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Abstract 

We report experiments designed to test between Nash equilibria that are stable and unstable 

under learning.  The “TASP” (Time Average of the Shapley Polygon) gives a precise prediction 

about what happens when there is divergence from equilibrium under a wide class of learning 

processes.  We study two versions of Rock-Paper-Scissors with the addition of a fourth strategy, 

Dumb. The unique Nash equilibrium places a weight of 1/2 on Dumb in both games, but in one 

game the NE is stable, while in the other game the NE is unstable and the TASP places zero 

weight on Dumb.  Consistent with TASP, we find that the frequency of Dumb is lower and play 

is further from Nash in the high payoff unstable treatment than in the other treatments. However, 

the frequency of Dumb is substantially greater than zero in all treatments. 
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1. Introduction 
Economic models often only have equilibria in mixed strategies, but it is difficult to see 

how actual participants know how to randomize with the correct probabilities.  Recent theoretical 

advances, in particular the development of stochastic fictitious play, demonstrate that in many 

games a mixed equilibrium can be achieved by agents who follow simple learning rules. 

Unfortunately, in other games the equilibria are not learnable—players following any one of a 

range of learning processes will not converge to equilibrium. However, Benaïm, Hofbauer and 

Hopkins (2009) show that, nonetheless, stochastic fictitious play can give a point prediction for 

play even when it diverges. This point is the TASP (Time Average of the Shapley Polygon) 

which they show can be quite distinct from any Nash equilibrium. 

In this paper, we report experiments designed to test between Nash equilibria that are 

stable and unstable under learning.  Subjects were randomly matched to play one of two 4 x 4 

games each with a unique mixed Nash equilibrium. In one game, the equilibrium is predicted to 

be stable under learning, and in the other unstable.  Both games are versions of Rock-Paper-

Scissors with the addition of a fourth strategy, Dumb.  The mixed equilibrium in both games is 

(1, 1, 1, 3)/6:  Dumb is thus the most frequent strategy.  In the unstable game, however, fictitious 

play-like learning processes are predicted to diverge from the equilibrium to a cycle, a “Shapley 

polygon,” that places no weight upon Dumb.  Thus, if fictitious play describes agents’ behavior, 

the limiting frequency of Dumb is a ready indicator of whether we are in the stable or unstable 

case.  It is also, therefore, a simple way to determine whether the predictions of fictitious play, 

and learning theory, hold in practice.  Equilibrium theory suggests that the frequency of Dumb 

should be the same in both games.  Learning theory suggests they should be quite different. 

The experiment has a 2 x 2 design with four treatment conditions: unstable or stable 

game and high or low payoff. We find that there is a difference in play in the high payoff 

unstable game treatment.  The frequency of Dumb is lower and play is further from Nash than in 

the other treatments, though the frequency of Dumb is always substantially greater than zero.  

That is, we find support for the idea that the stability or instability of an equilibrium under 

stochastic fictitious play can influence subject behavior.  The data also reject Nash equilibrium, 

which predicts no difference between the treatments.  The predictions of quantal response 

equilibrium fare better than Nash but its prediction that play should not vary between the stable 

and unstable games is not supported by the data. 
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Fictitious play has the underlying principle that players select a best response to their 

beliefs about opponents.  Traditionally, these beliefs are constructed from the average past play 

of opponents.  This we refer to as players having “classical” beliefs.  However, experimental 

work has found greater success with generalizations of fictitious play that allow for players 

constructing beliefs by placing greater weight on more recent events (see Cheung and Friedman 

(1997), Camerer and Ho (1999) amongst many others).  This is called forgetting or recency or 

weighted fictitious play. 

Benaïm, Hofbauer and Hopkins (2009) examine weighted fictitious play in “monocyclic” 

games, a class of games that generalizes Rock–Paper–Scissors and that has only mixed 

equilibria. They prove that when learning diverges from the equilibrium, the time average of play 

converges to the TASP, a new concept.  In the unstable game we consider, the TASP is quite 

distinct from the unique Nash equilibrium.  Thus, an easy test of divergence is simply to see 

whether average play is closer to the TASP or the Nash equilibrium. 

In practice, one cannot expect play to be exactly at either the Nash equilibrium or the 

TASP.  The now extensive literature on perturbed equilibria such as quantal response 

equilibrium (QRE, e.g., McKelvey and Palfrey, 1995) makes clear that play in experiments can 

be quite distinct from Nash equilibrium.  Subjects appear to behave as though their choices were 

subject to noise.  Equally, since the stationary points of stochastic fictitious play are QRE, 

learning theory can make similar predictions.  Thus we should expect learning to converge 

exactly to the TASP only in the absence of noise.   

Stochastic fictitious play and standard QRE models both predict that the noise amplitude 

should decrease in the level of the payoffs.  This effect has been found empirically by Battalio et 

al. (2001) and Bassi et al. (2006), although it has been challenged recently by a modified 

formulation advocated in Wilcox (2010).  Thus, the other aspect of our design is to change the 

level of monetary rewards.  We ran both the stable and unstable game at two different conversion 

rates between experimental francs and U.S. dollars, with the high conversion rate two and a half 

times higher than the lower.  

Learning theory predicts that this change in monetary compensation will have a different 

comparative static effect in the two different games. Higher payoffs should make play diverge 

further from the equilibrium in the unstable game and make play closer to equilibrium in the 

stable one. By contrast, the standard QRE model predicts play should be closer to Nash 
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equilibrium when payoffs are higher, in both the stable and unstable games.  Nash equilibrium 

predicts no difference across the treatments.  Thus we have clear and distinct comparative statics 

predictions to test. 

  In contrast, in the previous empirical and theoretical literature on mixed strategy 

equilibria, there has been a focus on the time series property of play. For example, Foster and 

Young (2003) make the distinction between convergence in time average and convergence in 

behavior.  The first requires the overall frequencies of play to approach the mixed strategy 

equilibrium frequencies. The second requires the more demanding standard that players should 

actually come to randomize with equilibrium probabilities.  To illustrate, the sequence 

0,1,0,1,0,1,... converges in time average to 1/2 but clearly not to the behavior of randomizing 

between 0 and 1 with equal probabilities. 

In the experimental literature, this distinction was first raised by Brown and Rosenthal 

(1990).  Their analysis of the earlier experiments of O'Neill (1987) finds that while play 

converged in time average, it failed to do so in behavior, in that there was significant 

autocorrelation in play.  Subsequent experiments on games with mixed strategy equilibria seem 

to confirm this finding.  For example, Brown Kruse et al. (1994), Cason and Friedman (2003) 

and Cason, Friedman and Wagener (2005) find in oligopoly experiments that the average 

frequencies of prices approximate Nash equilibrium frequencies.  However, there are persistent 

cycles in the prices charged, which seems to reject convergence to equilibrium in behavior.2 

However, if play is not i.i.d. over the finite length of an experiment, is this because play 

is diverging, because convergence will never be better than approximate, or because convergence 

is coming but has not yet arrived?  We avoid this problem by not measuring convergence in 

terms of the time series properties of play. Rather, the advantage of the game we consider is that 

a considerable qualitative difference in behavior is predicted between its stable and unstable 

versions. 

Other experimental studies have tested for differences in behavior around stable and 

unstable mixed equilibria.  Tang (2001) and Engle-Warnick and Hopkins (2006) look at stable 

and unstable 3 x 3 games in random matching and constant pairing set-ups respectively.  Neither 

                                                 
2Exceptions appear in the literature for professional tennis players (Walker and Wooders, 2001) and soccer players 
(Palacios-Huerta, 2003). Palacios-Huerta and Volij (2008) find that professional sportsmen can learn equilibrium 
behavior in the laboratory.  However, Levitt et al. (2010) report additional experiments in which professionals do no 
better than students. 



 4

study finds strong differences between stable and unstable games.  In a quite different context, 

Anderson et al. (2004) find that prices diverge from competitive equilibrium that is predicted to 

be unstable by the theory of tatonnement.  

 

2. RPSD Games and Theoretical Predictions 
The games that were used in the experiments are, firstly, a game we call the unstable RPSD 

game  

0 0,20 90,20 90,20 90,Dumb
90 20,90 90,0 120,120 0,Scissors
90 20,120 0,90 90,0 120,Paper
90 20,0 120,120 0,90 90,Rock

DSPR

=URPSD  

 and secondly, the stable RPSD game,  

0 0,20 90,20 90,20 90,Dumb
90 20,60 60,0 150,150 0,Scissors
90 20,150 0,60 60,0 150,Paper
90 20,0 150,150 0,60 60,Rock

DSPR

=SRPSD  

Both games are constructed from the well-known Rock-Paper-Scissors game with the addition of 

a fourth strategy called Dumb, which is never a best response to a pure strategy.  Games of this 

type were first introduced by Dekel and Scotchmer (1992).  Both these games have the same 

unique Nash equilibrium which is symmetric and mixed with frequencies 6/)3,1,1,1(=∗p . 

Ironically, “Dumb” is by far the most frequent strategy in equilibrium. Expected equilibrium 

payoffs are 45 in both games. 

While these two games are apparently similar, they differ radically in terms of predicted 

learning behavior. To summarize our basic argument, suppose there is a population of players 

who are repeatedly randomly matched to play one of the two games. Then, if all use a fictitious 

play like learning process to update their play, in the second game there would be convergence to 

the Nash equilibrium. In the first game, however, there will be divergence from equilibrium and 

play will approach a cycle in which no weight is placed on the strategy Dumb (D). 
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2.1 Learning Under Fictitious Play 

We state and prove results on the stability of the mixed equilibria in URPSD   and  

SRPSD   in Appendix A, available online.  Here we give a heuristic account.   

Figure 1 shows the simplex of possible mixed strategies over the four available actions. 

The dashed triangle at the base of the simplex is the attracting cycle for the URPSD  game under 

fictitious play.3 This cycle was named a Shapley triangle or polygon after the work of Shapley 

(1964) who was the first to produce an example of non-convergence of learning in games. See 

also Gaunersdorfer and Hofbauer (1995) for a detailed treatment. 

More recently, Benaïm, Hofbauer and Hopkins (2009) consider “weighted” fictitious 

play. In classical fictitious play, beliefs are constructed by taking a simple average over all 

observations. In contrast, under the assumption of weighting, players construct their beliefs about 

the play of others by placing greater weight on more recent experience, leading to what is 

sometimes called constant gain learning.  Then, play in the unstable game will still converge to 

the Shapley triangle, but the time average of play will converge to a point that they name the 

TASP (Time Average of the Shapley Polygon), denoted “T” on Figure 1.  This is in contrast to 

Shapley’s classical result, where in the unstable case nothing converges.  For the game URPSD , 

the TASP places no weight on the strategy D, despite its weight of 1/2 in Nash equilibrium.  That 

is, it is clearly distinct from the Nash equilibrium of the game, denoted “N” in Figure 1. 

However, it is not the case that theory predicts that the frequency of D should decrease 

monotonically. Specifically, Proposition 2 in Appendix A identifies a region E in the space of 

mixed strategies where D is the best response and so its frequency will grow. This region E is a 

pyramid within the pyramid in Figure 1, with the Shapley triangle as its base and apex at the 

Nash equilibrium.  But under fictitious play, given almost all initial conditions, play will exit E 

and the frequency of D will diminish. 

In the second game SRPSD , by contrast, the mixed equilibrium is stable under most 

forms of learning, including fictitious play. Hence, one would expect to see the average 

frequency of the fourth strategy, D, to be close to one half. 
                                                 
3Fictitious play is perhaps the most enduring model of learning in games. See Fudenberg and Levine (1998, Chapter 
2) for an introduction. Here, we consider it in the context of a single random matching population. This is 
technically convenient. Further, random matching provides a motivation for the applicability of simple adaptive 
learning processes such as fictitious play. There are, of course, other learning models. Young (2004) gives a survey 
of recent developments. 
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Figure 1: Nash equilibrium (N) and TASP (T) in the unstable version of the RPSD game. 

The frequencies of strategies 1 and 2 are on the horizontal axes and of strategy 4 on the 

vertical axis. 

 

Thus, if fictitious play describes agents’ behavior, the limiting frequency of D is a ready 

indicator of whether we are in the stable or unstable case. It is also, therefore, a simple way to 

determine whether the predictions of fictitious play, and learning theory, hold in practice. 

Equilibrium theory suggests that the frequency of D should be the same in both games. Learning 

theory suggests they should differ. 

 

2.2 Noisy Play: SFP and QRE 

This clean distinction ignores the fact that actual behavior is often noisy, as subjects often 

make mistakes or experiment. This behavior can be captured theoretically in two linked ways. 

The first is stochastic fictitious play (SFP), a modification of the learning model that allows for 

random choice. The second is perturbed equilibria known as quantal response equilibria (QRE). 

The link is that QRE are the fixed or stationary points for the SFP learning process. 

The standard choice rule in SFP is logit, where the probability of player i  taking action j 

from a menu of n  possibilities at time t  is given by 
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Here 0≥λ  is a precision parameter and in SFP the “attraction” )(tAj
i  is the expected payoff to 

action j at time t . As λ  becomes large, the probability of choosing the action with the highest 

expected payoff, the best response, goes to one. 

In fictitious play, expectations about payoffs are derived from expectations over 

opponents’ actions which in turn are derived from past observations of play. The now-standard 

approach here is the EWA (experience weighted attraction) model of Camerer and Ho (1999), 

which includes as special cases SFP, both the weighted form and with classical beliefs, and 

several other learning models. Attractions in the EWA model are set by  
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where 1)1()( +−= tNtN ρ , and φ  and ρ  are recency parameters. For classical beliefs, 1==φρ

; for weighted beliefs φρ = <1. The parameter δ  is an imagination factor and for all forms of 

fictitious play, it is set to 1, and  )1( −tI j  is an indicator function that is one if action j is chosen 

at  1−t   and is zero otherwise.4  Finally,  jπ  is the (implied) payoff to strategy j .  In this 

context, we deal with simple strategic form games, so that given a game matrix B , we will have 

the payoff to strategy j  being  jk
j B=π  given that the opponent chose action k. 

Equilibrium in SFP occurs when the expected payoffs are consistent with players’ actual 

choice frequencies. This idea for a perturbed equilibrium was proposed independently by 

McKelvey and Palfrey (1995) under the title of QRE. Given the logit choice rule, one finds the 

QRE equilibrium frequencies by solving the following system of equations  
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where pBp .)( =π  with B being the payoff matrix. QRE with the specific logit choice rule can 

also be called logit equilibrium. 

SFP typically is analyzed using perturbed best response dynamics  

xxx −= ))((πψ ,     (PBR) 
                                                 
4The EWA model permits ρ φ≠   and/or 1δ <  to capture a variety of reinforcement learning approaches. 
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where the function  )(⋅ψ   is a perturbed choice function such as the logit above and x is a vector 

of players’ beliefs.  Results from stochastic approximation theory show that a perturbed 

equilibrium is locally stable under SFP if it is stable under the perturbed dynamics.  See Benaïm 

and Hirsch (1999), Hopkins (1999) and Ellison and Fudenberg (2000) for details. 

One well-known property of QRE is that as the precision parameter λ  increases in value, 

the set of QRE approaches the set of Nash equilibria. But notice that given the logit formulation 

above, an increase in λ is entirely equivalent to an increase in payoffs. For example, doubling 

payoffs would have the same effect as doubling λ . 

Specific results for the logit version of the QRE in the games URPSD   and SRPSD  are 

the following: 

1) Each QRE is of the form  ),,,(ˆ kmmmp =   where  mk 31−=   and is unique for a given 

value of λ . That is, each QRE is symmetric in the first three strategies. 

2) The value of k , the weight placed on the fourth  strategy D, is in  )2/1,4/1[   and is 

strictly  increasing in  λ . That is, the QRE is always between the Nash equilibrium  

6/)3,1,1,1(   and uniform mixing  4/)1,1,1,1(   and approaches the Nash equilibrium as λ  or 

payoffs become large. 

3) For a given value of λ , the QRE of URPSD  and of SRPSD  are identical.  That is, while 

the level of optimization affects the QRE, the stability of the equilibrium does not. 

 

The implications of an increase of the precision parameter λ , or equivalently of an 

increase in payoffs, for learning outcomes are quite different. First, it is well known that the 

stability of mixed equilibria under the perturbed best response (PBR) dynamics depend upon the 

level of λ . When λ  is very low, agents randomize almost uniformly independently of the payoff 

structure and a perturbed equilibrium close to the center of the simplex will be a global attractor. 

This means that even in the unstable game URPSD , the mixed equilibrium will only be unstable 

under SFP if  λ   is sufficiently large.  For the specific game URPSD , it can be calculated that the 

critical value of λ  is approximately 0.17.  In contrast, in the stable game SRPSD , the mixed 

equilibrium will be stable independent of the value of λ .  

This is illustrated in Figure 2. The smooth dashed curve, labeled “Stable,” gives the 
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asymptotic level of the proportion of the fourth strategy D  for game SRPSD  under the perturbed 

best response (PBR) dynamics as a function of λ . The smooth blue curve, labeled “Unstable,” 

gives the asymptotic level of D  for game URPSD . For low values of λ , that is on the interval 

[0, 0.17], the perturbed best response dynamics converge to the QRE in both games. Indeed, in 

the stable case, the dynamics always converge to the QRE and this is why the “Stable” curve 

thus also gives the proportion of D  in the QRE as a function of the precision parameter λ . 

 

 
Figure 2: Frequencies of the 4th strategy D against the precision parameter λ. The smooth 

lines are generated by continuous time learning processes, the jagged lines by simulations 

of the experimental environment. Stable (dashed) refers to the RPSDS game, and Unstable 

(solid) to the RPSDU game. The smooth dashed line coincides with QRE for both games. 

 
However, the behavior in URPSD  is quite different for values of λ  above the critical 

value of 0.17. The logit form of the perturbed equilibrium is unstable above that threshold and, 

from almost all initial conditions, play converges to a cycle. Of course, with finite λ , the cycle is 

in the interior of the simplex, and only as λ  increases does the proportion of D  approach zero.  
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This leads to the very different comparative static predictions across games. An increase in λ  (or 

payoffs) for game SRPSD   leads to an increase in the frequency of D . By contrast, for λ  greater 

than 0.17, an increase in λ  (or payoffs) leads to a decrease in D . QRE predicts that an increase 

λ  (or payoffs) lead to an increase in D  in both games. 

The theoretical framework assumes an infinite population of agents all who share the 

same beliefs, and investigates behavior in the limit as time goes to infinity and, the recency 

parameter ρ  goes to one.  In the experiments we must work with a finite population and a finite 

time horizon. Therefore, we also report simulations of populations of twelve agents who play 80 

repetitions (both values chosen to be the same as the experiments we run). Each simulated agent 

learns according to weighted SFP (that is, EWA with  1<= ρφ   and 1=δ ). We set the recency 

parameter  8.0== ρφ  and then vary the precision parameter λ . We ran one simulation for each 

value of λ  in the sequence 0, 0.0025, 0.005, ..., 0.5 for each of the two games  URPSD   and  

SRPSD . Initial conditions in each simulation were set by taking the initial attractions to be 

drawn from a uniform distribution on [0, 150]. The resulting average levels of the frequency of 

D  over the whole 80 periods and 12 simulated subjects are graphed as jagged lines in Figure 2.  

As learning outcomes over a finite horizon are stochastic, there is considerable variation from 

one simulation to the next even though the value of λ  changes slowly. What is encouraging, 

however, is that the simulations preserve the same qualitative outcomes as the asymptotic results 

generated by the theoretical models.5  

 

2.3 Testable Hypotheses 

The experiment employed the URPSD  matrix in unstable treatments and SRPSD  in 

stable treatments, and used a conversion rate of payoffs to cash that was 2.5 times higher in high 

payoff treatments than in low payoff treatments. As noted above, in standard models the payoff 

treatment has the same effect as an increase in λ . Empirically, as reported in Battalio et al. 

(2001) and elsewhere, the effect is in the right direction but is less than one-for-one.   

The arguments presented above lead to the following alternative predictions.  

                                                 
5 Clearly, however, they are not identical. In particular the divergence in behavior between stable and unstable cases 
occurs at a lower level of λ in the simulations. Further simulations, not reported here, indicate that this difference 
cannot be ascribed to any one of the three factors (finite horizon, finite population, ρ<1) but rather arises from a 
combination of the three. 
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1) Nash Equilibrium (NE): average play should be at the NE  6/)3,1,1,1(   in all treatments. 

2) Quantal Response Equilibrium (QRE):  

a) Average play should be between NE and  4/)1,1,1,1(   in all treatments, with the first three 

strategies in equal proportions.  

b) Average play should be the same in stable as in unstable treatments.  

c) Average play should be closer to Nash equilibrium, and the proportion of D  should be 

higher, in high payoff treatments than in low payoff treatments. 

3) TASP: 

a) Average play should be closer to the TASP in unstable treatments, but closer to QRE in 

stable treatments 

b) Average play should be closer to the TASP (smaller proportion D ) in the high payoff 

unstable treatment  than in the low payoff unstable treatment, but play should be closer to 

Nash equilibrium (higher proportion D ) in the high payoff stable treatment than in the 

low payoff stable treatment. 

c) Average play should converge in all treatments, but in the unstable treatments beliefs 

should continue to cycle.  

 

3. Experimental Design and Procedures 
The experiment featured a full factorial two-by-two design. One treatment variable was 

the game payoff matrix, either the unstable game RPSDU or the stable game RPSDS shown 

earlier. The other treatment variable was the payoff conversion rate of Experimental Francs (EF, 

the entries in the game matrix) to U.S. Dollars. In the High Payoffs treatment, 100 EF = $5. In 

the Low Payoffs treatment, 100 EF = $2. Subjects also received an extra, fixed “participation” 

payment of $10 in the Low Payoffs treatment to ensure that their total earnings comfortably 

exceeded their opportunity cost.  

Each period each player i entered her choice j
is  = 1, 2, 3, or 4 (for Rock, Paper, Scissors, 

Dumb), and at the same time entered her beliefs about the opponent’s choice in the form of a 

probability vector (p1, p2, p3, p4). When all players were done, the computer matched the players 

randomly into pairs and announced the payoffs in two parts. The game payoff was obtained from 
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the matrix, and so ranged from 0 to 120 or 150 EF. The prediction payoff was 
4

2

1

5 5 10i j
i

p p
=

− +∑  

when the opponent’s actual choice was j, and so it ranged from 0 to 10 EF.   

The payoff scheme was chosen because belief data allow diagnostic tests of the 

competing models, and because belief elicitation itself can help focus players on belief learning 

(Ruström and Wilcox, 2009). The quadratic scoring rule was calibrated so that the prediction 

payments were an order of magnitude smaller than the game payoffs, reducing the incentive to 

hedge action choices by biasing reported beliefs.6 

In each session, 12 subjects were randomly and anonymously re-matched over a 

computer network for a known number of 80 periods to play the same game, either RPSDU or 

RPSDS.7 After each period, subjects learned the action chosen by their opponent, their own 

payoffs, as well as the frequency distribution of actions chosen by all 12 subjects in the session. 

At the conclusion of the session, 10 of the 80 periods were drawn randomly without replacement 

for actual cash payment using dice rolls (to control for wealth effects). Subsection 4.4 

summarizes six additional 160-period sessions conducted as a robustness check for our main 

conclusions.  

We conducted three sessions in each of the four treatment conditions, for a total of 144 

subjects, plus 72 additional subjects in two treatment conditions for the longer, 160-period 

horizon. For the main experiment two sessions in each treatment were conducted at Purdue 

University, and one session in each treatment was conducted at UC-Santa Cruz. All subject 

interaction was computerized using z-Tree (Fischbacher, 2007). The instructions used neutral 

terminology, such as “the person you are paired with” rather than “opponent” or “partner.” 

Action choices were labeled as A, B, C and D, and the instructions and decision screens never 

mentioned the words “game” or “play.” The instructions in Appendix B, available online, 

provide additional details of the framing, and also show the decision and reporting screens. 

                                                 
6 This potential for biased beliefs does not appear to be empirically significant in practice, at least as measured for 
other games (Offerman et al., 1996; Sonnemans and Offerman, 2001). Taken by itself, the quadratic scoring rule is 
incentive compatible (Savage, 1971), and is commonly used in experiments with matrix games (e.g., Nyarko and 
Schotter, 2002).  
7 Some experiments studying learning and stability in games have used a longer 100 or 150 period horizon (e.g., 
Tang, 2001; Engle-Warnick and Hopkins, 2006). We used the shorter 80-period length because subjects needed to 
input beliefs and this lengthened the time to complete each period. Including instructions and payment time, each 
session lasted about two hours. One of the 12 sessions was unexpectedly shortened to 70 periods due to a move by 
nature: a tornado warning that required an evacuation of the experimental laboratory. 



 13

4. Experiment Results 
We begin with a brief summary of the overall results before turning to more detailed 

analysis. Figures 3 and 4 show the proportion of action choices in each 10-period interval for two 

of the 12 main sessions. Figure 3 displays a session with the unstable matrix and high payoffs. 

Paper and Scissors are initially the most common actions. Scissors appears to rise following the 

early frequent play of Paper, followed by a rise in the frequency of Rock. This pattern is 

consistent with simple best response dynamics. Dumb is played less than a quarter of the time 

until the second half of the session and its rate tends to rise over time. Figure 4 displays a session 

with the stable matrix and high payoffs. The Paper, Scissors and Rock rates again fluctuate, also 

in the direction expected by best response behavior. For the stable matrix, Dumb starts at a 

higher rate and rises closer to the Nash equilibrium prediction of 0.5 by the end of the session. 

 
Figure 5 and Table 1 provide a pooled summary for all 12 sessions. The figure displays 

the frequency that subjects play the distinguishing Dumb action in each of the four treatments. 

This rate tends to rise over time, but is always below the Nash equilibrium frequency of 0.5.  A 

simple reading of this would be as evidence for QRE over Nash.  However, the frequency of  
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Dumb is clearly lowest in the unstable, high payoffs condition as predicted by the TASP model. 

Table 1 shows that Dumb is played about 26 percent of the time overall in this treatment, 

compared to about 40 percent in the stable matrix treatments.  Varying payoffs seems to make 

little difference in the stable game, which goes against the prediction of both learning and QRE 

that the frequencies of Dumb should be greater in the high payoff, stable treatment than in the 

low, stable treatment.  

 

4.1 Tests of the Principal Hypotheses 

Figure 5 indicates an upward time trend in all treatments for the rate that subjects choose 

the critical action Dumb. The Dumb action is played more frequently over time even in the 

unstable game RPSDU. Although the sessions ran only 80 or 160 periods, they permit us to draw 

statistical inferences about long-run, asymptotic play.  

 

Table 1: Theoretical Predictions and Observed Frequencies of Each Action for Each 

Treatment Condition 

 
    Frequencies    

Theory Rock Paper Scissors Dumb 
    - Nash 0.167 0.167 0.167 0.5 
    - QRE [0.167, 0.25] [0.167, 0.25] [0.167, 0.25] [0.25, 0.5] 
    - TASP 0.333 0.333 0.333 0 
Observed Time Average     
  Unstable, High payoffs 0.226 (0.239) 0.231 (0.228) 0.280 (0.178) 0.263 (0.356)
  Unstable, Low payoffs 0.221 (0.194) 0.203 (0.178) 0.207 (0.189) 0.368 (0.439)
  Stable, High payoffs 0.176 (0.200) 0.233 (0.144) 0.212 (0.228) 0.378 (0.428)
  Stable, Low payoffs 0.172 (0.161) 0.204 (0.183) 0.204 (0.228) 0.420 (0.428)

Note: Final 5 periods shown in parentheses      
 

 

We focus on the following reduced form model of subjects’ choice of the critical strategy 

Dumb, 
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The i, j and t subscripts index the subject, session, and 10-period block, and the Dj are dummy 

variables that have the value of 1 for the indicated session within each treatment. We assume 

logistically-distributed errors ui +vit, including a random effect error component for subject i (ui), 

so this can be estimated using a binary random effects logit model. [This panel data approach 

accounts for the repeated choices made by the same individual subjects and the resulting non-

independence of actions within subjects and within sessions.] This reduced form empirical 

specification was developed for market experiments (e.g., Noussair et al., 1995) that converge in 

a small number of periods, which is too fast for our game. We therefore employ 10-period blocks 

for the time index to slow the fitted convergence process, so that the time index t=1 in periods 1-

10. Since (t-1)/t is zero in those periods, the β1j coefficient provides an estimate for the 

probability of choosing Dumb during the first few periods of session j. As t→∞ the 1/t terms 

approach 0 while the (t-1)/t term approaches one. Thus the β2 coefficient provides an estimate of 

the asymptotic probability of choosing Dumb in the treatment.8  

All three models discussed in Section 2 (Nash, QRE, TASP) predict stable long-run rates 

of Dumb play, although play of the other actions continues to cycle in TASP. The Dumb strategy 

is played half the time in the Nash equilibrium, which implies the null hypothesis of β2=0 since 

the logit model probability F(x)=exp(x)/[1+exp(x)] is 0.5 at x=0. Table 2 presents the estimation 

results for the asymptote β2 coefficients. Only the high payoffs, unstable game asymptotic 

estimate is significantly different from 0. This indicates that the Dumb strategy is not converging 

toward the Nash equilibrium rate of 0.5 only for the high payoffs, unstable game treatment. The 

data thus reject the Nash equilibrium Hypothesis 1 only for this treatment.  

The average choice data in Table 1 lie in the wide interval predicted by the QRE 

Hypothesis 2. However, the data provide no support for the underlying qualitative QRE 

prediction that play will be closer to Nash in the high payoff treatments, i.e., that the coefficient 

                                                 
8 We examined several alternative specifications. One alternative drops the 1/t and ((t-1)/t) terms and instead simply 
uses treatment dummy variables and time trends in a random effect logit model. We also specified t in 1-period 
blocks, 5-period blocks, and as ln(period) and also estimated the model using probit instead of logit specification. 
All alternatives yielded qualitatively similar conclusions to those reported here, except that the low payoff, unstable 
β2 estimate is significantly less than zero for the shorter time intervals that try to fit more rapid convergence. 
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estimates will be closer to 0 for high payoffs than for low payoffs. Indeed, comparing  columns 

(1) and (2),  and columns (3) and (4) of Table 2, we see the opposite pattern , although this 

difference is not statistically significant. 

The average frequency of the Dumb action in Table 1 is not close to zero, as in TASP 

Hypothesis 3. However, Table 2 reports estimated asymptotic rates of Dumb play that are further 

from the Nash equilibrium and closer to the TASP prediction for the unstable than the stable 

treatment for high payoffs. Column (5) indicates that these differences are statistically 

significant. The 2β̂ = -1.039 estimate for the unstable, high payoff treatment implies an 

asymptotic point estimate of a 26 percent rate for the Dumb strategy. While this rate is below the 

Nash equilibrium, it is in the QRE interval and it is also well above the rate of 0 predicted by 

TASP. Also contrary to TASP, play is not closer to the Nash equilibrium in the stable, high 

payoff treatment than in the stable, low payoff treatment. Thus, data are consistent with the two 

of the three comparative statics predictions of TASP, but clearly not with its point prediction. 

 

4.2 Learning and Stochastic Best Responses 

Average play moves closer to the Nash equilibrium frequencies over time. This is not 

anticipated by learning theory for the unstable game, particularly for the high payoff treatment. 

In order to provide insight into the possible learning process employed by the subjects, we 

empirically estimate the EWA learning model that was presented in Section 2. 

In our application, the realized (or forgone) profit πi(t-1) is calculated based on the 

observed action chosen by the paired player in the previous period. (Similar results obtain if we 

use the entire vector of all 11 other players’ previous actions.) Our implementation of the model 

incorporates stochastic best responses through a logit choice rule, the same specification as 

typically used in QRE applications. For our application with 80 periods, 36 subjects per 

treatment and 4 possible actions, the log-likelihood function is given by 

 
80 36 4

1 1 1
( (0), (0), , , , ) ln ( , ( )) ( )j j

i i i
t i j

LL A N I s s t P tφ ρ δ λ −
= = =

⎛ ⎞
= ⋅⎜ ⎟

⎝ ⎠
∑∑ ∑ , 

where I is an indicator function for the subjects’ choice and ( )j
iP t  is player i’s probability of 

choosing action j. 
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Table 2: Random Effects Logit Model of Dumb Action Choice 
 
Dependent Variable = 1 if Dumb Chosen; 0 otherwise 
 
Estimation 
Dataset 

High Payoff× 
Unstable× 

(t-1)/t 
(1) 

Low Payoff× 
Unstable× 

 (t-1)/t 
(2) 

High Payoff× 
Stable× 
(t-1)/t 

(3) 

Low Payoff× 
Stable× 
(t-1)/t 

(4) 

Probability 
Stable and Unstable 
coefficients equala 

(5) 

 
Obser-
vations 

 
 
Subjects 

 
 
Log-L 

All 80-period 
Sessions 

-1.039** 
(0.302) 

-0.387 
(0.299) 

-0.225 
(0.299) 

0.106 
(0.297) 

0.028 (High Pay) 
0.121 (Low Pay) 11400 144 -5432.4

High Payoffs 
80-period 
Sessions 

-1.039** 
(0.300) 

 -0.225 
(0.297) 

  
0.027 

 
5640 

 
72 

 
-2528.9

High Payoffs 
160-period 
Sessions (see 
Section 4.4) 

-0.733* 
(0.312) 

 0.247 
(0.440) 

  
0.035 

 
11520 

 
72 

 
-5510.6

Note: Session×(1/t) dummies included in each regression are not shown. The time variable t is measured in 10-period intervals, with 
t=1 corresponding to periods 1-10, t=2 corresponding to periods 11-20, etc. Standard errors in parentheses. * indicates coefficient 
significantly different from 0 at the 5-percent level; ** indicates coefficient significantly different from 0 at the 1-percent level (two-
tailed tests). aOne-tailed likelihood ratio tests, as implied by the TASP research hypotheses. 
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Table 3: Experience-Weighted Attraction and Stochastic Fictitious Play Learning Model Estimates  
 

  

EWA    EWA   Weighted Stochastic Fictitious Play 

  random parameter estimates  φ=ρ, δ=1 

Unstable, 
Low 

Payoffs 

Unstable, 
High 

Payoffs 

Stable, 
Low 

Payoffs 

Stable, 
High 

Payoffs
  

Unstable, 
Low 

Payoffs 

Unstable, 
High 

Payoffs 

Stable, 
Low 

Payoffs 

Stable, 
High 

Payoffs  

Unstable, 
Low 

Payoffs 

Unstable, 
High 

Payoffs 

Stable, 
Low 

Payoffs

Stable, 
High 

Payoffs

Decay Parameters                           
φ 0.889 0.882 0.910 0.934  E(φ) 0.878 0.873 0.834 0.879 φ 0.997 0.828 1.000 1.000 
 (0.029) (0.024) (0.012) (0.009) CV(φ) 0.193  0.171  0.152  0.175  (0.024) (0.111)   
           median φ 0.950  0.932  0.869  0.940           
ρ 0.568 0.488 0.634 0.529  E(ρ) 0.871 0.870 0.702 0.870 ρ         
 (0.171) (0.155) (0.075) (0.205) CV(ρ) 0.192 0.171 0.152 0.175      
           median ρ 0.942 0.927 0.731 0.930           

Imagination Factor                            
δ 0.000 0.000 0.000 0.000 δ 0.072 0.114 0.000 0.003 δ 1.000 1.000 1.000 1.000 
  (Likelihood maximized at 0 bound)    (0.060) (0.075) (0.000) (0.052)   (Constrained at 1)     

Payoff sensitivity                            
λ 0.014 0.011 0.015 0.010 E(λ) 0.067 0.055 0.024 0.067 λ 0.030 0.012 0.016 0.019 
 (0.004) (0.003) (0.003) (0.004) CV(λ) 0.442  0.366  0.763  0.352  (0.006) (0.005) (0.003) (0.004)
           median λ 0.061  0.052  0.019  0.063           

Log-
Like -3053.5 -3091.3 -3055.6 -3007.6    -2978.0 -3074.5 -3009.2 -2985.8   -3843.4 -3732.9 -3889.6 -3863.3

Notes: Standard errors in parentheses. CV denotes the estimated coefficient of variation (=standard deviation/mean) for the parameter distribution. 
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Table 3 reports the maximum likelihood estimates for this model.9 Decay parameter φ estimates 

always exceed decay parameter ρ  estimates, and in all four treatments a likelihood ratio test 

strongly rejects the null hypothesis that they are equal. Nevertheless, the right side of that table 

imposes the restrictions of φ ρ=  and δ = 1 to implement the special case of weighted stochastic 

fictitious play.10  

A drawback of the estimation results shown on the left side of Table 3 is that they pool 

across subjects whose learning could be heterogeneous. Wilcox (2006) shows that this 

heterogeneity can potentially introduce significant bias in parameter estimates for highly 

nonlinear learning models such as EWA. He recommends random parameter estimators to 

address this problem, and with his generous assistance we are able to report such estimates in the 

center of Table 3. The assumed distributions are lognormal for λ and a transformed normal (to 

range between 0 and 1) for φ and ρ. The table reports the mean, the coefficient of variation 

(standard deviation/mean) and the median to summarize the estimated distributions of these 

parameters. The point estimates for φ are similar to the central tendency of the estimated 

distributions, but for ρ and λ the point estimates are somewhat lower than the estimated 

distribution means. Although this is consistent with a statistical bias arising from imposing 

homogeneity, these random parameter estimates do not qualitatively change the puzzling finding 

that the imagination factor δ is near zero. That is, subjects’ learning evolves as if they focus only 

on realized payoffs and actions, and not on unchosen actions, contrary to fictitious play learning. 

This is more consistent with simple reinforcement learning, but simulations of our games for 

variations of reinforcement learning models (including those specifications considered in Erev 

and Roth, 1998) indicate that under reinforcement learning there is no predicted difference in 

behavior between the stable and unstable games. The simulations indicate that the frequency of 

Dumb rises only to about 30-35 percent, and is similar for both games.  So, while a form 

reinforcement learning is suggested by our EWA estimates, the fitted standard reinforcement 

learning models do not reproduce the main qualitative features of our data.  

 

                                                 
9 We impose the initial conditions A(0)=1 and N(0)=0 for all four strategies, but the results are robust to alternative 
initial attraction and experience weights. 
10 The restriction of δ = 1 implies that a subject’s unchosen actions receive the same weight as chosen actions in her 
belief updating, which is the assumption made in fictitious play learning. 
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Note also that the payoff sensitivity/precision parameter estimates (λ) are always quite 

low, suggesting that some subjects may have simply randomized uniformly. Indeed, we cannot 

reject the null hypothesis that action choices are randomly allocated across the four actions for 

20 of the 144 individual subjects. The estimated payoff sensitivity parameter estimates also never 

approach the critical level (0.17) identified in the continuous time and simulated learning models 

(Section 2).11 The estimates also do not increase systematically with the treatment change from 

low to high payoffs. This suggests that subjects were not very sensitive to payoff levels and were 

not more sensitive to payoffs that were 2.5 times higher in the high payoff treatment. In other 

words, although as predicted by TASP subjects played Dumb less frequently in the 

Unstable/High payoff treatment, the structural estimates of this learning model suggest that they 

did not respond as expected to this treatment manipulation.12 

 

4.3 Beliefs and Best Responses 

Recall that average play is expected to converge in all treatments.  However, if the TASP 

is a reasonable approximation of final outcomes then in the unstable game treatment, beliefs 

should continue to cycle, in contrast to equilibrium notions such as NE or QRE that predict that 

beliefs should converge. The difficulty in identifying a cycle is that its period depends on how 

quickly players discount previous beliefs and their level of payoff sensitivity. As documented in 

the previous subsection, these behavioral parameters are estimated rather imprecisely and the 

weighted stochastic fictitious play model is a poor approximation of subject learning for these 

games. Nevertheless, we can compare whether beliefs vary more in later periods in the unstable 

game than the stable game. 

Table 4 summarizes this comparison using the mean absolute value of subjects’ change in 

their reported belief from one period to the next, for each of the four actions. Although beliefs 

change by a smaller amount in the later periods for all treatment conditions, this increase in 

belief stability is insignificant in the unstable, high payoff treatment. Beliefs change on average 

                                                 
11 In the random parameter estimates shown in the middle of Table 3, the 99th percentile of the estimated lognormal 
distribution of λ is less than 0.17 in all treatment conditions. 
12 Prompted by a referee’s suggestion, we also estimated an alternative “nested” EWA model. In this model the top-
level decision of whether to play Dumb or choose an action from the RPS portion of the matrix is separate from the 
lower-level decision regarding which RPS action to select, and we estimated separate payoff sensitivity/precision 
parameters for these two decisions. These estimates indicate that for all four treatment conditions the payoff 
sensitivity remains very low, in the 0.01 to 0.03 range for the pooled data, although the sensitivity is two to three 
times higher for the top-level than for the lower-level. 
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by 2 percent less in periods 41-80 compared to periods 1-40 in the Unstable/High treatment. By 

comparison, beliefs change on average by 24 percent less in periods 41-80 compared to periods 

1-40 in the other three treatments. This provides evidence that belief stability improves over time 

except for the Unstable/High payoff treatment. 

 

Table 4: Mean Absolute Change in Reported Beliefs 
 
     Unstable, Low Pay  Unstable, High Pay  Stable, Low Pay    Stable, High Pay 
 Period

<41 
Period
>40 

Period 
<41 

Period 
>40 

Period
<41 

Period
>40 

Period 
<41 

Period 
>40 

Rock 0.147 0.107 0.117 0.128 0.111 0.087 0.133 0.091 
Paper 0.148 0.093 0.129 0.130 0.135 0.097 0.132 0.094 
Scissors 0.153 0.113 0.139 0.126 0.130 0.088 0.139 0.095 
Dumb 0.133 0.146 0.092 0.083 0.135 0.115 0.137 0.114 
 
Ave. % reduction 
In belief change       20.2%         2.2%   24.2%          27.2% 
periods 1-40 to  
periods 41-80 

 

Consider next the relationship between beliefs and best responses. As discussed in 

Appendix A (Proposition 2), the set of mixed strategies can be partitioned into a set E, for which 

the best response is Dumb, and everything else (denoted set F) where the best response is one of 

the other three strategies. In the unstable game the set E is a pyramid with the Shapley triangle as 

its base and the Nash equilibrium as its apex. Importantly, the point where all actions are chosen 

with equal probability is in this pyramid, and for many sessions average play begins (roughly) in 

this region. Therefore, we might expect the frequency of Dumb to increase initially. But as 

discussed in Appendix A, under fictitious play like learning, beliefs should move out of E into F 

and then the frequency of Dumb would begin to fall. 

Since subjects report their beliefs each period when choosing their action we have a 

direct measure of when beliefs are in each set. Figure 6 displays the fraction of reported beliefs 

in set E for each of the six sessions with the unstable game. Although some variation exists 

across sessions, in most periods between one-third and two-thirds of subjects report beliefs in E. 

No session shows a substantial downward trend in the fraction of beliefs in E. At the basis of 

stochastic fictitious play and QRE is the idea that players do not choose the best response to their 
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beliefs with probability one. Nevertheless, we observe subjects in the unstable game choose 

Dumb 893 out of the 2164 times their reported beliefs are in set E (41.3 percent), and they chose 

Dumb 893 out of the 3476 times their reported beliefs are in set F (25.7 percent).  So, there is a 

correspondence between beliefs and actions, yet the general upward trend in the frequency of D 

is not matched by an increase in the frequency of beliefs being reported in region E.  

 

 
 

The learning model estimates in Table 3 suggest that the belief decay parameter is close 

to one, particularly when imposing parameter restrictions consistent with weighted stochastic 

fictitious play (φ=ρ, δ=1). Of course, due to the low estimated payoff sensitivity λ, the likelihood 

function is very flat in estimating these discounting payoff parameters. Alternative estimates of 

the best-fitting decay parameter based directly on reported beliefs (not shown) also indicate a 

best pooled estimate near one. We also calculated the best-fitting decay parameter for each 

individual’s reported beliefs based on the same procedure employed by Ehrblatt et al. (2007), 

which minimizes the squared prediction error between the reported belief and the belief implied 

by the subjects’ experience for each possible decay parameter. Constraining this parameter 

estimate to the interval [0, 1], the best fit is on the boundary of 1 for 92 out of 144 subjects. 
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Thus, a large fraction of our subjects appear to update beliefs in a manner consistent with 

classical fictitious play. 

 

4.4 A Robustness Test Using Long Sessions 

In our main experiment subjects participated in 80 periods of play so that sessions could 

be completed comfortably within a two-hour time period. Even over this relatively long horizon, 

however, time trends are still evident in the data. Most notably, the proportion of Dumb choices 

tends to rise over time in all four treatments (cf Figure 5). This naturally raises the question of 

whether play would converge to Nash equilibrium in these games if sessions were run longer. 

In order to address this question, we conducted six supplementary longer sessions (72 

subjects) for 160 periods each, all in the high payoffs condition.13 In order to keep the per-period 

expected payoffs comparable to the shorter sessions, we drew twice as many periods (20 in each 

session) for payment at the conclusion of each session. One of the main factors that slows down 

subjects is the time required to enter their beliefs each period, since they must submit four 

numbers that add to 100 in different input boxes. Therefore, to speed play and reduce the tedium 

of in these longer sessions, we made the additional design change to either (a) only solicit beliefs 

in periods 1-40 (four sessions), (b) not solicit beliefs in any periods (two sessions). Below we 

show that behavior in these additional sessions appears unaffected by whether or not beliefs were 

elicited in the early periods. In spite of this streamlining to move periods along faster, including 

the instruction and payment time these longer sessions typically required 2.5 to 3 hours to 

complete. We believe that subjects’ attention was nevertheless maintained over these long 

sessions by the prospect of salient earnings that averaged $54.50 per subject. 

Figure 7 shows the proportion of subjects choosing the Dumb action for these 

supplementary sessions. The dashed line distinguishes the proportion for the two unstable game 

sessions where subjects never reported beliefs, from the two unstable game sessions with belief 

elicitation in the early periods (solid line with diamonds). The proportion of Dumb play increases 

initially, but then stabilizes or falls later in these long sessions. During periods 81-160, the 

fraction on Dumb ranges between 33 and 40 percent for the unstable game. This is closer to the 

                                                 
13 These longer sessions were quite expensive to conduct, requiring us to focus on only two of the four original 
treatments. As already shown in Section 4.1, the average rate that subjects play Dumb is not significantly different 
from Nash in the sessions with low payoffs, and the greatest deviation from Nash occurs in the high payoffs, 
unstable sessions. This motivated our choice of the two high payoffs treatments. 



25 
 

Nash prediction than the TASP prediction, but note that the average proportion of Dumb play is 

higher in the stable game (solid line with triangles) than in the unstable game. This is the game 

where play should eventually correspond to the Nash prediction of 50 percent on Dumb.  

 
In order to compare the behavior of the stable and unstable game treatments statistically, 

the bottom row of Table 2 reports the same random effects logit models of subjects’ choice of 

the Dumb strategy for these longer sessions. As before, each session has its own estimated 

starting probability (through separate β1j coefficients), and separate estimated asymptotic (β2) 

probabilities of choosing Dumb for the two treatments.14 For these new longer-session data, the 

estimated asymptote for the unstable game is significantly different from 0. Since a coefficient 

estimate of 0 for this logit model implies a Dumb frequency of 50 percent, for these longer 

sessions play appears to stabilize at a level less than this Nash equilibrium prediction. By 

                                                 
14 We first use a likelihood ratio test to determine whether these asymptotes are different for the two variants of the 
unstable game (i.e., with no belief elicitation, and with belief elicitation in periods 1-40). Consistent with the visual 
impression of Figure 7, the data do not reject the null hypothesis that the asymptotes are identical (p-value=0.658). 
We therefore pool these two treatments and estimate a common asymptote that combines all the data from these new 
long sessions. 
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contrast, the estimated asymptote for the stable game is not significantly different from 0, 

indicating that the play of Dumb is not inconsistent with the Nash equilibrium in the stable game. 

Moreover, a likelihood ratio test rejects the null hypothesis that the asymptotes are equal in the 

stable and unstable games. In summary, for these longer sessions we conclude that the frequency 

that subjects chose the critical Dumb action is further from Nash for the unstable game than the 

stable game. Subjects do choose this Dumb action with a higher frequency in these 

supplementary longer sessions than in the shorter sessions reported earlier, however. 
 

5. Discussion 
To summarize, the Nash hypothesis fared poorly in our data. The overall rate of playing 

Dumb ranged from 26 percent in the Unstable/High treatment to 42 percent in the Stable/Low 

treatment and only began to approach the NE value of 50 percent towards the end of some long 

Stable sessions. The performance of the QRE hypothesis was better but also was unconvincing. 

Although the observed rates fell into the (rather broad) QRE range, the data contradict the main 

prediction that there should be no difference in observed behavior between the Stable and 

Unstable treatments. 

The TASP hypothesis also had a mixed performance. As predicted, subjects played 

Dumb least often in the Unstable/High treatment, and most often in the Stable treatments.  This 

is an effect not explicable by equilibrium concepts.  Thus this suggests that whether an 

equilibrium is stable or unstable under learning can be an important factor in subject behavior. 

On the other hand, the proportion of Dumb play showed no consistent tendency to decline over 

time, much less to zero, in either Unstable treatment. 

  What drives these results? First, there is evidence that the difference in behavior across 

treatments is a result of learning, rather than coincidence or random error. Changes in reported 

beliefs in all treatments, except the Unstable/High, decrease over time, which is consistent with 

convergence to equilibrium. The lack of a decrease in the Unstable/High indicates that the 

different behavior in that treatment is indeed a result of learning being qualitatively different, and 

convergence more difficult and protracted.  

However, the theoretical prediction of complete divergence was not observed. Some 

clues to this can be found in a more detailed examination of the theory and the data. According 

to theory, learning dynamics in the Unstable treatments should increase the prevalence of Dumb 
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when players’ beliefs lie in a tetrahedral subset of the simplex labeled E, and decrease it only 

when they lie its complement F. The data show that subjects indeed are more likely to play 

Dumb when they report beliefs in E than in F. However, reported beliefs show little tendency to 

move (as predicted) into F. Perhaps the reason is that actual play offers little reason for beliefs to 

move in that direction. In several of the six Unstable sessions, average actual play (the belief 

proxy in the classic model of learning dynamics, fictitious play) lies in F in the first 20 periods, 

but it always moves back into E for the remainder of the 80 periods. Similar results obtain in the 

long (160-period) sessions, where average play is in E for the final 40 periods in all four unstable 

sessions. 

Another piece of evidence concerns the payoff sensitivity parameter λ. In theory, there is 

a critical value, λ ≈ 0.17, below which the TASP prediction fails. That is, for sufficiently low 

values of λ, behavior should be similar in Stable treatments as in Unstable treatments: the rate of 

Dumb play should remain in the 25-40 percent range and be higher in the High payoff 

treatments.  

We estimate the EWA model using aggregate data, and obtain λ estimates far below the 

critical value. This can account for the overall rates of Dumb play. To account for the lower rates 

of Dumb play in the High payoff treatments, we can point to the tendency of the Unstable 

simulations in Figure 2 to have a lower proportion of Dumb than the theoretical predictions, even 

when values of λ are relatively low. However, it is also true that the proportion of Dumb play in 

the Stable treatments is higher, and play is closer to Nash equilibrium, than suggested by the 

estimated level of λ.  

These accounts, of course, raise further questions.   In particular, why do players seem to 

use such small values of λ, i.e., respond so weakly to estimated payoff advantages? This weak 

response to payoffs would appear to be the best explanation for the difference between our 

experimental results and the point predictions of both equilibrium and learning theory.   

One can think of two potential explanations for this weak responsiveness. Choosing 

between them may be the key both to understanding our current results and giving directions for 

further research. First, payoff differences may have been not prominent enough to subjects. In 

which case, in future experiments, one could improve the feedback or the information provided, 

perhaps even showing the payoff advantages implied by forecasts and by average play.  Second, 

in contrast, the apparent irresponsiveness of subjects to payoffs may in fact indicate that actual 
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subject behavior is only partially captured by the EWA model, even though this model 

encompasses many forms of learning. In this case, the challenge is not to change the 

experimental design but to provide new and more refined theories of non-equilibrium behavior.  

Nonetheless, our experimental design provided a simple test as to whether some form of 

learning matters for behavior in games with mixed strategy equilibria. We conclude that learning 

is important since equilibrium analysis, whether Nash or QRE, does not readily account for the 

observed differences between the treatments. Thus, considering the stability or instability of 

equilibria under learning may help explain observed behavior.
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Appendix A (Stability Properties of RPSD Games) 

In this appendix, we state and prove some results on the behavior of the best response (BR) and 

perturbed best response (PBR) dynamics in the two games URPSD  and  SRPSD . There is 

already an extensive theoretical literature that shows how the PBR and BR dynamics can be used 

to predict the behavior of learning under stochastic fictitious play and fictitious play respectively. 

Specifically, Benaïm and Hirsch (1999), Hopkins (1999b, 2002), and Hofbauer and Sandholm 

(2002) look at the relation between the PBR dynamics and SFP, while Benaïm, Hofbauer and 

Sorin (2005) show the relationship between the BR dynamics and classical fictitious play. 

Finally, Benaïm, Hofbauer and Hopkins (2009) look at the relation between the BR dynamics 

and weighted fictitious play. 

We have seen the perturbed best response dynamics (PBR) in section 2.2. The continuous 

time best response (BR) dynamics are given by  

xxbx −∈ ))((π            (BR) 

where )(⋅b  is the best response correspondence. 

When one considers stability of mixed equilibria under learning in a single, symmetric 

population, there is a simple criterion. Some games are positive definite with respect to the set 

}0:{0 =∑∈= i
nn RR ξξ , that is for a game matrix A, 0>⋅ ξξ A for all non-zero nR0∈ξ . Mixed 

equilibria in such positive definite games are unstable, whereas mixed equilibria in games that 

are negative definite (with respect to nR0 ) are stable. 

The game  URPSD   is not positive definite. However, the RPS game that constitutes its 

first three strategies is positive definite. We use this to show that the mixed equilibrium of  

URPSD   is a saddlepoint and hence unstable with respect to the BR and PBR dynamics. 

 

Proposition 1 In URPSD , the perturbed equilibrium  p̂   is unstable under the logit form of the 

perturbed best response dynamics for all  17.0≈> ∗λλ  . 

 

Proof: This follows from results of Hopkins (1999b). The linearization of the logit PBR 

dynamics at  x̂   will be of the form  IBpR −)ˆ(λ   where  R  is the replicator operator and B  is 

the payoff matrix of URPSD .  Its eigenvalues will therefore be of the form  1−ikλ   where the ik  
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are the eigenvalues of BpR )ˆ( .  BpR )ˆ(  is a saddlepoint with stable manifold  321 xxx == .  But 

for λ  sufficiently small, all eigenvalues of  IBpR −)ˆ(λ   will be negative. We find the critical 

value of 0.17 by numerical analysis. □  

 

Next, we show that the BR dynamics converge to a cycle which places no weight on the fourth 

strategy D . 

 

Proposition 2 The Nash equilibrium 6/)3,1,1,1(=∗p  of the game URPSD  is unstable under the 

best response (BR) dynamics. Further, there is an attracting limit cycle, the Shapley triangle, 

with vertices, )0,231.0,077.0,692.0(1 =A , )0,077.0,692.0,231.0(2 =A  and 

)0,692.0,231.0,077.0(3 =A ,  and  time average, the TASP, of  3/)0,1,1,1(~ =x . 

 

Proof: We can partition the simplex into two sets.  One  E   is where the best response is the 

fourth strategy D , and F  where the best response is one or more of the first three strategies. It is 

straightforward but tedious to confirm that the set  E   is a pyramid with base the Shapley 

triangle on the face  04 =x   and apex at the mixed strategy equilibrium ∗p . In E , as D is the 

best response, under the BR dynamics we have  01 4
4 >−= xx   and  0<ix   for 3,2,1=i .  If the 

initial conditions satisfy 3/)1( 4321 xxxx −=== , then the dynamics converge to ∗p . Otherwise, 

the orbit exits E  and enters F .  In F , the best response  b   to  x   is almost everywhere one of 

the first three strategies.  So we have 04 <x .  Further, consider the Liapunov function 

AxbxV ⋅=)( . We have  

.AxbAbbV ⋅−⋅=  

As the best response b  is one of the first three strategies, we have  90=⋅ Abb   and when  x   is 

close to ∗p , clearly  Axb ⋅   is close to the equilibrium payoff of 45.  So, we have  45)( =∗pV   

and  0>V   for x  in F and in the neighborhood of ∗p .  Thus, orbits starting in F close to ∗p  in 

fact flow toward the set  90=⋅ Axb , which is contained in the face of the simplex where 04 =x .  

The dynamics on this face are the same as for the RPS game involving the first three strategies.  

One can then apply the results in Benaïm, Hofbauer and Hopkins (2009) to show that the 

Shapley triangle attracts the whole of this face. So, as the dynamic approaches the face, it must 
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approach the Shapley triangle. Then, the time average can be calculated directly. □ 

 

The game SRPSD  is negative definite and hence its mixed equilibrium is a global attractor under 

both the BR and PBR dynamics. This implies it is also an attractor for (stochastic) fictitious play. 

 

Proposition 3 The Nash equilibrium  6/)3,1,1,1(=∗p   of the game  SRPSD  is globally 

asymptotically stable under the best response dynamics. The corresponding perturbed 

equilibrium (QRE) is globally asymptotically stable under the perturbed best response dynamics 

for all 0≥λ . 

 

Proof: It is possible to verify that in the game SRPSD  is negative definite and thus its unique 

Nash equilibrium is an evolutionarily stable strategy or ESS. The first result then follows from 

Hofbauer (2000, Theorem 4.1) and the second from Hofbauer (2000, Theorem 4.2). □ 

 

What do these results imply for stochastic fictitious play? Suppose we have a large population of 

players who are repeatedly randomly matched to play either  URPSD  or SRPSD . All players use 

the logit choice rule and update attractions according to the EWA rule given in Section 2.2, but 

for the special case of SFP with the restriction that  φρ =  and that 1=δ . Assume further that at 

all times all players have the same information and, therefore, the same attractions.  

 

Proposition 4 (a) URPSD : for 17.0≈> ∗λλ , the population SFP process diverges from the 

perturbed Nash equilibrium. If  1<= φρ  , taking the joint limit 1→ρ ,  ∞→λ   and ∞→t , the 

time average of play approaches the TASP  3/)0,1,1,1(~ =p  .  

(b) SRPSD : the population SFP process will approach the perturbed equilibrium and taking the 

joint limit, we have 

 

ptx
t

ˆ)(limlim
1

=
∞→→ρ

 

 

players' mixed strategies will approach the perturbed equilibrium. 
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Proof: These results follow from our earlier results on the behavior of the BR and PBR 

dynamics and the application of stochastic approximation theory.  For a), see Benaïm, Hofbauer 

and Hopkins (2009). The result b) follows from the global stability result of Proposition 3, and 

application of standard results, for example, Theorem 3 of Benveniste et al. (1990, p. 44). □ 
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Appendix B (Experiment Instructions) 
 This is an experiment in the economics of strategic decision making. Various agencies 

have provided funds for this research. If you follow the instructions and make appropriate 

decisions, you can earn an appreciable amount of money. The currency used in the experiment is 

francs. Your francs will be converted to dollars at a rate of _____ dollars equals 100 francs. At 

the end of today’s session, you will be paid in private and in cash for ten randomly-selected 

periods. 

 It is important that you remain silent and do not look at other people’s work. If you have 

any questions, or need assistance of any kind, please raise your hand and an experimenter will 

come to you. If you talk, laugh, exclaim out loud, etc., you will be asked to leave and you will 

not be paid. We expect and appreciate your cooperation. 

 The experiment consists of 80 separate decision making periods. At the beginning of each 

decision making period you will be randomly re-paired with another participant. Hence, at the 

beginning of each decision making period, you will have a one in  11  chance of being 

matched with any one of the  12  other participants. 

 Each period, you and all other participants will choose an action, either A, B, C or D. An 

earnings table is provided on the decision screen that tells you the earnings you receive given the 

action you and your currently paired participant chose. See the decision screens on the next page. 

To make your decision you will use your mouse to click on the A, B, C or D buttons under Your 

Choice: and then click on the OK button. 

 Your earnings from the action choices each period are found in the box determined by 

your action and the action of the participant that you are paired with for the current decision 

making period. The values in the box determined by the intersection of the row and column 

chosen are the amounts of money (in experimental francs) that you and the other participant earn 

in the current period. These amounts will be converted to cash and paid at the end of the 

experiment if the current period is one of the ten periods that is randomly chosen for payment. 
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Decision Screen 
 

To take a random example, if you choose C and the other participant chooses D, then  as 

you can see in the square determined by the intersection of the third row (labeled C) and the 

fourth column (labeled D), you earn 20 francs and the other participant earns 90 francs. The 16 

different boxes indicate the amounts earned for every different possible combination of A, B, C 

and D. 

Predictions 

When you make your action choice each period you will also enter your prediction about 

how likely the person you are paired with makes each of his or her action choices. In addition to 
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your earnings from your action choices we will pay you an extra amount depending upon how 

good your prediction is. 

To make this prediction you need to fill in the boxes to the right of Your Prediction: on 

the Decision Screen, indicating what the chances are that the participant you are paired with will 

make these choices. For example, suppose you think there is a 30% chance that this other person 

will choose C, and a 70% chance that he or she will choose D. This indicates that you believe 

that D is more than twice as likely as C, and that you do not believe that either A or B will be 

chosen. [The probability percentages must be whole numbers (no decimals) and sum to 100% or 

the computer won’t accept them.] 

At the end of the period, we will look at the choice actually made by the person you are 

paired with and compare his or her choice to your prediction. We will then pay you for your 

prediction as follows: 

Suppose you predict that the person you are paired with will choose D with a 70% chance 

and C with a 30% chance (as in the example above), with 0% chances placed on A and B. 

Suppose further that this person actually chooses D. In that case your earnings from your 

prediction are 

Prediction Payoff (D choice) = 5 – 5(0.72 + 0.32 + 02 + 02) + 10(0.70) = 9.1 francs. 

In other words, we will give you a fixed amount of 5 francs from which we will subtract 

and add different amounts. We subtract 5 times the sum of the squared probabilities you 

indicated for the four choices. Then we add 10 times the probability that you indicated for the 

choice of the person you are paired with actually made (0.7 probability in this example).  

For these same example predictions, if the person you are paired with actually chooses A 

(which you predicted would happen with 0% probability), your prediction earnings are 

Prediction Payoff (A choice) = 5 – 5(0.72 + 0.32 + 02 + 02) + 10(0) = 2.1 francs. 

Your prediction payoff is higher (9.1) in the first part of this example than in the second part of 

this example (2.1) because your prediction was more accurate in the first part. 

Note that the lowest payoff occurs under this payoff procedure when you state that you 

believe that there is a 100% chance that a particular action is going to be taken when it turns out 

that another choice is made. In this case your prediction payoff would be 0, so you can never lose 
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earnings from inaccurate predictions. The highest payoff occurs when you predict correctly and 

assign 100% to the choice that turns out to the actual choice made by the person you are paired 

with; in this case your prediction payoff would be 10 francs. 

Note that since your prediction is made before you know which action is chosen 

by the person you are paired with, you maximize the expected size of your 

prediction payoff by simply stating your true beliefs about what you think this 

other person will do. Any other prediction will decrease the amount you can 

expect to earn from your prediction payoff. 

 

The End of the Period 
 
 When all participants have made choices for the current period you will be automatically 

switched to the outcome screen, as shown on the next page. This screen displays your choice as 

well as the choice of the person you are paired with for the current decision making period. The 

chosen box is highlighted with a large X. It also shows your earnings for this period for your 

action choice (ABCD decision) and prediction, and your total earnings for the period. The 

outcome screen also displays the number of A, B, C and D choices made by all participants 

during the current period. 

Once the outcome screen is displayed you should record your choice and the choice of the 

participant you were paired with on your Personal Record Sheet. Also record your earnings. 

Then click on the continue button on the lower right of your screen. Remember, at the start of the 

next period you are randomly re-paired with the other participants, and you are randomly re-

paired each and every period of the experiment. 

The End of the Experiment 
 

At the end of the experiment we will randomly choose 10 of the 80 periods for actual 

payment using dice rolls (two ten-sided die, one with the tens digit and one with the ones digit). 

You will sum the total earnings for these 10 periods and convert them to a U.S. dollar payment, 

as shown on the last page of your record sheet. 

 We will now pass out a questionnaire to make sure that all participants understand how to 

read the earnings table and understand other important features of the instructions. Please fill it 
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out now. Raise your hand when you are finished and we will collect it. If there are any mistakes 

on any questionnaire, I will go over the relevant part of the instructions again. Do not put your 

name on the questionnaire. 

 

 

Example Outcome Screen 




