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Behavior in All-Pay Auctions with Incomplete Information 

 

Charles Noussair and Jonathon Silver 

 

Abstract: 
This paper analyzes the behavior of single-unit all-pay auctions within the independent private 

values environment in the laboratory. We study revenue, individual bidding behavior, and 

efficiency, in relation to theoretical benchmarks and to a similar study of winner-pay first-price 

sealed-bid auctions. We conclude that the all-pay auction yields significantly higher revenue than 

both the risk- neutral Bayesian equilibrium and the winner-pay auction.  Bidders’ decisions move 

closer to equilibrium levels over time in the auction. 

 

Keywords: All-pay, auction, experiment 

 

1. Introduction 

 Many examples of competition exist with the property that multiple players exert effort 

or expend resources in an attempt to gain a benefit, and the losers’ effort or expenditure goes 

uncompensated. Students vying for grades in a class with a curve, lobbyists attempting to gain a 

favor from politicians, or rival companies battling to release a new innovative good on the market 

are just a few instances of this type of interaction. An auction, in which all players pay the 

amount of their bids, but the person or the firm that bids the highest wins the prize, is a simple 

and natural way to model such competition. Bidders’ expenditure in the auction can be 

interpreted as a monetary cost or a non-monetary cost of effort. 

 The theoretical analysis of auctions, beginning with Vickrey (1961) is one of the richest 

and most highly developed research areas of applied game theory.  The main focus has been on 
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winner-pay auctions, where only the player(s) who obtain units are required to make payments. 

However, in the past decade, economists have begun to study auctions where bidders forfeit their 

bids even if they do not obtain an item (see for example Baye et al. (1993) or Krishna and 

Morgan, (1997)). In a single-prize all-pay auction, each player submits a nonrefundable bid, but 

only the highest bidder receives the prize. This logic can represent many types of winner-take-all 

contest, such as a patent race, political lobbying for a government concession, or some forms of 

academic competition. 

 All experimental studies of all-pay auctions of which we are aware have found that 

participants tend to bid more aggressively than in Nash equilibrium, implying overdissipation of 

the rent available for sale in the auction (Potters et al., 1998; Davis and Reilly, 1998; Gneezy and 

Smorodinsky 1999; Barut et al., 2002).  This tendency to overbid is not specific to all-pay 

auctions; results from studies of first-price winner-pay auctions (Coppinger et al., 1980; Cox et 

al., 1982; Harrison, 1989; Kagel et al., 1987; and Kagel and Levin, 1993), have indicated 

overbidding relative to equilibrium levels as well. Most previous experimental studies of all-pay 

auctions (Potters et al., 1998; Davis and Reilly, 1998; Gneezy and Smorodinsky, 1999) have 

studied environments with complete information, in which all bidders’ valuations of the unit(s) 

for sale are common knowledge,1 while Barut et al. (2002) consider a multiple-unit all-pay 

auction under incomplete information. The experiment reported here focuses on the properties of 

single-unit all-pay auctions in an environment with incomplete information.  

 We find that bidders with low valuations for the object tend to bid close to, though 

usually below, equilibrium predictions. However, bidding higher than equilibrium levels is 

common for bidders with high valuations. Many participants bid as if they do not want to commit 

substantial amounts of money unless they have a high probability of winning the auction. These 

patterns of behavior are consistent with the presence of risk aversion (Fibich et al., 2004), as well 

as analogous to the pattern observed by Barut et al. (2002), who studied behavior in multiple-unit 

all-pay auctions under incomplete information. It also corresponds to the phenomenon observed 
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in recent experimental work on effort in organizations by Mueller and Schotter (2003), in which 

high-ability workers exert greater than optimal effort, and low-ability workers drop out of the 

competition. Our revenue results are also consistent with the previous literature, in that the 

auction yields higher revenue than in equilibrium. Furthermore, we conjecture that the all-pay 

auction generates higher revenue than a winner-pay auction under similar parameters.  A dynamic 

pattern of behavior is evident as the game is repeated. Many bidders suffer considerable losses in 

the first few periods of their session, but quickly make the adjustment to bid lower than they had 

bid previously, albeit still above equilibrium levels, for the rest of the auctions in the session. 

 Section two contains a derivation of an equilibrium for the auction in the environment we 

study. Section three describes the protocol of the experiment, section four describes the results, 

and section five is a brief summary and conclusion. 

 

2. Theoretical Predictions 

In this section we calculate a Bayesian equilibrium to the auction game we study. The 

equilibrium is monotonic, in that all players’ bids are strictly increasing in own valuations.  We 

also assume symmetry of bidding strategies so that every bidder uses the same strategy. The 

assumption of symmetry is imposed because (a) the symmetric equilibrium is simple to calculate 

and (b) there is reason to believe that it is the most plausible equilibrium that might emerge in the 

experiment; our game is symmetric and simultaneous with no obvious means to coordinate on an 

asymmetric equilibrium.  

 

2.1. Environment and Auction Rules  

The environment is the independent private values framework as introduced by Vickrey 

(1961). Suppose that n bidders, indexed by i, each receive a valuation vi for a good to be sold in 

an auction. Each bidder i draws vi from a uniform distribution F(v) on the interval [0, ], that is 
_
v
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common to all bidders.  Let bi denote i’s bid and let Bi define i’s overall strategy as a function of 

his type so that bi = Bi(vi). We require that bi ≥ 0. Each bidder knows the number of other 

participants, his own valuation, that there is only one unit for sale in each period, and that all 

bidders draw their valuations from the same common uniform distribution.  However, bidders do 

not know what values other bidders have for the unit being sold. All of the above is common 

knowledge.   

The rules of the all-pay auction game are the following. After drawing his own valuation, 

each bidder simultaneously submits a bid.  Each bidder pays the amount of his bid, regardless of 

whether or not he obtains the unit. If player i does not submit the highest bid among the n players, 

he incurs a loss of –bi.  If i submits the highest bid among the players he receives the unit, earns 

value vi from the unit and pays bi, and thus his total payoff is equal to vi - bi. 

 

2.2. Derivation of Equilibrium   

The expected payoff to bidder i is denoted by 

(1)     Eπi = vi ∗ P(highest bid) − bi , 

where P(highest bid) equals the probability that bi is the highest bid in the auction and therefore 

player i wins the unit for sale. Consider a symmetric strictly monotonic Bayesian equilibrium 

bidding function in this game, where players bid higher as their valuations increase, and use a 

common bidding strategy.2 Since an individual’s equilibrium bidding function, denoted as Bi(vi), 

is strictly monotonic, it is invertible. Since all bidders use the same strategy in a symmetric 

equilibrium, Bi(vi) = B(v) for all i. We denote the inverse of B(v) as V(b). 

Since agents use a common monotonic bidding strategy, the probability that individual i 

submits the highest bid equals the probability that i has the highest valuation.  This equals the 

probability that all other bidders have lower valuations. This can be calculated directly from the 

distribution of valuations. Substituting into equation (1), we have: 
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Since the function V(bi) is symmetric, we can substitute V(bi) = vi, and obtain:   
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Integrating B’(vi), we solve for B(vi) and obtain a symmetric, strictly monotonic equilibrium 

bidding function, given by (8). 
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It remains to specify an initial condition. The obvious condition is that B(0)=0 because it is a 

dominated strategy to bid an amount greater than one’s valuation and bids are constrained to be 

non-negative. Thus, we set C = 0 in equation (8), and the following expression satisfies the 

necessary conditions for equilibrium.  
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It can be readily verified that the second order conditions for a maximum are satisfied. 

Figure 1 illustrates the equilibrium bidding function. On the horizontal axis are the valuations vi 

and on the vertical axis are the bids bi.  Although bi > 0 for all vi > 0  the function does not reach a 

value of bi = 1 until vi = 326. The maximum possible bid consistent with equilibrium behavior 

is 33.833)1000( =B . 

 

     [Figure 1: About Here] 

 

3. Procedures of the Experiment 

We conducted five experimental sessions, each consisting of one practice period and 25 

periods that counted toward subjects’ earnings.  In each session, six subjects were given the role 

of bidders in an auction to purchase a fictitious object. There was one object auctioned in each 

period to the six bidders. In each period, bidders were given independently drawn valuations for 

obtaining the object for sale that period.  The valuations were denominated in terms of an 

experimental currency and were integers drawn from the discrete uniform distribution on the [1, 

1000] interval.  The conversion rate of units of experimental currency to $US was 250 

units/$1.00.  New valuations were drawn each period so that an individual’s valuation typically 

differed from period to period. Valuations were independent across bidders within a period as 

well for individuals over time. 

All five sessions were conducted at Emory University using undergraduate students 

recruited from economics courses. No individual participated in more than one session during the 

study.  All auctions were conducted manually rather than being computerized.  Every subject 

received a $20 participation fee, announced at the beginning of each session, and this money 
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could be used to pay off any losses incurred during the series of auctions.  In each period, bidders 

simultaneously submitted bids, in terms of experimental currency, for the single object available 

for sale during the period. The bidder with the highest bid won the item and received earnings 

equal to his valuation for the object minus his bid.  Every other subject incurred a loss equal to 

the amount of his bid.4 Table 1 shows the average, maximum, and minimum earnings among 

subjects for each of the five sessions. 

 

   [Table 1: About Here] 

 

There was no communication allowed between subjects during the experiment. The 

information available to subjects at any point during a session was the following. Each participant 

had the information specified in the independent private values framework described above.  

Additionally, each subject knew the history of all bids from earlier auctions in the session, which 

was displayed on the blackboard for the entire session. Bidder identifiers and valuations were not 

displayed so it was not possible to associate a bid with a particular player or valuation. Players 

did not know the valuations that they would receive in future periods. When they turned in their 

record sheet to the experimenter at the end of each period, the experimenter wrote down their 

valuation for the next period in the appropriate column. The instructions for the experiment and a 

sample record sheet, used for recording players’ bids and earnings, are given in the appendix5. 

 

4. Results 

4.1. Revenue, Efficiency, and Comparison with Winner-Pay Auctions  

We first consider the aggregate measures of outcomes that are generally of the greatest 

interest in the study of auctions: the revenue to the auctioneer and the overall surplus to the two 

parties.  We compare observed revenue in our experiment to the Bayesian equilibrium level and 
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to previous data from winner-pay first-price sealed bid auctions reported by Cox et al. (1982, 

1988). They investigate the first-price auction within an identical environment to ours: an 

independent private values information structure, six bidders, and a uniform distribution of 

valuations. Our observed revenue is higher than both benchmarks, the equilibrium level and the 

winner-pay first-price auction level.6 Table 2 shows a comparison of the observed revenue with 

the Bayesian equilibrium revenue for the actual realizations of valuations for the period.  In four 

out the five sessions, the average observed revenue considerably exceeded the equilibrium level.   

 

[Table 2: About Here] 

 

The table shows that 86 of 125 periods yield higher revenue than the equilibrium level. 

Average revenue per period is 1055, which is 47.7% higher than the predicted revenue of 714, 

and even higher than the maximum possible valuation for the object (1000). A t-test, under the 

conservative assumption that each session is the unit of observation, rejects the hypothesis that 

the average revenue in the session is less than or equal to the Bayesian equilibrium revenue at the 

five percent level (t = 3.515, p < .01, n = 5). This result is analogous to those obtained in previous 

studies of all-pay auctions in other environments (Davis and Reilly, 1998; Potters et al., 1999; 

Gneezy and Smorodinsky, 1999; Barut et al., 2002) that have shown that revenue is significantly 

greater than equilibrium levels in all-pay auctions. In conjunction with previous studies, our 

results suggest that more aggressive bidding than under non-cooperative game theoretic models 

may be a general feature of all-pay auction games.  

It appears that revenue in the all-pay auction, at least for our parameters, is greater than 

under a winner-pay first-price auction. We compare the average revenue obtained here with that 

from the first-price sealed bid auction reported in Cox et al. (1982, 1988), using a pooled-variance 

t test.7 Each period in each study is used as an observation. The Cox et al. data is appropriate as a 

basis for comparison because it consists of auctions in which six bidders bid for one item, the 



 10
bidders valuations were independently drawn from a uniform distribution and were private 

information, so that the structure of the environment was identical to ours. We reject the 

hypothesis that average revenue is equal under the two auction types at a five percent level of 

significance (t = 2.65, p < .05), in favor of the alternative that the all-pay auction generates higher 

revenue than the winner-pay auction.  

Efficient allocations occur when the bidder with the highest valuation also submits the 

highest bid, and therefore wins the item. A natural measure of efficiency is the ratio of the 

valuation of the winning bidder to the highest valuation any bidder holds (Plott and Smith, 1978). 

An efficiency level equal to 1 implies that the highest-valued bidder purchased the item. The data 

for efficiency, also listed in Table 2, shows that in 62.4% of periods, an efficient allocation 

occurred. Average efficiency equaled 89.1%. While this is clearly higher than would result from a 

random allocation of the unit or a flawed institution, it is lower than typically obtained in winner-

pay first-price auctions. For the data that Cox et al. (1982, 1988) report for six bidders and the 

same parametric structure we employ here, an average allocative efficiency of 98.26% was 

obtained.8 

  

4.2. Individual Bidding Behavior 

Figures 2a-2e display the individual bid data from the five sessions that comprised the 

experiment.  The bids of each of the six subjects in a session are shown with a different symbol, 

and the smooth line represents the Bayesian equilibrium bidding function calculated in section 

two.  The graphs show a rather similar relationship between bids and valuations in different 

sessions.  For lower valuations, a large majority of bids is at or close to zero, while high 

valuations are generally accompanied by higher than equilibrium bids. However, there is 

considerable heterogeneity of behavior between subjects.   

 

  [Figures 2a – 2e: About Here] 
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Although only 39% (293 out of 750) of all bids exceeded the equilibrium level, excess 

bidding was most evident for valuations within a particular range. Zero bidding is common; 

bidders with valuations of 500 or below bid zero 67.6% of the time. The percentage of subjects 

submitting zero bids declines steadily as valuations increase, rather than abruptly decreasing as 

would occur if bidders were using a common pure strategy.  

For valuations below 800, the majority of bids is below the equilibrium level. The 

percentage exceeding equilibrium is fairly constant over the range from 0 to 700, above which it 

increases considerably. For valuations above 800, the majority of bids exceeds the Bayesian 

equilibrium level.  The bids that exceed the equilibrium levels for valuations greater than 800 did 

so to an extent sufficient to more than offset the revenue loss relative to equilibrium from the 

lower than predicted bids observed for low valuations.  

While the high bidding of those with valuations above 800 accounts for the greater than 

predicted revenue, the heterogeneity of behavior across individuals reveals the source of the 

inefficiency. Although behavior is reasonably common across individuals when they have low 

valuations, the variability of bids submitted by players with valuations above 700 suggests that 

inefficient allocations may be occurring, in that bidders with the highest values often fail to obtain 

the unit for sale. This pattern is particularly evident in session four.  Closer inspection of figure 

2d, which displays the data for this session, reveals a tendency on the part of bidders 3 and 6 to 

pursue a different type of strategy from the other four bidders.9 Their bids are roughly a linear 

function of their valuations, while the other four bidders use the more typical strategy of zero or 

near-zero bidding for valuations below a threshold and higher than equilibrium bidding for higher 

valuations.  This pattern of lower than equilibrium bidding for low and higher than equilibrium 

bidding for high valuations is consistent with the multiple-unit all-pay auction data reported in 

Barut et al. (2002) and with results from Mueller and Schotter’s (2003) study of effort in 

organizations.   
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The aggregate pattern of individual behavior in our data is broadly consistent with the 

presence of risk aversion. Fibich et al. (2004) show, using perturbation analysis, that in an all-pay 

auction with independent private values and a small degree of risk aversion on the part of all 

bidders, the following patterns hold. (1) Buyers with low values bid lower than they would under 

risk-neutrality, (2) Bidders with high values bid higher than if they were risk neutral, and (3) 

buyers’ expected utilities are lower than they would be under a first-price winner-pay auction. All 

of these patterns are observed here. Low valued players typically bid zero, consistent with (1), 

while those with high values bid higher than risk-neutral equilibrium levels, as (2) specifies. 

Expected earnings are negative, and therefore lower than in first-price auctions, which is in 

accordance with (3). However, because there are strong behavioral patterns in other types of 

auctions that are inconsistent with risk-aversion (see for example Kagel and Levin, 1993, or 

Kagel, 1995), other explanations for the patterns observed here may well be at least as important 

as risk aversion.10 

We next consider whether or not participants change their behavior as they become more 

experienced with the auction process. Bidders begin with no prior experience, and their decisions 

might be expected to quickly improve over time. Figure 3a shows the average value of |bij
t – bij

t
*| 

the absolute difference between the player i’s bid in period t of session j and the equilibrium bid 

for player i in the period. Figure 3b illustrates the analogous average value of bij
t – bij

t
*, the 

average bias of i’s bid. While the absolute difference is a measure of dispersion, bias is a measure 

of the extent of average over-or underbidding relative to equilibrium, with a positive value 

indicating a bias toward overbidding. The figures show the data by period, pooled across bidders 

and sessions. They illustrate that at the beginning of the sessions the average bid greatly exceeds 

the equilibrium level, but rapidly declines over the first five periods. However, the bias in bids is 

fairly constant after period 5, and remains positive, indicating long-term bidding in excess of the 

equilibrium level. Bidders appear to learn quite early the consequences of severe overbidding. 

This causes the rapid decline in bids relative to equilibrium predictions during the first few 
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periods. However, it appears that the feedback from moderate overbidding is not sufficiently 

powerful to lead agents to lower their bids to the equilibrium level, at least over the time horizon 

that we are able to observe in our experiment. The incidence of zero bidding does not show a 

systematic pattern over time, with 51.3%, 50%, 44%, 39%, and 52.7% of bids equaling zero in 

periods 1-5, 6-10, 11-15, 16-20, and 21-25, respectively. 

 

           [Figures 3a and 3b: About Here] 

 

To consider the convergence process of bids relative to equilibrium levels over time, we 

conduct a regression with the following specification, first employed in Noussair et al. (1995). 

  

bij
t – bij

t
*  = β11D1(1/t) + … + β15D5(1/t) + β2((t-1)/t) + uit,  (10) 

 

where j indexes the session, the Dj are dummy variables that take on a value of 1 for session j and 

zero for other sessions, and t represents the market period. Notice that in the first period of 

session one, (D1/t) equals 1 but all of the (Dj/t) terms for j ≠ 1, as well as the (t-1)/t term, equal 

zero. Therefore, the β1j coefficients can be interpreted as indicating the origin of the dependent 

variable at the beginning of session j. As t→∞, the Dj/t terms approach zero while the (t-1)/t term 

approaches one so that the β2 coefficient indicates the value that the dependent variable 

asymptotically approaches. The specification allows heterogeneity early on between the 

individual sessions, but assumes convergence to a common asymptote in all sessions. It accords 

well with many types of experiments, which exhibit more between-session variability early than 

late in the experimental sessions. 

The results of the estimation are shown in table 3. The estimated coefficients of the 

model with the Absolute Difference as the dependent variable are given in the second column, 
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and those for the Bias are in the third column. The standard errors are given in parentheses. The 

data in the table lead to two main observations. The first is that all of the β terms are significantly 

positive. The fact that β2 is positive for the Bias equation indicates that even if the declining trend 

in bids is extrapolated into the infinite future, the average bid would remain significantly greater 

than the Bayesian equilibrium level, confirming the visual impression conveyed in figures 3a and 

3b. Average bids are converging to a level above the equilibrium. The second observation is that 

all five of the β1j terms are greater than β2, which is consistent with a trend of declining bids 

relative to equilibrium predictions. Thus while the average bid does not converge to the 

equilibrium level, it is moving in its direction. 

 

[Table 3: About Here] 

 

5. Conclusion 

 The revenue from the sealed bid first price all-pay auction that we have studied here 

exceeds the Bayesian equilibrium revenue in the independent private values environment. This 

result accords with studies of the auction in other environments. Furthermore, the all-pay auction 

appears to generate higher revenue than the more widely studied and used first-price winner-pay 

auction. This result does not extend to the multi-unit case, for which Barut et al (2002) find that in 

multi-unit generalizations of the auctions studied here, there is no significant revenue difference 

between all-pay and winner-pay variants. While we obtain the result that revenue in the all-pay 

auction exceeds the winner-pay auction by comparing our data with those of a previous study that 

may have used somewhat different procedures, the fact that average revenue in the all-pay 

auction exceeds the highest possible valuation gives us confidence that the finding is not due to 

any methodological differences. It is implausible that a first-price winner-pay auction would yield 

average revenue greater than even the expected highest valuation, let alone the highest possible 
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valuation, because of the transparently dominated nature of bidding more than one’s valuation in 

such an auction.  

At the individual level, we observe extensive use of a dichotomous bidding strategy. For 

relatively low valuations, bids of zero are common, and for high valuations, bids that exceed 

equilibrium levels are typical. Thus in this form of competition, agents appear to exert either a 

great deal or very little effort, where effort is represented in our experiment by a monetary 

commitment. This pattern, aggressive bidding on the part of those with high valuations and 

passive bidding by those with low valuations, is consistent with risk aversion on the part of 

bidders, although of course the existence of the pattern does not prove that risk aversion is the 

cause. Furthermore, subjects are heterogeneous with regard to the valuation at which they tend to 

change their approach from non-competitive to competitive. This heterogeneity, in cases where 

the highest-valued bidder behaves non-competitively, can create inefficient allocations. Indeed, 

we observe more inefficiency here than is typically the case in winner-pay auctions.  
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Appendix I:  Instructions for the Experiment 
 
General Instructions 
 

This is an experiment in the economics of market decision-making.  The instructions are 

simple, and if you follow them carefully and make good decisions, you might earn a considerable 

amount of money, which will be paid to you in cash at the end of the experiment.  The 

experiment will be broken up into a series of 25 periods in which you will be bidding in a series 

of auctions for units of a good called X.  You will be given a Record Sheet to keep track of 

results. You are not to reveal the results on your Record Sheet to any other participant. 

In each period, you will see a number on your Record Sheet in the column labeled 

“Redemption Value.”  This number is your value for the product, and indicates the amount of 

experimental currency you will receive if you obtain a unit of X in the auction that period.  Your 

Redemption Value is chosen randomly before the experiment and is equally likely to be any 

integer between 1 and 1000.  You will receive a new randomly chosen redemption value in each 

period, and your redemption value will typically be different than the one of every other player.  

Other players’ redemption values are independent of your redemption value, that is, each other 

player’s number is still equally likely to be any number between 1 and 1000, no matter what your 

number happens to be. 

You can obtain units of X by participating in the market process which is described 

below. 

 
The Auction Process 
 

Each period, you will be grouped with five other participants.  There will be only one unit 

sold to each group each period. 

During each period, you may submit a bid for one unit of the commodity by filling out 

the column entitled “Bid” for the appropriate period on the Record Sheet.  After all participants 

have submitted their bids, the highest bid in each group will be accepted and that bidder will 
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receive the unit of X awarded.  If there is a tie for the highest bid, the unit is randomly assigned to 

the tied buyers by a coin flip.   

In this auction, you pay the amount of your bid regardless of whether or not you receive a 

unit of X.  A practice round will initially be conducted to make sure that all participants 

understand the auction process. 

 
Determining Your Earnings 
 
Please refer to your record sheet to determine your earnings.  You must record your earnings on 

your record sheet at the end of each period.  In column 4, labeled Value of Units Received, enter 

your redemption value if you made the highest bid for the period and 0 if you did not. Subtract 

column 3 from column 4, and these are your earnings for the period, which are to be entered in 

column 5.   

Example:  Someone with a redemption value of 750 bids 500 in an auction and has the 

highest bid.  This person would enter 750 into the Value of Units Received column and 250, 750-

500, into the Earnings for Period column on the record sheet.  Another person with a redemption 

value of 700 bids 400 in the same auction.  This person would enter 0 into Value of Units 

Received and –400, 0-400, into Earnings for Period. 

At the conclusion of the experiment, add of all of the earnings for each period and enter 

the total at the bottom of the record sheet.  The currency used in this market is “francs,” and the 

total earnings will be converted into dollars at a rate of 250 francs/dollar.  This value will be 

added (or subtracted if negative) to the $20 participation fee and will be paid out at the conclusion 

of the experiment. 
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Appendix II:  Sample Record Sheet 
 
Record Sheet 
 
 
 
 
 
ID# A  
 
 
 
Period Redemption 

Value 
Bid Value of Units 

Received 
Earnings for 
Period 

Practice 500    
1 577    
2 47    
3 157    
4 381    
5 823    
6 717    
7 321    
8 614    
9 994    
10 881    
11 34    
12 216    
13 928    
14 641    
15 160    
16 249    
17 883    
18 546    
19 432    
20 572    
21 139    
22 631    
23 301    
24 465    
25 385    
Total Earnings for the Auction is:  
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Table 1: Earnings of Individual Subjects in the Experiment 

Session 

Number 

Average 

Earnings 

Maximum 

Earnings 

Minimum 

Earnings 

Number of Subjects Earnings 

Less Than Participation Fee 

1 $20.75 $27.80 $13.50 2/6 

2 $15.45 $19.98 $12.00 6/6 

3 $15.01 $17.60 $11.99 6/6 

4 $9.44 $20.66 -$2.24 5/6 

5 $15.00 $19.21 $5.87 6/6 
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Table 2*: Average Revenue and Efficiency, All Sessions 

Session Average 

Revenue – BE 

# Periods 

Revenue>BE 

Average  

Efficiency 

Efficiency = 1 

1 -3.62 10/25 .906 15/25 

2 386.90 20/25 .937 17/25 

3 354.27 18/25 .873 16/25 

4 597.23 20/25 .822 11/25 

5 366.23 18/25 .919 19/25 

Total 340.20 86/125=68.9% .891 78/125=62.4% 

 

 

 

                                                 
* In Table 2, Average Revenue – BE equals the average difference between the actual revenue and the 

Bayesian equilibrium revenue per period during each session.  Revenue>BE indicates the number of 

periods in each session that the total revenue exceeds the Bayesian equilibrium revenue for the actual 

valuations bidders held in the period. 
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Table 3: Estimates of Convergence Model for Absolute Difference and Bias Relative 

to Equilibrium 

Independent 

Variable 

Dep. Var. = 

Absolute Difference 

 |bij
t – bij

t
*| 

Dep. Var =  

Bias 

bij
t – bij

t
* 

D1/t 279.30 

(64.37) 

211.37 

(76.40) 

D2/t 108.26 

(49.52) 

157.89 

(60.84) 

D3/t 193.38 

(57.96) 

183.82 

(63.08) 

D4/t 417.14 

(109.11) 

412.33 

(116.26) 

D5/t 175.97 

(64.25) 

219.69 

(69.99) 

(t-1)/t 103.47 

(7.87) 

24.22 

(9.20) 
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Figure 1: Equilibrium Bidding Function
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Figure 2a: Bids and Valuations, Session 1
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Figure 2b: Bids and Valuations, Session 2
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Figure 2c: Bids and Valuations, Session 3
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Figure 2d: Bids and Valuations, Session 4
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Figure 2e: Bids and Valuations, Session 5
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Figure 3a: Average Absolute Difference Between Observed and 
Equilibrium Bid, By Period
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Figure 3b: Average Bias of Observed Bid Relative to 
Equilibrium, By Period
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ENDNOTES 

1. Anderson et al. (1998) show that in the case of complete information, overdissipation is 

consistent with a logit equilibrium, in which agents may commit “errors” by choosing 

actions that do not have the highest expected payoffs, but the probability of choosing a 

particular action is increasing in its expected payoff. 

2. See Krishna and Morgan (1997) or Krishna (2002) for a derivation of the Bayesian 

equilibrium for more general cases. 

3. Although we use a discrete uniform distribution in the experiment, we derive the 

equilibrium here assuming a continuous distribution. The main analytical difference is 

that if the distribution is discrete, the possibility of a tie for the highest bid must be 

considered, while with a continuous distribution of types and strictly monotonic 

strategies, the probability of a tie is zero. With 1000 different valuations (each integer in 

the 1-1000 interval) and a uniform distribution, as in our experiment, the probability of a 

tie for the highest valuation and therefore for highest bid is extremely small. 

4. If a subject had overall net losses for the auction, the amount of the loss would be 

deducted from the $20 participation fee while positive earnings would be added to the 

fee.  In principle, a player could lose more than the initial twenty dollars.  This only 

occurred for one person in the entire study. An individual in Session 4 lost $22.24 in the 

auction for overall losses of $2.24 for the session.  In this case, the individual did not 

receive any money for his participation in the experiment. Since cumulative earnings are 

not calculated after each period, the subject appeared to be unaware that he had sustained 

more than the maximum allowable losses. His cumulative earnings became negative in 

period 23. 

5. The sheet in the appendix contains the valuation of the individual for all 25 periods. 

However, during the experiment itself, individuals did not observe the valuations for 
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future periods. They knew only their valuations for the previous and current period at any 

time. 

6. While the procedures may have differed slightly between our study and Cox et al. (1988) 

it is clear that revenue is higher here than it would be in a first-price winner-pay auction. 

All studies of the first-price winner pay auction have reported that revenue is below the 

highest valuation held among the bidders, although higher than the Bayesian equilibrium 

assuming risk neutrality. Here average revenue exceeds the highest valuation held among 

the bidders. In the winner pay auction, the highest bidder must use a dominated strategy 

for revenue to be greater than the highest valuation, while this is not the case for the all-

pay auction we study here. 

7. Valuations in the experiment of Cox et al. (1988) were drawn from a uniform distribution 

on [0, 16.9] in contrast to our interval of [0,1000]. We normalized our data for 

comparison by multiplying all bids in our study by 0.0169, and then calculating the mean 

and variance of the resulting transformed bids. 

8. These very high efficiency results that Cox et al. obtain are typical of first-price winner-

pay auctions. See for example, Kagel et al., 1987, who report efficiency levels of 98% to 

99.5% in private value first-price winner-pay auctions. 

9. Bidder six was the only person from the entire experiment to lose more money than the 

twenty-dollar participation fee. 

10. A explanation of the deviations from the risk-neutral Bayesian equilibrium based on the 

existence of a utility of winning the auction cannot be a complete explanation for the 

pattern we observe. If a utility of winning exists, then bids would exceed Bayesian 

equilibrium levels for both low and high valuations. The pattern of underbidding on the 

part of players with low valuations seems inconsistent with the existence of a utility of 

winning the auction. 
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