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Abstract 
In this paper we propose a new parametrisation of transition probabilities that allows us to 
characterize and test Granger-causality in Markov switching models by means of an 
appropriate specification of the transition matrix. Test for independence are also provided. 
We illustrate our methodology with an empirical application. In particular, we investigate 
the causality and interdependence between financial and economic cycles using a bivariate 
Markov switching model. When applied to U.S. data, we find that financial variables are 
useful for forecasting the direction of aggregate economic activity, and vice versa. 
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1 Introduction

The most widely used concept of causality in time series econometrics is due

to Granger (1969). Based on some information set Ψ, Granger’s definition of

causality states that a variable X is causal for a variable Y if the mean squared

error of the 1-step ahead forecast error for Y is smaller when the history of X

is included in Ψ than when it is excluded. Consequently, if these forecast error

variances are equal, then X is said to be non-causal for Y .

In the great majority of practical applications, Granger-causality has been

analyzed in the context of linear Vector Autoregressive (VAR) models (see for

example Hamilton, 1994). For such models, the necessary and sufficient condition

for X to be non-causal for Y is that all coefficients on lags of X are zero in

the equation that describes Y . If the roots to the VAR model are outside the

unit circle, then the Wald, LM, and LR statistics have their usual limiting χ2-

distribution (see Lutkepohl, 1991), while the case of some unit roots implies that

the limiting distribution can be nonstandard (see Sims et al., 1990; Toda and

Phillips, 1993).

Recently, some attempts have been made to extend Granger-causality to non-

linear systems. Warne (2000) and Psaradakis et al. (2005) propose different defini-

tions of causality based on Granger’s ideas and provide a set of (economically and

statistically meaningful) parametric Granger non-causality restrictions in the con-

text of Markov Switching VAR models. On the other hand, van Dijk et al. (2000)

consider out-of-sample forecasting-based tests of Granger-causality using a multi-

variate smooth transition autoregressive model (STAR). Finally, Mosconi and Seri

(2005) properly define the meaning of Granger non-causality in the framework of
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binary data models. Our work is closely related to Mosconi and Seri (2005) results

and propose a different and simpler parametrisation useful for Markov chains.

In contrast to the existing literature, we describe causality relationships by

working directly with multiple Markov chains. We propose a novel parametrisa-

tion of the transition probabilities that allows us to characterize and test Granger-

causality using an appropriate specification of the transition matrix. More pre-

cisely, our strategy is based on a particular decomposition of the transition prob-

abilities that allows us to test directly if a Markov chain causes another Markov

chain in the Granger sense, that is, if one Markov chain helps to predict another

one. The causality tests we propose are based on the transition matrix and not

on the parameters of a specific model, thus they can be applied to any class of

Markov Switching models.

Causality analysis based on Markov chains is attractive for a number of rea-

sons. First, in a multi-country/multi-sector framework, this methodology allows

us to explain the interactions between macro-areas. In fact, this approach is very

useful to study the relationships between phases in different countries or sectors,

and allows us to determine the causality of these relationships improving our

comprehension of the connections among phases, and then produce a better de-

scription of how these phases evolve. Second, it is certainly useful in order to

describe the relationships between leading and lagging countries or to describe

the relation between business surveys and macroeconomic variables.

We illustrate our methodology with an empirical application. We investigate

the causality and interdependence between financial and economic cycles using the

Markov switching model proposed by Hamilton and Lin (1996, hereafter HL). HL

find that economic variables may be useful in forecasting stock price volatility but
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no rigorous test based on Granger’s ideas is provided. We employ our methodology

to determine, in a formal way, whether business cycles have predicting power for

financial variables and/or vice versa.

The paper is organized as follows. In the next section, we discuss the basic

assumptions and the definitions of Granger-causality we adopt in this paper. In

section 3, we show how Granger-causality can be tested in Markov switching

models. An application of these tests is presented in section 4. Section 5 concludes.

2 Basic Definitions

The aim of this section is to provide a mathematically rigorous definition of non-

causality based on predictability. To do that in a general framework, we have to

define the specification of the stochastic process we want to predict, the available

information set, and the reduced information set. In the relevant theoretical

literature, several generalization of non-causality are available. In this paper we

follow Mosconi and Seri (2005) and adopt the concept of discrete-time one-step

ahead strong non-causality proposed by Florens and Fougère (1996). Following

their definition, one-step ahead is referred to the prediction horizon. It is opposed

to global, which is valid for any horizon. On the other hand, strong, as opposed

to weak, means that we focus on predicting the whole distribution, rather that

only the mean. It is pointed out that the original definition proposed by Granger

(1969) is specified in terms of the mean.
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Let {Wt = (St, Zt), t ∈ I ⊆ N = {0, 1, ...}} , or {Wt} for short1, be a discrete-

time stochastic process on the probability space (Ω, Υ, P ) . The usual statistical

problem of non-causality is to test if P satisfies the non-causality conditions.

The filtration {Ft, t ∈ I} = {Ft} provides the information available at time t.

To make the analysis simpler, we assume {Ft} to be the canonical filtration2

associated to a large stochastic process {(Wt, Dt)} = {(St, Zt, Dt)} , where {St},

{Zt} and {Dt} may be either scalar or vector processes. Finally, we introduce the

reduced information set, which is represented by the canonical filtrations {G1
t} =

{σ {Sτ , Dτ} , 0 ≤ τ ≤ t} and {G2
t} = {σ {Zτ , Dτ} , 0 ≤ τ ≤ t} . Then, let {Γ1

t} ,

{Γ2
t} and {Γt} be the canonical filtrations associated with the processes {St}, {Zt}

and {Wt}, respectively. Note that Γ1
t ⊆ G1

t ⊆ Ft, ∀t ∈ I. Similarly, Γ2
t ⊆ G2

t ⊆ Ft,

∀t ∈ I.

Through the paper the following set of definitions, which are fixed in terms of

conditional independence of sub-σ-fields of Υ, will be adopted (see Florens and

Mouchart, 1982, for further details):

Definition 1. Strong one-step ahead Granger non-causality : {Zt}

does not strongly cause {St} one-step ahead given
{
G1

t−1

}
if:

Γ1
t ⊥⊥ Γ2

t−1|G1
t−1 ∀t ∈ I.

Similarly,

1Through the paper the following notation will be taken for discrete-value variables, capital

letters denote the random variable, while small letters denote a particular realization. Moreover,

{Qt} denotes a stochastic process, while Qt represents the value of the process at time t.
2Recall that a canonical filtration associated with a general process {Qt} defined on (Ω, Υ, P )

is a family {Ft} of sub − σ fields of Υ, where Ft = σ {Qs, 0 ≤ s ≤ t} . In a more intuitive way,

Ft represents the knowledge of the history of {Qt} up to time t.
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Strong one-step ahead Granger non-causality : {St} does not strongly

cause {Zt} one-step ahead given
{
G2

t−1

}
if:

Γ2
t ⊥⊥ Γ1

t−1|G2
t−1 ∀t ∈ I.

Definition 2. Strong simultaneous independence: {St} and {Zt} are

strongly simultaneous independent given
{
F 1

t−1

}
if:

Γ1
t ⊥⊥ Γ2

t |Ft−1 ∀t ∈ I.

As in Mosconi and Seri (2005) we use the term simultaneous in the latter

definition: it has exactly the same meaning as instantaneous in Geweke (1984)

and Granger (1988) but in discrete time it is preferable.

We next show how we can apply definitions 1 and 2 to a specific stochastic

process and information set. To be concrete, we assume that Wt = (St, Zt) is a

binary random variable that takes values on {0, 1} , and restrict the information

set to the canonical filtration associated with {Wt} . We assume the stochastic

process {Wt} to be a first-order Markov process (or Markov chain) with transition

probabilities:

P (wt|wt−1, ..., w0) = P (wt|wt−1) = P (st, zt|st−1, zt−1). (1)

Then, all the information from the history of the process which is relevant

for the transition probabilities in t is represented by the state of the process in

(t−1). Under the additional assumption that transition probabilities do not vary

over time, the process is defined as a Markov chain with stationary transition

probabilities. For particular realizations of St and Zt, this process can be repre-

sented with the notation Pstzt|st−1zt−1 . For example, P10|01 would correspond to
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P (St = 1, Zt = 0|St−1 = 0, Zt−1 = 1). These transition probabilities are sum-

marized in the transition matrix Σ. Finally, notice that we can decompose the

transition probabilities as follows:

P (wt|wt−1) = P (st, zt/st−1, zt−1) = P (st/zt, st−1, zt−1)P (zt/st−1, zt−1). (2)

We can now define Granger non-causality for a Markov chain:

Definition 3. Strong one-step ahead non-causality for a Markov chain

with stationary transition probabilities: St−1 does not strongly cause

Zt one step ahead given Zt−1 if:

P (zt/zt−1, st−1) = P (zt/zt−1) ∀t.

Similarly,

Strong one-step ahead non-causality for a Markov chain with station-

ary transition probabilities : Zt−1 does not strongly cause St one step

ahead given St−1 if:

P (st/st−1, zt−1) = P (st/st−1) ∀t.

Definition 4. Strong simultaneous independence for a Markov chain

with stationary transition probabilities : {St} and {Zt} are strongly

simultaneous independent given
{
W 1

t−1

}
if:

P (st, zt|st−1, zt−1) = P (st|st−1, zt−1)P (zt|st−1, zt−1) ∀t;

or equivalently:

P (st|zt, st−1, zt−1) = P (st|st−1, zt−1)

P (zt|st, st−1, zt−1) = P (zt|st−1, zt−1) ∀t.
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It is easy to show the equivalence between definitions 1 and 3. In fact, note that

P (zt, st−1/zt−1) = P (zt/st−1, zt−1)P (st−1/zt−1). Under the hypotheses described

above, definition 1 implies that P (zt, st−1/zt−1) = P (zt/zt−1)P (st−1/zt−1), which

in turn implies definition 3. Similarly, it is possible to proceed for definitions 2

and 4.

The non-causality definition involves the marginal distributions of St and Zt

conditional on Wt−1. Then, to study causality it is necessary to consider the

transition probabilities of the Markov process whereas testing for simultaneous

independence requires the joint distribution to be fully specified, and compared

to the product of the marginal distributions. Since Wt−1 as well as Wt can belong

to a finite set of four states, the most general model representing P (wt|wt−1)

involves 16 parameters, corresponding to the transition probabilities from each

of the states in t − 1 to each of the states in t. More precisely, since the sum

of the transition probabilities for transitions starting from each of the states is

equal to 1, only 12 parameters are enough to describe the conditional distribution

completely.

Let us now show how we can construct a transition matrix starting from the

non-causality definition. Note that the state of the system in (t−1) can be defined

by the four possibilities of the joint Markov chain Wt−1 :

Xt = (1, st−1, zt−1, st−1zt−1)
′ = (1, st−1)⊗ (1, zt−1)

′.

where ⊗ denotes the Kronecker product. In fact, Xt is an invertible linear trans-

formation of:

X?
t = [(1− st−1) (1− zt−1) , st−1 (1− zt−1) , (1− st−1) zt−1, st−1zt−1] .

where X?
t is characterized by four mutually exclusive dummies representing the
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four states of the process in (t− 1). As in Mosconi and Seri (2005), we employ Xt

instead of X∗
t (or directly st−1 and zt−1) to describe the state in (t− 1) since by

means of this specification non-causality restrictions are more easily written and

interpreted. Given the decomposition (2), we can consider the logistic function to

represent the two probabilities and then it is simply to verify that we can represent

the joint probability of St and Zt as follows:

P (st, zt|st−1, zt−1) = P (st/zt, st−1, zt−1)P (zt/st−1, zt−1) (3)

=
exp(α¯ Yt)

1 + exp(α¯ Yt)
∗ exp(β ¯Xt)

1 + exp(β ¯Xt)
, (4)

where

Yt = (1, zt)
′ ⊗ (1, st−1)

′ ⊗ (1, zt−1)
′

= (1, st−1, zt−1, st−1zt−1, zt, ztzt−1, ztst−1, ztzt−1st−1)
′,

the vectors α and β have dimensions (8 × 1) and (4 × 1), respectively3, and ¯

denotes element-by-element multiplication, while Xt has already been defined.

Note that α and β represent 8 and 4 parameters, respectively. Then, we simply

have an alternative parameterization of the transition matrix.

Such parameterization is very useful since it allows us to impose the non-

causality restrictions in a very simple way by easily restricting the transition

matrix to be described by a number of parameters comprised between 4 and 12.

3In the following we denote with αj and βj the j’th element of the vectors α and β, respec-

tively.
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3 Granger non-causality tests

Given the parametrization (4) the conditions for strong one step ahead non-

causality and strong simultaneous independence are easily stated as restrictions

on the parameter space.

To impose the Granger non-causality (as in definition 3) it is necessary that

the dependence on st−1 disappears in the second term of the decomposition (2),

thus it simply requires that the parameters of the terms of Xt depending on st−1

are equal to zero:

H1;2 (St ; Zt) : β2 = β4 = 0.

Under H1;2, St−1 does not strongly cause one-step ahead Zt given Zt−1. The

terms st−1 and st−1zt−1 are excluded from Xt, thus p(zt/st−1, zt−1) = p(zt/zt−1).

On the other hand, if we want to test if Zt−1 does not strongly cause St, we

can differently decompose the joint probability and define it as follows:

P (st, zt|st−1, zt−1) = P (zt/st, st−1, zt−1)P (st/st−1, zt−1) (5)

=
exp(α∗ ¯ Y ∗

t )

1 + exp(α∗ ¯ Y ∗
t )
∗ exp(β∗ ¯Xt)

1 + exp(β∗ ¯Xt)
, (6)

where

Y ∗
t = (1, st)

′ ⊗ (1, st−1)
′ ⊗ (1, zt−1)

′

= (1, st−1, zt−1, st−1zt−1, st, stzt−1, stst−1, stzt−1st−1)
′.

In this case, the test becomes:

H1:2 (St : Zt) : β∗3 = β∗4 = 0.

Under H1:2, Zt−1 does not strongly cause one-step ahead St given St−1. In

fact, zt−1 and st−1zt−1 are excluded from Xt, so that P (st/st−1, zt−1) = P (st/st−1).
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It is important to note that the parameters (α, β) and (α∗, β∗) are bijective

transformations of the transition probabilities. That is,

Pstzt|st−1zt−1 = f(Yt, Xt, α, β) = f ∗(Y ∗
t , Xt, α

∗, β∗). (7)

Hence, we can obtain the parameters (α∗, β∗) as:

(α∗, β∗) = f ∗−1(Pstzt|st−1zt−1) = f ∗−1(f(Yt, Xt, α, β)).

Consequently we can obtain the estimates of (α∗, β∗) from the estimates of

(α, β). Finally, to perform the test we need their variance-covariance matrix:

given the variance-covariance matrix of (α̂, β̂) we can compute it by the usual

sandwich formula.

In the same way it is possible to test for the strong simultaneous independence:

H1<2 (St < Zt) : α5 = α6 = α7 = α8 = 0

or equivalently:

H1<2 (St < Zt) : α∗5 = α∗6 = α∗7 = α∗8 = 0.

In the present framework it is also possible to test for the independence of

the Markov Chains. When independence holds, the transition matrix of the joint

Markov process is given by the Kronecker product of the transition matrix of each

specific chain. In fact, we can write the transition probabilities in equation (1) as

follows:

P (st, zt|st−1, zt−1) = P (st|st−1)P (zt|zt−1),

and the transition matrix Σ will be:

Σ = Ps ⊗ Pz,
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where Pi, i = s, z is the (2 × 2) transition matrix of the specific Markov chain.

The test for independence is thus given by:

H1⊥⊥2 (St ⊥⊥ Zt) : β2 = β4 = 0; α3 = α4 = α5 = α6 = α7 = α8 = 0

or equivalently:

H1⊥⊥2 (St ⊥⊥ Zt) : β∗3 = β∗4 = 0; α∗2 = α∗4 = α∗5 = α∗6 = α∗7 = α∗8 = 0.

4 An application to the relationship between fi-

nancial and business cycles

To illustrate our methodology, we consider the model proposed by Hamilton and

Lin (1996) to study the relationship between financial and business cycles. We

employ the same data set as HL to facilitate the comparison between the results.

Data is taken from Citibase.

HL propose the following specification for the business cycle:

yt − µst = φ(yt−1 − µst−1) + εt (8)

where yt is defined as 100 times the monthly change in the natural logarithm of

the Federal Reserve Board’s index of industrial production for 1965:1 to 1993:6.

Here εt is supposed to be i.i.d. N(0, σ2), while St is an unobserved latent variable

that takes values in the set {0, 1}, and represents the state of the business cycle.

It is assumed to follow a first-order Markov process with transition probabilities

given by:

P (St = 0|St−1 = 0) = p00

P (St = 1|St−1 = 1) = p11
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The model for the stock return takes the form:

rt = δ0 + δ1rt−1 + et (9)

et =
√

gztut (10)

ut =
√

htwt (11)

ht = γ0 + γ1u
2
t−1 + γ2u

2
t−1It−1 (12)

where rt is 100 times the change in natural logarithm of the S&P 500 stock index

plus the dividend yield on the S&P 500 minus the yield on 3-month Treasury

bills, with both yields at monthly rates. The random variable wt is assumed to be

i.i.d. N(0, 1), and Zt is an unobserved latent variable that reflects the volatility

phase of the stock market. As before, this variable follows a two-state first-order

Markov process.

If the parameter gzt in equation (3) does not switch between regimes it simply

equals unity for all t. If this is the case, equations (2)-(5) describe stock returns

with an autoregression whose residual et follows a 1st-order ARCH-L process.

The ”L” stands for the leverage effect, which means that stock price increases and

decreases can have asymmetric effects on subsequent volatility (see Nelson, 1991).

The dummy variable It−1 takes value 1 if et−1 is negative and zero otherwise.

This means that if parameter δ2 is different from zero, a stock price decrease has

a different effect on subsequent volatility that would a stock price increase of the

same magnitude. HL normalize g0 = 1, thus g1 can be interpreted as the ratio

of the average variance of stock returns when zt = 1 compared to that observed

when zt = 0.

In their work, HL show that economic variables may be useful in forecasting

stock price volatility, but no rigorous test based on Granger’s ideas is provided.
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We next employ the Granger-causality tests described in the previous section for

investigating, in a formal way, whether business cycle has a predicting power for

financial variables and/or vice versa.

4.1 Estimation and testing

The model is estimated by Maximum Likelihood using the Hamilton’s (Hamilton,

1989). It is well-known that maximum likelihood estimation of regime-switching

models is plagued for complicated likelihood functions with numerous local max-

ima. To provide some reassurance of the robustness of our result, we estimate the

model with several sets of starting values. Maximum likelihood estimates for the

parameters and transition probabilities are reported in Tables 1 and 2, respec-

tively. As in HL, we find that industrial production tends to fall by 2/3 of a per

cent per month as long as the economy remains in regime 1 (µ̂1 = −0.631), and

that the unforecastable component of stock returns (the residual et in equation

(9)) has a variance that is over nine times as large in regime 0 as it is in regime 1

(ĝ1 = 0.112).

Despite of no imposing constraints when estimating Σ, some of the ML esti-

mates of the transition probabilities fall in the boundary of the allowable param-

eter space [0, 1] , which violates the standard regularity conditions that motivate

the usual formula for asymptotic standard errors. In such cases, a value of zero

is imposed a priori to calculate standard errors with respect to the remaining

parameters.

The non-causality relationships between St and Zt are tested employing Wald

tests. Results are depicted in Table 3:

1) The hypothesis H1;2, related to the non-causality of St towards Zt, is
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strongly rejected. Therefore, macroeconomic variables, such as the index of in-

dustrial production, have a predicting power for financial variables. This result

supports the empirical evidence provided by Chen (1991) and Billio and Pelizzon

(2003) among others, that macroeconomic variables are key determinants of stock

returns.

2) The hypothesis H1:2, related to the non-causality of Zt towards St, is also

rejected. This means that stock volatility is useful for forecasting the direction of

aggregate economic activity. Our finding is in accordance with the empirical works

of Perez-Quiros and Timmermann (2001), Chauvet (1999) and Hamilton and Lin

(1996) among others, which show that financial variables lead the business cycle

and seem to be generated from expectations about changes in future economic

activity.

3) The hypothesis H1⊥⊥2 and H1<2, concerning the independence between Zt

and St, are rejected. This result is in contrast with general attitude in empirical

works studying relationships between financial and economic cycles, to impose a

priori the independence of the Markov chains (see Chauvet, 1999, among others).

5 Conclusions

In this paper we propose a new technique for characterizing and testing Granger-

causality, which is well-equipped to handle those models where the change in

regime evolves according to multiple Markov chains. While in the existing lit-

erature causality tests are based on testing restrictions involving the coefficients

of the Markov switching VAR model, we propose a method for analyzing causal

links that specifically takes into account the Markov chains of the model. Dif-
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ferently from Mosconi and Seri (2005), we use an appropriate specification of the

transition matrix.

We apply our methodology to check for the causal relationships between fi-

nancial and business cycles in the United States. We use the bivariate model with

Markov switching proposed by Hamilton and Lin (1996). The causality tests we

perform suggest that financial variables are useful for forecasting the direction of

aggregate economic activity, and vice versa.
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Tables

TABLE 1

Maximum likelihood estimates (standard errors in parentheses)

µ̂0 0.293 (0.043) φ̂ 0.255 (0.063) δ̂1 0.186 (0.055)

µ̂1 −0.631 (0.126) γ̂2 0.143 (0.013) γ̂0 13.30 (2.8)

ĝ1 0.112 (0.033) δ̂0 0.423 (0.125) σ̂2 0.450 (0.116)

γ̂1 0.123 (0.036)

TABLE 2

Transition Matrix (standard errors in parentheses)

Σ̂ =




0.821

(0.046)

0.000 1.000 0.000

0.179

(0.038)

0.042

(0.011)

0.000 0.156

(0.190)

0.000 0.000 0.000 0.011

(0.135)

0.000 0.958

(0.128)

0.000 0.833

(0.232)



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TABLE 3

Causality and Independence Tests

Hypothesis Wald test p-value

H192 47.11 0.00

H182 57.23 0.00

H1⊥⊥2 32.29 0.00

H1<2 60.33 0.00
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