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EXISTENCE OF PERFECT EQUILIBRIA: A DIRECT PROOF★

I. TOPOLYAN 1

1 Department of Economics, Krannert School of Management, Purdue University, 100 S. Grant
Street,

W. Lafayette, IN 47907–2076, USA; itopolya@purdue.edu

Abstract. We formulate and prove a modification of Eilenberg-Montgomery
fixed-point theorem, which is a generalization of Kakutani’s theorem. It
enables us to provide a direct proof of the existence of perfect equilibria in
finite normal form games and extensive games with perfect recall.

We construct a correspondence whose fixed points are precisely the per-
fect equilibria of a given finite game. Existence of a fixed point is secured
by the modified version of Eilenberg-Montgomery theorem.

JEL classification: C7

Keywords: Perfect equilibrium, best response correspondence, unit sim-
plex, absolute neighborhood retract, deformation retract, fixed point.

1. Introduction

Perfect equilibria were introduced in 1975 by Selten [?] as a refinement of subgame
perfect and Nash equilibria. Perfect equilibria play important role in contemporary
game theory due to its stability with respect to slight imperfections of rationality,
or “trembling-hand perfection”.
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Perfect equilibria exist for every normal form game, and for every extensive form
game with perfect recall there exists a perfect equilibrium in behavior strategies.
However, the proof of existence, given by Selten [?], is indirect and relies on the
existence of a Nash equilibrium in every perturbed game. This makes the perfect
equilibria not as “tangible” and complicates their treatment.

We are the first to provide a direct proof of the existence of perfect equilibria in
normal form games and in extensive form games with perfect recall. We construct
a correspondence whose fixed points are precisely the perfect equilibria of a given
game. This correspondence coincides with the best response correspondence on the
interior of the strategy space, however the constructed correspondence possesses
much more general boundary behavior. In order to prove existence of a fixed point,
we formulate and prove a version of Eilenberg-Montgomery fixed point theorem. Its
proof is inspired by and borrows the idea of Selten’s proof of existence of perfect
equilibria [?].

The paper is organized as follows. Chapter 2 provides definitions of the game-
theoretic concepts invoked in this paper. In Chapter 3 we introduce the necessary
tools of algebraic topology, formulate and prove a version of Eilenberg-Montgomery
fixed point theorem. In Chapter 4 we construct a correspondence whose fixed points
are the perfect equilibria of a given game, and apply the version of Eilenberg-
Montgomery theorem introduced in the previous chapter to proof the existence of a
fixed point.

2. Definitions and Methodology

Definition 2.1. A normal form Γ of a finite n-player game is a tuple (S1, ⋅ ⋅ ⋅ , Sn, ℎ̂),

where Si is a finite set of pure strategies of player i, S =
∏n

i=1 Si, and ℎ̂ : S→→ℝ
n

is the payoff function that assigns to every s ∈ S the vector of payoffs ℎ̂(s) =

(ℎ̂1(s), ⋅ ⋅ ⋅ , ℎ̂n(s)).

Definition 2.2. A mixed strategy ai for player i is a probability distribution over
Si. The set of all such probability distributions is denoted by Ai ≡ Δci, where ci is
the cardinality of Si. The set of mixed strategies for the game Γ is A =

∏n

i=1 Ai.

Mixed strategy ai ∈ Ai for player i is completely mixed if ai is in the interior of
Ai, i.e., ai ∈ A∘

i . Mixed strategy a ∈ A is completely mixed if for every player i, ai
is completely mixed.
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We can now define an expected payoff function ℎ, which is an extension of the
payoff function ℎ̂ to all of A.

Definition 2.3. An expected payoff function is a function ℎ : A→→ℝ
n such that

ℎ(a) =
∏

s∈S

p1(s)p2(s) ⋅ ⋅ ⋅ pn(s)ℎ̂(s),

where pi(s) is the probability that a assigns to the itℎ component of s, i.e., the
probability with which player i chooses si.

Definition 2.4. A best response correspondence of player i is the correspon-
dence �i : A−i =

∏

j ∕=i Aj→→Ai defined for each a−i ∈ A−i as

�i(a−i) = {ãi ∈ Ai : ℎi(ãi, a−i) ≥ ℎi(ai, a−i) ∀ai ∈ Ai} .

Definition 2.5. A best response correspondence for an n-person normal form
game is the correspondence � : A→→A defined for each a ∈ A as an n-tuple
(�1(a−1), �2(a−2), ⋅ ⋅ ⋅ , �n(a−n)), where for each i, �i(a−i) is player i’s best response
correspondence defined above.

We will define perfect equilibrium in terms of substitute sequences (as appeared
in Selten (1975) as an alternative characterization of perfection).

Definition 2.6. A substitute sequence for a strategy profile ā ∈ A is a sequence
of completely mixed strategy profiles approaching ā, i.e, a sequence

{

ak
}

⊆ A∘ such

that ak → ā as k → ∞.

Definition 2.7. A mixed strategy a∗ ∈ A is called a perfect equilibrium point
of a normal form game Γ if a∗ is a best response to at least one substitute sequence
for a∗.

3. A New Version of the Eilenberg-Montgomery Fixed Point

Theorem

We first provide some definitions invoked in Eilenberg-Montgomery fixed-point
theorem and the formulation of the theorem itself, and then formulate and prove a
slight modification of the theorem.
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Definition 3.1. Given a topological space X, a nonempty-valued correspondence
' : X→→X is closed if it has a closed graph.

Definition 3.2. Let X be a topological space, then a nonempty-valued correspon-
dence ' : X→→X is closed if it has a closed graph.

Definition 3.3. Let X be topological space and A a subspace of X. Then a contin-
uous map r : X → A is a retraction if the restriction of r to A is the identity map
on A. Equivalently, if we denote the inclusion map on A by � : A →֒ X, a retraction
is a continuous map r : X → A such that r ∘ � is homotopic to the identity map on
A.

Definition 3.4. A subspace A of a topological space X is called a retract if such a
retraction exists.

Definition 3.5. Let X be topological space and A a subspace of X. Then A is called
a neighborhood retract of X if there exists an open set U ⊆ X such that A ⊆ U

and A is a retract of U .

The notion of a neighborhood retract is a weakening of a retract: let A be a
subspace of a topological space X such that A is a retract of X. Then, take X to
be the neighborhood of A in Definition to deduce that A is a neighborhood retract
of X.

Definition 3.6. A topological space A is an absolute neighborhood retract (or
ANR) if for every embedding of A as a closed subset of a normal space X the image
of A is a neighborhood retract of X.

Definition 3.7. A topological space A is a deformation retract of X if there
exists a continuous function r : X → A which is homotopic to the identity map of
A and fixes A. Equivalently, there exists a continuous map H : X × I → X (where
I = [0, 1]) such that H(x, 0) = x and H(x, 1) ∈ A for all x ∈ X, and H(a, t) = a

for all a ∈ A. The homotopy H is called a deformation retraction of X onto A.

Some authors do not require a deformation retract to fix A, and call the space de-
scribed above a strong deformation retract. An important property of a deformation
retract as stated in Definition is that it is homotopy invariant and preserves homol-
ogy groups, which is crucial in proving the new version of Eilenberg-Montgomery
theorem.
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Definition 3.8. A nonempty compact metric space X is said to be acyclic provided:

(1) the homology groups Hn(x) vanish for all n > 0, x ∈ X, and

(2) the reduced 0tℎ homology group Ĥ0(x) vanishes for x ∈ X.

Theorem 3.9. (Eilenberg-Montgomery fixed point theorem) Let X be an
acyclic absolute neighborhood retract and ' : X→→X be a closed correspondence
such that for every x ∈ X the set '(x) is acyclic. Then ' has a fixed point.

The proof can be found in [?]. Notice also that according to Definition 3.7 if X
is acyclic, then it is understood that X is a nonempty compact metric space.

We are now ready to formulate and prove a version of Eilenberg-Montgomery
fixed point theorem. It allows much more general boundary behavior of the corre-
spondence (as long as the closedness of the graph is preserved), however it requires
existence of a nicely behaved deformation retract. Notice, however, that the latter
assumption is always fulfilled in certain cases (for instance, when X is a convex
set; see Example 3.11), which produces a stronger version of Eilenberg-Montgomery
theorem for those cases.

Theorem 3.10. Let X be an acyclic absolute neighborhood retract, C be a dense
subset of X, and A ⊂ C be a deformation retract of X such that H(x, t) ∈ C for
every x ∈ X and t > 0. Let ' : X→→X be a closed correspondence such that for
every x ∈ C the set '(x) is acyclic. Then ' has a fixed point.

Proof. Fix t ∈ I, t > 0, and considerH(X, t). Clearly, H(X, t) itself is a deformation
retract of X, hence it is ANR and acyclic (since deformation retraction preserves
homology groups). Observe that H(X, t) ⊆ C, and apply Theorem ?? to H(X, t)
in place of X, and ' restricted to H(X, t). Denote the corresponding fixed point of
' on H(X, t) by at.

Consider the net {at}t∈(0,1] in C. Since C̄ = X is compact, the net {at} has a

limit point in X (see Theorem 2.31 in Aliprantis and Border (2006) ). So passing to
a subsequence without loss of generality, we get at → a∗ as t → ∞. Denoting by G'

the graph of the correspondence ', we see that (at, at) ∈ G' since at is a fixed point
of ' over the set H(X, t). Therefore by the closedness of G' we have (a∗, a∗) ∈ G',
so that a∗ is a fixed point of ' over X, which completes the proof.

Example 3.11. (Existence of a nicely behaved deformation retract) Let X be a
convex subset of some topological vector space. If X is a singleton, then the only
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dense subset of it is X itself. Assume X is not a singleton, then convexity implies
X∘ ∕= ∕⃝. Let C = X∘, fix x∗ ∈ X∘ and � ∈ (0, 1). Clearly C is dense in X.

Consider a straight-line homotopy H : X × I→→X defined for each x ∈ X as
H(x, t) = ta∗ + (1 − t)x. Clearly, H is continuous, H(x, 0) = x and H(x, 1) = a∗

for all x ∈ X. Notice also that H(a∗, t) = a∗ for all t ∈ A. Therefore the homotopy
H is a deformation retraction, and the singleton a∗ is a deformation retract of X.
Notice also that H(X, t) ⊆ C for all 0 < t ≤ 1. Therefore X, C = X∘, A = a∗ and
H satisfy the hypotheses of Theorem 3.10.

4. A Direct Proof of the Existence of Perfect Equilibria

Recall that given an n-player normal or extensive form game Γ with a strategy
space Ai for each player i (as usual let A =

∏n

i=1 Ai ), the graph of the best response
correspondence

G� = {(a, b) ∈ A× A : a ∈ A, b ∈ �(a)} ,

where � : A→→A is the best response correspondence as stated in Definition 2.5.

Now consider the graph of the best response correspondence restricted to A∘×A,
i.e.,

G = {(a, b) ∈ A∘ × A : a ∈ A∘, b ∈ �(a)} .

Define G� to be the closure of the set G in A×A, and identify with G� a correspon-
dence from A to A, call it �, having G� as its graph. Clearly, such correspondence is
well-defined as long as G� as a subset of A× A is well defined, but it is so because
a closure of the set G in A× A is well-defined.

From the above it follows immediately that � is a closed correspondence (i.e., has
a closed graph). Indeed, G� = Ḡ in A× A implies that G� is closed in A× A.

Lemma 4.1. The correspondence � is nonempty-valued and closed.

Proof. It remains only to show that � is nonempty-valued. So, fix any a ∈ A. If
a ∈ A∘, then �(a) ∕= ∕⃝ since in the interior of A, � coincides with the best response
correspondence, which is nonempty-valued.
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Let a ∈ ∂A. Take a sequence {ak} of completely mixed strategies (i.e., ak ∈ A∘

for each k ∈ ℕ) such that limk→∞ ak = a. Since each ak is in the interior of A, then
�(ak) ∕= ∕⃝. For each k ∈ ℕ pick some bk ∈ �(ak). Thus we obtained a sequence of
points {bk} in a compact set A, hence this sequence has a convergent subsequence,
without loss of generality bkm → b as m → ∞ for some b ∈ A.

Notice also that (ak, bk) ∈ G� for each k and by relabelling (ak, bk) → (a, b) as
k → ∞. However, since G� is closed, then (a, b) ∈ G�, i.e., b ∈ �(a). This establishes
that � is nonempty-valued.

Notice that the Closed Graph Theorem (see Theorem 17.11, p. 561 of Aliprantis
and Border(2006)) implies that � is upper hemicontinuous and closed-valued.

The following theorem shows that for any normal form game Γ, the set of its
perfect equilibria coincides with the set of fixed points of the constructed correspon-
dence �.

Theorem 4.2. A strategy profile a∗ ∈ A is a fixed point of � if and only if a∗ is a
perfect equilibrium point of Γ.

Proof. (⇒) Let the strategy profile a∗ ∈ A be such that a∗ ∈ �(a∗), that is, (a∗, a∗) ∈
G�. Since G� is the closure of G in A×A, there exists a sequence (xk, yk) ⊆ G such
that (xk, yk) → (a∗, a∗) as k → ∞.

Observe that for each k, �(xk) is a Cartesian product of some faces of the unit
simplices Ai, hence there exists m ∈ ℕ such that

a∗ ∈ �(xk)

for all k ≥ m, and xk → a∗.
This shows that a∗ is a perfect equilibrium point of Γ.

(⇐) Assume a∗ ∈ A is a perfect equilibrium point of Γ, then there exists a
substitute sequence for a∗, say

{

ak
}

such that a∗ ∈ �(ak) for all k ∈ ℕ.

Notice that (ak, a∗) ∈ G for all k and (ak, a∗) → (a∗, a∗) as k → ∞. Therefore
(a∗, a∗) ∈ Ḡ = G�, q.e.d.

The difficulty with proving that the correspondence � has a fixed point arises
from the fact that � need not be convex-valued or even acyclic-valued. However, it
is nicely behaved in the interior of the strategy space.
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Notice that the correspondence � satisfies the hypotheses of Theorem ??. Indeed,
A is a nonempty, convex and compact metric space, hence it is acyclic ANR, and
a deformation retract satisfying the hypothesis of Theorem ?? exists (see Example
3.11). Since the correspondences � and � coincide on C, then �(x) is acyclic for
every x ∈ C. Therefore by Theorem ?? correspondence � has a fixed point over A.
This establishes existence of a perfect equilibrium for a finite normal form game.

Our result extends to prove existence of a perfect equilibrium in behavior strate-
gies in extensive games with perfect recall. To show this, we employ a fundamental
result of Selten [?]. It establishes a bijection (one-to-one and onto map) between the
set of perfect equilibria (in behavior strategies) of an extensive game with perfect
recall and the set of perfect equilibria of the corresponding agent normal form. Then
existence of perfect equilibria for an extensive game with perfect recall is implied
by perfect equilibrium existence for the corresponding agent normal form game,
established earlier.

References

[1] C. D. Aliprantis and K. C. Border, Infinite Dimensional Analysis: A Hitchhikers

Guide, 3rd Edition, Springer–Verlag, New York & London, 2006.
[2] C. D. Aliprantis and S. K. Chakrabarti, Games and Decision Making, Oxford Univer-

sity Press, New York & London, 2000.
[3] C. D. Aliprantis and I. Topolyan, Continuity and Equilibrium Stability, Purdue Work-

ing Paper.
[4] S. Eilenberg and D. Montgomery, Fixed-point theorems for multivalued transforma-

tions, American Journal of Mathematics 68 (1946), 214–222.
[5] D. Fudenberg and J. Tirole, Game Theory , MIT Press, Cambridge, MA, 1991.
[6] E. Klein and A.C. Thompson, Theory of Correspondences, John Wiley & Sons, New

York, 1984.
[7] R. Myerson, Game Theory: Analysis of Conflict , Harvard University Press, Cam-

bridge, MA, 1997.
[8] J. Nash, Equilibrium goints in N-person games, Proceedings of the National Academy

of Sciences 36 (1950), 48–49.
[9] J. Nash, Non-cooperative games, Annals of Mathematics 54(2) (1951), 286–295.
[10] M. J. Osborne, An Introduction to Game Theory , Oxford University Press, Oxford

& New York, 2004.
[11] R. Selten, Spieltheoretische Behandlung eines Oligopolmodells mit Nachfragetragheit,

Zeitschrift fur die gesamte Staatswissenschaft 121 (1965), 301–324.
[12] R. Selten, Re-examination of the perfectness concept for the equilibrium points in

extensive games, International Journal of Game Theory 4 (1975), 24–55.


