheses on the relative strength of the random errors

εij ’s and of the deterministic perturbations induced by W .

4 Properties of Saaty’s Method

We provide here an analysis of the general contribution of deterministic and stochastic

components to generate inconsistencies in the data and their impact on Saaty’s eigenvalue

method. To do so we rewrite the expressions for du, dλ, d2λ from Theorem 3.3 using

equation (5) of Section 2. In particular, rewriting equation (5) as:

dE =
L∑

ℓ=2

φℓ ·
[
lnA0

]⊙ℓ
+ σN + o (‖φℓ‖∞) + oP (σ)

11



where N , [νij ] is the matrix of (scaled) random errors, the relevant terms of Theorem

3.3 become:5

dλ = 0,

d2λ =

[
L∑

ℓ=2

φℓ
[
(In2 − Knn) · un ⊗

(
lnu0

)]⊙ℓ
+ σvec (N)

]T

·
{

2Knn (Un ⊗ In)

n2
+

In2

n

}
·
[

L∑

ℓ=2

φℓ
[
(In2 − Knn) · un ⊗

(
lnu0

)]⊙ℓ
+ σvec (N)

]

+o
(
‖φℓ‖2

∞

)
+ oP

(
σ2
)
,

du =

∑L
ℓ=2 φℓ
n

·
(
u

T

n ⊗
(
diag [u0] − u0 · uT

0

))
·
[
(In2 − Knn) · un ⊗

(
lnu0

)]⊙ℓ

+
σ

n
·
(
u

T

n ⊗
(
diag [u0] − u0 · uT

0

))
· vec (N) + o (‖φℓ‖∞) + oP (σ) . (8)

We remark that the expression for du derived above shows that u − u0 ≃ du can be

separated in two additive parts, a deterministic one depending only on the distortions due

to W (as expressed through the coefficients φ2, . . . , φL) and a stochastic one depending

only on the random errors (as measured by the standard deviation σ). This is particularly

appealing since it allows us to formulate some prescriptive devices concerning the relative

contributions of the deterministic and the stochastic components as functions of the values

taken by n and u0.

In order to evaluate the relative contributions of the deterministic and stochastic com-

ponents of equation (8) , we measure the first one through the “bias” ‖Eu − u0‖ ≃ ‖Edu‖
and the second one through the “variance”

√
E ‖u − Eu‖2 ≃

√
E ‖du − Edu‖2. Notice

that in general these quantities depend on n and u0. In particular, when we suppose that

φ3 6= 0 while φℓ = 0 for ℓ ≥ 4, the quantities ‖Edu‖
φ3

and

√
E‖du−Edu‖2

σ depend only on n

and u0:

‖Edu‖
φ3

=
1

n
·
(
u

T

n ⊗
(
diag [u0] − u0 · uT

0

))
·
[
(In2 − Knn) · un ⊗

(
lnu0

)]⊙3

and:

√
E ‖du − Edu‖2

σ
=

1

n1/2
·

√√√√
n∑

i=1

u2
0,i +

(
n∑

i=1

u2
0,i

)2

− 2

n∑

i=1

u3
0,i.

The graphs in Fig. 1 show the two quantities for different choices of n and of u0 when

φ3 6= 0. With the names “Constant”, “Logarithmic”, “Square root”, “Linear”, “Square”

and “Exponential” we denote, in this order, the vectors with u0,j ∝ 1, u0,j ∝ ln (1 + j),

5Since, as will be apparent later on, the results depend only marginally on d2
u, we do not need to

rewrite it.
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Figure 1:
‖Edu‖
φ3

(black) and

√
E‖du−Edu‖2

σ (grey) for different n and u0.

u0,j ∝ j1/2, u0,j ∝ j, u0,j ∝ j2 and u0,j ∝ exp (j − 1). These vectors represent situations

of increasing dispersion of the real values of the weights. In this sense they relate to the

so-called homogeneity axiom of the AHP. In particular, Saaty has always argued that

“homogeneity is essential for comparing similar things, as the mind tend to make large

errors in comparing widely disparate elements. For example we cannot compare a grain

of sand with an orange according to size” (Saaty 1986, p. 846).

The graphs in the figure clarify the nature of this heuristic argument and the role of

the cognitive or deterministic distortions due to the subjective weighting function W in it.

The thick black lines in the graphs represent ‖Edu‖
φ3

as a function of n while the thick grey

lines represent

√
E‖du−Edu‖2

σ as a function of n. The index on the x axis starts at 2 since

for n = 1 both measures are identically 0. The first graphs in the figure are more likely to

respect Saaty’s homogeneity requirement while the last ones are more prone not to respect

it. The graphs show that if φ3 = σ, the effect of deterministic distortions (multiplied by

φ3) are larger than the effect of stochastic ones (multiplied by σ) when the elements of u0

are very different, while the effects of stochastic distortions are larger when the elements

are quite similar.
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4.1 Asymptotic distributions

Now, we derive the asymptotic distributions of Saaty’s eigenvector u and eigenvalue λ as

the error standard deviation σ ↓ 0 and as W−1 (x) → x (as measured by the coefficients

of the polynomial through ‖φℓ‖∞ ↓ 0). The results on the eigenvalue are expressed in

terms of Saaty’s consistency index µ = (λ − n)/(n − 1) to facilitate their interpretation

and the comparison with previous literature. The results are summarized in the following

Theorem. It shows that the asymptotic distributions depend on the speed of convergence

to 0 of σ and ‖φℓ‖∞.

Theorem 4.1. Suppose that max {‖φℓ‖∞ , σ} ↓ 0. Consider the errors νij with i < j:

suppose that they are (asymptotically) independent of each other and σ−1νij →D N (0, 1).

Define µφ ,
∑L

ℓ=2 φℓ ·
[
(In2 − Knn) · un ⊗

(
lnu0

)]⊙ℓ
, µ , lim‖φℓ‖∞↓0

µφ

‖φℓ‖∞
and U0 ,

diag [u0] − u0 · uT

0 .

a) If σ/‖φℓ‖∞ → +∞:

i)

σ−1 (u − u0) →D N
(
0,

1

n2
·
(
Un ⊗ U

2
0

))
;

ii)

σ−2µ→D
1

n (n− 1)
· χ2

(
(n−1)(n−2)

2

)
.

b) If σ/‖φℓ‖∞ → c:

i)

σ−1 (u − u0) →D N
(

1

cn
·
(
u

T

n ⊗ U0

)
· µ, 1

n2
·
(
Un ⊗ U

2
0

))
;

ii)

σ−2µ→D
1

n (n− 1)
· χ2

(
(n−1)(n−2)

2 ; δ
)

where:

δ ,
1

c2
· µT ·

{
2Knn (Un ⊗ In)

n2
+

In2

n

}
· µ.

c) If σ/‖φℓ‖∞ → 0:

i)

lim
‖φℓ‖∞↓0

1

‖φℓ‖∞
· (u − u0) =

1

n
·
(
u

T

n ⊗ U0

)
· µ

σ−1

(
u − u0 −

1

n
·
(
u

T

n ⊗ U0

)
· µφ

)
→D N

(
0;

1

n2
· Un ⊗ U

2
0

)
;

14



ii)

lim
‖φℓ‖∞↓0

1

‖φℓ‖2
∞

· µ =
1

n− 1
· µT ·

{
2Knn (Un ⊗ In)

n2
+

In2

n

}
· µ

1

σ · ‖φℓ‖∞

(
µ− 1

n− 1
· µT

φ ·
{

2Knn (Un ⊗ In)

n2
+

In2

n

}
· µφ

)

→D N
(

0;
4

(n− 1)2
· µT

{
2Knn (Un ⊗ In)

n3

+
2 (Un ⊗ In)Knn

n3
+

(In2 − Knn)

n2
− 4Un2

n4

}
µ

)
.

Theorem 4.1 distinguishes three cases. In the first case in which σ/‖φℓ‖∞ → +∞, the

leading term is given by the stochastic perturbation. This case encompasses Genest and

Rivest (1994) in which W (·) is the identity and the asymptotic distributions of u and µ

are respectively the normal and the χ2 distribution (see Genest and Rivest 1994, p. 490).

In particular, take the approximation χ2(α) ≈ n(n − 1)µ0/10σ2
0, where χ2(α) stands for

the 100(1 − α)% quantile of the χ2 with p = (n− 1)(n− 2)/2 degrees of freedom and µ0

is Saaty’s eigenvalue-based random index for matrices of size n whose entries chosen at

random within an admissible range. For this case Genest and Rivest (1994, p. 490) have

shown that the so-called Saaty’s 10% cut-off rule of declaring incoherent a response matrix

A is in fact equivalent to a χ2−test at significance level α of the hypothesis H0 : σ2 ≤ σ2
0,

that the background noise in the response data does not exceed some threshold level σ0.

This equivalence, however, does no longer hold for the other two cases considered in

Theorem 4.1, where the leading term in the approximations is no longer given by the

stochastic perturbation.

The second case covers in particular the situation in which the deterministic and

the stochastic perturbations are comparable and shows that the distribution of µ can

be different from the χ2 distribution obtained above. In particular this shows that the

interpretation of Saaty’s 10% cut-off rule as a test of the hypothesis H0 : σ ≤ σ2
0 advanced

in Genest and Rivest (1994) can lead to distortions when δ > 0. Indeed, even if the

interpretation is perfectly legitimate when the stochastic perturbation is the leading one,

when a deterministic perturbation is present, this may lead to severely undersized tests.

The third and last case applies when the deterministic distortion induced by W is

even larger than the stochastic one.6 Here most of the variability in u and µ is due to

systematic distortions and the asymptotic distribution of µ is so shifted to the right that

it behaves as a normal distribution.

6By the way, it is interesting to notice that the empirical analysis in Bernasconi, Choirat and Seri (2009)
shows that the cases in which the stochastic terms are the leading terms in the perturbations are indeed
the least likely in practice.
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5 Ratio Magnitude Estimation

An analogue of Theorem 3.3, and in particular of equation (7) and its application to

the AHP (8), can be obtained when we work on a single row of the AHP response ma-

trix compared with a reference x0. This is a standard Stevens’ ratio magnitude esti-

mation experiment. We ask to compare the stimuli (x1, . . . , xn) with a baseline stim-

ulus x0. Each pairwise comparison yields the value αi0 = W−1
(
ψ(xi)
ψ(x0)

)
· eσνi0 ; here

dεi0 = ln
[
ψ(x0)
ψ(xi)

·W−1
(
ψ(xi)
ψ(x0)

)]
+ σνi0. Recall that one reason for the AHP to use the

pairwise comparison matrix is exactly the fact that increasing the number of comparisons

among the n items of a given set increases the amount of information and should generate

better estimates.7

In this case the following theorem holds.

Theorem 5.1. Let ν =
[
ν10 ν20 ... νn0

]T
. Under the above-described assumptions:

du =
(
diag [u0] − u0 · uT

0

)
·
[

dε10 dε20 ... dεn0

]T

=
(
diag [u0] − u0 · uT

0

)
·
{

L∑

ℓ=2

φℓ ·
[
lnu0 − lnu0,0

]⊙ℓ
+ σν + o (‖φℓ‖∞) + oP (σ)

}
.

In order to compare the vector u estimated through Saaty’s eigenvector method or

directly obtained through ratio magnitude estimation, we compute also for the present

method the bias ‖Edu‖
φ3

and the variance

√
E‖du−Edu‖2

σ . We have:

‖Edu‖
φ3

=
(
diag [u0] − u0 · uT

0

)
·
[
lnu0 − lnu0,0

]⊙3
.

We notice that in this case the term depends on n, on u0 but also on the reference point

u0,0 = ψ (x0). On the other hand the variance term is easily computable:

√
E ‖du − Edu‖2

σ
=

√√√√
n∑

i=1

u2
0,i +

(
n∑

i=1

u2
0,i

)2

− 2
n∑

i=1

u3
0,i.

This shows that the AHP reduces the variance of the distortion by a factor 1/
√
n. As

concerns the bias, on the other hand, the situation is less clear and it is uncertain which

method is better. This is in a sense surprising since it would seem that more information

would allow for better estimates of u; however, the reason is that when W−1 is far from

the identity, the principal eigenvector method misuses the additional information to an

7Obviously, notice that this is different from increasing the number n of the items being compared in
a response matrix, which could generate just the opposite effect of increasing the level of inconsistency in
the data. The latter observation was anticipated by Saaty (1977) and has been commented extensively by
Genest and Rivest (1994, p. 494-495) on the basis of results equivalent to those referred in the first case
of Theorem 4.1 above.
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Figure 2: Comparisons of ‖Edu‖
φ3

and

√
E‖du−Edu‖2

σ in AHP versus Ratio Magnitude
estimation for different n and u0.

extent which could produce even more bias than that occurring due to the lower amount

of information provided by a ratio magnitude estimation.

The graphs in Fig. 2 exemplify the problem. They show the quantities ‖Edu‖
φ3

and√
E‖du−Edu‖2

σ for several values of u0,0; as in the previous Figure, the names “Constant”,

“Logarithmic”, “Square root”, “Linear”, “Square” and “Exponential” denote in this order

the vectors with u0,j ∝ 1, u0,j ∝ ln (1 + j), u0,j ∝ j1/2, u0,j ∝ j, u0,j ∝ j2 and u0,j ∝
exp (j − 1), while the index n is to be read on the horizontal axis. Here too, n starts from

2. The thin grey line shows

√
E‖du−Edu‖2

σ for Saaty’s method (the same as in the previous

Figure) while the thick grey line shows

√
E‖du−Edu‖2

σ for a ratio magnitude experiment

(independent of u0,0). The thin black line shows ‖Edu‖
φ3

for Saaty’s method, while ‖Edu‖
φ3

for a ratio magnitude experiment is displayed in the thick black lines: the dashed line

has u0,0 = (
∏n
i=1 u0,i)

1/2n, the solid line has u0,0 = (
∏n
i=1 u0,i)

1/n, the dotted line has

u0,0 = (
∏n
i=1 u0,i)

2/n, the dash dot line has u0,0 = mini u0,i, the long-dashed line has

u0,0 = maxi u0,i. It appears that

√
E‖du−Edu‖2

σ is always smaller for Saaty’s method, and

the ratio increases with n. As concerns ‖Edu‖
φ3

, the situation is more complex. As expected,

values of u0,0 far away from (
∏n
i=1 u0,i)

1/n (or any other measure of centrality of u0) give

larger values. The ratio magnitude estimation experiment using u0,0 = maxi u0,i yields

better results than the one with u0,0 = mini u0,i. Moreover Saaty’s method yields smaller
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values of ‖Edu‖
φ3

for u0 respecting the homogeneity requirement, while when the values in

u0 are very different Saaty’s method is worse than simple ratio magnitude estimation.

This has two consequences: first of all, it stresses the relevance of homogeneity. Second,

it subverts a widely believed idea: according to common sense and to the identification of

random noise as the only source of distortion in the AHP, it is usually thought that Saaty’s

method is better than ratio magnitude estimation since it is based on a larger number

of evaluations; this is false whenever homogeneity is not respected and psychophysical

distortions are present in the data, while it is always true when all the distortion is due

to random noise.

6 Conclusions

Recent developments in mathematical psychology, supported by various experimental

tests, have shown that ratio-scaling methods in which individuals use number names to

express proportions in which they perceive pairs of stimuli cannot be treated as scientific

ratios.

The AHP is a ratio-scaling procedure widely used in management decisions. It is

a more articulated method than the classical ratio magnitude estimation used in psy-

chophysics. In the AHP an entire matrix of subjective ratio assessments is obtained and

the maximum eigenvalue method is used to extract from the response matrix the single

maximum eigenvector, the Perron eigenvector, which is then treated as the ratio scale of

interest.

In this paper we have used recent developments in mathematical psychology based

on the so-called separable forms, to study the type of distortions which can arise in the

AHP when the maximum eigenvalue method is used. The analysis has emphasized the

difference between the distortions due to random noise from the systematic or cognitive

distortions embodied in the separable representations. The cognitive distortions highlight

the importance of the so-called homogeneity axiom of the AHP to keep under control the

bias arising in the estimate of the ratio scale.

We have also studied the asymptotic distributions of the maximum eigenvalue and

maximum eigenvector under separable representations and have shown the limit of using

the eigenvalue-based index of cardinal consistency of classical AHP as a rule to assess the

quality of the estimate of the ratio scale.

The analysis has also shown that in some cases, when the cognitive distortions in the

data are larger than those due to random noise and homogeneity is not fully respected, the

classical ratio magnitude estimation used in psychophysics can be a better ratio-scaling

procedure than the AHP, despite the greater amount of comparisons and information

obtained by the latter method.
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A Appendix - Proofs of propositions

Proof of Theorem 3.1. First of all we prove analyticity of λ and u. Our proof follows

the scheme of Theorem 7 on p. 158 in Magnus and Neudecker (1999, in the following MN)

but is more complicated because of the nonstandard normalization of the eigenvector and

of the nonsymmetry of (λ0In − A0). Consider the vector function f : R
n+1×R

n×n → R
n+1

defined by:

f (u, λ;A) =

[
(λIn − A) · u
u

T
n · u − 1

]

(remark the difference in the second line with respect to the proof in MN). f is ∞ times

differentiable on R
n+1×R

n×n and f (u0, λ0;A0) = 0. The matrix (λ0In − A0) has reduced

rank n − 1 since λ0 is a simple eigenvalue and we can apply Theorem 4 on p. 43 and

Theorem 3 on p. 41 in MN:

∣∣∣∣∣
λ0In − A0 u0

u
T
n 0

∣∣∣∣∣ = −u
T

n (λ0In − A0)
♯
u0

= −u
T

n

[
µ (λ0In − A0)

u0v
T

0

vT

0 u0

]
u0

= −µ (λ0In − A0) 6= 0

where B
♯ is the adjoint matrix of B defined on p. 40 of MN, and µ (B) is the product of

the non-zero eigenvalues of B. This implies that the conditions of the Implicit Function

Theorem (Theorem A.3 in the Appendix of Chapter 7 in MN) are satisfied and there exists

a neighborhood N (A0) ⊂ R
n×n of A0, a unique real-valued function λ : N (A0) → R and

a unique (up to the sign) vector function u : N (A0) → R
n such that:

1. λ and u are ∞ times differentiable on N (A0);

2. λ (A0) = λ0 and u (A0) = u0;

3. Au = λu, u
T
nu = 1 for every A ∈ N (A0).
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Therefore, the following expansion holds:

λ (A) = λ (A0) + dλ+ 1
2d2λ+ o

(
d2λ
)
,

u (A) = u (A0) + du + o (‖du‖) .

Differentiating A · u = λ · u around the point (A, λ,u) = (A0, λ0,u0) we get:

dA · u0 + A0 · du = dλ · u0 + λ0 · du (9)

and premultiplying this by v
T

0 we get:

v
T

0 · dA · u0 + v
T

0 · A0 · du = dλ · vT

0 u0 + λ0 · vT

0 · du
v

T

0 · dA · u0 = dλ · vT

0 u0

dλ =
v

T

0 · dA · u0

vT

0 u0
. (10)

Now, we take the second differential of A · u = λ · u around the point (A, λ,u) =

(A0, λ0,u0):

d2
A · u0 + 2dA · du + A0 · d2

u = 2dλ · du + d2λ · u0 + λ0 · d2
u (11)

and premultiplying it by v
T

0 we get:

v
T

0 · d2
A · u0 + 2vT

0 · dA · du + v
T

0 · A0 · d2
u = 2dλ · vT

0 · du + d2λ · vT

0 · u0 + λ0 · vT

0 · d2
u

v
T

0 · d2
A · u0 + 2vT

0 · dA · du = 2dλ · vT

0 · du + d2λ · vT

0 · u0

and:

d2λ =
v

T

0 · d2
A · u0 + 2vT

0 · dA · du − 2dλ · vT

0 · du
vT

0 · u0
(12)

=
v

T

0 u0 · vT

0 d2
Au0 + 2vT

0 u0 · vT

0 dAdu − 2vT

0 dAu0 · vT

0 du
(
vT

0 · u0

)2

where du will be obtained in the following.

We start from A0 ·u0 = λ0 ·u0 and we define as u0 the vector normalized as u
′
0un = 1

and as ũ0 the vector normalized as ũ
′
0ũ0 = 1. We have u0 = ũ0/ũ′

0
un. In the same

way, we consider A · u = λ · u and we define as u the vector normalized as u
′
un = 1

and as ũ the vector normalized as ũ
′
ũ0 = 1. We have u = ũ/ũ′

un. On the other hand
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ũ = ũ0 + dũ + o (‖dũ‖) and:

u =
ũ

ũ′un
=

ũ0 + dũ + o (‖dũ‖)
(ũ0 + dũ + o (‖dũ‖))′ un

=
ũ0 + dũ + o (‖dũ‖)

ũ′
0un ·

(
1 + dũ′un

ũ′
0
un

+ o
(

‖dũ‖
ũ′

0
un

))

=

(
ũ0

ũ′
0un

+
dũ

ũ′
0un

+ o

(‖dũ‖
ũ′

0un

))
·
(

1 − dũ′
un

ũ′
0un

+ o

(‖dũ‖
ũ′

0un

))

=
ũ0

ũ′
0un

− ũ0

ũ′
0un

· dũ′
un

ũ′
0un

+
dũ

ũ′
0un

+ o (‖dũ‖)

= u0 +
1

ũ′
0un

·
(
In − u0u

′
n

)
· dũ + o (‖dũ‖)

From the result in Theorem 8 on page 161 in MN, we have:

dũ = (λ0In − A0)
+

(
In −

ũ0ṽ
′
0

ṽ′
0ũ0

)
(dA) ũ0.

Using the proportionality between ũ0 and u0 on one hand, and ṽ0 and v0 on the other

hand, we can write:

u = u0 +
1

ũT

0 un
·
(
In − u0u

T

n

)
· (λ0In − A0)

+

(
In −

ũ0ṽ
T

0

ṽT

0 ũ0

)
(dA) ũ0 + o (‖dũ‖)

= u0 +
(
In − u0u

T

n

)
· (λ0In − A0)

+

(
In −

u0v
T

0

vT

0 u0

)
(dA)u0 + o (‖dũ‖)

From this, we get:

d2λ =
v

T

0 u0 · vT

0 d2
Au0(

vT

0 · u0

)2

+
2vT

0

(
u0v

T

0 dA − dAu0 · vT

0

)
· (λ0In − A0)

+
(
In − u0v

T

0

vT

0
u0

)
(dA)u0

(
vT

0 · u0

)2

From (11) we get:

(λ0In − A0) · d2
u =

(
d2

A − d2λIn
)
· u0 + 2 (dA − dλIn) · du.

Premultiplying the equality with (λ0In − A0)
+, we apply the arguments on p. 160 in the

proof of Theorem 7 on p. 158 of MN and we get:

d2
u = (λ0In − A0)

+ (λ0In − A0) · d2
u

= (λ0In − A0)
+ (d2

A − d2λIn
)
· u0 + 2 (λ0In − A0)

+ (dA − dλIn) · du
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Proof of Theorem 3.2. Replacing u0 and v0 with u0 and ū0, we get:

dλ =
ū

T

0 · dA · u0

ūT

0 u0

d2λ =
ū

T

0 d2
Au0

n
+

2ūT

0 (dA)
(
nIn − u0ū

T

0

)
·
(
nIn − u0ū

T

0

)+ (
nIn − u0ū

T

0

)
(dA)u0

n3

du =
1

n
·
(
In − u0u

T

n

)
·
(
nIn − u0ū

T

0

)+ (
nIn − u0ū

T

0

)
(dA)u0

The result follows from the properties of the Moore-Penrose inverse.

dλ =
ū

T

0 · dA · u0

n

d2λ = 2 · ū
T

0 · dA ·
(
nIn − u0 · ūT

0

)
· dA · u0

n3
+

ū
T

0 · d2
A · u0

n

du =
1

n
·
(
In − u0 · uT

n

)
· dA · u0

d2
u =

(
nIn − u0ū

T

0

)+

(
d2

A − 2 · ū
T

0 · dA ·
(
nIn − u0 · ūT

0

)
· dA · u0

n3
In −

ū
T

0 · d2
A · u0

n
In

)
· u0

+2
(
nIn − u0ū

T

0

)+
(

dA − ū
T

0 · dA · u0

n
In

)
· 1

n
·
(
In − u0 · uT

n

)
· dA · u0.

Proof of Theorem 3.3. First of all, applying an element-wise expansion to A =

A0 ⊙ exp (dE) remark that A = A0 + dA + 1
2d2

A + o
(∥∥d2

A
∥∥) with dA = A0 ⊙ dE and

d2
A = A0 ⊙ dE ⊙ dE. The differentials dA and d2

A can then be written as:

dA = diag [u0] · dE · diag [ū0]

d2
A = diag [u0] · (dE ⊙ dE) · diag [ū0] .

This gives:

dλ =
u

T
n · dE · un

n
= 0

d2λ =
u

T
n · [2 (dE · dE) + n (dE ⊙ dE)] · un

n2

du =
1

n
·
(
diag [u0] − u0 · uT

0

)
· dE · un

d2
u =

(
nIn − u0 · ūT

0

)+

(
diag [u0] · (dE ⊙ dE) · un −

u
T
n · [2 (dE · dE) + n (dE ⊙ dE)] · un

n2
· u0

)

+
2

n
·
(
nIn − u0 · ūT

0

)+
diag [u0] · dE ·

(
In − un · uT

0

)
· dE · un.
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Proof of Theorem 4.1. First of all, we remark that u = u0 +du+o (‖φℓ‖∞)+oP (σ)

and λ = n + 1
2d2λ + o

(
‖φℓ‖2

∞

)
+ oP

(
σ2
)
. In terms of Saaty’s consistency index (i.e.

µ = λ−n
n−1 ), we have µ = d2λ

2(n−1) + o
(
‖φℓ‖2

∞

)
+ oP

(
σ2
)
. Therefore, using the commutation

matrix, we derive some alternative formulation of the results of Theorem 3.3:

d2λ =
u

T
n · 2 (dE · dE) · un

n2
+

u
T
n · (dE ⊙ dE) · un

n

=
2vec

(
dET · un

)T · vec (dE · un)
n2

+
tr
(
dE · dET

)

n

=
2
((

u
T
n ⊗ In

)
· vec

(
dET

))T ·
(
u

T
n ⊗ In

)
· vec (dE)

n2
+

vec (dE)T · vec (dE)

n

= vec (dE)T ·
{

2Knn (Un ⊗ In)

n2
+

In2

n

}
· vec (dE)

du =
1

n
·
(
u

T

n ⊗
(
diag [u0] − u0 · uT

0

))
· vec (dE) .

We recall that dE =
∑L

ℓ=2 φℓ ·
[
lnA0

]⊙ℓ
+ σN + o (‖φℓ‖∞) + oP (σ). Moreover:

lnA0 = ln
(
u0ū

T

0

)
=
(
lnu0

)
· uT

n − un ·
(
lnu0

)T

and taking the vec’s on both sides:

vec
(
lnA0

)
= vec

[(
lnu0

)
· uT

n − un ·
(
lnu0

)T]

= vec
[(

lnu0

)
· uT

n

]
− vec

[
un ·

(
lnu0

)T]

= un ⊗
(
lnu0

)
−
(
lnu0

)
⊗ un

= (In2 − Knn) · un ⊗
(
lnu0

)
.

Therefore:

vec (dE) =
L∑

ℓ=2

φℓ ·
[
vec
(
lnA0

)]⊙ℓ
+ σvec (N) + o (‖φℓ‖∞) + oP (σ)

=
L∑

ℓ=2

φℓ ·
[
(In2 − Knn) · un ⊗

(
lnu0

)]⊙ℓ
+ σvec (N) + o (‖φℓ‖∞) + oP (σ)

= µφ + σvec (N) + o (‖φℓ‖∞) + oP (σ) .

This leads us to the following expressions that will be used extensively in the following:

u = u0 +
1

n
·
(
u

T

n ⊗
(
diag [u0] − u0 · uT

0

))
·
[
µφ + σvec (N)

]
+ o (‖φℓ‖∞) + oP (σ)

µ =
1

2 (n− 1)
·
[
µφ + σvec (N)

]T ·
{

2Knn (Un ⊗ In)

n2
+

In2

n

}
·
[
µφ + σvec (N)

]

+oP (‖φℓ‖∞ · σ) .
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We need expressions for V [vec (N)] and V
(

1
n ·
(
u

T
n ⊗

(
diag [u0] − u0 · uT

0

))
· vec (N)

)
. It

can be shown that:

V (vec (N)) = (In2 − Knn)

and:

V

(
1

n
·
(
u

T

n ⊗
(
diag [u0] − u0 · uT

0

))
· vec (N)

)
=

1

n2
·
(
Un ⊗

(
diag [u0] − u0 · uT

0

)2
)
.

Now we pass to the proof of the statements.

a) The proof of the results in this case are exactly the same as those of point b) when

c = +∞.

b) We start from σ−1 ·
(
µφ + σvec (N)

)
and we remark that it tends to the following

normal distribution:

σ−1 ·
(
µφ + σvec (N)

)
=

‖φℓ‖∞
σ

· µφ

‖φℓ‖∞
+ vec (N) →D

1

c
· µ + N (0, (In2 − Knn)) .

From this the asymptotic result for u follows. As concerns the result for µ, we use Theorem

3.1 in Tan (1977), identifying his µ with 1
c ·lim‖φℓ‖∞↓0

µφ

‖φℓ‖∞
, hisA with

{
2Knn(Un⊗In)

n2 +
I
n2

n

}

and his V with (In2 − Knn). The eigenvalues of V ·A = (In2 − Knn)·
{

2Knn(Un⊗In)
n2 +

I
n2

n

}

can be found reasoning as follows. We want to show that A1 , n
2 · (In2 − Knn) ·{

2Knn(Un⊗In)
n2 +

I
n2

n

}
has (n−1)(n−2)

2 eigenvalues equal to 1. We use the equality (In2 − Knn)·
(In2 − Knn) = 2 (In2 − Knn) and we remark that the eigenvalues of A1 are the same as the

ones of the symmetric matrix A2 , n
4 · (In2 − Knn) ·

{
2Knn(Un⊗In)

n2 +
I
n2

n

}
· (In2 − Knn).

Now, by exploiting the relations (In2 − Knn) · (In2 − Knn) = 2 (In2 − Knn), (In2 − Knn) ·
Knn = (Knn − In2) and KnnUn2 = Un2 , it is possible to show through some extremely

tedious algebra, available from the authors upon request, that A2 is idempotent. The

number of nonzero eigenvalues is therefore given by the trace of matrix A1, that can be

shown to be equal to (n−2)(n−1)
2 . Since all χ2 random variables appearing in the linear

combination of Theorem 3.1 in Tan (1977) have the same weight, the asymptotic dis-

tribution is a noncentral chi-squared distribution whose noncentrality parameter can be

computed as:

δ ,
1

c2
·
[

lim
‖φℓ‖∞↓0

µφ

‖φℓ‖∞

]T

·
{

2Knn (Un ⊗ In)

n2
+

In2

n

}
·
[

lim
‖φℓ‖∞↓0

µφ

‖φℓ‖∞

]
.

c) Statement i) is simple. Statement ii) is obtained opening the square
[
µφ + σvec (N)

]T·{
2Knn(Un⊗In)

n2 +
I
n2

n

}
·
[
µφ + σvec (N)

]
, remarking that the leading term under σ/‖φℓ‖∞ →

0 is µ
T

φ ·
{

2Knn(Un⊗In)
n2 +

I
n2

n

}
·µφ and that the second order term (the one that determines

the asymptotic distribution) is 2µT

φ ·
{

2Knn(Un⊗In)
n2 +

I
n2

n

}
·σvec (N) = OP (‖φℓ‖∞ · σ) while
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σ2vec (N)T ·
{

2Knn(Un⊗In)
n2 +

I
n2

n

}
· vec (N) is asymptotically negligible.
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