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Abstract 
This paper examines four different daily datasets of hedge fund return indexes: MSCI, 
FTSE, Dow Jones and HFRX, all based on investable hedge funds, and three different 
monthly datasets of hedge fund return indexes: CSFB, CISDM and HFR which comprise 
both investable and non-investable hedge funds. Our study, based on standard statistical 
analysis, non-parametric analysis of the distribution and non-parametric regressions with 
respect to the S&P500 index shows that key data biases and disparate index construction 
methodologies lead to different statistical properties of hedge fund databases.  One key 
variable that highly affects the statistical properties of hedge fund index returns is the 
“investability” of hedge funds. 
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1. Introduction 
 
In the last two decades we have observed a rapid acceleration in hedge fund 

investments, which has been particularly important in the 1990s. This has lead to desire 

for greater information on hedge funds and their historical performance, and has created 

the emergence of a number of Data Vendors that has satisfied the demand of hedge 

funds databases. 

The main reason for the creation of these datasets is the need by hedge fund 

investors to track fund performance, and this has resulted in the creation of both 

aggregate indexes as well as sub-indexes reflecting various investment strategies.  Most 

of current available hedge fund databases provide monthly returns.  However, various 

data vendors follow very different methodologies in structuring hedge fund indexes.  

For example, they use different number of hedge funds, include or exclude funds based 

on various fund restrictions, fund size, the years in operation, liquidity provisions, and 

other parameters.  Also, the aggregation techniques vary from equal-weighted, median-

weighted to asset-weighted.    

Recently, we observed the creation of datasets based on daily observations and this 

aspect has inspired this paper.  Our goal is to examine four daily hedge fund index 

databases in order to highlight their statistical characteristics and reliability, and 

compare them to monthly datasets based both on investable and non-investable hedge 

funds. 

This analysis is relevant since by using monthly data, most of hedge fund studies 

have shown that sample distributions of hedge fund returns and indexes constructed 

from them exhibit characteristics not typically displayed by traditional equity and fixed 

income investments.  For instance, Brooks and Kat (2001) examine hedge fund indexes 

from multiple databases and find that for some investment strategies the return 



 3

distributions are highly skewed and kurtotic. Getmansky, Lo and Makarov (2004) show 

that the return series display strong first-order serial correlation. Fung and Hsieh (1997), 

Agarwal and Naik (2004), and Billio, Getmansky and Pelizzon (2007) show that risk 

factor exposures are highly non-linear and depend on the volatility of market risk 

factors. 

However, Boyson, Stahel and Stulz (2006), using daily returns to examine whether 

hedge funds experience contagion, show that the daily data returns are more similar to 

traditional equity returns. Li and Kazemi (2006) investigate the same issue using a 

semi-non-parametric GARCH(1,1) model and thus consider the conditional distribution 

and correlations. They work with the Dow Jones hedge fund indexes based on daily 

observations and find similar results. Our paper is linked to this branch of the literature 

and extends the analysis to four different datasets: the MSCI Hedge Invest Indexes, the 

FTSE Hedge Fund Index family, the Hedge Fund Research Indexes (HFRX daily 

indexes), and the Dow Jones Hedge Fund Strategy Benchmarks.  Our study is based on 

standard statistical descriptive analysis, non-parametric analysis of the distribution and 

non-parametric regressions with respect to S&P500 index.  

We investigate differences among daily datasets that originate not only from 

different sample periods used, but mostly from the differences in database 

constructions. We compare these characteristics with three monthly databases based on 

non-investable indexes and one monthly database based on investable indexes and we 

show that “investability” is another important characteristic that affects hedge funds 

returns distributions. 

The paper is organized as follows. Section 2 describes different datasets. Section 3 

provides statistical descriptions of the daily and monthly datasets. Section 4 presents 

the results of the non-parametric analysis. Section 5 concludes. 



 4

 
 
2. Data Description 
 
2.1. Daily Data 
 

The daily hedge fund indexes include the MSCI Hedge Invest Indexes, the FTSE Hedge 

Fund Index family, the Hedge Fund Research Indexes (HFRX daily indexes), and the 

Dow Jones Hedge Fund Strategy Benchmarks.  S&P 500 is the daily market index.  All 

daily hedge fund indexes and S&P 500 are downloaded from the DataStream database. 

Dow Jones indexes are downloaded from the Dow Jones website.  HFRX data is from 

April 1, 2003 through June 29, 2007.  MSCI data is from July 15, 2003 through June 29, 

2007.  FTSE is available from July 1, 2004 through June 29, 2007.  Down Jones data is 

available from January 2, 2004 through June 29, 2007. 

We use both the composite-level MSCI Hedge Invest Index and seven strategy-level 

indexes: Equity Non-Directional, Convertible Arbitrage, Event-Driven, Systematic 

Trading, Discretionary Trading, Long Bias and Variable Bias.   

 The MSCI Hedge Invest Indexes are asset-weighted, and designed to be 

investable. Each investable hedge fund index contains funds with weekly liquidity and 

is designed to be licensed for use as a basis for tradable investment products.   MSCI 

includes funds that have identified themselves as open or closed to new investment.  It 

includes funds regardless of domicile location.  MSCI does not require a minimum track 

record for database inclusion.  If a fund has only one strategy, the designation of the 

strategy is used for the final classification of the fund.  If a fund has more than one 

strategy, the fund will be classified within the strategy where at least 80% of the fund 

capital is being risked. 

The FTSE Hedge Fund Indexes we use include a headline index, management 

style indexes (directional, event-driven and non-directional) and trading strategy 
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indexes (equity hedge, merger arbitrage, distressed and opportunities, convertible 

arbitrage, and equity arbitrage).  

 Trading strategy indexes are weighted by investability of all eligible hedge funds 

for that strategy. Management style indexes are weighted by the sum of their respective 

Trading Strategy indexes. No single constituent can represent more than 40% of its 

Trading Strategy Index. No single Trading Strategy Index can represent more than 30% 

of the FTSE Hedge Index. Constituent fund weightings are reviewed monthly. The 

FTSE Hedge Fund Indexes are designed to be investable.  

The FTSE Hedge Index consists of a fixed number of 40 hedge funds.  Each 

strategy index consists of a minimum of 3 hedge funds.  Constituent funds must meet 

tightly defined quality, liquidity and capacity requirements, i.e. they need to have: (1) 

independent audited financial statements; (2) at least USD$50m of unleveraged AUM; 

(3) a minimum two year track record at the time of annual review; (4) a monthly 

reporting structure with quarterly liquidity screening; and (5) significant remaining 

investment capacity  and be open to investor subscriptions. 

The HFRX Indexes comprise nine single strategy indexes and an HFRX Equal 

Weighted Strategies Index. The HFRX strategy indexes include Convertible Arbitrage, 

Distressed Securities, Equity Hedge, Equity Market Neutral, Event Driven, Merger 

Arbitrage, Relative Value Arbitrage, Absolute Return, and Market Directional. The 

index weighting of HFRX Strategy Indexes are based on Representative Optimization. 

The HRFX indexes are investable. 

The HFRX Equal Weighted Strategies Index is designed to be representative of 

the overall composition of the hedge fund universe. It is comprised of eight strategies: 

convertible arbitrage, distressed securities, equity hedge, equity market neutral, event 
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driven, macro, merger arbitrage, and relative value arbitrage. The strategies are equal-

weighted. 

 HFR believes in a dynamic, bottom-up approach to index construction based on 

hard ???? numbers and style purity: 

• HFR screens approximately 3,000 hedge funds to identify those firms with 

multi-year records, at least $50 million AUM, a minimum two-year track record, 

willing to trade on a transparent basis and are open to new assets. 

• Cluster and correlation analyses are performed to group managers by true 

strategy categories and to eliminate outliers.  

• Monte Carlo Simulation helps determine the adequate number and types of 

managers to replicate each strategy.  

• Selected managers must provide daily transparency and pass extensive 

qualitative screening.  

• Manager investments are then weighted to maximize correlation with their 

group.  

Dow Jones Hedge Fund Strategy Benchmarks cover six style classifications, 

including Convertible Arbitrage, Distressed Securities, Event Driven, Equity 

Long/Short, Equity Market Neutral, and Merger Arbitrage. These strategy Benchmarks 

are investable. Each Benchmark is substantially equally weighted among its component 

managers, thereby minimizing the chances of one manager’s performance skewing the 

performance of the Benchmark.  

 The Dow Jones Equal Weighted Hedge Fund Balanced Portfolio Index reflects 

the performance of a portfolio that is allocated approximately equally among the six 

strategies (target range: 14.67%-18.67%) on an asset management platform that seeks to 
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track the Dow Jones Hedge Fund Strategy Benchmarks. The Dow Jones Equal 

Weighted Hedge Fund Balanced Portfolio Index is investable.   

The index universe is screened to arrive at a grouping of approximately six to eight 

managers for each style classification. In order to be selected for inclusion in a 

Benchmark, each prospective manager must: 

• Have a minimum track record of two years.  

• Have minimum assets under management of USD 50 mil.  

• Undergo confirmatory cluster and other quantitative analyses.  

• Undergo correlation analysis with related hedge fund indexes (e.g., EACM, 

CSFB, HFR).  

• Undergo an on-site due diligence review and qualitative analysis.  

• Be willing to run a managed account and to adhere to leverage limitations.  

• Undergo Benchmark Advisory committee review.  

• Gain final approval of Dow Jones Hedge Fund Indexes, Inc. ("DJHFI").  

The S&P 500 index is weighted by market capitalization, and it is investable. 

 

2.2. Monthly Data 

For the monthly analysis, we use three vendors:  the Hedge Fund Research Indexes 

(HFRX indexes), the CASAM CISDM Database (formerly the MAR Database), and 

Credit Suisse First Boston/Tremont (CSFB) indexes.4 

 The HFRX index construction and methodology have been described above. The 

data available is from April, 2003 through June, 2007.   

 The CISDM Equal Weighted Hedge Fund Index reflects the average 

performance of hedge fund managers reporting to the CISDM Hedge Fund/CTA 

                                                 
4 For the sake of space, we refer to the Credit Suisse First Boston/Tremont indexes as Credit 
Suisse/Tremont or CSFB indexes. 
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Database. Its objective is to provide an estimate of the rate of return to an equally 

weighted portfolio of hedge fund managers who trade a wide variety of hedge fund 

strategies which are based on many different trading models.  The index as well as all 

strategy indexes except Convertible Arbitrage Index start in January 1990.  Convertible 

Arbitrage Index starts in January 1992.  The strategy indexes are weighted by median 

performance. 

 The Hedge Fund Index has the following inclusion rules: 

• Only funds that have reported monthly returns at the time the medians are 

calculated are included in the index. 

• There is no minimum asset size required for inclusion in the hedge fund indexes. 

• There is no length of time required that a fund must be reporting to the database 

to be included in the indexes. 

• Once calculated, index performance numbers are never revised. 

• Both offshore and onshore funds are included in the medians. 

The Credit Suisse/Tremont Hedge Fund Index is the industry's first asset-weighted 

hedge fund index.  The methodology utilized in the Credit Suisse/Tremont Hedge Fund 

Index starts by defining the universe it is measuring. The Index Universe is defined as 

funds with:  

• A minimum of US $50 million assets under management ("AUM"),  

• A minimum one-year track record, and  

• Current audited financial statements.  

Funds are separated into ten primary subcategories based on their investment style. 

The Index in all cases represents at least 85% of the AUM in each respective category 

of the Index Universe. Credit Suisse/Tremont analyzes the percentage of assets invested 

in each subcategory and selects funds for the Index based on those percentages, 
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matching the shape of the Index to the shape of the universe. The Index is calculated 

and rebalanced monthly. Funds are reselected on a quarterly basis as necessary.  The 

Index uses a rules-based construction methodology, identifies its constituent funds, and 

minimizes subjectivity in the Index member selection process. It aims at a maximum 

representation of the Index Universe. To minimize survivorship bias, funds are not 

removed from the Index until they are fully liquidated or fail to meet the financial 

reporting requirements.  

The Credit Suisse/Tremont Investable Hedge Fund Index is designed to provide a 

transparent, representative and rules-based benchmark of the investable index universe. 

A hedge fund is eligible for membership in the Investable Index if the fund meets all of 

the following criteria:  

• It is an existing member of the Original Index or the Proxy for an existing 

member of the Original Index.  

• It is accepting new investments and redemptions.  

• The minimum amount for initial investment is less than or equal to the greater of 

(i) the product of USD 50,000,000 and its prospective weight in the Index; and 

(ii) USD 100,000.  

• If it imposes a minimum amount for subsequent investments, that minimum is 

less than or equal to the lesser of (i) the product of USD 10,000,000 and its 

prospective weight in the Index; and (ii) USD 200,000.  

• It is not a US domiciled hedge fund.  

• It has no investment lock-up period.  

• It allows investments no less frequently than monthly.  
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• It allows redemptions no less frequently than monthly or, in the case of funds in 

the Convertible Arbitrage, Event Driven and Multi Strategy Sectors, no less 

frequently than quarterly.  

• It requires notification of redemptions of one month or less or, in the case of 

funds in the Convertible Arbitrage, Event Driven and Multi Strategy Sectors, 

three months or less.  

• It meets the reporting criteria of the Original Index.  

• Neither it, its investment management company or any affiliate are, to the 

knowledge of the Calculation Agent, under investigation or review by a 

regulatory body or other authority for reasons of wrongdoing, breach of any law, 

regulation or rule, or any similar reason, which is deemed likely to be materially 

adverse to the fund by the Calculation Agent.  

• The 60 Member Funds are determined in order of size as the largest six Eligible 

Funds by AUM in each of the ten Sectors comprising the Original Index, but on 

the basis that once an Eligible Fund is included in a particular Sector, another 

Eligible Fund managed by the same or an affiliated investment manager will not 

be included in the same Sector. If any Sectors do not have six Eligible Funds, 

only the Eligible Funds in those Sectors are included. In that case, the remaining 

Member Funds will be chosen in order of size as the largest remaining Eligible 

Funds by AUM in the other Sectors until a total of 60 Member Funds have been 

determined, but on the basis that once a Member Fund is chosen from a 

particular Sector, a further Member Fund will not be chosen from that Sector 

until all other Sectors with remaining Eligible Funds have contributed to the 

selection process.  
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The Credit Suisse/Tremont Sector Invest Indexes are designed to provide transparent, 

representative and objective benchmarks of the ten style-based investment strategies of 

the hedge fund universe. It has similar criteria to the CSFB Investable Hedge Fund 

index.  The additional requirements are: 

• It has an AUM of at least USD 50,000,000.  

• For each Sector Invest Index, the Member Funds are determined as all Eligible 

Funds whose AUM in aggregate is equal to 70% of all AUM in the Investable 

Universe for that Sector, with funds selected in order from largest to smallest 

AUM and subject to a maximum of 25 funds in each Sector Invest Index, but on 

the basis that once an Eligible Fund is included in a particular Sector, another 

Eligible Fund managed by the same or an affiliated investment manager will not 

be included in the same Sector Invest Index.  

The data for the CSFB Tremont Hedge Fund Index starts in January, 1994.  The data 

for CSFB Tremont Investable Index and Sector Investable Indexes starts in January, 

2000.  Detailed strategy descriptions are found in the Appendix.  In listing strategies, we 

concentrate on equity-based strategies (because we use S&P500 as the benchmark) and 

eliminate non-equity based strategies like Fixed Income, Global Macro, Managed 

Futures, and CTAs. 

 
3. Statistical Analysis 

In this section, we analyze statistical properties of hedge funds returns. We examine 

risk and return relationship and statistical characteristics of return distributions. We 

focus on whether different datasets show differences in terms of normality of the 

distributions and autocorrelations. Section 3.1 reports the summary of the different 

daily datasets, and Section 3.2 reports summary statistics for the monthly datasets based 

on non-investable indexes, the indexes that are mostly used in previous empirical 
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studies. Section 3.3 focuses on the main differences in terms of investable and non-

investable hedge funds indexes at the monthly frequency. Section 3.4 presents summary 

statistics for monthly returns constructed from the daily datasets and compares daily 

and monthly characteristics. Since daily data considers only investable indexes, in this 

section we concentrate our analysis only on monthly investable indexes. 

 

3.1. Daily Data 

The summary statistics for four daily datasets used (MSCI, FTSE, Dow Jones (DJ), and 

HFRX) are presented in Table 1. Among the four datasets we observe that the mean 

returns and standard deviations are quite similar across different indexes. However, it is 

well known that means and standard deviations are not the most relevant indicators for 

hedge fund returns because hedge fund returns are usually not normally distributed. 

This feature is also confirmed at the daily level for all different datasets and strategies. 

The most interesting aspect is the deviation from normality and this is highlighted 

through the skewness and excess kurtosis measures. As Table 1 shows, the skewness 

largely differs from zero, it is always negative and the lowest is presented by the DJ 

index and the highest belongs to FTSE index. The same applies to excess kurtosis: it is 

largely different from zero, it is positive, that is the distribution has fat tails. The lowest 

excess kurtosis belongs to the DJ index and the largest to the FTSE index. This 

peculiarity cannot be related to the different sample periods because DJ index is related 

to a shorter sample period and MSCI and HFRX are related to a longer sample period 

and all of them present a lower skewness and excess kurtosis with respect to the FTSE. 

This peculiarity therefore has to be related to the dataset construction.  Section 2.1 

clearly shows that the construction of the FTSE indexes is the most restrictive, 

sometimes having only 3 hedge funds per strategy index compared to other more 



 13

inclusive indexes.  The total FTSE hedge fund index has the constant number of only 

40 funds. 

If we investigate single strategies we have that the sample characteristics in 

terms of skewness and excess kurtosis are different among the different datasets. We 

prefer to avoid the aggregation among the different strategies in three main categories 

as in Boyson et al. (2007) paper because this aggregation may hide peculiarity of some 

strategies that are not included in the other datasets. For this reason, we concentrate on 

two strategies that are common to all four datasets: Convertible Arbitrage (CA) and 

Event Driven (ED). Moreover, we have a series of strategies that are similar and could 

be considered Directional strategies (i.e. FTSE. Directional.Strategies and  HFRX 

Market.Directional) and we provide a broad comment about them.  

Table 1 shows that the Convertible Arbitrage strategy presents a standard 

deviation in the FTSE index that is twice as large compared to a standard deviation in 

all other datasets, and skewness that is almost zero in the MSCI index, it is positive in 

the FTSE index and negative in the HFRX and DJ indexes. Regarding the excess 

kurtosis, we have that it is above 3 for MSCI, above 2 for DJ and FTSE and at 1.6 for 

HFRX. The same applies to the Event Driven strategy where skewness is almost zero 

for MSCI and FTSE and it is quite negative for HFRX and DJ indexes. Excess kurtosis 

then ranges from 1.47 in DJ to 12.9 in MSCI dataset. Directional strategies are more 

similar and present negative skewness and an excess kurtosis above 3. The Directional 

Strategy in FTSE has the largest negative return.  It also has one of the largest 

minimum and maximum returns. 

 We also examine autocorrelation for each hedge fund index using Box-Pierce 

test with one lag.  For all datasets, there is still evidence of autocorrelation at the index 

level, but evidence is quite different if we look at single strategies. As previous 
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literature has stressed, the general level of autocorrelation is lower for daily data (see 

Boyson et al., 2007) but this reduction in terms of autocorrelation is different among 

strategies and datasets. For example, we have that the CA strategy always presents 

autocorrelation, but for the ED strategy in the MSCI dataset returns are not 

autocorrelated. Also for the Equity Market Neutral strategy (or non-directional 

strategies) the hypothesis of autocorrelation is rejected for MSCI, HFRX and DJ; for 

FTSE instead we do find evidence of autocorrelation.5 These results confirm again our 

finding that similar strategies constructed by different database providers display 

significant statistical differences.  One possible reason of these differences among the 

datasets may come from different levels of selection bias. Since managers are willing to 

provide daily pricing, they are less likely to hold illiquid positions or have less 

discretion in pricing, but this feature may be different among hedge funds included in 

the different datasets. 

If we compare the above statistics with those of the S&P500 daily returns we 

observe that the mean of the S&P500 is two or three times higher than the one of the 

hedge fund indexes and the standard deviation is more than three times higher. This 

clearly indicates that if we consider the Sharpe ratio of the S&P500, it would be lower 

than the Sharpe ratio of each of these indexes.  

 This aspect is well captured by cumulated returns presented in Figures 1 and 2 

where we observe that the behavior of the different datasets is similar when the 

evolution of returns is compared; the returns of the S&P500 are largely higher than 

those of the hedge funds. Regarding the single indexes we observe that in the first part 

of the sample the FTSE index provides the highest returns, but in the second part of the 

                                                 
5 FTSE index is the most restrictive compared to other four.  For example, the total hedge fund index 
always has a constant of 40 funds, and individual strategy indexes can have as low as 3 funds in each 
index. 
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sample it provides the lowest returns. This provides additional evidence that this dataset 

(FTSE) diverges the most from other datasets. 

 

Table 1. Descriptive statistics of daily datasets. 
 
 
 

 
n. 

obs. 

Mean 
Returns 

% 
Sd 
% Skw 

Excess 
kurt Min Max 

Box-
Pierce 
p-value 

JB p-
value 

MSCI.Hedge.Invest.Index 997 0.02 0.15 -0.9 3.54 -0.92 0.44 0.000 0.000 
MSCI.Hedge.Invest.Equity.Non.Dir 997 0.02 0.18 -0.59 4.27 -1.1 0.8 0.500 0.000 
MSCI.Hedge.Invest.Conv.Arbitrage 997 0.01 0.18 0.03 3.87 -0.88 1.18 0.000 0.000 
MSCI.Hedge.Invest.Event.Driven 997 0.02 0.22 -0.09 12.9 -1.94 1.98 0.002 0.000 
MSCI.Hedge.Invest.Syst..Trading 997 0.02 0.48 -0.3 4.92 -3.46 3.08 0.029 0.000 
MSCI.Hedge.Invest.Discr..Trading 876 0.01 0.28 0.05 2.83 -1.38 1.48 0.224 0.000 
MSCI.Hedge.Invest.Long.Bias 997 0.04 0.27 -0.58 1.97 -1.41 1.04 0.000 0.000 
MSCI.Hedge.Invest.Variable.Bias 752 0.04 0.31 -0.62 3.14 -1.56 1.29 0.000 0.000 
          
FTSE.Hedge.Fund 754 0.02 0.18 -1.28 6.41 -1.21 0.64 0.000 0.000 
FTSE.Directional.Strategies 754 0.02 0.35 -0.97 6.22 -2.38 1.58 0.000 0.000 
FTSE.Equity.Hedge 754 0.04 0.38 -0.43 7.97 -2.35 2.58 0.078 0.000 
FTSE.NonDir. Strategies 754 0.01 0.15 0.06 5.28 -0.83 0.99 0.000 0.000 
FTSE.Equity.Arbitrage 754 0.01 0.18 0.35 3.89 -0.88 0.94 0.169 0.000 
FTSE.Convertible.Arbitrage 754 0 0.4 0.14 2.15 -1.58 1.93 0.000 0.000 
FTSE.Event.Driven.Strat. 754 0.03 0.21 -0.02 4.39 -0.95 1.08 0.222 0.000 
FTSE.Merger.Arbitrage 754 0.02 0.23 -0.66 8.17 -1.79 1.04 0.018 0.000 
FTSE.Distressed.Sec.and.Opport. 754 0.04 0.28 0.32 5.32 -1.35 1.76 0.286 0.000 
          
HFRX.Equal.Weighted 1070 0.02 0.13 -0.74 2.88 -0.76 0.59 0.000 0.000 
HFRX.Convertible.Arbitrage 1070 0.01 0.21 -0.33 1.6 -0.93 0.81 0.001 0.000 
HFRX.Distressed.Securities 1070 0.04 0.15 0.44 3.15 -0.73 0.77 0.000 0.000 
HFRX.Equity.Hedge 1070 0.03 0.32 -0.53 2.22 -1.82 1.51 0.000 0.000 
HFRX.Equity.Market.Neutral 1070 0.01 0.18 0.19 1.09 -0.62 0.89 0.307 0.000 
HFRX.Event.Driven 1070 0.04 0.24 -0.38 1.97 -1.21 1.04 0.001 0.000 
HFRX.Merger.Arbitrage 1070 0.02 0.17 -0.55 2.71 -0.86 0.71 0.774 0.000 
HFRX.Relative.Value.Arbitrage 1070 0.02 0.17 0.39 9.65 -0.95 1.63 0.005 0.000 
HFRX.Absolute.Return 754 0.02 0.13 -0.17 1.46 -0.47 0.5 0.000 0.000 
HFRX.Market.Directional 754 0.04 0.39 -0.88 3.58 -2.64 1.33 0.000 0.000 
          
Dow.Jones.Equal Weighted 627 0.03 0.15 -0.45 1.21 -0.6 0.64 0.000 0.000 
Dow.Jones.Convertible.Arbitrage 879 0.01 0.2 -0.53 2.47 -1.18 0.7 0.000 0.000 
Dow.Jones.Distressed.Securities 879 0.05 0.18 0.04 4.97 -0.99 1.07 0.002 0.000 
Dow.Jones.Event.Driven 879 0.04 0.24 -0.38 1.47 -1.12 0.98 0.006 0.000 
Dow.Jones.Equity.Market.Neutral 879 0.01 0.12 0.71 1.91 -0.37 0.55 0.129 0.000 
Dow.Jones.Merger.Arbitrage 879 0.03 0.18 -0.18 1.43 -0.74 0.63 0.115 0.000 
Dow.Jones.Equity Long Short 670 0.04 0.44 -0.44 3.16 -2.32 2.45 0.001 0.000 
          
          
S&P500 1070 0.06 0.71 -0.07 0.86 -3.46 2.63 0.023 0.000 
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Figure 1. Cumulative returns of hedge fund indexes form January 2005 till June 
2007. 
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Figure 2: Cumulative returns of HFRX and S&P500 indexes from April 2003 till 
June 2007. 
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3.2. Monthly Data, Non-Investable Indexes 

As described in the previous section, there are several different databases that collect 

monthly hedge fund data and use different methodologies to come up with monthly 

indexes.  One aspect that it is crucial to consider when comparing databases is whether 

hedge fund indexes are investable. In terms of asset allocation and performance such 

characteristic is fundamental. However, in this work we are primarily interested in 

statistical properties of these datasets that are (in contrast to the daily datasets) largely 

used in the literature. In this section we concentrate on three different datasets 

considering only non-investable indexes: the Hedge Fund Research Indexes (HFRX 

indexes), the CASAM CISDM Database (formerly the MAR Database) and Credit 

Suisse/Tremont (CSFB) indexes.  We investigate statistical properties of these indexes. 

Table 2 provides summary statistics. CSFB and CISDM are more similar in 

terms of mean, standard deviation and skewness as well as minimum and maximum 

values. However, these features are not confirmed at the single strategy level. We 

observe that while Convertible Arbitrage (CA) presents similarities among the three 

datasets, the Event-Driven (ED) strategy largely differs in terms of excess kurtosis, 

ranging from 3.94 to 24.21.  Almost all strategies present a distribution that is not 

normal and there is evidence of autocorrelation, with the only exceptions of directional 

strategies.  

One aspect that it is fundamental to consider is that these databases are 

characterized by different sample periods which additionally contribute to varying 

properties among databases.  We performed the same analysis using the identical 

sample period for all different datasets (in line with the HFR dataset) and the results are 

qualitatively equal. This confirms that statistical differences among the databases are 

mostly generated by the dataset construction rather than from different sample periods. 
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Nevertheless, we are interested in comparing daily and monthly datasets and for 

this reason we need to deeply investigate monthly investable indexes. The next two 

sections are dedicated to this issue. 

 

 

 
 
 

n. 
obs Mean Sd Skw 

Excess 
kurt Min Max

Box-
Pierce 

p-
value

JB p-
value 

CS.Trem.HF.Index 162 0.91 2.17 0.07 2.43 -7.55 8.53 0.12 0.00
CS.Trem.HF.Index.Convertible.Arbitrage 162 0.74 1.31 -1.38 3.39 -4.68 3.57 0.00 0.00
CS.Trem.HF.Index.Dedicated.Short.Bias 162 -0.09 4.82 0.84 2.13 -8.69 22.71 0.13 0.00
CS.Trem.HF.Index.Emerging.Markets 162 0.87 4.53 -0.71 4.89 -23.03 16.42 0.00 0.00
CS.Trem.HF.Index.Equity.Market.Neutral 162 0.80 0.82 0.33 0.41 -1.15 3.26 0.00 0.11
CS.Trem.HF.Index.Event.Driven 162 0.97 1.58 -3.39 24.21 -11.77 3.68 0.00 0.00
CS.Trem.HF.Index.Distressed 162 1.10 1.78 -2.95 19.57 -12.45 4.10 0.00 0.00
CS.Trem.HF.Index.ED Multi.Strategy 162 0.91 1.71 -2.46 16.16 -11.52 4.66 0.00 0.00
CS.Trem.HF.Index.Risk.Arbitrage 162 0.64 1.18 -1.16 6.30 -6.15 3.81 0.00 0.00
CS.Trem.HF.Index.Long.Short.Equity 162 1.02 2.85 0.19 3.97 -11.43 13.01 0.03 0.00
CS.Trem.HF.Index.Multi.Strategy 162 0.81 1.23 -1.21 3.29 -4.76 3.61 0.62 0.00
          
CISDM Equal Weighted Hedge Fund 
Index 211 1.18 1.94 -0.33 3.64 -8.82 8.37 0.00 0.00
CISDM Convertible Arbitrage Index 187 0.85 0.78 -1.07 2.52 -2.45 2.96 0.00 0.00
CISDM Distressed Securities Index 211 1.13 1.82 -0.86 5.07 -9.22 6.05 0.00 0.00
CISDM Emerging Markets Index 211 1.21 4.05 -1.18 11.80 -26.25 19.33 0.00 0.00
CISDM Equity Market Neutral Index 211 0.74 0.52 0.05 2.49 -1.33 2.76 0.00 0.00
CISDM Equity Long/Short Index 211 1.11 2.35 -0.28 2.55 -9.42 9.40 0.00 0.00
CISDM Event Driven Multi-Strat. Index 211 1.06 1.50 -1.06 3.94 -6.73 4.81 0.00 0.00
          
HFRX Equal Weigh. Strat. Index 115 0.67 1.06 -0.84 4.38 -4.53 3.28 0.00 0.00
HFRX Absolute Return Index 115 0.57 0.92 -1.27 4.01 -3.84 2.31 0.00 0.00
HFRX Convertible Arbitrage Index 115 0.54 1.12 -0.85 1.80 -3.44 3.17 0.00 0.00
HFRX Distressed Securities Index 115 0.79 1.62 -0.27 2.87 -5.96 6.11 0.00 0.00
HFRX Equity Hedge Index 115 0.99 2.20 0.64 2.69 -6.05 9.78 0.02 0.00
HFRX Equity Market Neutral Index 115 0.25 1.05 -0.10 0.33 -2.69 2.92 0.00 0.69
HFRX Event Driven Index 115 0.74 1.82 -1.47 6.58 -9.02 4.79 0.00 0.00
HFRX Market Directional Index 115 0.92 2.26 -0.40 1.39 -7.81 6.27 0.02 0.00
HFRX Merger Arbitrage Index 115 0.57 1.10 -1.39 4.58 -4.56 3.29 0.09 0.00
HFRX Relative Value Arbitrage Index 115 0.62 1.13 -1.45 6.74 -4.67 4.02 0.00 0.00

 
Table 2. – Descriptive statistics of monthly datasets (non-investable indexes). 
 
 
3.3. Monthly Data, Investable Indexes 
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The only data provider that has monthly indexes available for a long period of time for 

investable hedge funds is Credit Suisse/Tremont (CSFB). In this section we analyze the 

statistical characteristics of investable indexes and how they differ with respect to non-

investable indexes at the monthly level. Table 3 provides summary statistics. We also 

report the statistics for the CSFB non-investable index in order to match the sample 

periods and avoid the possibility that statistical differences come from the sample 

period and not from the composition of the indexes. 

 

  
n. 
obs Mean Sd Skw 

Excess 
Kurt Min Max 

Box-
Pierce 
p-
value 

JB p-
value

CS.Trem.HF.Index 90 0.73 1.42 0.17 4.02 -4.63 6.49 0.42 0.00
CS.Trem.HF.Index.Convertible.Arbitrage 90 0.79 1.22 -0.60 1.67 -3.15 3.57 0.00 0.00
CS.Trem.HF.Index.Dedicated.Short.Bias 90 -0.05 4.52 0.35 -0.04 -8.65 13.76 0.15 0.39
CS.Trem.HF.Index.Emerging.Markets 90 1.02 2.71 -0.89 0.89 -7.76 6.04 0.15 0.00
CS.Trem.HF.Index.Equity.Market.Neutral 90 0.72 0.59 0.55 -0.05 -0.34 2.24 0.02 0.10
CS.Trem.HF.Index.Event.Driven 90 0.94 1.13 -0.93 2.40 -3.10 3.27 0.01 0.00
CS.Trem.HF.Index.Distressed 90 1.02 1.27 -1.26 4.37 -4.27 3.91 0.00 0.00
CS.Trem.HF.Index ED Multi.Strategy 90 0.92 1.26 -0.27 2.09 -3.10 4.38 0.07 0.00
CS.Trem.HF.Index.Risk.Arbitrage 90 0.51 0.99 -0.35 2.33 -2.73 3.52 0.02 0.00
CS.Trem.HF.Index.Long.Short.Equity 90 0.65 2.35 0.49 4.85 -7.46 11.14 0.38 0.00
CS.Trem.HF.Index.Multi.Strategy 90 0.81 0.89 -0.24 -0.03 -1.82 2.76 0.00 0.66
          
CS.Trem.Investable.Index      90 0.66 0.81 0.14 -0.43 -1.08 2.71 0.16 0.66
CS.Trem.Investable.Index.Convertible.Arbitrage 90 0.80 1.01 -0.15 0.38 -2.36 3.40 0.00 0.57
CS.Trem.Investable.Index.Dedicated.Short.Bias 90 -0.23 4.22 -0.07 0.63 -13.57 10.88 0.16 0.37
CS.Trem.Investable.Index.Emerging.Markets 90 1.49 2.55 -0.33 -0.12 -5.07 7.40 0.78 0.43
CS.Trem.Investable.Index.Equity.Market.Neutral 90 0.50 0.56 0.99 1.05 -0.48 2.39 0.18 0.00
CS.Trem.Investable.Index.Event.Driven 90 0.89 0.96 -0.06 0.42 -1.76 3.48 0.02 0.61
CS.Trem.Investable.Index.Long.Short.Equity 90 0.42 2.71 0.29 3.33 -8.00 10.31 0.71 0.00
CS.Trem.Investable.Index.Multi.Strategy 90 0.76 0.99 0.61 2.08 -1.54 4.87 0.01 0.00
          
CS.Trem.Sector.Invest.Indexes.Convertible.Arb 90 0.71 0.98 -0.25 0.62 -2.25 3.28 0.00 0.25
CS.Trem.Sect.Inv.Indexes.Dedicated.Short.Bias 90 -0.17 4.13 -0.08 -0.13 -12.54 9.45 0.11 0.94
CS.Trem.Sect.Inv.Indexes.Emerging.Markets 90 1.37 2.64 -0.21 -0.41 -5.10 6.84 0.21 0.56
CS.Trem.Sect.Inv.Indexes.Equity.Market.Neutral 90 0.42 0.40 0.61 0.02 -0.43 1.45 0.00 0.05
CS.Trem.Sect.Inv.Indexes.Event.Driven 90 0.86 1.09 -0.59 1.13 -2.83 3.15 0.00 0.00
CS.Trem.Sect.Inv.Indexes.Long.Short.Equity 90 0.78 1.62 0.03 0.59 -3.35 5.68 0.27 0.43
CS.Trem.Sect.Inv.Indexes.Multi.Strategy 90 0.81 0.90 0.67 2.25 -1.43 4.57 0.00 0.00
          
S&P500 90 0.11 4.03 -0.30 0.42 -11.00 9.67   

Table 3.- Summary statistics of monthly CSFB investable and non-investable indexes.  
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As Table 3 shows, the two datasets have very different characteristics. The non-

investable index presents a larger mean and a larger standard deviation compared to the 

investable index. Skewness is quite similar but excess kurtosis is quite different and it 

also has an opposite sign. Note that the investable index presents a level of excess 

kurtosis that is closer to zero and therefore resembles normality. Moreover, it is 

important to consider that the index is based not only on equity-linked strategies that 

we consider, but it is also including Global Macro and Fixed Income strategies that are 

not included separately in our analysis. Thus, the index is representative of different 

hedge fund strategies. 

The Convertible Arbitrage (CA) strategy presents similar mean and standard 

deviation but again the main differences are in skewness and excess kurtosis measures. 

We do not observe large differences among the investable index and the investable 

sector index for this strategy, even if the number of hedge funds included in these two 

indexes is quite different. The investable index in fact includes only the few largest 

representative hedge funds (this index is usually refereed to as the “blue chip” hedge 

fund index) and the investable sector index is more inclusive. 

The Event Driven (ED) strategy provides the same features. Overall we have that 

investable indexes have distributions with similar means and standard deviation but 

with skewness and excess kurtosis that are largely more close to normality compared to 

non-investable counterparts. This aspect is quite relevant if we consider that investable 

indexes are characterized by a lower number of hedge funds and therefore, if the law of 

the large numbers is true, we may expect the opposite.  Specifically, we might expect 

that non-investable indexes might have distributions of returns closer to normal 

compared to investable indexes.  Given these results it seems that the large excess 

kurtosis that characterizes the non-investable indexes is very common.  Therefore, there 
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is a presence of common characteristics among non-investable hedge fund indexes that 

prevents the convergence to normality when the number of funds is increased. 

In Table 3 we also document autocorrelation for each hedge fund index. The Table 

indicates that investable indexes present no autocorrelation (as evidenced by Box Pierce 

p-value) at the total index level (and also the non-investable index is showing this 

feature) and among strategies we have that there is evidence of autocorrelation only for 

three strategies: CA, ED and Multistrategy. The same applies, but at a lower level, to 

the investable sector strategies. It is interesting to observe that the Long-Short strategy, 

i.e., the most prevalent strategy in the hedge fund industry, presents no evidence of 

autocorrelation. This result could be interpreted as the signal that the managers of these 

hedge funds are less likely to hold illiquid positions or have less discretion in pricing 

since they may be affected by investment and disinvestment from their investors. 

Normality tests indicate that most of investable strategy indexes have normal return 

distributions. However, we still have non-normality for ED, Equity Market Neutral and 

Multistrategy. There are no differences among the investable indexes and the investable 

sector datasets.  

Overall, investable indexes, compared to non-investable counterparts, show 

evidence of normality in the distribution of returns. 

 
3.4. Comparison Among Monthly and Daily Data 

In the previous section we have separately analyzed daily and monthly returns. Tables 1 

and 3 allow us to compare characteristics of daily and monthly returns for investable 

indexes. We find that at the monthly level the investable index has no autocorrelation, 

but we observe autocorrelation at the daily level for all the daily indexes. This result is 

in line with the literature of financial time series (Campbell, Lo and MacKinlay, 1997): 

autocorrelation at daily level that disappears at monthly level. In order to test this 
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conjecture, we construct monthly returns from our daily dataset.  Construction of 

monthly returns from daily data allows us to keep the same sample of hedge funds in 

the analysis.  Table 4 shows these results and Table 5 provides descriptive statistics for 

investable indexes with the same sample period. 

We find that monthly returns constructed from the daily datasets for all indexes are 

normally distributed; therefore, these constructed returns present the same 

characteristics as the S&P500: at daily level normality is rejected, at monthly level 

normality is accepted. This result is also confirmed in terms of skewness and excess 

kurtosis: for all datasets these moments are close to zero. If we compare these statistics 

with those presented in Table 5, we observe that for the sample period considered, 

skewness and excess kurtosis are closer to zero, at least at index level; therefore, this 

result could be related to the relative stable period we are considering in the sample. 

However, if we consider single strategies, we have that CA strategy in Table 4 shows 

evidence of non-normality also at monthly level in two datasets: HFR and DJ. This 

result is not surprising given the crisis we observed in this strategy in the middle of 

2005. On the contrary, it is surprising that this does not appear in the other two datasets. 

Both investable and non-investable indexes (Table 5) exhibit a large excess kurtosis for 

the CA strategy and the hypothesis of normality is rejected.  However, skewness and 

excess kurtosis are close to zero with respect to daily data for all other datasets.  

Autocorrelation disappears at monthly level in all datasets except Convertible Arbitrage 

and Distressed Security strategies.  

Lastly, taking into account the “investability” is important when comparing mean 

returns of hedge funds to the S&P500.  We find that in the last three years the mean 

return of the S&P500 was higher than that for all investable indexes, but is lower for 

non-investable indexes.   
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n. 

obs Mean Sd Skw 
Excess 

kurt Min Max 

Box-
Pierce 
p-value

JB p-
value 

MSCI.Hedge.Invest.Index 47 0.52 0.8 -0.29 -0.85 -1.15 2.19 0.0491 0.4063
MSCI.Hedge.Invest.Equity.Non.Dir.l 47 0.42 0.66 0.54 1.25 -0.94 2.56 0.2299 0.0383
MSCI.Hedge.Invest.Conv.Arbitrage 47 0.19 0.78 -0.53 0.16 -1.77 2 0.0478 0.2801
MSCI.Hedge.Invest.Event.Driven 47 0.53 0.95 0.2 0.72 -1.49 3.21 0.3442 0.3966
MSCI.Hedge.Invest.Systematic.Trad. 47 0.48 1.96 -0.11 -0.35 -4.42 4.78 0.5891 0.9041
MSCI.Hedge.Invest.Discretionary.Trad. 41 0.3 1 -0.29 -0.92 -1.85 1.97 0.149 0.412
MSCI.Hedge.Invest.Long.Bias 47 0.85 1.35 -0.54 -0.51 -2.2 3.19 0.0783 0.2589
MSCI.Hedge.Invest.Variable.Bias 35 0.9 1.59 -0.95 0.8 -3.86 3.42 0.6124 0.0268
          
FTSE.Hedge.Fund 35 0.41 0.85 -0.46 -0.37 -1.49 2.01 0.6566 0.4986
FTSE.Directional.Strategies 35 0.53 1.43 -0.69 -0.06 -2.9 3.11 0.5442 0.2218
FTSE.Equity.Hedge 35 0.81 1.6 -1.01 0.88 -3.5 3.29 0.4167 0.0157
FTSE.NonDirectional.Strategies 35 0.15 0.51 0.52 0.44 -0.74 1.56 0.65 0.3155
FTSE.Equity.Arbitrage 35 0.25 0.62 0.17 -0.54 -1.05 1.52 0.0438 0.8164
FTSE.Convertible.Arbitrage 35 0.06 1.05 -0.21 -0.11 -2.81 2.17 0.847 0.8716
FTSE.Event.Driven.Strategies 35 0.67 0.94 -0.76 0.38 -2.02 2.29 0.5189 0.1218
FTSE.Merger.Arbitrage 35 0.37 1.02 -0.11 0.77 -2.02 3.08 0.458 0.4703
FTSE.Distressed.Sec.and.Opportunities 35 0.88 1.24 -0.2 -0.25 -2.04 3.91 0.2797 0.8737
          
HFRX.Equal.Weighted.Strategies 51 0.52 0.85 -0.28 -0.55 -1.47 1.99 0.0202 0.5662
HFRX.Convertible.Arbitrage 51 0.17 1.18 -0.85 0.78 -3.44 2.75 0.0008 0.0154
HFRX.Distressed.Securities 51 0.77 1.07 -0.09 -0.51 -1.71 2.92 0.0092 0.8057
HFRX.Equity.Hedge 51 0.67 1.53 -0.2 -0.42 -2.64 4.23 0.1439 0.7475
HFRX.Equity.Market.Neutral 51 0.18 0.82 0.02 0.27 -1.94 2.45 0.4558 0.8387
HFRX.Event.Driven 51 0.86 1.31 -0.21 -0.64 -2.05 3.53 0.0867 0.5987
HFRX.Merger.Arbitrage 51 0.52 0.91 -1.09 2.34 -2.85 2.32 0.1841 0
HFRX.Relative.Value.Arbitrage 51 0.44 0.69 -0.14 -0.37 -1.23 1.84 0.0045 0.8503
HFRX.Absolute.Return 35 0.44 0.8 -1.06 1.04 -1.99 1.59 0.1017 0.0087
HFRX.Market.Directional 35 0.83 1.99 -0.33 -0.75 -3.03 4.34 0.9461 0.5364
          
Dow.Jones.Bal.Portf.Index.EW 30 0.59 0.82 -0.48 -0.2 -1.37 2.15 0.2018 0.5336
Dow.Jones.Convertible.Arbitrage 42 0.2 1.13 -1.29 1.93 -3.68 1.84 0.006 0
Dow.Jones.Distressed.Securities 42 1.01 1.03 0.24 -0.17 -0.81 3.58 0.4494 0.8087
Dow.Jones.Event.Driven 42 0.84 1.09 -0.21 -0.46 -1.92 3.1 0.1933 0.7624
Dow.Jones.Equity.Market.Neutral 42 0.28 0.41 0.04 -0.39 -0.58 1.18 0.8358 0.9364
Dow.Jones.Merger.Arbitrage 42 0.6 0.96 0.53 1.28 -1.29 3.68 0.0613 0.0497
Dow.Jones.Equity.Long.Short 32 0.78 1.91 -0.3 -0.54 -3.53 4.82 0.8454 0.7002
          
S&P500 51 1.31 2.39 0.3 0.04 -3.31 8.24 0.8287 0.6538

 
Table 4. Summary statistics for monthly returns reconstructed from daily data. 
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n. 

obs Mean Sd Skw 
Excess

Kurt Min Max 

Box-
Pierce 
p-value 

JB p-
value 

CS.Trem.HF.Index 35 1.02 1.10 -0.48 -0.03 -1.46 3.23 0.28 0.17
CS.Trem.HF.Index.Convertible.Arbitrage 35 0.51 1.08 -1.35 3.25 -3.13 2.75 0.00 0.00
CS.Trem.HF.Index.Dedicated.Short.Bias 35 -0.19 3.51 0.03 -0.44 -7.71 6.96 0.00 0.69
CS.Trem.HF.Index.Emerging.Markets 35 1.57 1.96 -1.29 3.43 -5.02 5.76 0.39 0.00
CS.Trem.HF.Index.Equity.Market.Neutral 35 0.73 0.58 0.62 0.18 -0.34 2.13 0.01 0.05
CS.Trem.HF.Index.Event.Driven 35 1.21 1.04 -0.38 1.24 -1.82 3.27 0.39 0.02
CS.Trem.HF.Index.Distressed 35 1.22 0.75 -0.06 -0.55 -0.10 2.67 0.20 0.56
CS.Trem.HF.Index.E.D.Multi.Strategy 35 1.24 1.37 -0.45 2.42 -3.10 4.31 0.67 0.00
CS.Trem.HF.Index.Risk.Arbitrage 35 0.59 0.77 0.91 2.24 -1.12 3.01 0.50 0.00
CS.Trem.HF.Index.Long.Short.Equity 35 1.21 1.65 -0.74 -0.01 -2.84 4.18 0.25 0.02
CS.Trem.HF.Index.Multi.Strategy 35 0.97 0.98 -0.37 -0.39 -1.10 2.76 0.01 0.27
          
CS.Trem.Investable.Index 35 0.67 0.83 -0.27 -0.65 -1.08 2.04 0.29 0.33
CS.Trem.Investable.Index.Conv.Arbitrage 35 0.44 0.89 -0.80 2.13 -2.36 2.47 0.00 0.00
CS.Trem.Investable.Index.Dedicated.Short.Bias 35 -0.55 3.16 -0.02 -0.75 -6.95 5.31 0.02 0.42
CS.Trem.Investable.Index.Emerging.Markets 35 1.76 2.67 -0.42 1.13 -5.07 7.40 0.13 0.05
CS.Trem.Investable.Index.Equity.Market.Neutral 35 0.44 0.42 0.88 0.65 -0.26 1.51 0.02 0.00
CS.Trem.Investable.Index.Event.Driven 35 1.07 1.11 -0.03 0.12 -1.34 3.48 0.21 0.97
CS.Trem.Investable.Index.Long.Short.Equity 35 0.85 1.39 -0.69 0.58 -2.77 3.43 0.57 0.03
CS.Trem.Investable.Index.Multi.Strategy 35 0.88 0.96 -0.24 -0.83 -1.18 2.34 0.01 0.24
          
CS.Trem.Sector.Invest.Indexes.Convertible.Arb 35 0.41 0.89 -0.66 1.58 -2.25 2.49 0.00 0.00
CS.Trem.Sect.Inv.Indexes.Dedicated.Short.Bias 35 -0.43 3.26 -0.07 -0.70 -7.60 5.61 0.03 0.45
CS.Trem.Sect.Inv.Indexes.Emerging.Markets 35 1.55 2.42 -0.52 1.36 -5.10 6.84 0.31 0.01
CS.Trem.Sect.Inv.Indexes.Equity.Market.Neutral 35 0.43 0.39 1.04 0.32 -0.06 1.35 0.06 0.00
CS.Trem.Sect.Inv.Indexes.Event.Driven 35 1.03 1.02 -0.25 -0.01 -1.24 2.98 0.23 0.68
CS.Trem.Sect.Inv.Indexes.Long.Short.Equity 35 1.06 1.58 -1.09 1.15 -3.35 4.03 0.63 0.00
CS.Trem.Sect.Inv.Indexes.Multi.Strategy 35 0.82 0.86 -0.24 -0.58 -1.13 2.40 0.00 0.42
     
S&P500 35 0.91 2.03 -0.27 -0.84 -3.09 4.33 0.28 0.15

 
Table 5. Summary statistics for CSFB monthly returns with the sample period from 
August 2004 till June 2007. 

 
 
4. Non-Parametric Analysis 
 

In this section we investigate deeper the characteristics of the daily dataset with the aim 

of analyzing the distribution of these returns. We know that they are not normally 

distributed, and therefore we study the shape of the distribution of the daily returns 

without imposing any model. Secondly, we investigate the link between hedge fund 

returns and the S&P500, and again we would like to leave the data to tell us the 
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peculiarity of this relationship. For this reason we use both the distribution analysis, 

regression analysis, and a non-parametric approach. 

 

4.1. The Non-Parametric Technique 

Many stochastic models used in financial studies are chosen to facilitate mathematical 

derivations and statistical inferences; often they are not derived from any economic 

theory and hence they cannot fit all financial data. These are called “parametric” 

models because they make some assumptions about the underlying process that 

generates the data, imposing on them a formal structure which can be fully described by 

a finite set of parameters: in this way, readily understandable summary statistics can be 

easily calculated.  

Unfortunately, the strength of parametric models is also their weakness because by 

linking inference on an a-priori model, great gains in efficiency are possible only if the 

assumed model is, at least approximately, correctly specified.  

Non-parametric techniques (also called smoothing methods) are useful instruments 

for this type of research since they allow relaxing the hypotheses on the data of non-

serial correlation, normal distributions and linear dependence with risk factors. Indeed 

these methods are flexible tools in analysing unknown regression relationships; 

furthermore, they can show the detailed shapes of returns distributions. 

Non-parametric techniques, in short, provide a bridge between making no 

assumption on the formal structure (a purely non-parametric approach) and making very 

strong ones (a parametric approach), moreover they lead to robust results. 

The costs of such flexible statistical methods are computational, and, in some cases, 

difficulty in interpreting results because these methods provide graphical estimators and 

not numerical ones.  
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4.2. Kernel Smoothing: Density Probability Distribution 

Let Y be a random variable with p.d.f. ( )f y . The construction of the non-parametric 

estimator begins by dividing the sample space { }1 ,..., ny y in a finite number of equally 

sized intervals. For each interval a rectangle with a height equal to the number of 

observations in the interval is drawn.  y denotes the point at which the density ( )f y  can 

be estimated with the kernel estimator of the following form: 

1

1ˆ( ) ( ; )
n

i
i

f y w y y h
n =

= −∑  

where w is itself a density, symmetric with zero mean, whose variance is controlled by 

the parameter h (usually h  is the standard deviation of the kernel density). It is 

generally agreed that the particular shape of the kernel is not important, so it is often 

convenient to work with a Normal kernel, that is 

( ; ) ( ; )i iw y y h y y hφ− = −  

where ( ; )z hφ  indicates a Gaussian density in z  with mean 0 and standard deviation h . 

h  is called a smoothing parameter or bandwidth as it controls the amount by which 

each observation is smoothed, i.e. locally averaged with different Gaussian-distributed 

weights depending on the distance form iy , to produce ˆ( )f y , which is also known as 

the “naive” estimator. 

When h  is too small, the estimate usually reflects variations associated with a 

single observation rather than the whole sample structure; on the other hand, if it is too 

large, important features of some sample regions might not be revealed as they are 

overshadowed by other observations.   
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The bandwidth can be chosen either by a trial and error approach looking at 

several different plots of ˆ( )f y  against y  for different values of h , or by mathematical 

derivation starting from the mean and the variance of ˆ( )f y .  

A measure of the efficiency of f̂ in estimating f  is the Mean Integrated Squared Error 

(MISE), which is in the one-dimensional case: 

( ) ( ) ( ){ }
( ){ } ( ) ( ){ }

2

2

ˆ ˆ

ˆ ˆvar

MISE f E f y f y dy

E f y f y dy f y dy

 = − = 

 = − +  

∫

∫ ∫
 

and can be approximated as: 

( ) ( )4 4 21 1ˆ ''( )
4 wMISE f h f y dy w

nh
σ α≈ +∫ . 

One of the most useful and logical way to find the correct value of h is to find the value 

opth that minimizes the MISE, which is: 

( )
( )

1 5

opt

w
h

f n

γ
β

−
  =  
  

 

where ( ) ( ) 4/ ww wγ α σ=  and ( ) ( )2
''f f y dyβ = ∫ . Unfortunately this formula still 

involves the unknown density function f ; nevertheless, it is very informative because 

it tells us how the bandwidth should decrease, i.e. proportionally to 1 5n− . 

The last step to find the value of opth is to assume that f is Normal.  Therefore, 

the normal optimal smoothing parameter is: 

1 5

1 54
1.059

3
h n

n
σ σ − 

= = 
 

 

where σ is the standard deviation of f that can be easily substituted with its estimate.  
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This approach requires very little calculation and being the Normal one of the 

smoothest possible distributions, the optimal value of h is large enough to induce some 

over-smoothing when applied to non-Normal data. This discourages over-interpretation 

of features due to sampling variation.  For these reasons all the non-parametric estimates 

of this paper will be produced with a Gaussian kernels and Normal optimal smoothing 

parameters. 

 

4.3. Kernel Smoothing: Non-Parametric Regression 

The most widely used statistical procedure to describe the relationship between two (or 

more) variables is a linear regression. The linear regression can be defined as a 

parametric model where the target variable Y is linearly dependent on a set of 

regressors iX , allowing for the prediction of future values of Y and the construction of 

tests and confidence intervals for predictions and parameters. The regression model can 

be written as: 

0 1 ,                  1,...,i i iy x i nβ β ε= + + =  

However, this model has very strong assumptions about the data generating process, 

i.e., ( );i ix y is a bivariate Normal density, errors (ε ) are independent and identically 

distributed with zero mean and finite variance. If these assumptions are not met, the 

estimators are biased and inconsistent (well-known problem of the misspecification in 

the functional form) and this is especially relevant for hedge fund returns which exhibit 

non-normal distributions, time-varying betas and non i.i.d. error terms. 

Thus, a linear model should be substituted by a more general functional model 

like the non-parametric regression model: 

( )i i iy m x ε= +  
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where ( ) ( )im x E Y X x= =  does not have to have a linear form, ( ) 0E X xε = = and   

( ) ( )2V X x xε σ= =  are not necessarily constant.  Removing the parametric restrictions 

allows for more flexible structural relationships.  

The local mean estimator computes a local mean (applying a kernel to each 

observation) of the response variable ( y ) for each value of the covariate variable ( x ): 

( ) ( )
( )

1

1

;

;

n

i ii
nNW

ii

w x x h y
m x

w x x h
=

=

−
=

−
∑
∑

%  

where ( );w z h is a kernel function, thus it is smoothed. This ensures that most weight is 

given to the observations whose covariates values ix  lie close to the point of interest x . 

As in the previous case, a Normal density function with a standard deviation h is used 

as the kernel, so the observations are over an effective range of 4σ . As h increases, the 

regression estimator becomes smoother (i.e. it misses some details in the curvature of 

the data).  On the contrary, if the bandwidth decreases, the estimator tracks the data 

more closely (for a very small value it provides an uninformative interpolation of each 

observation).  

The idea underlying the local linear approach is to estimate a linear regression 

locally for different regions of the sample, while the local mean computes only the 

average value for the same sub-sample of the data. For a high enough value of h  the 

NWm% is a straight line parallel to the x axis, with ordinate equal to the sample mean, and 

ˆ ( )m x  is equal to the common regression line. For this reason, and for its better 

performances in the extreme regions of the sample, the local regression method is used 

in this paper. The choice of h is obtained by the software “R” using an improved 

Akaike Information Criterion, even if it must have similar properties as the smoothing 

parameter described for the p.d.f. estimation. 
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Finally, the variability bands6 that indicate the degree of variability of the estimates 

are drawn with the estimators.  Regions with few significant observations have large 

variability bands for ˆ ( )m x .  Alternative approaches to construct non-parametric 

regression estimators exist: Gauss-Muller method, orthogonal series, Locally Varying 

Bandwidth (also known as loess), and splines7.   

 

4.4 Non-Parametric Distribution of Returns 

We analyze the non-parametric distributions of all the datasets we presented above. 

For the sake of space we only present results for the few of them: the most 

representative of different datasets and the ones that underlie peculiarity of the data. 

Starting with the global indexes, we consider the FTSE and the Dow Jones that 

respectively present the largest and the lowest excess kurtosis. Figure 3 depicts the 

estimated conditional distributions of the indexes along with normal distributions that 

have the same mean and standard deviation as the corresponding hedge fund indexes. It 

is quite clear that the fitted distributions are more kurtotic than normal distributions, 

while it is not immediately clear if the fitted densities are symmetric. Moreover, this 

figure shows that the distributions of hedge fund index returns are well behaved and do 

not show multi-modality, even if in both cases they are not normal. 

 

 

                                                 
6 Variability bands require very careful interpretation as they are computed differently than common 
confidence intervals. For more details see Bowman and Azzalini (1997). 
7 We verified for all sample used in this paper that the smoothing splines method often produces similar 
estimators to the local linear regression. 
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Figure 3. This figure depicts estimated conditional distributions of the hedge fund 
indexes (Dow Jones Balanced Portfolio Index and FTSE Hedge Fund Index) and 
normal distributions that have the same mean and standard deviation as the 
corresponding hedge fund indexes. Daily data is analyzed. 

Results are similar when single strategies are analyzed. We show results for the 

Convertible Arbitrage strategy that experienced a crisis and more financial troubles 

than other strategies in the sample period considered.  Similar to Figure 4, the estimated 

conditional distributions are well behaved and do not display any peculiarities.   
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Figure 4. This figure depicts estimated conditional distributions of the Convertible 
Arbitrage indexes (HFRX and MSCI Investable Convertible Arbitrage Indexes) and 
normal distributions that have the same mean and standard deviation as the 
corresponding hedge fund strategy indexes.  Daily data is analyzed. 

 
If we apply the same analysis for the monthly datasets for investable indexes we 

observe that the shape is quite peculiar and is not well-behaved as shown in Figure 3. 

 
Figure 5. This figure depicts estimated conditional distributions of the hedge fund 
indexes (CS Tremont Hedge Fund and CS Tremont Investable Indexes) and normal 
distributions that have the same mean and standard deviation as the corresponding 
hedge fund indexes. The data for the hedge fund indexes is provided by the Credit 
Suisse First Boston (CSFB). The CS Tremont HF index is not investable and the CS 
Tremont Investable Index is an investable index. Monthly returns are analyzed. 

 
 

On the left hand side of Figure 5 we present the non-parametric distribution of 

the CS Tremont Hedge Fund index using the sample period since the index’s formation 

(1994).  The sample period includes financial crises in the 1990s and at the beginning 

of this decade, and the Internet Bubble of 1998-2000. The density seems to pinpoint the 

presence of several bubbles. On the right hand side we present the non-parametric 

distribution of the CS Tremont Investable Index. The sample period for this index is 
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shorter (it starts in 2000), but we still find that the distribution largely differs with 

respect to the one presented in Figure 3. 

By applying the same analysis on the monthly returns constructed from daily 

data we find that the distribution, even if normal, presents similar characteristics of the 

CS Tremont Investable Index as shown in Figure 6. 

 
Figure 6. This figure depicts estimated conditional distributions of the hedge fund 
indexes (HFRX Equal Weighted and Dow Jones Balanced Portfolio Equal Weighted 
Indexes) and normal distributions that have the same mean and standard deviation as 
the corresponding hedge fund indexes.  Monthly index returns are constructed from the 
daily returns provides by the HFR and Dow Jones.   

 
 
4.5. Non-Parametric Regression 
 

In this section we investigate the relationship between hedge fund indexes and the 

S&P500 index. In the previous sections we showed that hedge fund index densities are 

affected by the sample period, the frequency and the dataset provider, and we examined 

changes in the moments of the hedge fund returns for different conditioning information 

sets (different datasets, different frequencies, different sample periods, and 
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investability). In this section, we extend our analysis by examining the link between 

hedge funds and equity index: the S&P500. 

Since the results of the previous section showed that hedge fund returns can be 

modeled with a non-parametric approach, we employ a non-parametric regression in the 

analysis of the hedge fund index exposure to the S&P500 index.  This analysis is robust 

under various distributions. 

Figure 7. Non-parametric regression of the daily hedge fund return indexes on the 
S&P500.  MSCI, Dow Jones, FTSE and HFRX indexes are considered. 
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According to the Figure 7, the link between the S&P500 and all daily hedge 

fund indexes (MSCI, Dow Jones, FTSE and HFRX) is positive and significant.  The 

lower tail of the hedge fund index distributions exhibit a different exposure to the 

S&P500 compared to the most of observations that are concentrated in the center of 

each graph.  The level of different exposures is statistically significant as shown by the 

variability bands (the dashed lines), that do not include the linear regression line (the 

thin solid line) on the left-hand side of the index return distributions.  We find this 

difference even if the number of observations on the extremes is low and therefore the 

variability bands are larger. However, if we concentrate on daily strategy returns, we 

find that in most cases the exposure of these indexes to the S&P500 is not statistically 

different among mean and extreme returns of the strategy indexes.  Figure 8 presents a 

few exceptions where tails of the hedge fund strategy return distributions have different 

exposure to the S&P500 compared to the mean returns.    

 

 
Figure 8.  Non-parametric regression for MSCI Non-Directional and FTSE Directional 
strategies. Daily returns are analyzed. 
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5. Conclusion 
 
We have examined the statistical properties of four hedge fund datasets: MSCI, DJ, 

HFR, and FTSE. Our analysis could be summarized in the following five main results. 

First, we find that FTSE is the dataset that highlights strong differences with respect to 

the other three datasets both at the total index level as well as for single strategies.  This 

can be explained by the highly restrictive construction level of this database, where the 

number of funds in the overall index is always constant and stays at 40, and the number 

of hedge funds in individual strategy indexes can be as low as 3 funds. 

Second, we observe the presence of statistical differences among investable and 

non-investable indexes, especially in terms of autocorrelation where investable indexes 

present lower evidence of autocorrelation. 

Third, monthly returns constructed using daily data show almost no evidence of 

non-normality and autocorrelation in line with classical equity datasets, where 

autocorrelation on daily frequency can be diminished on monthly frequency. 

Fourth, using the more flexible non-parametric approach, we are able to obtain 

estimates of conditional densities of daily returns and analyze exposure of hedge fund 

indexes to the S&P500 using the non-parametric regression. The analysis confirms that 

these datasets exhibit characteristics that are more similar to equity instruments.  

Our analysis also confirms that a great variability in the statistical properties of 

different indexes is attributable to the existence of data biases in the database, like (i) 

selection bias: different number of hedge funds included in the database (and exclusion 

of funds not qualifying under selection criteria); funds are selected based on liquidity; 

(ii) survivorship bias (exclusion of defunct or under-performing funds); (iii) limitation 

in the sample size of data; (iv) frequency of observations; (v) investability of hedge 

funds and (vi) varying methodologies in constructing indexes. 
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Appendix 

 

Strategy Descriptions: 

Systematic Trading utilizes computer models, mainly based on technical analysis of 

market data or fundamental economic data, to identify and make trades, with limited 

manager intervention.   

Discretionary Trading seeks to opportunistically participate in market-driven price 

actions.  The final decision about trading is made at the discretion of the fund manager.   

Long Bias seeks to maintain a net long exposure to the market. 

Variable Bias seeks to be more opportunistic about net market exposure, and has no 

intention to remain neutral or to maintain a particular directional bias. 

Equity Hedge includes hedge funds that consist of a care holding of long equities 

hedged at all times with tactical short sales of stocks and/or stock index options.  In 

addition to equities, some hedge funds many have limited assets invested in other types 

of securities. 

Non-Directional Strategies includes convertible arbitrage, equity arbitrage and fixed 

income relative value strategies.   

Equity Arbitrage is a market neutral strategy that seeks to profit by exploiting pricing 

inefficiencies between related equity securities, neutralizing exposure to directional 

market risk by combining long and short positions in broadly equal amounts. 

Relative Value Arbitrage is a multiple investment strategy approach. The overall 

emphasis is on making "spread trades" which derive returns from the relationship 

between two related securities rather than from the direction of the market. 

Absolute Return is a strategy that seeks stable performance regardless of market 

conditions. 
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Market Directional (also known as Directional Strategies) includes hedge funds that 

add value by participating in moves in the financial markets. 

Event Driven Multi-Strategy has an objective to provide an estimate of the rate of 

return to event driven multi-strategy managers who attempt to seek to capitalize on 

investment opportunities relating to specific corporate events, such as spin-offs and 

restructurings, and other potential firm based actions.  

Convertible Arbitrage managers seek to profit from investments in convertible 

securities employing both single security and portfolio hedging strategies. Managers 

typically build long positions of convertible and other equity hybrid securities and then 

hedge the equity component of the long securities positions by shorting the underlying 

stock or options of that company. Interest rate, volatility and credit hedges may also be 

employed. Hedge ratios need to be adjusted as markets move and positions are typically 

designed with the objective of creating profit opportunities irrespective of market 

moves. 

Dedicated Short Bias managers seek to profit from maintaining overall net short 

portfolios of long and short equities. Detailed individual company research typically 

forms the core alpha generation driver of short bias managers, and a focus on companies 

with weak cash flow generation is common. Risk management consists of offsetting 

long positions and stop-loss strategies. The fact that money losing short positions grow 

in size for a short bias manager makes risk management challenging. 

Emerging Markets managers seek to profit from investments in currencies, debt 

instruments, equities and other instruments of “emerging” markets countries (typically 

measured by GDP per capita). Emerging Markets include countries in Latin America, 

Eastern Europe, Africa, and Asia. There are a number of sub-sectors, including 

arbitrage, credit and event driven, fixed income bias, and equity bias. 
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Equity Market Neutral managers seek to profit from exploiting pricing relationships 

between different equities or related securities while typically hedging exposure to 

overall equity market moves. There are a number of sub-sectors including statistical 

arbitrage, quantitative long/short, fundamental long/short and index arbitrage. Managers 

often apply leverage to enhance returns. 

Event Driven managers seek to profit from the potential mispricing of corporate 

securities. There is a wide range of sub-sectors within the Event Driven sector with a 

common theme of corporate activity or creditworthiness. Sub-sectors include mergers 

and acquisitions; special situations equity trading, distressed investing and credit 

oriented trading. Many managers use a combination of strategies; adjusting exposures 

based upon the opportunity sets in each sub-sector.  

Distressed/High Yield Securities (also known as Distressed Security and Opportunities) 

fund managers in this non-traditional strategy invest in the debt, equity or trade claims 

of companies in financial distress or already in default. The securities of companies in 

distressed or defaulted situations typically trade at substantial discounts to par value due 

to difficulties in analyzing a proper value for such securities, lack of street coverage, or 

simply an inability on behalf of traditional investors to accurately value such claims or 

direct their legal interests during restructuring proceedings.  Various strategies have 

been developed by which investors may take hedged or outright short positions in such 

claims, although this asset class is in general a long-only strategy.  

Risk (Merger) Arbitrage invests simultaneously long and short in the companies 

involved in a merger or acquisition. Risk arbitrageurs are typically long the stock of the 

company being acquired and short the stock of the acquirer. By shorting the stock of the 

acquirer, the manager hedges out market risk, and isolates his exposure to the outcome 

of the announced deal. In cash deals, the manager needs only long the acquired 
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company. The principal risk is deal risk, should the deal fail to close. Risk arbitrageurs 

also often invest in equity restructurings such as spin-offs or ‘stub trades’.  

Long/Short Equity (also known as Equity Hedge) managers seek to profit from 

investing on both the long and short sides of equity markets. Managers have the ability 

to shift from value to growth, from small to medium to large capitalization stocks, and 

from net long to net short. Managers can change their exposures from net long to net 

short or market neutral at times. In addition to equities, long/short managers can trade 

equity futures and options as well as equity related securities and debt. Manager focus 

may be global, regional, or sector specific, such as technology, healthcare or financials. 

Managers tend to build portfolios that are more concentrated than traditional long-only 

equity funds. 

Multi-Strategy managers seek to profit from allocating to a number of different 

strategies and adjusting their allocations based upon perceived opportunities. Many 

Multi-Strategy managers began as convertible arbitrage managers that diversified into 

other strategies. Because each strategy is not in a separate fund, these managers often 

have the ability to run higher leverage levels than single strategy managers. 

 

 




