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Abstract. We propose an equilibrium refinement of strict perfect equilib-
rium for the finite normal form games, which is not known in the literature.
Okada came up with the idea of strict perfect equilibrium by strengthening
the main definition of a perfect equilibrium, due to Selten [14]. We consider
the alternative (and equivalent) definition of perfect equilibrium, based on
the substitute sequences, as appeared in Selten [14].

We show that by strengthening and modifiyng this definition slightly, one
can obtain a refinement stronger than strict perfectness. We call the new
refinement strict substitute perfect equilibrium. The main advantage of this
solution concept is that it reflects the local dominance of an equilibrium
point. An example is provided to show that a strict perfect equilibrium
may fail to be strict substitute perfect.

JEL classification: C7

Keywords: Perfect equilibrium, strictly perfect equilibrium, substitute se-
quence, substitute perfect equilibrium, unit simplex.

1. Introduction

The concept of equilibrium is central in the game theory, for it captures the essence
of payoff-maximizing behavior of players faced with interactions and predicts how
the game should be played. The answer to the question which outcome should be
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considered reasonable determines the solution concept. The basic idea underlying
equilibrium is non-regretting, or no profitable deviation for a single player when-
ever others stick to their strategies, which gives rise to the definition of a Nash
equilibrium.

However, some strategy profiles that pass the basic equilibrium requirement still
fail to match our intuition about the way the game should be played. There were
many refinements of a Nash equilibrium concept introduced in order to eliminate
intuitively unreasonable equilibria. Most of them were based on robustness to slight
imperfections of rationality, which was originated by Selten [14]. Whether you re-
quire stability against arbitrary deviations from rationality approaching zero or de-
viation satisfying certain strengthened criteria may give you refinements as proper
equilibrium proposed by Myerson [7] or strictly perfect equilibrium by Okada [10].

We follow the same principle of bounded rationality requiring stability against
certain perturbations of rationality, namely by requiring that a refined equilibrium
should be stable against every substitute sequence for itself satisfying certain proper-
ties. We basically strengthen the alternative characterization of perfect equilibrium
points, which gives even stronger refinement than strict perfection.

The paper is organized as follows. In the section Definitions and Methodology
we present our framework and provide the definitions of the concepts we are using
throughout this paper. In the next section we review some of the equilibrium con-
cepts currently being used in the literature, outline their advantages and limitations,
and illustrate the necessity of further refinement.

In the fourth section we are narrowing the notion of a substitute sequence, intro-
ducing so-called ultra-substitute sequences, and strengthen the definition of perfect
equilibrium, requiring that the refined equilibrium should be a best reply against
every substitute sequence eventually. We show that the new solution concept is ac-
tually a refinement of strict perfect and hence proper equilibria (Theorem 4.6). Ex-
ample 4.7 motivates strict substitute perfect equilibria, showing that it can actually
eliminate unreasonably equilibria, which proper and even strictly perfect equilibria
cannot rule out.

In this Section 4 we also provide characterization of the proposed refinement
in terms of behavior of best responces in a neighborhood of an equilibrium point
(Lemma 4.4) and the local dominance (Theorem 4.9). The latter strengthens the mo-
tivation for the refinement, for local dominance is a desirable property that supports
our intuition about a useful refinement (yet this property may be rather restrictive,
which results in strict substitute perfect equilibria failing to exist in some games).
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2. Definitions and Methodology

Definition 2.1. A normal form Γ of a finite n-player game is a tuple (Π1, ⋅ ⋅ ⋅ ,Πn, H),
where Πi is a finite set of pure strategies of player i, Π =

∏n

i=1
Πi, and H : Π→→ℝ

n

is the payoff function that assigns to every � ∈ Π the vector of payoffs H(�) =
(H1(�), ⋅ ⋅ ⋅ , Hn(�)).

Definition 2.2. A mixed strategy ai for player i is a probability distribution over
Πi. The set of all such probability distributions is denoted by Ai ≡ Δci, where ci is
the cardinality of Πi. The set of mixed strategies for the game Γ is A =

∏n

i=1
Ai.

We can now define an expected payoff function ℎ, which is an extension of the
payoff function H to all of A.

Definition 2.3. An expected payoff function is a function ℎ : A→→ℝ
n such that

ℎ(a) =
∏

�∈Π

p1(�)p2(�) ⋅ ⋅ ⋅ pn(�)H(�),

where pi(�) is the probability that a assigns to the itℎ component of �, i.e., the
probability with which player i chooses �i.

Mixed strategy ai for player i is comletely mixed if ai ∈ Δo
pi
. Mixed strategy a is

completely mixed if for all i, ai is completely mixed.

Definition 2.4. A perturbed game Γ̂ of a normal form game Γ is a tuple (Γ, �),
where � = (�1, . . . , �n) is a strictly positive vector of trembles satisfying for all i

ci
∑

k=1

�ik ≤ 1,

such that for each i ∈ {1, . . . , n} and j ∈ {1, . . . , ci} we have

pi(�
i
j) ≥ �ij,

and for each i the following holds:
ci
∑

j=1

pi(�
i
j) = 1.
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So vector � can be interpreted as a vector of minimum probabilities corresponding
to each �i

j ∈ Πi. A perturbed game has the property that pure strategies are ruled

out, that is the action set Âi for generic player i is a subset of (Ai)
0.

The latter restriction gives rise to the notion of maximum probability of the choice
�i
j. Observe that since no pure strategy can be played with zero probability, no pure

strategy can be played with probability one either.

Definition 2.5. A maximum probability of the choice �i
j of player i is defined

as

�(�i
j) = 1 + �ij −

ci
∑

k=1

�ik < 1.

Definition 2.6. Gven any topological spaces X1, . . . , Xm, a projection map onto
j’s factor is a function Pj :

∏m

i=1
Xi→→Xj defined by the equation

Pj(x1, . . . , xj−1, xj , xj+1, . . . , xm) = xj.

Definition 2.7. A strategy ãi of player i is called a weakly (strictly) dominant
strategy if for every a−i ∈ A−i and ai ∈ Ai, Ui(ãi, a−i) > Ui(ai, a−i) (Ui(ãi, a−i) ≥
Ui(ai, a−i)).

Definition 2.8. A sequence of mixed strategies {an} is called a substitute se-
quence for a mixed strategy a if an ∈ Ao for every n ∈ ℕ and limn→∞ an = a.

Definition 2.9. A mixed strategy a∗i ∈ Ai of the player i is a best reply to the
substitute sequence

{

an−i

}

for a−i if a
∗ is in the best responce to an−i for every n ∈ ℕ.

Definition 2.10. A mixed strategy a∗ ∈ A is called a substitute perfect equilib-
rium point of a normal form game Γ if a∗i is a best reply to at least one substitute
sequence for a∗, say {an}. That is, a∗i is a best reply to

{

an−i

}

for each player i.

Definition 2.11. A mixed strategy a∗ ∈ A is called a perfect equilibrium point
of a normal form game Γ if a∗ is a Nash equilibrium for Γ and for some sequence
of perturbed games Γ̂k = (Γ, �k) with �k → 0, there exists a Nash equilibrium point

ak of Γ̂k for each k such that ak → a∗ as k → ∞.

Selten [14] showed that a strategy profile is perfect equilibrium if and only if it is
substitute perfect equilibrium.
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Definition 2.12. A mixed strategy a∗ ∈ A is called a strictly perfect equilibrium
point of a normal form game Γ if a∗ is a Nash equilibrium for Γ and for any sequence
of perturbed games Γ̂k = (Γ, �k) with �k → 0, there exists a Nash equilibrium point

ak of Γ̂k for each k such that ak → a∗ as k → ∞.

3. Motivation and Overview of Existing Equilibrium Concepts

There have been many equilibrium concepts proposed by game theorists, each
having its own advantages and limitations. The broadest definition is due to Nash,
who proposed it in his pioneering work [8]. This formulation of equilibrium appeared
to be weak, however it is fundamenatal in the economic literature and serves as a
basis for further equilibrium refinements.

Selten [13] strengthened the definition of a Nash equilibrium, eliminating non-
credible threats in the extensive form games by introducing a subgame perfect

equilibrium (profile that induces Nash equilibrium on every subgame). He did
not yet take into account the small imperfections of rationality, and there were a
number of limitations, which called for revising the equilibrium concept. In fact, for
the normal form games Nash and subgame perfect equilibria coincide.

Kreps and Wilson (1982) further stregthened the concept of equilibrium and in-
troduced sequential equilibria by imposing the criterion of sequential rationality
(optimal play starting from every information set) and consistency. Yet, sequential
and Nash equilibria coincide in case of a normal form game.

Selten realized the limitations of subgame perfect equilibria (in particular, they
don’t resolve all the problems related to the unreached parts of the game) and took a
novel approach to defining an equilibrium. The basic idea of the equilibrium concept
proposed by him is stability against arbitrary imperfections of rationality.

For this purpose Selten [14] introduced the so-called “Model of Slight Mistakes”.
According to it, for every player i there is a small probability for the breakdown of
rationality �i > 0. Whenever rationality breaks down, every choice c ∈ Πi is selected
with some positive probability qic.

Suppose that player j intends to select the choice c with probability pc. In case
of imperfect rationality the total probability of selecting the choice c is
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p̂c = (1− �j)pc + �jq
j
c . (3.1)

Notice that the mapping g : A → Â defined by the equation 3.1 for each player j
is one-to-one and onto. This implies that under incomplete rstionality, the problem
of choosing a strategy from A, which brings the payoff according to the composite
function ℎ ∘ g, is equivalent to choosing a strategy from Â with the corresponding
payoff determined by ℎ.

In fact, the function g is a homeomorphism from A to Â, since it is continuous
by definition, and the inverse function g−1 : Â → A defined by

pc =
1

1− �j
(p̂c − �jq

j
c) (3.2)

is clearly continuous.

Thus, the specified probabilities � and q transform the original normal form game
Γ into the perturbed game Γ̂, where the strategy space of each player is restricted
according to the corresponding vector of minimum probabilities

�ic = �iq
i
c . (3.3)

Selten treated complete rationality as a limiting case of incomplete rationality.
In case of imperfect rationality players make mistakes (“hand trembles”), but when
the vector of mistake probabilities � approaches zero (which implies that the vector
of minimum probabilities � goes to zero), we can determine whether there is any
sequence of equilibrium points for perturbed games approaching a given equilibrium
point of the original game. If there exists such a sequence for at least one sequence
of trembles converging to zero, we call the equilibrium point of the original game
perfect, or stable against certain rationality imperfections.

Then, the natural question arises whether we can find such sequence of equilibrium
points for any sequence of trembles approaching zero. It turns out that in general
the answer is no, which is due to Okada [10]. He found a set of conditions for
games that guarantee the strengthened requirement of perfectness to hold. With this
strengthened condition he introduced a refinement of perfectness concept - strictly
perfect equilibria.

Myerson [7] as well strengthened the perfectness concept by imposing a restriction
that more costly mistakes are made with smaller probability, introducing proper

equilibria. It is rather a restriction of the way incomplete raionality approaches
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complete rationality. No surprisingly then, every proper equilibrium is strictly per-
fect.

It is worth mentioning that proper equilibria are attractive in the sense that, being
stronger than perfect equilibria, they exist for any normal form game, while strictly
perfect equilibria may fail to exist.

There is a substantial common drawback of all the known refinements based on
the trembling-hand framework. It is assumed that probabilities �i and q are com-

mon knowledge. However, those probabilities are due to “unspecified psycholog-
ical mechanism” (Selten, [14]), and the common knowledge assumption seems too
restrictive.

For any player i, other players should rather have a sense of the degree of player i’s
irrationality (bounds on �i and qi) rather than specific values of those probabilities.
This motivated us to propose a new refinement of perfect equilibria, which relaxes
the common knowledge assumption.

4. The New Solution Concept: Definition and Properties

We first introduce some new definitions and concepts that are key in formulat-
ing the new refinement, which we call strict substitute perfect equilibrium. As we
mentioned, one way to obtain the refinement of perfect equilibria is to consider its
main definition proposed by Selten [12, p.38], and strengthen it, requiring that a
strict perfect equilibrium point is a limit equilibrium point for every sequence of
perturbed games.

Another way to refine the perfectness concept is to consider the characterization
of a substitute perfect equilibrium, due to Selten [12, p.49], which can be basically
regarded as an alternative definition of a perfect equilibrium, for Selten showed that
these two concepts are equivalent.

This way to obtain further refinement has not been considered in the literature so
far. We show that strengthening the alternative definition in a certain way allows to
obtain a refinement which is stronger than strict perfectness. We basically require
that a refined equilibrium is a best reply to every substitute sequence that possesses
certain properties. For these purposes we introduce an ultra-substitute sequence of
strategies.
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Definition 4.1. A sequence of mixed strategies {an} is called an ultra-substitute
sequence for a mixed strategy a if the following conditions hold:

(1) an ∈ Ao for every n ∈ ℕ, that is, each strategy profile an is completely mixed,
(2) anj = aj for all n and for every j ∈ {1, . . . , N} such that aj ∈ Ao

j ,
(3) limn→∞ an = a.

As we can see, for any given strategy profile every ultra-substitute sequence is a
substitute sequence, however the converse may not be true. Also, if a is interior,
then the only substitute sequence for a is the constant sequence {an} such that
an = a for all n.

Definition 4.2. A mixed strategy a∗i ∈ Ai of player i is eventually a best reply
to the substitute sequence

{

an−i

}

for a−i if there exists N > 0 such that a∗i is a best
reply to an−i for every n ≥ N .

The idea of the further refinement of perfect equilibrium is to require stability
against any ultra-substitute sequence eventually. That is, the behavior of finite
number of terms in the substitute sequence does not matter (as it does not matter
for convergence of any sequence or series), what matters is the limiting behavior, or,
as it turns out (see Lemma 3.4), the behavior in some neighborhood of an equilibrium
profile.

Definition 4.3. A mixed strategy profile a∗ = (a∗1, . . . , a
∗
N) ∈ A is called a strict

substitute perfect equilibrium point of a normal form game Γ if a∗ is eventually
a best reply to every ultra-substitute sequence an for itself.

Notice that an interior Nash equilibrium point is automatically a strict substitute
perfect equilibrium point.

Let us introduce the following notation. Let I denote the index set of players for
the game, that is, for the N -person game we have I = {1, . . . , N}. Given a strategy
profile a ∈ A, introduce I1(a) as the set of all i ∈ I such that ai is on the boundary
of Ai; similarly let I2(a) denote the set of all i ∈ I such that ai is in the interior of
Ai. Since any point in a set is either in the interior of it or on the boundary, the
two index sets define a partition of the index set I, that is,

I = I1(a) ⊔ I2(a) for any strategy profile a ∈ A.

The following lemma provides characterization of a strict substitute perfect equi-
librium in terms of behavior of the best responce correspondence on the neighbor-
hoods of an equilibrium point. That is, it gives the necessary and sufficient condition



9

for strict substitute perfectness. Essentially this condition requires the equilibrium
point to be a best reply to every strategy profile in some “neighborhhod” of itself (it
is not a neighborhood strictly speaking because its projection onto any index from
I2 degenerates to a singleton).

Lemma 4.4. A strategy profile a∗ is a strict substitute perfect equilibrium if and
only if there exists a neighborhood V of a∗ such that a∗ is a best reply to a whenever
Pj(a) ∈ Pj(V ) for each j ∈ I1(a

∗) and Pi(a) = a∗i for each i ∈ I2(a
∗).

Proof. (⇒)

Claim 1. Strict substitute perfect equilibrium at a∗ implies that there exists a neigh-
borhood V of a∗ such that a∗ is a best reply to a whenever Pj(a) ∈ Pj(V ) ∩ Ao

j for
each j ∈ I1(a

∗) and Pi(a) = a∗i for each i ∈ I2(a
∗).

Assume a∗ is a strict substitute perfect equilibrium for N -player normal form
game Γ. Suppose by contradiction for every neighborhood V of a∗ there exists a
strategy profile bV with Pj(b

V ) ∈ Pj(V ) ∩ Ao
j for all j ∈ I1(a

∗), and Pi(b
V ) = a∗i for

all i ∈ I2(a
∗) (call it condition (∗) for bV ), such that a∗ is not in the best responce

for bV .

Given the neighborhood V of a∗, define diam(V ) = supi∈{1,...,N} {∥a
∗
i − ai∥ : ai ∈ Pi(V )}.

Consider the sequence of neighborhoods of a∗, {V n}∞n=1
such that diam(V n) → 0

as n → ∞. Let {bn}∞n=1
be the corresponding sequence of strategy profiles such that

condition (∗) holds. Then {bn} is an ultra-substitute sequence for a∗, for we have
supi∈{1,...,N} ∥a

∗
i − bni ∥ → 0 as n → ∞. But this is a contradiction, since a∗ is a strict

substitute perfect equilibrium. This proves our claim.

Now we prove the desired implication. Let a∗ be a strict substitute perfect equi-
librium, and fix a ∈ A such that Pj(a) ∈ Pj(V ) ∩ ∂Aj for each j ∈ I1(a

∗) and
Pi(a) = a∗i for each i ∈ I2(a

∗). Let {an} be any ultra-substitute sequence approach-
ing a such that an ∈ V for each n. a∗ is a best responce to an for each n. Then
by upper-hemicontinuity of the best responce correspondence, which follows from
Berge’s maximum theorem, a∗ is a best responce to a (since limn→∞ an = a). Hence
a∗ is a best responce to a whenever Pj(a) ∈ Pj(V ) ∩ Ao

j for each j ∈ I1(a
∗) and

Pi(a) = a∗i for each i ∈ I2(a
∗).

(⇐) Let V be such neighborhood of a∗ that a∗ ia a best reply to a whenever
Pj(a) ∈ Pj(V ) for all j ∈ I1(a

∗) and Pi(a) = a∗i for all i ∈ I2(a
∗). Suppose by

contradiction a∗ is not a strict substitute perfect equilibrium. Then there exists an
ultra-substitute sequence for a∗, {bn}∞n=1

satisfying
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∀m ∈ ℕ ∃ k ≥ m such that a∗ is not a best reply for bk.

Let m be such index that Pj(b
m) ∈ Pj(V ) for all j ∈ I1(a

∗), and Pj(b
k) ∈ Pj(V )

for all k ≥ m and for all j ∈ I1(a
∗). Such m exists since bn is an ultra-substitute

sequence for a∗. But then there exists k ≥ m such that a∗ is not a best responce for
bk, which together with Pj(b

k) ∈ Pj(V ) for all j ∈ I1(a
∗) drives to a contradiction.

Theorem 4.5. For any finite normal form game Γ a strict substitute perfect equi-
librium is a Nash equilibrium for Γ.

The proof of this theorem is trivial, for strict substitute perfect equilibrium is a
substitute perfect equilibrium (which is impled by the fact that for any a ∈ A, any
ultra-substitute sequence for a is a substitute sequence for a). It was proven by
Selten [14] that every substitute perfect equilibrium is a Nash equilibrium.

The following theorem shows that the equilibrium concept introduced in this
paper is a refinement of strict perfection. Obviously it is stronger than Theorem 3.5,
however in its proof we used the fact that every strict substitute perfect equilibrium is
a Nash equilibrium. Using the characterization of strict substitute perfect equilibria
expressed in Lemma 3.4. makes the proof of the following theorem tractable.

Theorem 4.6. If a strategy profile a∗ is strict substitute perfect equilibrium, then it
is strict perfect equilibrium.

Proof. Assume that a∗ ∈ A is strict substitute perfect equilibrium. Let Ṽ be the
neighborhood of a∗ satisfying conditions of Lemma 3.4, that is, a∗ is a best reply to
a whenever Pj(a) ∈ Pj(Ṽ ) for all j ∈ I1(a

∗) and Pi(a) = a∗i for all i ∈ I2(a
∗).

Fix � > 0, and consider the neighborhood of a∗ given by V = Ṽ ∩ B�(a
∗), where

B�(a
∗) is the �-ball about a∗. Fix a sequence of perturbed games Γ̂n, and let Ân be

the corresponding sequence of strategy spaces for Γ̂n. Since limn→∞ Ân = A, then

∃m ∈ ℕ ∋ ∀n ≥ m : Ân ∩ Pj(V ) ∕= ∕⃝, ∀ j ∈ I1(a
∗).

Claim: for every k ≥ m there exists a strategy profile bk satisfying bkj ∈ ∂Âk
j ∩ Vj

for all j ∈ I1(a
∗) and bki = a∗i for all i ∈ I2(a

∗), such that bk is an equilibrium point

of Γ̂k.
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Indeed, fix k ≥ m, and note that Âk ∩ Pj(V ) ∕= ∕⃝, for all j ∈ I1(a
∗). Fix

j ∈ I1(a
∗), and let sj be the face of the unit simplex Aj that is the best reply to

any a−j satisfying condition (∗). Notice that since a∗ is a Nash equilibrium, we have

a∗j ∈ sj. Let ŝkj be the corresponding face of the unit simplex Âk
j , then by Lemma

3.5 from [3], ŝkj is the best reply to any aj ∈ Âk
j satisfying condition (∗) (taking V

as a neighborhood of a∗).

Also ŝkj ∩Vj ∕= ∕⃝ since Âk
j ∩Vj ∕= ∕⃝. Pick any bkj ∈ ŝkj ∩Vj for each j ∈ I1(a

∗), and

let bki = a∗i for each i ∈ I2(a
∗). Then the tuple bk = (bk1, b

k
2, . . . , b

k
N) is an equilibrium

point of Γ̂k. Indeed, bkj ∈ Vj for every j ∈ I1(a
∗) and bki = a∗i for each i ∈ I2(a

∗), so

bk satisfies condition (∗). We also have bkj ∈ ŝkj for every j ∈ I1(a
∗). Therefore bk is

a best reply to itself. Observation that bkj ∈ Âk shows that bk is a Nash equilibrium

for Γ̂k.

Thus we just proved existence of an equilibrium point for eventually all Γ̂k within
�-neighborhood of a∗, for any � > 0. Letting � ↓ 0, we conclude that a∗ is strict
perfect equilibrium.

We try to provide justification for the equilibrium refinement introduced in this
paper and show the ways it captures the intuition about how the game is to be
played. Introducing the perfect equilibria, Selten required it to be stable against
at least one sequence of perturbations of rationality, that is to be a limit point of
equilibria for some sequence of perturbed games. Okada strengthened this concept,
requiring strict perfect eqiuilibria to be stable against any sequence of trembles
approaching zero.

The idea of our equilibrium refinement is based upon so-called “trembling-hand
miopy”. We can describe it as follows: consider the standard trembling-hand frame-
work, where there is a slight chance of rationality break-down. The main reason for
introducing the ultra-substitute sequences and using it to obtain our equilibrium re-
finement is that the interior strategy profiles are not disturbed for sufficiently small
trembles. At the same time strategy profiles that are on the boundary of the strat-
egy set cannot be implemented due to trembles, and they are approximated by the
sequence of completely mixed strategy profiles.

When player i is choosing best reply against some strategy profile a−i, if some
aj such that j ∕= i is on the boundary of Aj, player i knows that aj cannot be im-
plemented due to trembles, however rather some approximating profile from certain
neighborhood of aj is to be played. Since the moves are made simultaneously, player
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1/2 u d
A 1, -1 0, 3
B 1, 2 0, -2
C 0, 0 0, 0

Table 1

i cannot distinguish between the strategy profiles from that neighborhood (which we
call “trembling-hand miopy”), and to ensure stability of the equilibrium point,
we require that ai is a best reply no matter which point from the sufficiently small
neighborhood of aj is chosen.

The following example provides a further motivation for our refinement.

Example 4.7. Consider the two-person normal form game depicted in the Table 1.

There is a continuum of Nash equilibria (among which the pure strategies equi-
libria are (A, d), (B, u) and (C, d)):

(1) strategy profiles satisfying pd = 1, pA ≥ pB
(2) profiles with pA = pB = 0.5, 0 < pd < 1, and
(3) strategy profiles satisfying pA ≤ pB, pu = 1.

An equilibrium point with pC = pd = 1 looks inferior, for it gives the smallest equi-
librium payoff to either player. No surprise, it does not even satisfy the perfectness
criterion. However even strict perfect equilibria may turn out to be unreasonable.

Notice that an equilibrium point a such that pA(a) = pB(a) = 0.5, pd(a) = 1 is
strictly perfect and hence proper. However, we argue that this equilibrium point
hardly can be considered reasonable, that is we would not expect it to be an outcome
whenever the game is played. Calculating expected payoffs at a, we get U1(a) = 0
and U1(a) = 0.5. At the same time an equilibrium point b with pB(b) = 1, pu(b) = 1
yields higher payoffs to both players - 1 and 2, respectively. Even an equilibrium
profile c such that pA(c) = 1, pd(c) = 1 brings higher payoff to the second player,
leaving player 1 as well-off as before. In this case we say that profile b Pareto
dominates profile a, while c weakly Pareto dominates a.

Equilibrium profile a fails to be strict substitute perfect, while it is proper and
even strictly perfect.

From the previous example one would hope that the concept of strict substitute
perfect equilibrium rules out unreasonable equilibria in the sence of Pareto dom-
inance. Unfortunately, this is not true in general: the game depicted in Table 2
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1/2 u d
A 0.5, -1 2, 3
B 1, 2 0, -2
C 0, 0 0, 0

Table 2

illustrates this assertion. We perturb our previous example slightly, so that now
profile c Pareto dominates profile b. However, it can be easily seen from the graph
of the best responces that an equilibrium profile b is strict sibstitute perfect.

Nevetherless, it turns out that our equilibrium refinement is attractive in the
sense that it captures the idea of strategical dominance. In game theory we usually
deal with the concept of “global” dominance, as described in Definition 2.7. It may
happen, however, that for generic player i some strategy ai is dominant only in
some region - subset of A−i. We then introduce the idea of local dominance (or
dominance on a subset).

Definition 4.8. A strategy ãi of player i is called a weakly (strictly) dominant
strategy on a subset V ⊆ A−i if for every a−i ∈ V and ai ∈ Ai, Ui(ãi, a−i) ≥
Ui(ai, a−i) (correspondingly, Ui(ãi, a−i) > Ui(ai, a−i)).

It follows from Lemma 3.4 that given a strict substitute perfect equilibrium point
a∗, for each j ∈ I we can find a region - subset of A−j containing a∗−j, on which a∗j
is weakly dominant. This region may not be a neighborhood of a∗−j because some
a∗i for i ∕= j could be in the interior of Ai. It may even happen that this region
degenerates to a single point (as in the case of the classical Matching Pennies game
with two players, where a∗1 =

1

2
is a best reply to a2 if and only if a2 =

1

2
).

However, if a∗j is not interior for every j ∈ I, then a∗ is dominant on some
neighborhood of itself. The above considerations are summarized in the following
theorem, which results directly from Lemma 3.4.

Theorem 4.9. An equilibrium profile a∗ is strict substitute perfect if and only if
for each player i, a∗i is weakly dominant on a set Di ⊆ A−i such that Pj(D

i) is
some neighborhood of a∗j for each j ∈ I1(a

∗) ∖ {i} and Pk(D
i) = a∗k for each k ∈

I1(a
∗) ∖ {i}.
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5. Conclusions

We introduced strict substitute perfect equilibria as a refinement of perfectness
concept, which turns out to be stronger than strict perfect or proper equilibria. The
main advantage of the new solution concept is that it reflects the local dominance
of a strategy profile. This is a desirable property since according to our intuition,
the dominating strategy profiles should be considered desirable equilibria.

Our refinement is robust to arbitrary imperfections of rationality under the so-
called “trembling-hand miopy” (in contrast, strict perfect equilibria are stable with
respect to arbitrary, and perfect equilibria - with respect to certain imperfections of
rationality, which may fail under the “trembling-hand miopy”).

Among the weaknesses of strict substitute perfectness are the failure to rule out
all Pareto inferior perfect equilibria and the nonexistence property - in general such
equilibrium may not exist. This happens because even perfect equilibrium point
doesn’t have to satisfy local dominance. The local dominance is a very desirable
property, however for some games it’s never satisfied, so there is no strict substitute
perfect equilibrium for such games.
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