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ABSTRACT

In missing data analysis, there is often a need to assess the sensitivity of key inferences to departures
from untestable assumptions regarding the missing data process. Such sensitivity analysis often requires
specifying a missing data model which commonly assumes parametric functional forms for the predictors
of missingness. In this paper, we relax the parametric assumption and investigate the use of a generalized
additive missing data model. We also consider the possibility of a non-linear relationship between
missingness and the potentially missing outcome, whereas the existing literature commonly assumes
a more restricted linear relationship. To avoid the computational complexity, we adopt an index approach
for local sensitivity. We derive explicit formulas for the resulting semiparametric sensitivity index.
The computation of the index is simple and completely avoids the need to repeatedly fit the semiparametric
nonignorable model. Only estimates from the standard software analysis are required with a moderate
amount of additional computation. Thus, the semiparametric index provides a fast and robust method
to adjust the standard estimates for nonignorable missingness. An extensive simulation study is conducted
to evaluate the effects of misspecifying the missing data model and to compare the performance of
the proposed approach with the commonly used parametric approaches. The simulation study shows
that the proposed method helps reduce bias that might arise from the misspecification of the functional
forms of predictors in the missing data model. We illustrate the method in a Wage Offer dataset.
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Summary

In missing data analysis, there is often a need to assess the sensitivity of key inferences to departures

from untestable assumptions regarding the missing data process. Such sensitivity analysis often

requires specifying a missing data model which commonly assumes parametric functional forms for

the predictors of missingness. In this paper, we relax the parametric assumption and investigate

the use of a generalized additive missing data model. We also consider the possibility of a non-

linear relationship between missingness and the potentially missing outcome, whereas the existing

literature commonly assumes a more restricted linear relationship. To avoid the computational

complexity, we adopt an index approach for local sensitivity. We derive explicit formulas for the

resulting semiparametric sensitivity index. The computation of the index is simple and completely

avoids the need to repeatedly fit the semiparametric nonignorable model. Only estimates from the

standard software analysis are required with a moderate amount of additional computation. Thus,

the semiparametric index provides a fast and robust method to adjust the standard estimates for

nonignorable missingness. An extensive simulation study is conducted to evaluate the effects of

misspecifying the missing data model and to compare the performance of the proposed approach
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with the commonly used parametric approaches. The simulation study shows that the proposed

method helps reduce bias that might arise from the misspecification of the functional forms of

predictors in the missing data model. We illustrate the method in a Wage Offer dataset.

Key words: Generalized Additive Model; MNAR; Semiparametric Joint Selection Model;

Nonignorability; Sensitivity Analysis.

1. Introduction

Missing data arise frequently in studies across different disciplines, including public health,

medicine, economics, and social sciences. Missingness can be due to nonresponse in house-

hold surveys, attrition in longitudinal studies, or patient noncompliance in experimental

studies and clinical trials. In missing data analysis, ignorability has been a standard as-

sumption regarding the missing data mechanism (Rubin 1976). Under ignorability, a valid

likelihood/Bayesian inference can ignore modeling the missing data mechanism. In the like-

lihood/Bayesian inference, ignorability holds under the assumptions of missing at random

(MAR) and parameter distinctness (Rubin 1976, Heitjan and Rubin 1991).

Although ignorability is a convenient and useful assumption, it is usually an approxima-

tion to reality when missingness is not by design. There are important situations where this

assumption can be questionable. In the analysis of potentially nonignorable missing data,

the selection model is a popular class of models, where one augments the model for the com-

plete data with a missing data model. In practice, a parametric binary regression model has

been commonly employed for modeling the missing data process. In situations where there

are continuous missingness predictors, misspecifying the functional forms of these predictors

by the parametric model can lead to severe bias in the inference of the primary parameters

of interest. In this paper, we propose a data-driven procedure to adaptively choose the

functional forms of the continuous predictors. Specifically, we propose using the generalized
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additive model (GAM) to relax the linearity assumptions in the missing data model.

One can perform a direct estimation of such a semiparametric joint selection model

(Chen and Ibrahim 2006). The direct estimation can yield valid inferences when the model

is correctly specified, although its computation is very heavy and requires specialized pro-

gramming. More importantly, such a joint selection model is often weakly or non-identified

(Little 1995, Troxel 1998, Troxel et al. 1998, Chen and Ibrahim 2006), and the results can be

highly sensitive to untestable model assumptions (Kenward 1998). To tackle this problem,

the use of a nonignorable selection model has been proposed as a tool for assessing sensitivity

of inference to nonignorable missingness (Little 1995, Vach and Blettner 1995, Copas and Li

1997, Scharfstein et al. 1999, Copas and Eguchi 2001). A global sensitivity analysis usually

involves repeatedly fitting the nonignorable model for a range of magnitudes of nonignor-

ability, which can be computationally burdensome. To avoid the computation burden, we

utilize an index approach to local sensitivity (Troxel et al. 2004) that uses a Taylor series

expansion to approximate the estimates in the neighborhood of the MAR model. The index

method has been applied in various settings (Xie and Heitjan (2004, 2009), Ma et al. 2005,

Xie (2008, 2009), Qian and Xie 2010, Zhang and Heitjan (2006, 2007)).

The local sensitivity method proposed in the literature utilizes the linear logistic regres-

sion for modeling the missing data process. In this article we relax the linearity assumption

and investigate the usage of a generalized additive model for a more robust and flexible mod-

eling of the missing data mechanism. Furthermore, the proposed method is computationally

less complex than the alternative global sensitivity method. Specifically, our approach avoids

fitting any complicated semiparametric joint selection model. Only estimates from a MAR

analysis of the outcome model and a MAR GAM for the missing data process are required

to evaluate sensitivity. Both estimates can be obtained using standard software packages

such as SAS or S-Plus/R. For instance, the MAR GAM for the missing data process can be
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fitted using PROC GAM in SAS or the S-Plus/R function gam. In summary, the proposed

approach renders sensitivity analysis for nonignorable missingness (1) simple to perform

by avoiding excessive additional computation and (2) robust to model misspecification by

automatically adjusting for potentially complex missing data mechanisms.

The rest of the paper is organized as follows. In Section 2 we describe the semipara-

metric joint selection model. In Section 3 we review the ISNI (index of local sensitivity

to nonignorability) methodology. In Section 4, we investigate the use of GAM to model

the missing data process. We also consider the possibility of a nonlinear relationship be-

tween missingness and the potentially missing outcome, and present specific formulas of

the sensitivity index in the Appendix when the relationship follows a quadratic form. In

Section 5, we conduct simulation studies to compare the performance of the parametric

and semiparametric approaches for modeling the missing data process with respect to their

ability to reduce bias of the MAR estimates. In Section 6, we apply the methodology to

an application on estimating wage offer function. We conclude with a discussion in Section 7.

2. Selection Model for Nonignorable Missingness

Consider that we have data (Yi, Xi, Zi, Gi) from the unit i, i = 1, · · · , n. The underlying

ideal outcome, Yi, arises independently from a distribution with a probability density function

fθ(Yi|Xi), where Xi contains a set of fully observed covariates. We are interested in drawing

inferences on θ or a subset of it. Here for the purpose of this presentation, we restrict

our attention to the case where Yi is a univariate. For various reasons, Yi is subject to

missingness. Let Gi be 1 if yi is observed and 0 if yi is missing. We assume the following

missing data model fγ(gi|yi, zi), where Gi|Yi, Zi ∼ Bernoulli(Pγ(Gi = 1|Yi, Zi)) and

Pγ(Gi = 1|Yi = yi, Zi = zi) = h(ηγ0
(zi) + ηγ1

(yi)), (1)
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h is the inverse of a monotonic link function; Zi is a set of fully observed predictors for miss-

ingness; ηγ0
(·) and ηγ1

(·) are smooth functions, and their functional forms are unspecified

now; Let γ = (γ0, γ1) where γ0 is a vector of parameters that associates the probability of

missingness with observed data, and γ1 associates the probability of missingness with poten-

tially unobserved data. In the model, ηγ1
(y) represents the form of nonignorable missingness:

when ηγ1
(y) is constant in y, the missing data mechanism is MAR; when ηγ1

(y) depends on

y, it becomes missing not at random (MNAR).

Let (Y,X,Z,G) be the stacked data over all the units. We rewrite Y as (Yobs, Ymis),

where Yobs refers to the observed components of Y and Ymis refers to the missing components

of Y . The covariates X and Z are considered as fixed, and the conditioning on them in

fθ(yi|xi) and fγ(gi|yi, zi) will be suppressed for notational simplicity. The data to be modeled

are thus (Yobs, G). The correct log-likelihood of the model parameters is

LC(θ, γ; yobs, g) ∝ ln fθ,γ(yobs, g) = ln

∫
fγ(g|yobs, ymis) fθ(yobs, ymis) dymis. (2)

Under the MAR condition, fγ(g|yobs, ymis) = fγ(g|yobs) and can be moved out of the

integral. With the parameter distinctness, this results in a simpler log-likelihood for θ

LI(θ; yobs) ∝ ln fθ(yobs) = ln

∫
fθ(yobs, ymis) dymis. (3)

In practice, the simpler log-likelihood LI is often used because it avoids modeling the missing-

data mechanism. However, in the general case of nonignorable missingness, LI is not pro-

portional to LC and thus the inference based on LI is potentially biased.

3. ISNI Methodology

As indicated above, for a dataset with missingness, the correct log-likelihood is LC(θ, γ; yobs, g).

We define:

(θ̂(γ1), γ̂0(γ1)) = arg maxθ∈Ωθ,γ0∈Ωγ0

LC(θ, γ0, γ1 ; yobs, g) for a fixed γ1.
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One can then vary γ1 in a plausible range and investigate how the other parameter estimates

in the model are affected. In the existing literature, such sensitivity analysis commonly

assumes a linear binary regression model for missing data process, that is, a restriction

that ηγ0
(zi) = γT

0 zi and ηγ1
(yi) = γ1yi. In this selection model, the likelihood LC(θ; γ1) is

proportional to the likelihood LI(θ) for all θ ∈ Ωθ when γ1 = 0. θ̂(0) is then the MLE of θ

in the ignorable model. The difference between θ̂(0) and θ̂(γ1) is a sensible measure of the

sensitivity of the MLE when γ1 is perturbed around the ignorable model. The idea of a local

sensitivity analysis is to approximate θ̂(γ1) by a Taylor series expansion as follows:

θ̂(γ1) ≈ θ̂(0) +
∂θ̂(γ1)

∂γ1

∣∣∣∣∣
γ1=0

× γ1, (4)

where ∂θ̂(γ1)
∂γ1

∣∣∣
γ1=0

measures the changing rate of θ̂ as a function of γ1, and this quantity is

referred to as the index of local sensitivity to nonignorability (ISNI) (Troxel et al. 2004). In

this approximation, θ̂(0) is obtained by maximizing the simpler log-likelihood LI . As shown

in Troxel et al. (2004), a simple formula for ∂θ̂(γ1)
∂γ1

∣∣∣
γ1=0

is

ISNI =
∂θ̂(γ1)

∂γ1

∣∣∣∣∣
γ1=0

= −∇2L−1
θ,θ∇

2Lθ,γ1
, (5)

with

∇2Lθ,θ =
∂2LC

∂θ∂θT

∣∣∣∣
θ̂(0),γ̂0(0),γ1=0

; ∇2Lθ,γ1
=

∂2LC

∂θ∂γ1

∣∣∣∣
θ̂(0),γ̂0(0),γ1=0

.

The first term ∇2Lθ,θ is the observed Hessian matrix of the ignorable model that is usually

readily available. The second term evaluates the orthogonality of θ and γ1. One limitation

of ISNI, as a local sensitivity method, is that the above local approximation might not be

sufficiently accurate for extreme nonignorability (i.e. |γ1| is large). Thus, ISNI is most useful

for moderate nonignorability (e.g. a rich set of observed predictors for missingness has been

conditioned on so that the remaining nonignorability is not extreme).
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4. Extending ISNI using a Generalized Additive Model

When some components of Z are continuous, a linear predictor, as considered above, may

not be adequate, and the misspecification of the functional forms for Z may lead to severe

bias in the estimation of θ, the parameters of primary interest. It is thus desirable to use

extended models that describe a wider range of selection mechanisms. In this section, we

investigate the use of GAM for a robust and flexible modeling of the missingness probability.

That is, rather than prespecifying ηγ0
(Zi) as a linear form, we let ηγ0

(Zi) follow a GAM

(Hastie and Tibshirani 1990):

ηγ0
(Zi) = γ00 + η01(Zi1) + η02(Zi2) + ... + η0m(Zim),

where Zi is composed of m missingness predictors, (Z1, ..., Zm), and η0j is an arbitrary smooth

and mean zero function for the jth covariate Zj, j = 1, ...,m. Because of the additivity in

the nonparametric component, the model is termed as generalized additive model.

Another important modeling decision is to specify ηγ1
(yi). Note that yi is missing when-

ever Gi = 0, and thus an attempt to estimate ηγ1
(yi) would inevitably require imposing

untestable assumptions or using external data. Because of the lack of information from the

data at hand for identification, a feasible approach is to perform sensitivity analysis with

respect to ηγ1
(yi). In the existing literature, it is common to assume a linear form for ηγ1

(yi),

i.e., ηγ1
(yi) = γ1yi. One benefit of this parametrization is the ease of interpreting the sen-

sitivity analysis result. Although the linearity assumption is reasonable in many practical

applications, it is by no means universally applicable. Thus, we will base our development

on a more general functional form of ηγ1
(yi) as

∑Q
q=1 γ1qy

q
i , where Q is a user-specified order.

One can consider using the following penalized log-likelihood of the resulting semi-
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parametric nonignorable selection model for sensitivity analysis:

LP
C(θ, γ00, η01, · · · , η0m, γ1; yobs, g) =

ln

[∫
fγ(g|γ00, η01, · · · , η0m, γ1, yobs, ymis)fθ(yobs, ymis)dymis

]
−

1

2

m∑

j=1

λj

∫
η′′

0j(u)
2
du,

where λj ≥ 0 is a smoothing parameter whose value can be adjusted to avoid overfitting.

The sensitivity of inference with respect to nonignorable missingness can then be assessed

by calculating (θ̂(γ1), γ̂0(γ1)) for a plausible range of values for γ1. For any given value of

γ1, we must obtain (θ̂(γ1), γ̂0(γ1)) by maximizing LP
C over (θ, γ0). An algorithm such as

the EM algorithm can be used to maximize the above likelihood and obtain (θ̂(γ1), γ̂0(γ1)).

The optimization can be heavy (e.g. taking a long time to converge) and it also requires

specialized programming. Moreover, this optimization needs to be repeatedly performed for

a range of γ1 values, which further compounds the computational burden.

In contrast, the ISNI method substantially reduces the computational workload. As

the parameters γ0 = (γ00, η01, · · · , η0m) in the missing data model are orthogonal to the

parameter θ in the complete data model when γ1 = 0 ( i.e., missingness is MAR), one can

show that for a vector γ1 = (γ11, · · · , γ1Q), we have

∂θ̂(γ1)

∂γT
1

∣∣∣∣∣
γ1=0

= −∇2L−1
θ,θ∇

2Lθ,γ1
,

with

∇2Lθ,θ =
∂2LP

C

∂θ∂θT

∣∣∣∣
θ̂(0),γ̂0(0),γ1=0

=
∂ ln fθ(Yobs)

∂θ∂θT

∣∣∣∣
θ̂(0)

∇2Lθ,γ1
=

∂2LP
C

∂θ∂γT
1

∣∣∣∣
θ̂(0),γ̂0(0),γ1=0

= − hi

(
∂Eθ(Yi)

∂θ
, · · · ,

∂Eθ(Y
Q
i )

∂θ

)∣∣∣∣∣
θ̂(0),γ̂0(0),γ1=0

, (6)

where hi = h(γ̂00 +
∑m

j=1 η̂0j(Zij)) is the predicted probability of being observed under the

MAR model, and h(·) is the inverse of the logit link. The above calculation requires only
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the MAR estimates, which are obtained by optimizing the following log-likelihood:

LP
I (θ, γ00, η01, · · · , η0m, γ1 = 0; yobs, g) =

ln fθ(yobs) + ln fγ0,γ1=0(g|yobs) −
1

2

m∑

j=1

λj

∫
η′′

0j(u)
2
du.

In particular, the calculation of the extended ISNI requires the estimation of η0(Z) under

the MAR model, i.e., γ1 = 0. The fit maximizes the following penalized log-likelihood:

PELL(γ00, η01, · · · , η0m; g) = ln fγ0,γ1=0(g|yobs) −
1

2

m∑

j=1

λj

∫
η′′

0j(u)
2
du.

The conventional algorithm for the estimation of a GAM is the local scoring procedure

(Hastie and Tibshirani 1990), which maximizes the above PELL. Equation (6) shows that

a missing observation is given more weight in the calculation of the ISNI if its predicted

probability of nonmissingness, hi, is large ( i.e., unexpected missing). The quantity hi is

related to the missing data mechanism and plays an important role in assessing the sensitivity.

Using a generalized additive model to describe the missing-data mechanism is useful here

because we need accurate and robust estimates of these probabilities of being observed.

For ease of interpretation, one can reparameterize ηγ1
(y) = γ11

∑Q
q=1 rqy

q, where rq =

γ1q/γ11, and then define

ISNIr =
∂θ̂(γ11, r)

∂γ11

∣∣∣∣∣
γ11=0

=
∂θ̂(γ1)

∂γT
1

∣∣∣∣∣
γ1=0

∂γ1

∂γ11

∣∣∣∣
γ1=γ11·r

=
∂θ̂(γ1)

∂γT
1

∣∣∣∣∣
γ1=0

r, (7)

where r = (r1, · · · , rQ)T . Given a user-specified r, one can approximate the potential change

of θ̂(γ1) when γ11 is perturbed from 0 to a given value as follows:

θ̂(γ1) − θ̂(0) ≈
∂θ̂(γ1)

∂γT
1

∣∣∣∣∣
γ1=0

γ1 = ISNIr ∗ γ11. (8)

Using the extended ISNI method, it is convenient for a data analyst to entertain plausible

choices of Q and r to explore the sensitivity with respect to the functional forms of ηγ1
(y).
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In the Appendix, we derive explicit ISNIr formulas for Q = 2 ( i.e., a quadratic function)

when the outcome is modeled by a generalized linear model.

5. A Comparison Using Simulated Data

In this section, we conduct simulation studies to compare the performance of the parametric

and semiparametric approaches for modeling the missing data process. Specifically, we sim-

ulate data from both linear and nonlinear missing data models, and then investigate if the

ISNI based on a GAM missing data model provides a more faithful and robust adjustment

of an MAR estimate than those based on various linear logistic missing data models. We

follow the steps below to perform the simulation studies.

Step 1: Generate the hypothetical complete data, (Yi, Xi), independently from the following

bivariate normal distribution:

[
Yi

Xi

]
∼ BV N

[(
0
0

)
;

[
1 ρ
ρ 1

]]
,

where i = 1, · · · , n and the sample size n = 500. The parameter ρ takes the value of -0.5, 0,

or 0.5. We are interested in the conditional distribution of Yi|Xi, which is N(β0 + β1xi, σ
2),

where β1 = ρ is the parameter of interest.

Step 2: Generate the missingness pattern. Yi is subject to missingness with the probability

of nonmissingness given by the following missing data model:

logit(Pγ(Gi = 1|Yi = yi, Xi = xi)) = ηγ0
(xi) + γ1yi, (9)

According to the exact form of ηγ0
(x), we have the following configurations:

• Case 1.

• 1. Linear Function. logit(Pγ(G = 1|X = x, Y = y)) = 1 + x + γ1y.
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• 2. Quadratic Function. logit(Pγ(G = 1|X = x, Y = y)) = 1 + x + x2 + γ1y.

• 3. Cubic Function. logit(Pγ(G = 1|X = x, Y = y)) = 1 + x + x2 + x3 + γ1y.

• 4. Sine Function. logit(Pγ(G = 1|X = x, Y = y)) = 2 sin(2x) + γ1y.

• Case 2.

• 1. Linear Function. logit(Pγ(G = 1|X = x, Y = y)) = 1 + x + γ1y.

• 2. Quadratic Function. logit(Pγ(G = 1|X = x, Y = y)) = 1 − (x − 1)2 + γ1y.

• 3. Cubic Function. logit(Pγ(G = 1|X = x, Y = y)) = 1 − (x − 1)2 + (x − 1)3 + γ1y.

• 4. Sine Function. logit(Pγ(G = 1|X = x, Y = y)) = 2 sin(2(x − 1.5)) + γ1y.

We vary γ1 to be (−1,−0.5,−0.1, 0.1, 0.5, 1). The proportion of missingness in Y ranges

from 15% to 65% in the genrated datasets.

Step 3: With each generated dataset, we compute the MAR estimate, β̂1(0), by applying

the least-square fitting of the regression model, using only the cases with observed yi. Based

on Equation (4), we calculate three ISNI-adjusted estimates as follows:

β̂1L(γ1) = β̂1(0) + ISNIL × γ1, β̂1P (γ1) = β̂1(0) + ISNIP × γ1

β̂1G(γ1) = β̂1(0) + ISNIG × γ1. (10)

The three ISNIs, ISNIL, ISNIP , and ISNIG, are listed in order of increasing generality to

model the missing data process. The most constrained one is ISNIL, whose calculation as-

sumes a priori that η01(xi) in Equation (9) is linear in xi as η01(xi) = γ00 + γ01xi. A more

general one, ISNIP , increases modeling flexibility by manually adding higher-order polyno-

mial terms for xi (i.e., quadratic term, cubic term, · · · ). This process stops when adding the

next higher-order term of xi into the missing data model does not significantly improve the
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model fit at the 0.05 level, where the improvement in model fitness is measured by the dif-

ference in model deviance. This analysis strategy represents a common parametric approach

to seek more acceptable models for the missing data mechanism. The most general one,

ISNIG, uses the GAM method to estimate the missing data model. It uses a nonparamet-

ric scatterplot smoother, such as a smoothing spline method, for the estimation of ηγ01
(xi)

and lets data tell the functional form of xi. As compared with ISNIP , ISNIG enjoys two

advantages. GAM is more general as it applies to arbitrary smooth functions whereas the

parametric additive model applies to a priori specified parametric family (e.g. a polynomial

family). Another important benefit with ISNIG is the automation of the procedure which

avoids manually increasing the model complexity

For our simulation model, the formula for ISNI is derived to be

−σ̂2(
∑

i:gi=1

x̃ix̃
T
i )−1

∑

i:gi=0

hix̃i,

where σ̂2 =
P

i:gi=1
(yi−β̂0(0)−β̂1(0)xi)

2P
i 1(gi=1)

is the MAR estimate of the residual variance, and β̂0(0)

and β̂1(0) are the MAR estimates of the β0 and β1, respectively; x̃i = [1, xi]
T is the vector

of predictors for the unit i; hi is the predicted probability of Gi = 1 under the MAR model.

For ISNIL, hi = h(γ̂00(0) + γ̂01(0)xi). For ISNIP , hi = h(γ̂00(0) +
∑J

j=1 γ̂0j(0)xJ
i ), where J

is the selected order of the polynomial function of xi. For ISNIG, hi = h(γ̂00(0) + η̂γ01
(xi)),

where η̂γ01
(xi) is adaptively estimated by a smoothing spline under the MAR assumption.

The gam function in S-Plus with a default degree of freedom of 4 is used for smoothing.

In practical applications, one can calculate the ISNI-adjusted estimates in Equation (10)

for a plausible range of γ1 values, and investigate the sensitivity of the MAR estimates to

nonignorable missingness. In the simulation studies, we plug in the true value of γ1. The

performance of these ISNI-adjusted estimates can then be evaluated in terms of their ability

to reduce bias of the MAR estimates, for various scenarios of missing data mechanisms.
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Step 4: Repeat Step 1 to Step 3 for 300 times for the same values of ρ and γ1. Using the

resulting sample of estimates, we compute the mean squared error (MSE), bias, and standard

deviation (SD) for each of the four estimators of β1: β̂1(0), β̂1L(γ1), β̂1P (γ1), β̂1G(γ1). We then

repeat Step 4 for other configurations of ρ and γ1.

Figure 1 plots the bias when β1 = ρ = 0. The results on SDs and MSEs can be found

in Online Supplement Tables 1,2 and Figures 1 and 2. As shown there, the SDs for the

adjusted estimates are almost the same as the SDs of the MAR estimates and as a result,

the differences in the MSE among these estimates are mainly determined by the differences

in the size of the bias. Therefore, in Figure 1, we plot only the bias for the purpose of

comparison. The plots for other values of ρ lead to qualitatively similar conclusions and

are reported as the online Supplement Figures 3 to 6. As shown in the figures, the MAR

estimate β̂1(0) is biased. A general pattern is that the larger the size of γ1, the larger the size

of the bias in β̂1(0). This can be readily seen from the V-shaped bias function of β̂1(0) (as a

function of γ1) in Figure 1. When ηγ01
(x) is a linear function, all three adjusted estimates,

β̂1L(γ1), β̂1P (γ1), and β̂1G(γ1), are capable of removing the bias of the MAR estimate β̂1(0)

under both cases 1 and 2. This can be seen in Figure 1, as the bias functions of the three

adjusted estimates are all flat at a close-to-zero value over γ1 values for the linear functions.

This indicates that ISNI is an accurate sensitivity index and can effectively reduce the bias

of the MAR estimate when the missing data mechanism is correctly specified.

Though all three adjusted estimates remove the bias of the MAR estimator when ηγ01
(x)

is linear in x, the effectiveness in doing this can be very different for the other forms of

ηγ01
(x). We study the simulation results in the following three key aspects. (1) If ηγ01

(x)

is actually quadratic or cubic, β̂1L(γ1) has a significant amount of bias under case 2. This

can be seen from the V-shaped bias function of β̂1L(γ1) for Quadratic and Cubic in Figure

1 (b). In comparison, both β̂1P (γ1) and β̂1G(γ1) perform much better in removing the bias,
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Figure 1. (a) Upper Panel: Plot of bias of four estimates for case 1 and β1 = ρ = 0.
(b): Lower panel: Plot of bias of four estimates for case 2 and β1 = ρ = 0.
The thick solid line: the MAR estimate β̂1(0).
The dotted line: the adjusted estimate using linear predictor, β̂1L(γ1).
The dashed line: the adjusted estimate using polynomial predictor, β̂1P (γ1).
The thin solid line: the adjusted estimate using smoothing spline predictor, β̂1G(γ1).
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as shown by their flat bias functions at a close-to-zero value in these figures. This shows

that the misspecification of the missing data model can lead to large bias for the adjusted

parameter estimates in the complete data model, and it can be important to choose a proper

missing data model. (2) Interestingly, in case 1, the bias of β̂1L(γ1) is almost the same as

those of β̂1P (γ1) and β̂1G(γ1), even for the quadratic and cubic form of η01(xi). This shows

that β̂1L(γ1) has a certain degree of robustness with respect to the misspecification of the

missing data model. (3) When η01(xi) follows a sine form, both β̂1L(γ1) and β̂1P (γ1) have

sizable biases, and β̂1G(γ1) performs best. This shows that ISNIG is most general, and it

can be important to use a data-driven approach, such as a GAM, to model the continuous

predictors in the missing data model.

These findings from the simulation studies suggest that the adjusted estimator based

on ISNIL, which assumes a linear logistic regression, has a certain degree of robustness to

misspecification of missing data mechanism. There can be, however, situations where ISNIL

is seriously affected by the misspecification of functional forms in the missing data model.

In this case, both ISNIP and ISNIG are useful to protect one from having a misleading as-

sessment of the potential change of the estimates. In particular, ISNIG performs better due

to its modeling generality and more robust and automated process to discover the complex

missing data process. Due to the availability of standard software for fitting a GAM, the

success of ISNIG in reducing the bias of the MAR estimates depends less on the experience

of the data analyst to detect model misspecification, as compared with ISNIP .

6. An Application

Mroz (1987) used a wage offer dataset to demonstrate the sensitivity of empirical economet-

ric analysis to various economic and statistical assumptions. Many of these assumptions,

though useful, are often untestable and thus it is insufficient to base conclusions solely on
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a single analysis. A more prudent approach is to compare the analysis with those obtained

under alternative assumptions. If the conclusions are reasonably robust, one can have more

confidence about the conclusions drawn. To demonstrate our method, we will mainly focus

on the potential misspecification of functional forms in the missing data mechanism.

The interest of the empirical application is to estimate the wage offer outcome as a

function of education level and experience, after controlling for other observed characteristics

of an woman. That is, one is interested in estimating the following linear regression model:

lwagei = (Intecept, educ, exper, expersq, age, nwifeinc, kidslt6, kidsge6)t
iβ + ǫi, (11)

where i = 1, · · · , 753, lwage is the logarithm of the wife’s wage; educ is the wife’s years

of schooling; exper is the wife’s labor market experience and expersq is the square term of

exper; age is the wife’s age; nwifeinc is the non-wife family income; kidslt6 is the number of

children less than 6 years and kidsge6 is the number of children between 6 and 18 inclusive.

Not every married woman in the sample had her wage outcome observed. Among the

753 married women in the sample, 325 married women did not participate in the labor force

and as a result their wage outcomes, if employed, were missing. It is possible that the

participation of a married woman in the labor force depends on her potential wage outcome,

even after conditioning on the other observed variables. In order to account for this potential

nonignorability, we assume the following model for self-selection to employment:

logit(P (Gi = 1)) = γ00 + η1(educi) + η2(experi) + η3(agei) + η4(nwifeinci) +

kidslt6iγ05 + kidsge6iγ06 + lwageiγ1,

where Gi is the indicator variable for participation in the labor force. As a comparison, we

will also consider the following linear logistic labor participation model:

logit(P (Gi = 1)) = (intercept, educ, exper, age, nwifeinc, kidslt6, kidsge6)T
i γ0 + lwageiγ1.
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Table 1 presents the MAR analysis, which shows that education level and experience have

statistically significant positive effects on the wage offer after the adjustment by the other

variables. Table 1 also presents the ISNI values, which evaluate the effect of nonignorable

missingness of wage outcome on the model estimates. When Y is continuous, the ISNI

value depends on the scale of Y . Thus, to better gauge the sensitivity, we use a sensitivity

transformation statistic, c = | S.E.

ISNI/σ
|, where S.E. is the standard error of a parameter

estimate under the MAR model and σ is the standard deviation of Y . The c value implies

that for ISNI to be equal to one S.E., |γ1| needs to be at least c/σ, which under the logit link

corresponds to a magnitude of nonignorability such that a change of σ/c in Y is associated

with a change of e1 = 2.7 in the odds of being observed. Thus, the c statistic represents the

critical magnitude of nonignorability, above which the bias due to nonignorable missingness

is larger than the sampling error and therefore causes concern. The smaller the c statistic

is, the larger the sensitivity to nonignorability is. Following Troxel et al. (2004), we suggest

using c = 1 as a cutoff value for important sensitivity as this implies that the bias will be in

the same size as the sampling error for a moderate nonignorability where a change of one−σ

in Y is associated with a change of 2.7 in the odds of being observed.

The c statistics summarized in Table 1 show that the MAR estimates of both educ and

exper are sensitive to nonignorable missingness in the outcome. Both MAR estimates have

c statistics less than 1 and this is so when the missing data model is either logistic or GAM.

Thus, the conclusions regarding the sensitivity of these two important estimates are robust

to the choice of missing data model. The conclusions regarding expersq and nwifeinc,

however, depend on the choice of the missing data model. With the linear logistic model,

we find that the MAR estimates for expersq and nwifeinc have c statistics of less than 1,

indicating that both MAR estimates are sensitive to nonignorable selection for labor force

participation. With the GAM model, these MAR estimates have c statistics of larger than
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Table 1
ISNIs for Parameter Estimates in the Wage Offer Dataset.

MAR Linear Logistic GAM + Linear ηγ1
(y)

Predictor Est. S.E. ISNI c MAR Est. ISNI c MAR Est.
+ISNI/σ +ISNI/σ

Intercept -0.36 0.32 -0.26 0.87 -0.72 -0.19 1.20 -0.62
educ 0.10 0.015 0.019 0.57 0.126 0.018 0.61 0.124
exper 0.04 0.013 0.024 0.40 0.073 0.016 0.57 0.064
expersq -0.00075 0.00039 -0.00050 0.60 -0.0015 -0.00022 1.29 -0.0010
nwifeinc 0.0057 0.0033 -0.0035 0.67 0.00079 -0.0017 1.43 0.0034
kidslt6 -0.056 0.088 -0.12 0.53 -0.221 -0.12 0.53 -0.220
kidsge6 -0.018 0.028 0.007 2.76 -0.0077 0.004 4.92 -0.012
age -0.0035 0.005 -0.006 0.67 -0.011 -0.007 0.57 -0.013

1, indicating that these two MAR estimates are not sensitive to nonignorability.

Using ISNI, we can also calculate the adjusted estimates when γ1, the parameter for

nonignorable selection, is perturbed from zero. A positive value of γ1 is plausible because it

is highly unlikely that one will decline a job offer when the offered wage is high. Here we

consider γ1 = 1/σ, which corresponds to a magnitude of nonignorability where a change of

one standard deviation in lwage corresponds to the odds ratio of labor force participation

being 2.7. In the wage offer dataset, the MAR estimate of σ is 0.72. Therefore, as the offered

wage changes by a fold of e0.72 = 2.1, the odds of labor force participation change by 2.7. This

seems to be a moderate nonignorability. The resulting adjusted estimates for this moderate

nonignorability are reported under the column “MAR Est. + ISNI/σ” in Table 1. With

this γ1 value, we see that the adjusted estimates for educ and exper become larger than the

corresponding MAR estimates, which implies that the MAR estimates likely underestimate
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Figure 2. Plots of smooth terms in a generalized additive model for labor force participation
in the Wage Offer data. The dashed lines are 95% pointwise confidence intervals.

the true effects of education and experience. It is also important to note that the adjusted

estimate (-.0015) for expersq under the linear logistic model is almost 50% larger than that

(-.0010) under the GAM for missing data process. This can lead to a potentially significant

difference in estimating the effect of working experience on the wage outcome.

To explore the possible reasons of the discrepancy in ISNI values between the linear

logistic and the GAM labor participation model, we plot in Figure 2 the smooth fitted

functions of the four continuous predictors for labor force participation, obtained from the

GAM model. The figure shows that the relationship between experience and labor force

participation is nonlinear. A chi-square test shows that this nonlinear trend is statistically

significant (p-value= 0.01). It is plausible that this nonlinear relationship between experience
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and labor force participation drives the difference in the ISNI values.

The above ISNI analysis assumes that a logit transformation of the probability of miss-

ingness depends on lwage in a linear form. In the section S.1 of the online Supplement, we

conduct additional analyses where the missingness depends on lwage in a quadratic form.

The analysis shows somewhat smaller assessment of sensitivity for some parameter estimates.

7. Discussion

It has been recognized that measuring the sensitivity of the inference to alternative missing

data assumptions is an important component of data analysis. Such analysis often requires

positing a missing data model. There typically exists little information to test the assump-

tions in the missing data model. Thus, it is desirable to utilize a model that covers a wide

range of selection mechanisms. In this article, we propose using a semiparametric approach

to adaptively choose the functional form of the continuous predictors for missingness.

We have investigated the consequences of misspecifying a nonignorable missing data

model using the simulation study and real data analysis. Specifically, we investigate the

performance of ISNI, a recently proposed local sensitivity index of nonignorability, under

the misspecification of missing data model. We found that ISNI has some robustness to

misspecifying the functional form of the predictors for missingness. There exist, however,

important situations where the consequence of misspecification in the missing data mech-

anism can be significant. In these cases, using more flexible missing data models can help

protect the analysis from such misspecification. We recommend the semiparametric sensitiv-

ity index that uses a GAM approach for modeling missing data process, due to its modeling

generality and the automated feature of the procedure. The semiparametric index enables

us to model a larger class of missing data mechanisms than the usual linear logistic model

or parametric nonlinear additive model does. The automation of the procedure is also an
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important benefit, especially when many continuous predictors for missingness exist, and

how they affect missingness is not well understood. In these situations, it is cumbersome,

if not infeasible, to manually choose proper higher-order terms and/or transformation for

each continuous predictor. The more automated fitting of the missing data mechanism that

uses a GAM substantially reduces the time and efforts invested in such a modeling exercise.

This is particularly helpful in light of the fact that modeling the missing data mechanism

is usually not of primary interest for a study, but has to be properly dealt with in order to

draw correct conclusions about the main interest of the study.

The sample sizes in our analyses are reasonably large and are commonly seen in practice.

When data are sparse, GAM, as a non-parametric method, might not perform well. In

this scenario, one may consider using recently-developed sparse additive model techniques

(Ravikumar et al. 2009), that combines the idea from sparse modeling and additive non-

parametric regression.

The proposed semiparametric index is substantially easier to compute than the alternative

global sensitivity method because there is no need to fit any nonignorable model. Thus, it

can be ideal for quickly and robustly measuring the sensitivity of a standard analysis to

nonignorable missingness. If the sensitivity is small, then the standard analysis is considered

trustworthy. Otherwise, one might need to collect more data to better understand the

missing data mechanism (Hirano et al. 2001, Qian 2007). The semiparametric index can be

useful to robustly identify the situations where one may need to take the route.

In this article, we have also extended ISNI to situations where missingness depends

on the missing outcome through a polynomial function. We have derived explicit ISNI

formulas when the nonignorable missingness follows a quadratic form and illustrated its use

in the wage offer dataset. This extension makes the index applicable to a broader range

of applications where investigators suspect that the nonignorable missingness might be of a
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complex relationship and would like to investigate the sensitivity under such a belief.

The proposed method can be generalized to multivariate outcomes with nonignorable

missingness. Qian and Xie (2010) develop local sensitivity methods for various types of lon-

gitudinal data with both dropout and intermittent missingness, resulting in a general pattern

of missingness. In their application, the predictors for the missingness are all categorical vari-

ables. In other longitudinal applications where the missingness predictors contain continuous

variables, a linear logistic missing data model may lead to erroneous conclusions. In this

case, the proposed semiparametric index method can be extended to provide a more robust

method to measure the impact of nonignorable missingness in longitudinal data analysis.
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Appendix: ISNI for GLM when ηγ1
(y) is of a quadratic form.

In this Appendix, we derive explicit ISNI formulas when ηγ1
(y) is a quadratic function, i.e.,

ηγ1
(y) = γ11y + γ12y

2. Specifically, we develop these formulas when the outcome Yi follows

a generalized linear model (GLM), which assumes that Yi is independent with density

fθ(yi) = exp

{
yiλi(β) − b(λi(β))

a(τ)
+ c(yi, τ)

}
,

where λi is the canonical parameter; functions b(·) and c(·, ·) determine a particular distrib-

ution in the exponential family; a(τ) = τ/w, where τ is the dispersion parameter and w is a

known weight. Note that the quadratic function of ηγ1
(y) does not apply to binary outcomes.

Thus, we derive the ISNI formulas for other common cases of GLM. In the derivation below,



we reparameterize ηγ1
(y) = γ11(y + r2y

2), where r2 = γ12/γ11. The ISNI formula for ηγ1
(y)

being a linear function can be obtained by setting r2 = 0.

Normal Distribution

For a normal linear model, Yi ∼ N(xT
i β, τ), where τ = σ2. Then E(Y 2)=E2(Y ) + τ , and

according to Equation (7), for a given value of r2, the index for the regression parameter is:

ISNIr = −τ̂(
∑

i:gi=1

xix
T
i )−1

∑

i:gi=0

(1 + 2r2µ̂i)xihi.

where µ̂i = xT
i β̂, and β̂ and τ̂ are the MAR estimates of β and τ , respectively.

Poisson Distribution

For Poisson outcome, we have E(Y 2)=E2(Y ) + E(Y ). Assuming the canonical log link:

ln E(Yi) = ln µi = xT
i β, and the dispersion parameter τ = 1, then according to Equation

(7), for a given value of r2, the index for the regression parameter is:

ISNIr = −(
∑

i:gi=1

exp(xT
i β̂)xix

T
i )−1

∑

i:gi=0

(1 + r2 + 2r2µ̂i) exp(xT
i β̂)xihi.

where µ̂i = exp(xT
i β̂), and β̂ is the MAR estimate of β.

Gamma Distribution

Let the dispersion parameter τ = ν−1, and τ also denotes the constant coefficient of

variation. For Gamma distribution, we have E(Y 2) = ν+1
ν

E(Y )2. Assuming the canonical

reciprocal link: (E(yi))
−1 = µ−1

i = xT
i β, then according to Equation (7), for a given value

of r2, the index for the regression parameter is:

ISNIr =
1

ν̂
(
∑

i:gi=1

(xT
i β̂)−2xix

T
i )−1

∑

i:gi=0

(1 + 2r2µ̂i
ν + 1

ν
)(xT

i β̂)−2xihi.

where µ̂i = 1/xT
i β̂, and β̂ and ν̂ are the MAR estimates of β and ν, respectively.
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Inverse Gaussian Distribution

For inverse Gaussian distribution, E(Y 2) = E(Y )2 + τE(Y )3, where a(τ) = 1/τ . Assuming

the canonical link, E(Yi)
−2 = µ−2

i = xT
i β, then according to Equation (7), for a given value

of r2, the index for the regression parameter is:

ISNIr = 2τ̂(
∑

i:gi=1

(xT
i β̂)−3/2xix

T
i )−1

∑

i:gi=0

(1 + 2r2µ̂i + 3r2τ̂ µ̂2
i )(x

T
i β̂)−3/2xihi.

where µ̂i = (xT
i β̂)−2, and β̂ and τ̂ are the MAR estimates of β and τ , respectively.
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