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1 Introduction

Biais et al. [3] (BMR thereafter) consider a multi-principgame to analyze imperfect
competition under adverse selection in financial marketeat&yic liquidity suppliers
post nonlinear prices (such as limit order schedules) wkiahd ready to trade with a
risk-adverse agent who has private information on the forefdal value of the asset
as well as on his hedging needs. BMR show that there existsigneiequilibrium in
convex schedules and they analyze its properties. In oodéo tthat, they do not use
standard mechanism design methods.

Usually, in principal-agents games direct mechanisms @#ffeient to characterize
all equilibria. Peters [10] and Martimort & Stole [5] haveosin that restricting the
attention to direct mechanisms may induce a loss of getner&iome equilibria can-
not be characterize by direct mechanisms. Neverthelesg ifonsider more general
mechanisms, such as menus (or price schedules), one cactehie all equilibria of
every common agency game. The drawback of this approachkaisrtanus (or price
schedules) are more difficult to handle than direct mechamiBMR show that using
calculus of variations one can characterize equilibrianefe/e allow principals to use
menus. From that point of view BMR is an interesting conttidoo to the literature as
it provides a clear and rigorous methodoldgy.

Following Peters [11], we know that there are potentiallp tand of equilibria in
a common agency game. We may have equilibria that can beatearad by direct
mechanisms and equilibria that can be characterized by snamnly. Another method-
ology would have been to consider only direct mechanismsy tfoing that one cannot
characterize all equilibria, Peters [11] has shown thatatragacterizes regular equilib-
ria, i.e; equilibria which are robust to the introductionmbre sophisticated communi-
cation schemes.

In this note, we show that the BMR equilibrium could have bekaracterized by
a much simpler approach: namely the restriction to direathrarisms. This result is
not trivial. As we have said, it is has been shown, by the usexample$ that direct
mechanisms are not sufficient to characterize every eqgaildf that class of games.

Litis also a interesting contribution to the financial litene as it provides testable predictions.
2See Peters [10], Martimort & Stole [5] or Peck [9].
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On the other hand, it exist assumptions (roughly speakipgradility conditions)
under which a common agency game has only equilibria thabeacharacterized by
direct mechanism¥ These conditions are not satisfied by the BMR’s model. Thus, 0
could have expected that the equilibrium derived by BMR dadt be characterized by
direct mechanisms. It is not the case.

This suggests to indicate that we can use simpler or morditiaal methodolo-
gies in common agency games. BMR’s model is a good exampleobf games. The
framework is simple but general enough to get interestisglte and testable implica-
tion. However, our result is not general at all and we haveewdry prudent in our
conclusions.

2 TheMode€

We use exactly the BMR’s model. We just briefly present thenfdraspects, for a more
complete description of the model and its properties plesfee to the original article.

There arg(n+ 1) players in the game) principals and one agent. The principals
play first, they offer simultaneously “mechanisms”. A “meaasm”is a mapping from a
message space/; is the set of all possible message spaces for pringipal{1,...,n})
to the decision space. Here a principal takes two deciseopsiceT and a quantityy,
the decision space R?. Principali offers a coupl€M;, (T (.),qi(.))). The agent can
either reject or accept the offer. If he accepts then he stramessagen € M; (we
must haveM; € .#;), the agent gets from principathe decision(T; (m),g; (m)).

In the BMR model the interpretation ¢T; (m),q; (m)) is the following: the agent
must trade the quantityg; (m) at the priceT; (m). If the agent rejects the offer from
principali, he getg0,0) from him. The agent observes all the offered mechanisms and
he decides to reject or accept some of them. His preferemeeepresented by the
following utility function.

" yo? ’
U((Qi,-ri>i:179>zezcﬁ—7 XQi —ZTi- (1)

3see Attar et al. [1].




The variabley ando are common knowledge. The variallés known only by the
agent, principals know only the distribution of that vateabver the range of possible
values® = [6,8]. The density function is denotefd This density function is common
knowledge.

The principali’s preferences oveg; andT; are represented by the following utility
function:
Ti—v(8)q:. (2)

We consider Perfect Bayesian Equilibria for that game. Tioblem is quite complex,
the set#; can be very large (it formalizes all possible communicasicimemes between
a principal and the agent), and it is difficult to charactetize optimal choice dff;.

In a simple principal-agent ganfe = 1), the so-called “Revelation Principle” (My-
erson [7, 8]) states that one can ignore the choiddipfand consider that the message
space is given and equal @ One can show that the unique principal would have cho-
sen(®,(T*(.),q"(.))) even if he would not have been constrained to play: ©. The
couple(T*(.),q*(.)) is called a “direct mechanism”

An immediate consequence of the revelation principle i$ W& can restrict our
attention to direct “revealing” mechanisms. The direct haggsm(T*(.),q"(.)) is
“revealing” if it is such that the agent reveals the actudligaof 6. Considering only
“direct revealing mechanisms” simplifies a lot the game dredoptimal values of *(.)
andqg* (.) can be then characterized in most of the relevant games.

In contrast in multi-principals game ¢ 1), the revelation principle does not apply:
one cannot impos®; = © and characterize all equilibria of the game. If we do this
we characterize only a subset of the equilibria of the garieve want to characterize
all the equilibria of the game, we can only consider as péssitessage space all the
subset of the decision space, and consider that implemenn#dssage receive from
the agent (Peters [10] and Martimort & Stole [5] call this hoetology “the Delegation
Principle”. In our particular game, rather than considgramy element of the abstract
set.#, we can consider only the subsetdiof and the mappingT; (.), g (.)) are define
by:

4See Peters [11].




v, (T.6) €z, (Ti(T.6).q (T.6) = (T.9). (3)

whereZz; ¢ R?. Roughly speaking, the agent gets what he asks from anyipainout
he is allow to choose only in a restricted set. These mechaage called “menus”, or
sometimes “catalogs”.

Even if this result restricts the possible strategies, édwot simplify a lot the analy-
sis given that we still have problem with the character@aticonsidering all subsets of
IR? is out of reach). BMR restrict the communication set by cdesig only a particular
class of subset dR?: they consider that principals are only allow to choose icomus
and (almost everywhere) differentiable menus. The messaaee iIQ C R, a partic-
ular message ig € Q, and if the agent sends the messgghe getyT (§),§), where
T (.) is a continuous function, with a finite number of non-difigiable points.

In the following section we will show that the BMR equilibriucould be attained
also using simple direct revealing mechanisms.

3 Direct mechanismsequilibria

Principals are using direct mechanisms i.e; mappiags), T (.)) from © to R. If the
agentd reports the vecto = (8,...,8n) € OM, that is if reportsh; to principali, he
gets

a0 (a(®)+ 3 6)) -5 (a @) 3 ®) TE)-5TE)
(4)

We focus on principal (the index—i represents all other principals). He considers
others principals’ strategigs)j (), Tj (.)) 4 as as given.

SPeters [11] claims that if we modify the interpretation aé BMR’s model, the revelation applies. If
g is chosen by agent and observable by Prindiplere is no restriction to consider direct mechanisms.
But, if we consider this interpretation a direct mechanismprincipali becomes a function af, which
can be denoted(.). So, in that case, the revelation principal is not helpfadracterizing such a function
is equivalent to characterize the optimal menu. In the Valhgy, we keep the natural interpretation of the
BMR’s model.




In order to clarify the exposition, let us introduce few marggations.

We denote b}é—i, with 8_j = (él, .. .,éi_l,éiH, .. .,én), the set of reports sent by
the agent to the other principals. We define the best repartgyiven the type (which
is 8) of the agent and his report to principataken as given and denotéd

é*iegrgegalx{< +§q, ) <q.(é)+;%(é]‘)>2-ﬁ(éi)J;Tj(éj)}.

The reportsﬁ*_i are chosen optimally and they are function®aid8;. If the solution
is interior, it satisfies:

P . = 07 (6)

which can also by written

vi A1 eq,-<éf>—v02(qi<e>+;qj<é1f>)q,<e) LE). O

Now, we derive the optimal strategy of the principal As we apply the Revelation
Principle, we assume the princigabffers incentive compatible mechanisms. In other
words principal offers mapslIj(.),q(.) such that the agent reports to him his true type
8, given the mechanisms offered by the other principals.

The agent reports truthfully his type to principai

du (6.646)] 0 -
d6; ’

éi:e

Applying the envelope theorem (i.e. using the fact a8 = 0), we get an equivalent
expression:

0G (6 <;ql —|—CI| )Ch (9)—1}(9):0. 9)

We now can define the rent obtained by the agent. The rent istilitg that the agent
gets if his type i€ given the offers made by all principals



% (6) =6 (qi ©+3a (9]-‘)> - (qi ©)+3 q (e’;)) T -3 T(6). )
IEAl

J# !

Applying again the envelope theorem, we get the derivative” avith respect t®:

VeeO, % (8)=gq <e)+§q,— (87). (11)
IEa

The agent’s reports are characterized by first order camditi This can be problem-
atic if the functionU (é\ 9) is not concave. We need some assumptions ensuring that

o
the matrix {a_u_(_eje_)} is semi-definite negative. To get that, a necessary comdigio

00,08
02 (8]9) | o
02 < 0 even if itis not sufficient to ensure that the former matsisemi-definite
negative. If messages are optimal wiggr= @ and when for any # i, 8; = 8, then the
02U (8]9)

< 0 becomes

conditionsvb € O, 06,2

v8ecO, 84i(6)-yo? (CIi (6)+ ,—% aj (91)> (i (8) —yo®6? (8) — Ti (8) < 0. (12)

Using standard methods of mechanism deS8igis last condition can also be written
as

v0cO, 8¢ (8)>0. (13)

In words, he optimal quantity must be non decreasing @ithhis condition is standard
in mechanism design theory. In a single principal settihgs latter condition and a
restriction on the utility function, namely the Spence-f&es condition, would ensure
that our first order conditions are necessary and sufficient.

But these well known conditions are not sufficient when thenber of principals is
greater than one. To solve the main problem we will assumbkdrfdllowing that the

6See for example Laffont & Tirole [4].



second order conditions are always satisfied and we willlckegoost that it is the case
at equilibrium.

If the functiong;(.) is increasing, it obviously means that it can be first negativen
equal to zero and finally positive. We dende8,] the domain on which the function
qi(.) is negative,[8a, 8] on whichg;(.) is constant and equal to zero af@h, 8] on
which it is positive. Using these new notation, we can inaggthe functior? to geta
new expression dfl.

U (8) = —/eeb (qi (0)+ Z_qj (éT)) de (14)
1A

it 6> 6,
Ba ~
% (0) :/e <qi )+ q (e]-‘)) de (15)

if 6 <04, and
U (8) =0. (16)

if 8 € [B4,0p], whered < 8, < 6, < 0.

Note that the functiom(8) must be continuous arour@ and6,. Otherwise, by
applying a simple argument, it would be possible for theg@pal to improve his profit:
when® € [08,,6p], q(0) = 0, and the marginal profit for the principiis equal to zero.
If q(8) does not go to zero wheéhgoes tdd, (with 8 > 83), then a small increase 6§,
would increase principails profit.

Moreover, ifgi (8) = 0, for someb, then we must have (8) = 0.

Integrating by parts these expressions gives

_ 6a .
157 ©)0F (8) = J'(a(8) + 3 4 (8) ) T oF (9 a
+ Jay (0 (8)+ 5 4105 () ) rgricF (8).
The profit of principal can be written as
n= [ [7(6)-v(©) ©)dF (8). (18)
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by using the definition of the utility function we can rewrttee former expression as:

2
n=Jo [e (qi ©)+3 (9]-‘)> -5 (qi ©+ 3 (@;)) ] dF ()

(19)
~Jo [u )~ 5 7 (8;) +v(0)a <e>] dF (8).
j#i
or
2
= J§° “ +5a(8) |- ( )+ 3 a (8 ))]dw
eea_ ( ;) +v(e)q ]dF(e)
B ) 2 (20)
+ 18 ( +1§|q'< ))—%(q. >+l§|q,( ))]dF(e)

AR zn(e*)+v<e>qi<e>]dF<e>.
j#

First, let us conside; and8y, as given. The problem of the principal is equivalent to
a point-wise maximization problem. The principal maxinsizkee following expression

with respect ta (8) if 6 € [6p,8].”

2
0 (qi 8)+ 3 g <éj)> -1 (qi 8)+ 3 g <éj)>
j#i J#

- (qi ®+3 <éj)> S+ 3T 6) -vO6 ().

’As we maximize with respect tg(8), the concavity of the principal’s ojective function is givey
BMR’s arguments.

(21)




The first order condition of the Principal’s maximizatioroptem is given by

25 qj(6)) ~ 23.9()
e<1+%>—v02 (qi <e)+j§éiqj (97)>< + %0 )

03 aj(8;) 03 Ti(8;)
i 1-F(0 i
: <1+(n_1) o) ) S+ g —V(®) =0

(22)

_ _ 03 qi(8) 03 T(8))
To characterize the solution we need the expresaod% and*'w From

the self-selection constraint, we have derived the exfmess

089; (8 (;q, )+ ( )qJ (e) T (e):o. (23)

Here, we need to introduce a new assumption. We assume tbattw set[8), 6],
the functionq;(.) (for all j different fromi) are strictly increasing. Thus, without loss
of generality, we can rewrite the direct mechanifm(6),T; (8)) as a direct mecha-
nism (d; (8).,tj (q; (8))).2 To see that, ifg;(.) is strictly increasing, we can define a
inverse functiorBj‘l(.). Thus the function; is define for all in [8y,8] by tj (q(8)) =

T (91-‘1 (q(@))) . The former first order condition (7) for becomes:

o0, @)+ (4 @)+ 3, 5) ) @)~ (@ B 5). @
J#
As we have assumed that the functip.) is strictly increasing, we get:
6—yo® (qi (8)+ ;qj' (éT)> =t (a (67)).- (25)
JF#I

Differentiating this equation with respect ¢p(0) gives (as; (0) is a parameter in (7),
this transformation makes sense):

8This formulation of a direct mechanism is sometimes usebériiterature, for example by Berliant
& Page [2].



ajéiqj<eT) o iy 2 (5

By summing that conditions ovegr# i, we get:

1+.01'§éiqj <é}k> =5t/ (6 % (éT)

2 ch
@ | =210 a0

—(n-1)yo

(27)

As we consider a symmetric equilibrium all the princip@lgwith | different fromi),
are offering the same mechanism, and thus the derivtej’ti(mzj (é]“)) is constant with
j and we denote it’. Thus we get:

(n—1)yo? oq; (éT)
"+ (n—1)yo? _,; 0 (8)

(28)

At equilibrium all principals offer the same mechanistj € n  g;(6) = q(8)), thus
equation (25) at equilibrium can be written

6—nyo®q(6) =t'(q(e)). (29)

Differentiating this equation with respect@ayives

1—nyo®(8) =t" (q(8)) (). (30)
2t nya? =1"(q(8)). (31)
q(6)
Thus at equilibrium we have,
0q; <9T> (n—1)yo?
9 (6) = 2
AT A g T
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Where denote(.) the equilibrium value of;(.). This expression can be simplified and

written 5a(6  (O)vo2
(n—1)29® ——(n—l)%.

aq;i (9) (33)

Now, we can do the same f@jgiTj (é,-*)/aqi (8). Using our new notation, we can write:

0 ZITJ ( ) B+
HZCh Z_t o) aq.<<ej))' (34)

As usual we assume that the equilibrium is symmetric, thezgatlibrium there is a
unique value of; <q (GT» denoted’. Using equation (29), we gét= 8 — nya?q(8).
Thus we have

03 Tj <éT> 2
Y (6 y? RION
26 (0) (6—nyo“q(6)) (n—1) 1 4(0)yo? (35)
Vi, Tj=T

whereT (.) denotes the equilibrium transfer. In the same manner, ¥piregsion can be
also written as

: 2
(n—1) qu,i(g; = —(n—1) [8—nyo?q(6)] %. (36)

Using the two obtained expressions, from the first order itmmd(22) can get a
equilibrium condition:

e<1 e ¥’ (N 1)>_V02”q(9) ( ~ Tyere Y0 (n- 1))

q(e) (1-F(9))
(1~ et (n-1) (37)
(0
—(n—1) [6—y0o?nq(0)] 1_%231(9)\/02 —v(0) =0.
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6—v(8) 1-F(8)

Consequently, using the notatigh(0) = 0T andgm(0) =gq*(0) — yo2T(e) We get:
[am (8) 1 (8)] —~ 4(8) Y02 Gm (8) — 1 (8)] 8)
~[am(8) —na(8)]4(6) yo? (n—1) + (n— 1) [g" (8) — nq(8)] 4 (8) yo* = 0,
and finally .
: 1 (n—1) (g (9)—qm(9)))‘
0)=— (1 39
10~ (g e ) )

the expression derived by BMR.

If 8 € [B,04], the principali maximizes the following expression with respect to
qi (6):

(40)

We can derive the same expressiond¢®), except thaty, (6) = g* (8) — y;(fe()e).

Given the expressions gf(0), 6, andB, must be such that the functiayis contin-
uous. As the aggregate suppig(.) is an increasing function, the form chosen for the
utility is justified. Usual conditions on the densityguaranty thaty is strictly increas-
iny 10
ing.

Participation In order to be optimal, the proposed mechanisms must be hoiraen-
tive compatible, but they must also be individually ratibnlae agent must accept them.
First, when his type belongs to the inter{@{, 6], as principals are offering to him the
degenerate mechanigi®, 0), the agent does participate. Whetelongs td6, 8,] the
equilibrium quantityq (0) is negative and positive whé&belongs to[eb,é] . Thus from

9BMR consider aggregate values, we consider individualesliExcept this slight difference in the
presentation, the formulas are strictly equivalent. Thisterce of a solution is shown in BMR. As the
proof is purely technical and applies straightforwardlpur context, we skip it.

10see Miravete [6] for a discussion of these conditions anil thierpretation in the BMR’s model.
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equations (14) and (15), it is clear that the agent prefepatticipate. It is also clear
that he prefers to accept all contracts than accepting @mesof then. At equilibrium
equations (14) and (15) become

B
% (6) = —n /e q(6) d8 (41)
if 6gegBy, and
Z(0)=n A q(6) do (42)

if 8 < 05. The two expressions are increasing with

Concavity of the agent’s program In order to derive the equilibrium mechanisms,
we have followed what we could call a “first order” approactheTagent’s best reply
is characterized by first order conditions only. To conplete have to justify this
approach.

This can be done by using the conditions given by Stole [12} tBese conditions
are only valid when there are two principals. If we assumerika2, our model satisfy
these conditions. Stole’s theorems 5 and 6 apply in oumsgttif there are only two
principals, the utility of the agent has the following form

2

o
u :9(Q1+Q2)—VT(Q1+Q2>2—T1—T2- (43)

Thus, the following cross-derivatives are constai/aq,9q,00 = 0, 9°U/agydq, = —yo?,
0%U/aqyaq, = —Yy02, 9°U/aqu00 = 0 and 9°U/ag00 = 0. The functionsyy(.) andgp(.) are
increasing with respect & Finally, the equation (9) can also be written (fet 1, 2)

oU :

—Gi(8) =T (0). 44
3G ai (6) i (0) (44)
This last condition is equivalent to condition (12) in St¢)]. Therefore, we can
conclude that the mechanisrt(.), Ti(.) )i, , are, in the language of Stole [12], com-
monly implementable, i.e; if he faces these two mechanitimsagent (weakly) prefers
to report his true type to each principal rather than misrépg his information.

13



From equations and (31) and (39) we get the following expoaes®r the second
derivativet”:

V0 € [6p,8] t"(q(8)) = (1—n)yo? <1—w) : (45)

ng(0) —adm(B)

It is not difficult to see thag* (8) > gm(8). From proposition 8 in BMRy* (6) >
nq(8) > qm(6). Thus

vae [q(8),aq(8)], t"(q)>0. (46)

We can get the same result fqre [q(8),0(0a)]. As the functionq(.) is continuous,
q(6y) = q(6a) = 0, thus we must hav# (0) > 0, which gives

vge [a(8),q(8)], t"(g)>0. (47)

Now, let us define the functiovi (qi, . ..,qn; 0), in the following way

2
V(@00 € [4(8),a(®)]", V(c,...Gni8) =0 6~ - (zq.> ~ S ti(g). (48)

We can show that
V(q(0),...,q(8);0)

0qs, ..., 00n
At equilibrium, for every principal, we have

= 0. (49)

Vien,voe [6,6], eqi(e)—yoz(qu(e)m(e))qi(e)—T'i(e):o, (50)
J#

where for alli andj, gi(.) = q;(.) = q(.) andTi(.) = T(.). This implies that at equilib-
rium

Ve e [6,6], 6(6)—yo’ (;qw) +Q(9)> —t'(q(8)) =0, (51)
JF#I
wheneveq(0) > 0. If q(6) = 0, or equivalently ib € |85, 6], thenq(6) =0,t(q(8)) =0

andt’ (q(0)) = 0 since the functiohis constant over that set. As the functida convex,
the functiorV is concave over the closed det(8) ,q ()] " as the quantitg() is well

14



defined and exists for ar§); then we can conclude th&q(0),...,q(0)) maximizes the
functionV. Thus, sincd;(.) =t(q(.)), the vector(6, ...,8) maximizes the function

yo? ’
GZQ(ei)_T (ZQ<ei)> —> T(6), (52)

with respect tq64,...,6;,...6,), where(64,...,6;,...8,) € O". Ifitis not the case, we
clearly get a contradiction. In words, if the agent facesdbkection of mechanisms
((a(.),T(.)),...,(a(.), T(.))), reporting his type honestly to each principal is an optimal
strategy.

Alternatively, we can use the second order conditions goyeBMR. Let us remark
that the equilibrium mechanisms are equivalent. In the BéROdel, at equilibrium the
agent chooses the quantidy®) from every principals and pay (or receive) the transfer
t(q(0)) to every principal. In our model, the agent sends the me$stgevery principal
and then get from each of them the quangjf$) and the transfef (8), whereT(0) =
t(q(8)). From that it is clear that if reporting honestly his typee{iif he sending the
messag® to every principal), is not an equilibrium behavior, thekiag the quantity
q(8) is not an equilibrium behavior in the BMR’s model.

By sending the messade (with 8 € ©) the agent gets from the principathe
allocation(q (8),T (8)). He could have got the same allocation in the BMR’s game, by
asking the quantity (8). More generally by sending the array of messaggs. . ., 0n)
the agent gets what he could have got by asking the quan(iiéd),...,q(8n)).
Thus, the second order conditions can also be obtained fropoBition 9 in BMR.

This last comment suggests an intuition for our main re&adch principal is indif-
ferent between using direct mechanisms or menus, giverttbatther principals keep
using their optimal menus. This is a very general featureafrmon agency models, as
it is shown if Martimort & Stole [5] and it is used by Peters [1& prove his two first
theorems. But in the BMR model, the principas also indifferent between a situation
in which the principalj is using the optimal menu, and a situation in which the ppaki
j is using the optimal direct mechanism.

In the first situation, the agent, if he has the t@pasks, sayj; (0) to principali and
g (8) to principalj. In the second situation, he asks ép(0) from principali and sends

15



the messagé to principal j and he gets from him the quantity (8). Obviously, the
three players are indifferent between the two situations.

Therefore, we can see that the menus derived by BMR and thetdirechanisms
derived in the present note are equivalent. It is importamdtice that this is not a
general feature of common agency game. There are examptee iliterature (see
Peters [10] and Martimort & Stole [5]) showing that this eglénce between menus
and direct mechanisms is not general at all.

4 Conclusion
Our result suggests four main remarks:

Direct mechanisms are not able to characterize every bgailn a common agency
game. However, they seem to be quite powerful. It would bg irderesting to have a
general theorem giving conditions under which an equilitoricannot be characterized
by direct mechanisms.

The BMR methodology remains interesting since we do not bayeneral theorem.
As we have said in the introduction, we do not have any hintghergenerality of our
result. An interesting extension of this work, would be totkde same computations for
the other models in which menus are used to derive the eqailib

The BMR equilibrium is the unique equilibrium with convexqe schedules. This
does not means that is the unique equilibrium of the BMR gaFhe.existence of other
equilibria remains an open question. If there exist otheiildgia, we do not know if
direct mechanisms are able to characterize them.

Some equilibria of common agency games can be charactdrizéitect mecha-
nisms, some that cannot be. From a technical point of viewpiild be interesting to
have result on their stability for example. It would be alsteresting to know which
kind of equilibria is more likely to be reached empirically.
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