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Abstract

Models of fishing behavior rarely incorporate the complexities of marine ecosys-
tems, multiple-stock harvest technologies, and regulations present in real world marine
fisheries. We introduce a structural model of a multi-species, weak-output-disposability
harvest technology. A latent target-cost-minimizing share vector is estimated to link
the technology to a spatially and temporally heterogeneous fish stock. Data from the
Gulf of Mexico reef fish fishery is used to estimate the model. The results provide a
robust characterization of harvest and discard behavior across space and time. Our
approach considerably improves methods used to study fishing behavior and evaluate
alternative fisheries management policies.
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1 Introduction

Fisheries management problems have recently been linked to a reliance on overly simplistic

models of marine ecosystems. Single-species management principles that ignore complex

biological interactions among multiple species, or multiple age cohorts, and treatment of

spatially heterogeneous fish metapopulations as a spaceless whole stocks are examples.1 A

similar critique can be leveled at models of fishing behavior which often exhibit a considerable

disconnect between fundamentals, prices, technologies, stock conditions and regulations, and

the fishing outcomes that are of interest to managers. At the least, effective management of

fisheries requires information on stocks-specific harvests across space and time, information

on bycatch and at-sea discarding, behavioral responses to prices and regulations, and tools to

evaluate biological and economic performance of alternative regulatory policies. An essential

requirement is that behavioral models be capable of examining the counterfactual, i.e., the

behavioral responses of fishermen to regulations that have yet to be adopted. The problem

calls for a structural approach that can link management-relevant fishing outcomes to the

complex ecological, institutional and economic conditions in marine fisheries.

This paper introduces a novel approach to study the policy-relevant aspects of fishing

behavior within a biologically and spatially heterogeneous fishery.2 Commercial fishermen

decide where and when to fish jointly with choices of factor inputs to employ in the harvesting

process and the quantity and mix of individual fish species or sub-stocks to harvest. These

choices are constrained by the available technology, the composition of the fish stocks and

often by various harvest regulations. We introduce a structural economic model that takes

as the unit of analysis the spatial harvest and discard choices of fishermen. The model draws

heavily on the neo-classical theory of the firm, but is modified to account for the role of the in

situ fish stocks in the technology. We consider multiple-species, and/or multiple age cohort

stocks that are spatially and temporally heterogeneous, and therefore make considerable

1A growing view among fisheries scientists and marine ecologists is that a more holistic approach will
improve the management of ocean fisheries resources (Brodziak and Link, 2002; Pikitch et al., 2004; U.S.
Commission on Ocean Policy, 2004). The challenges and opportunities that accompany spatial fisheries
management are discussed in Wilen (2004).

2Berrmann (2007) discusses the various limitations of the random utility model for analyzing spatial
fishing behavior. See also Curtis and McConnell (2004).
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progress toward incorporating the ecological complexity of real world fisheries.

A key element of our model is a latent vector of target-cost-minimizing harvest shares.

This vector summarizes spatial-temporal stock conditions and importantly the spatial-temporal

profit opportunities for fishermen. The latent cost share vector provides the crucial link be-

tween the technology and the spatially and temporally heterogeneous fish stock. A second

key feature is the technology itself, which we assume exhibits a weak-output disposibility

property consistent with costly targeting in multiple-species fisheries (Turner, 1995; Singh

andWeninger, 2009). Third, our approach controls directly for effects of regulations common

in managed fisheries on fishing behavior.

An application to the Gulf of Mexico reef fish fishery is presented to demonstrate the key

attributes. The Gulf of Mexico reef fish fishery is a multiple-species fishery that is managed

with seasonal closures for some species stocks, per-trip catch limits, spatial closures, gear

restrictions and catch quotas. These regulations along with the weak output disposibility

technology lead to a complex decision environment which interacting constraints on the

harvest choices of fishermen. Our econometric model incorporates these constraints, in the

form of unique Kuhn-Tucker necessary conditions, in the estimation of a parametric multiple-

product cost function. The system of estimating equations identifies further the latent stocks

conditions that determine the cost structure across space and time. A Gibbs sampler is used

to fit the model (see Casella and George, 1992 and Geweke et al., 1999).

Our analysis of reef fish harvest behavior demonstrates several of the model’s strengths.

We are able to show how prices, and regulation such as per-trip landings limits used to

reduce fishing mortality, redirect fishing efforts toward unregulated species and across space

and time. Spatial-temporal discard patterns are also impacted by price and regulatory

changes. Our model predicts that when the price of fuel rises, reef fish fishermen are less

inclined to target higher priced reef fish species, and instead are more inclined to land a

harvest mix with low targeting costs. The preferred harvest strategy under higher fuel prices

also involves fewer at-sea discards.

Before we present the model and empirical results, it is instructive to compare our ap-

proach with related literature. Our model is similar in spirit to state space modeling (see

Geweke and Tanizaki, 2001 and for ecological applications see Punt and Hilborn, 1997).
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Ecologists have long relied on state-space models to estimate latent fish biomass and its

underlying dynamics. We do not explicitly model stocks dynamics here; extensions of the

model in this direction are discussed in the concluding section. We do adopt some of the

econometric techniques used in the ecology literature. Recent advances have shown that

Bayesian state space models perform better in the estimation of highly non linear dynamic

such as the logistic growth function, which features many fish ecosystems (Wang, 2007).

Current methods for analyzing spatial fishing patterns rely almost entirely on the discrete

choice random utility construct.3 A standard application of random utility models (RUMs)

to spatial fishing behavior assumes that on each trip from port, the fisherman selects, from

among a set of spatially disjoint (discrete) fishing opportunities or sites, the opportunity

that yields the highest utility.4 Our model also exploits the heterogeneity of the ocean

environment for determining spatial behavior, but we do not discretize space or time. The

number of sites at which fishermen might deploy gear in a fishery is typically far too large to

be estimated via a multinomial probit or multinomial logit specification. This places artificial

limits on the number of sites for which preferences may be estimated and forces researchers to

assume coarse geographical divisions of the fishing grounds, with coarse descriptions of spatial

fishing patterns (Berman, 2007).5 Our approach of treating space and time continuously is

therefore an important advance.

Moreover, application of the RUM to fishing data takes as the unit of analysis the spatial

location of a fishing trip. A second-stage model of input and output choices on each trip is

required by the researcher in order to complete the link between fundamentals and harvests,

bycatch revenues and costs. Our model considers the choice of spatial location jointly with

the input and harvest choices that are made on the trip. As we demonstrate, this allows us

3The random utility model (RUM) was developed by Daniel McFadden to study transportation choices.
The original set up assumes that a particular transportation choice yields utility U which is known fully by
the decision maker. Utility is decomposed as U = V + e, where V is observable by the researcher, while e
captures an unobserved component. In empirical applications V may be conditioned on observables such as
distance to a destination, average traffic patterns, road conditions, etc.

4Numerous applications of the RUM to spatial fishing data have appeared in the resource economics
literature. We do not attempt a review of this literature. A special issue of Marine Resource Economics
(Volume 19, Number 1, 2004) is dedicated to analysis of spatial fishing behavior. Smith (2000) provides an
overview of the RUM method for analyzing spatial fishing data.

5Branch et al. (2005) discusses a related problems where the spatial grid used to divide fisheries
geographically–typically latitude and longitude designations determined by political considerations–may
be unrelated to the locations of productive fishing sites.
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to directly predict management-relevant fishing behavior which is crucial for management

purposes.

Estimation procedures that incorporate Kuhn Tucker necessary conditions are common

in the analysis of consumer demand systems, and valuation of non-marketed goods (see

von Haefen, and Phaneuf, 2007 for a review of this literature). Kuhn Tucker estimation is

less common in applied production analysis (an exception is Lee and Pitt, 1987). Whereas

in demand systems consumer utility is not observable, in our fishing profit maximization

problem we observe costs but do not observe the composition of the fish stock at the locations

chosen for fishing. We incorporate species-specific KT necessary conditions for optimal

harvesting, along with the trip-level cost function. Estimating the system of equations

improves parameter identification and directly accommodates the impacts of regulations,

e.g., landing constraints that impact our data.

We choose to use Bayesian methods as they present computational advantages over fre-

quentist methods in both fitting non linear equations and estimating random parameters.

Markov Chain Monte Carlo (MCMC) methods simulate the posterior but do not maximize

the likelihood function (Chernozhukov and Hong, 2003). Bayesian estimation approaches are

capable of estimating models for which extremum-based estimators fail to converge. Fur-

thermore in Bayesian frameworks random parameters are accommodated by the appropriate

choice of priors. These hierarchical priors introduce an additional structure in the model

which eases estimation (Chib and Carlin, 1999).6 ,7

Our model allows for random vessel skipper effects. We adopt a hierarchical prior and

use a Metropolis Hasting algorithm to draw from the posterior of our non linear systems of

equations (Kim, et al., 2002).8 Our structural approach unlike Kim, et al. (2002) accom-

modates not only for lower binding constraints, zero harvests, but also for upper binding

6Remark that data augmentation methods (Tanner and Wong, 1987) used for Bayesian inference in RUM
greatly eases the computational burden of these models and can significantly extend the location choice set
considered (see McCulloch and Rossi, 1994 and Imai and van Dyk, 2005).

7While there is no clear advantage in estimating KT systems with either Bayesian or frequentist methods,
in the presence of random parameters the Bayesian methods are often preferred (von Haefen and Phaneuf,
2007).

8The Bayesian inference approach in Kim, et al., (2002) identifies parameters of consumers preferences
for varieties of yogurt. Their procedure remains a reduced form approach because of the absence of data
on consumer preferences and thereby only partially identifies behavioral parameters. On the contrary our
structural model uses data on the cost function for identification.
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constraints on choice variables. In our case the upper-bound constraint is due a per-trip

landings regulations imposed by the fisheries management program. To our knowledge this

paper is the first to incorporate both types of corner solutions.

The next section presents a multiple-factor input, multiple-species behavioral model in

a landings-regulated fishery. Our empirical estimation strategy is also presented. Section

3 presents a brief overview of the Gulf of Mexico reef fish fishery, the available data and a

discussion of the regulations used to protect reef fish stocks. Section 4 reports results and

demonstrates use of the model for designing regulatory policies. Section 5 summarizes the

main insights of the paper and discusses extensions.

2 Model

We consider a representative, profit maximizing fisherman who harvests from i = 1, ...,m > 1

differentiated fish stocks. Individual stocks can differ by species, age cohort or sex. Denote

the non-negative harvest vector as h = (h1, ..., hm). The optimization problem is analyzed

in two stages; a cost minimization stage followed by a profit-maximizing harvest choice.

2.1 Multiple-stocks harvest technology

In a fishery, the cost of harvesting h will depend on factor input prices, but also on the

composition, i.e., the absolute and relative abundance of individual fish stocks. We allow

the spatial and temporal distribution of the stocks to be heterogenous. Stock composition

at a particular location and time can vary depending on the spatial-temporal microhabitat.

Abundance at spatial location s ∈ S and date t is denoted xst = (x1,st, ..., xm,st), where xi,st

is stock i abundance, and S is the set of all fishing locations on the fishing ground.9 We

assume that harvest h is small relative to stock abundance and treat xst parametrically.

Date t minimum costs are defined as

c(h,w, xst) = min
v,s
{w0v| v can harvest h given xst, s ∈ S}, (1)

9The spatial location index s may for example, indicate the lattitude, longitude and depth of water
column.
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where v is a vector of factor inputs (e.g., fuel, bait, ice, labor, and capital), that is purchased

competitively at price vector, w > 0. We assume the cost function is convex in h and non-

decreasing, concave and linearly homogeneous in w. These are standard structural properties

of multi-product technologies. Additional structural properties unique to fishing technologies

are discussed next (see Singh and Weninger, 2009 for further details).

Minimizing the cost of harvesting h will in general involve selecting fishing locations

where the composition of the stock is well-suited given the harvest target h. To be more

precise, if a fisherman chooses to harvest a relatively large quantity of stock i fish he will

likely select a location at which xi is abundant in absolute terms and abundant relative to

other stocks. At this location, the fishing gear can be expected to intercept stock i in roughly

the same proportion as the target vector h. Moving vessels and gear across space utilizes

costly inputs. Therefore the fishing location must be optimally chosen jointly with the target

harvests to balance costs and benefits of targeting a particular mix of stocks.

Notice that the optimization problem in (1) is defined over locations s, whereas the spatial

index remains attached to our stock measure, xst. Commercial fishing involves steaming from

port to a preferred location and then returning to port to off-load and sell the catch. Vessel

operations are mobile and regularly operate from different ports. However, each fishing trip

must depart from, and return to some land-based port, and thus the production process

is spatially linked to land.10 Our model allows the costs of accessing a particular stock

composition to differ across coarse regions of the fishing ground.

We assume the technology exhibits the non-standard structural property of weak output

disposibility (Turner, 1995, 1997; Singh and Weninger, 2009). An important implication

of this property is that costs can be non-monotonic in h and specialization, i.e., selecting

a harvest mix with hi = 0 for some i and hj > 0 for j 6= i, can be costly. To see why

this property is reasonable in multiple-stock fisheries, compare the costs associated with the

following harvest vectors. The first, denoted h+, has strictly positive quantities for each

species (h+i > 0, for all i). The second h0 is identical with the exception that harvest of the

species i stock is zero; h0 = (h+1 , .., h
+
i−1, 0, h

+
i+1, .., h

+
m). Well-suited fishing locations, given

10Researchers have conditioned the location choice on the port from which the vessel departs (Haab et
al., 2008). The choice departure and landing port is likely part of a dynamic optimization problem that is a
topic of future research.
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the target h0, may be quite limited since it is likely difficult, maybe impossible, to avoid

intercepting some stock i when it is present at a location.11 Adjusting factor inputs, e.g.,

changing the mesh size on fishing nets, altering bait and hook configurations, could enhance

gear selectivity and avoid intercepting stock i when it is present at a location. However these

adjustments are expected to be costly.

Next compare the costs of harvesting strictly positive vector h+. It is reasonable that the

subset of fishable locations will expand. More generally, fewer factor inputs will be utilized

in avoiding stock i fish. The implication is c(h+, w, xst) < c(h0, w, xst). Although ultimately

an empirical question, weak output disposibility, or non-monotonicity of the cost function

under stock condition found in most multiple-stock fisheries, is distinctly possible.

Let ci ≡ ∂c(h,w, xst)/∂hi denote the marginal cost of harvesting the species i stock at

(s, t). The weak output disposibility property is summarized with the following condition.

Condition 1 Set hj > 0 for some j 6= i, then ci(h,w, xst) < 0 at harvest quantity hi = 0 is

permitted.

The above condition implies that there can exist a strictly positive harvest quantity at

which marginal cost is zero. Marginal costs are negative at smaller harvests because factor

inputs that would otherwise be used to avoid intercepting stock i are saved. Condition 1

implies that marginal rate of output substitution can be positive over a range of harvest

levels. It is this property that underlies the bycatch problem in fisheries and under certain

regulations provides an incentive to discard fish at sea.

2.2 Targeting behavior

We next consider the profit maximizing harvest choices. In many fisheries harvesting ac-

tivities are subject to stock-specific regulations designed to control total fishing mortality.

Following Singh and Weninger (2009), we assume that regulations are directed at the quan-

tities of fish landed at port. Denote landings and discards of stock i as li ≥ 0 and di ≥ 0,
11If the mix of stocks is distributed homogeneously across the fishing ground, and gear is less than fully

selective, the set of fishable locations with xi,st = 0 and xj,st > 0, j 6= i will be empty and c(h0, w, xst) =∞.
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respectively. It should be emphasized that the minimum cost function in (1) is defined over

harvested fish, h = (l1 + d1, ..., lm + dm).

The regulations we consider are landings constraints that are strictly enforced at the fish

dock. We assume that at-sea harvests are unobserved by the manager and are not subject

to penalty. Let l = (l1, ..., lm) denote the maximum legal landings quantity for stock i fish;

li = 0 simulates a closed harvest season for stock i.

The Lagrangian for the profit maximization problem is given as

L = p · l − c(l + d,w, xst)− λ · (l − l̄), (2)

where p ∈ <m
+ is the output price vector and λ ∈ <m

+ is a vector of Lagrange multipliers

(vector conformability is assumed). Necessary conditions for optimal landings and discards,

denoted l∗ and d∗, respectively, are given as

pi − ci(l
∗ + d∗, w, xst)− λi ≤ 0, if l∗i > 0; λi

¡
l∗i − l̄i

¢
= 0, i = 1, ...,m, (3a)

−ci(l∗ + d∗, w, xst) ≤ 0, d∗i ci(l
∗ + d∗, w, xst) = 0, i = 1, ...,m, (3b)

l∗i ≤ l̄i, i = 1, ...,m, di, λi ≥ 0 i = 1, ...,m, (3c)

Suppose that prices at the dock are strictly positive for the moment, and that the landings

constraint does not bind. In this case λ∗ = 0 and the necessary condition in (3a) indicates

the optimal harvest vector satisfies a familiar condition with the price of stock i equal to its

marginal cost. We see also that at h∗ marginal cost is positive (since pi > 0). Equation (3b)

implies therefore that d∗ = 0 or alternatively h∗ = l∗; all harvested fish is landed at port.

Under strictly positive prices and no regulation, discarding is not part of a profit maximizing

fishing strategy (Turner, 1995).

Now suppose one or more landings constraints bind. Consider first an extreme case

where landing stock i is prohibited, l̄i = 0, for example in the case of a stock-specific

closure. Assume fishing remains profitable, i.e., l∗j > 0 for some j. Profit maximization

requires, c∗i = 0 as indicated in (3b). An optimal fishing strategy will involve positive

discards if marginal costs are negative at zero harvest quantity. Under the weak output

disposibility technology it may be less costly to harvest and discard species i fish than take

costly efforts to avoid intercepting it with the fishing gear. The implication is that harvests
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and mortality, unless discarded fish are unharmed, are strictly positive under a stock-specific

landings closure. A final observation is that the behavioral implications for a zero dockside

price and a landings constraint l̄i = 0 are identical.

Notice further that c∗i = 0 from the necessary condition (3a). This implies that λ∗i = pi;

the shadow price of the stock i landings constraint is equal to the dockside price.

Next consider the case with l̄i > 0 and suppose the landings constraint binds, l∗i = l̄i.

From (3a) we see that λi > 0 and pi > c∗i . If discards are positive, d
∗
i > 0, equation (3b)

requires c∗i = 0, and from (3a), we see that λ∗i ≥ pi. Alternatively, suppose l̄i > 0 and that

d∗i = 0. Equation (3b) requires c
∗
i > 0, which occurs at strictly positive harvest level, and

since d∗i = 0 we have 0 < h∗i = l∗i < l̄i. However, if the landing constraint does not bind,

λ∗i = 0, and therefore pi − c∗i = 0.

The remaining sections estimate a parametric cost function consistent with the struc-

tural properties of a costly-targeting technology and the KT necessary conditions for profit-

maximizing harvest behavior.

2.3 Empirical model

We adopt the following empirical cost function for estimation:

c(h,w, s, ϕst|γ, π, β)=
h
1 +

Pm
i=1 γv

¡
θi − ϕi,st

¢2i · g(h,w, s|β). (4)

The function in (4) decomposes cost into targeting costs, which are measured by the first

bracketed term and non-targeting cost, measured by the function g (.). An explanation of

the structure and notation used in each component is presented next.

Targeting costs: Notice first that the stock variable, xst has been replaced with the

vector ϕst = (ϕ1,st, ..., ϕm,st), where ϕi,st ∈ [0, 1], i = 1, ...,m. The vector ϕst is a minimum-

target-cost share vector for location s and date t. The term θi = hi/
Pm

i=1 hi in (4) is

the share of stock i fish in the harvest vector. The parameter, γv ≥ 0 is a targeting cost

parameter for fishermen v. We use V to denote the set of fishermen.

If a fisherman chooses harvest h such that θi = ϕi,st, for all i, the square-bracketed

term in (4) will equal unity, and harvest costs are given as g(h,w, s|β). In this case no
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targeting efforts are necessary to harvest the vector h. This is admittedly a stylized construct,

since explicit separation of costs into targeting and non-targeting components is difficult to

envision in practice. The no-target-cost vector ϕst is simply a means to summarize the

targeting-relevant features of the fish stock at various (s, t) combinations. Notice that if

γv > 0 the term
Pm

i=1 γv
¡
θi − ϕi,st

¢2
increases with the Euclidean distance between θ and

ϕst. Therefore harvesting costs rise with the added effort that is required to harvest a mix

os species that differs from the mix implicit in ϕst.

We allow targeting costs to vary across skippers to allow for heterogeneity in targeting

ability which is likely linked to such factors as skipper experience. The parameter γv measures

the rate at which costs increase for skipper v as the harvest share θ deviates from ϕst.

Non-targeting costs: The function g(h,w, s|β) is assumed to be strictly positive for h >

0, non-decreasing and convex in h, and non-decreasing, concave and linearly homogeneous

in w. For our empirical application to the Gulf reef fish fishery g is specified as

g = exp(β0 + β1h1 + ...+ βmhm + βss+ βsss
2) ·KβKwβw ; (5)

K denotes vessel length and will proxy for the capital endowed to the fishing operation, and

w will hereafter denote the price of fuel.

Inclusion of a proxy for capital reflects the short run nature of the harvest problem that

we analyze below. Prices for other factor inputs such as bait, ice and groceries, could not be

constructed from our data. The crew wage is discussed shortly.

Inclusion of the space index in (5), which we enter quadratically, is intended to capture

non-targeting cost differences over the fishing ground. Changes in absolute stocks abundance,

fishing depths or crew labor quality across regions of the fishery are examples.

The specification in (5) is convex in individual stock harvest levels if β1, .., βm are positive.

The function is jointly convex in h if
P

i βi > 0. The function g is increasing and concave in

w if βw ∈ (0, 1]. Linear homogeneity could be easily imposed if multiple-input prices were

available. Our data include a single price and therefore the linear homogeneity property is

not considered below. If vessel length is a normal input in the production process, harvest

costs will be non-increasing and concave in K.

Special cases of the multi-stock targeting technology arise under particular values of γv.
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As γv → ∞ the technology exhibits fixed output proportions, i.e., costs become infinite

unless θ = ϕst. This case can represent an harvest technology whereby fishermen cannot

influence the mix of harvested stocks. Independence across harvested stocks occurs if γv = 0

and g(h,w, s|β) is chosen appropriately (see May et al., 1979; Clark, 1990; Boyce, 1996).

A test of the null hypothesis, γv = 0 is therefore a test of the structural property of costly

targeting (weak output disposibility).

Minimum-target-cost share vector: Estimates of stock specific abundance across

space and time is not available in our data, or for any fishery that we are aware of. Therefore

the minimum-target-cost share vector is treated as a latent variable that must be estimated.

We require a parsimonious specification of the vector ϕst. Since s and t are continuous

variables, our state space is infinitely large. A curse of dimensionality must be overcome

in order to summarize the cost impacts of ϕst over space and time. One approach is to

discretize the state space, i.e., divide the fishery into subregions and time intervals and

assume ϕst is constant within each subregion/calendar period combination. This approach

has several flaws: (1) the choice of sub-regions and time intervals requires considerable

information about spatial-temporal habitat variation; (2) there is no reason to expect ϕst

changes abruptly at the spatial and temporal boundaries that are chosen, and (3) the number

of subregion/calendar period combinations, and therefore unique values of ϕst that must be

estimated, is likely to be excessive in most fisheries.

Our approach is to assume that spatial and temporal changes in the composition of the

fish stocks can be represented by a smooth and continuous function of s and t. We adopt

the following functional specification for our estimation:

ϕi,st =
exp(fi(s, t|πi))

1 + exp(fi(s, t|πi))
, i = 1, ...,m. (6)

where πi are parameters to be estimated. The function fi(s, t|πi) ∈ <. The transformation

in equation (6) ensures ϕi,st ∈ [0, 1].12

In our empirical application f is specified as;

fi(s, t, y|πi) = πi,0 + πi,ss+ πi,sss
2 + πi,yy + πi,yyy

2 + πi,t(t− t2). (7)

12Our assumptions for (6) do not guarantee that
P

i ϕi,st = 1 at each (s, t) combination. This does not
detract from the model’s ability to summarize the minimum targeting costs over space and time.
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In our empirical application s is a spatial index denoting the geographical subregion of

fishing, and t is the day of the year that a fishing trip begins. The variable y is cumulative

days since the beginning of our data period. The latent stock share model is therefore

capable of capturing spatial and seasonal variation, as well as longer term changes in the

composition of the fish stock. The function in (7) addresses the dimensionality problem; in

our case, characterizing ϕi,st requires that we identify seven parameters for each of the m

fish species/stocks harvested by the fishermen in our data.13 Note also that the specification

in (6) provides a framework to test for spatial and temporal variation in the composition of

the stocks, e.g., tests of the null hypotheses that fi is constant across space or time or both

(i.e., fi(s, t|πi) = πi,0) is easily implemented.

Crew shares: A final consideration is labor remuneration in fisheries data. The lay

system by which hired captains and crew are paid a share of trip revenues is ubiquitous in

marine commercial fisheries. As pointed by McConnell and Price (2004) the lay system can

have implications for fishing behavior. If we denote by ηc the share of trip revenue that is

paid to the crew, variable trip profits in (2) become:

ηpl − c(l + d, w, xst)− λ · (l − l̄).

In the above η = 1− ηc denotes the residual share of the trip revenue that accrues to the

vessel skipper, who we assume is responsible for trip-level harvests decisions. Information on

crew shares in our data is incomplete, and we therefore estimate the parameter η = 1− ηc.

2.3.1 Error structure

We assume that the fishermen in our data are aware of ϕst, i.e., are knowledgeable about

the spatial-temporal composition of the fish stock over the fishing ground.14 The stock

composition is however unobserved by the researcher. Similarly, vessel skipper know their

13Higher-order polynomials and cross terms would increase the flexibility of the model. The added flexi-
bility was deemed to be unnecessary in our application.
Discretizing the state space would be problematic with over 21 subregions and roughly 3.75 years of data.

For example, if we assume stock conditions are constant during each quarter (year) there would be 345 (92)
distinct values of ϕi,st for i = 1, ...,m to be estimated.
14We do not require the assumption that individual fishermen possess knowledge of xst over the entire

fishing ground.
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own target cost parameter γv. Target costs are unobserved by the econometrician. We

assume γv is distributed normally in our sample with mean γ̄ and variance σ2γ.

γv ∼ N
¡
γ̄, σ2γ

¢
.

The estimating equations of our model include the empirical cost function introduced

in equation (4), and corresponding Kuhn Tucker necessary conditions for optimal targeting.

To simplify notation, we collect the observed data for a representative fishing trip into the

row vector z = [1, h1, ...hm, s, w,K, t, y]. Moreover let A(z|γ, π) = [1 + γv
¡
θi − ϕi,st

¢2
], the

marginal cost of harvesting stock i is given as

ci (z|γv, π, β, ϕ) =
∙
∂A

∂hi
+A

∂g

∂hi

¸
g (.) + εi.

In the above, εi, is an error term associated with KT necessary conditions i = 1, ...,m.

A random term, ε0 which we assume is distributed N(0, σ20) is also appended to our cost

function equation (4). The random vector ε = (ε0, ε1, ..., εm) is assumed normally distributed

with zero mean and diagonal covariance matrix Σ.15 Hereafter, σ20 and σ2i will denote the

variance of ε0 and εi, respectively.

The behavioral model introduced above implies the following KT restriction on εi:

Ri =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

εi = ci (z|γv, π, β, ϕ)

εi < ci (z|γv, π, β, ϕ)

εi = ci (z|γv, π, β, ϕ)− ηpi

εi > ci (z|γv, π, β, ϕ)− ηpi

if li = 0 and di > 0

if li = 0 and di = 0

if 0 < li < l̄i

if li = l̄i

.. (8)

We index the trip level observations with subscript n = 1...N . From the KT restrictions

in (8) and our assumptions for the error terms, the likelihood function for Zn = (cn, zn) is

given as

L (Zn|Γ) = φ0
¡
εn0|0, σ20

¢ mY
i=1

Z
Rni

φi
¡
εni|σ2i

¢
dεni,

where Γ = {β, γv, η, π,Σ}, and Rni reflects the regulatory constraint for stock i on trip n.

Letting Z = {Zn}Nn=1 we have the following likelihood for our data
15Specification of a general covariance matrix (e.g., Kim, et al., 2002) is reserved for future work.
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L (Z|Γ) =
NY
n=1

L (Zn|Γ) (9)

3 The Gulf of Mexico reef fish fishery

The Gulf of Mexico reef fish fishery is a complex of bottom-dwelling species consisting of

snappers, groupers, tilefishes, amberjacks, triggerfishes, grunts, porgies, and a host of others.

Reef fish fishermen also intercept coastal pelagic species such mackerel, dolphin (wahoo),

sharks and tuna. The two major gear types in the fishery are vertical hook and line gear

and longline gear. The US portion of the fishery extends from the US border with Mexico in

the western Gulf to the Florida Keys. Figure 1 below shows the 21 subregions of the fishery.

Hereafter subregions 13-21 will be referred to as the western region, and subregions 1-12 as

the eastern region of the reef fish fishery.

The composition of the reef fish stocks varies across western and eastern regions. Groupers

are the most important species, by landed pounds and revenue, in the east, with red and

gag groupers dominating landings and revenue. National Marine Fisheries Service log book

data indicate that red and gag grouper account for 44% of total annual landings, and 50% of

annual revenue in the eastern Gulf region (pounds are reported as gutted weight, and prices,

revenues and costs are in first quarter 2008 US dollars.) The largest volume and revenue

species in the western Gulf region is red snapper which accounts for roughly 49% of the total

landed pounds and 59% of total revenue annually.

3.1 Data

The data available for analysis are from the National Marine Fisheries Service log book

reporting system and a survey of annual operating expenses that was conducted by the

Southeast Fisheries Science Center. Regulations require that following each reef fish trip,

vessel operators record harvests by species, gear type used, primary subregion of fishing,

number of crew on board the vessel and other trip characteristics. In 2003, a “Trip Expense

& Payment Section” was added to the logbook form which recorded revenue by species,

and expenses for fuel, bait, ice, and food. Beginning in 2005, expense and payment data
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Figure 1: The Gulf of Mexico Reef Fish Fishery.

collection became mandatory for a stratified sample of the permitted reef fish vessels. A

second stratified sample of reef fish fishermen record discards by species. The data that we

use in our analysis consists of the set of vessel operations that record both expenses and

discards .

Our data are from January, 2005 through August, 2008. There are 1,753 trip-level ob-

servations with complete information on trip expenses and discards. Of these, 75 records

included entries that we deemed to be outliers. Trips that recorded extreme costs per landed

pound were deemed outliers; observations with costs less than $0.04 per pound and in excess

of $2.50 per pound were dropped. Furthermore we removed fishing trip in subregion 12

which corresponds to the New Orleans estuary. Finally we deemed landings of more than

10,000 pounds of one particular species to be non-typical (the average landings of all species

for vertical line gear is 1,854.61 pounds) .Remaining data includes 1,518 vertical line gear

trips and 170 longline trips. The empirical results that follow are for vertical line gear.

Tractability requires that individual reef fish species be aggregated to form output groups.

The four major species harvested include: h1- red snapper; h2- vermilion snapper; h3- red

grouper; and h4- gag grouper. The remaining species were aggregated into output groups

based on similarity in harvesting practices, e.g., fishing locations, depths, bait, and capture
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methods, used to in harvesting.16 This resulted in three additional outputs: h5- Deep water

groupers and tilefishes; h6- Coastal pelagics and sharks, and h7- Other reef fish species.

Descriptive statistics for trip-level costs, prices and harvest per trip are reported in an

appendix.

We take as our spatial index, the coarse geographical region that yielded the bulk of the

each trip’s catch (Figure 1). The index takes the value of 1 on trips taken in the Florida

Keys and 21 for trips taken in waters off the southern Texas coast. It should be emphasized

that additional and finer-grained information on fishing location (e.g., latitude, longitude

and fishing depth) if available could be incorporated into the model described above. Our

data lists the date that the catch is landed at port. We specify a time index t which indicate

the day of the year that landings are recorded, and an index y which is set equal to the

cumulative days since January 1, 2005; y therefore ranges from 1 through 1,380. We impose

the restriction that the seasonal effect on January 1 equal the effect on December 31 of each

year. Both t and y are normalized to line on the unit interval.

3.2 Regulations

The Gulf of Mexico Fisheries Management Council is responsible for the management of Gulf

reef fish. A host of regulations including vessel entry (fleet size) restrictions, gear and area

restrictions, seasonal closures, per-trip catch limits and recently individual fishing quotas

are used to limit the aggregate harvest of the commercial fleet. Possibly the most regulated

species in the reef fish complex is red snapper. Prior to December 2007 red snapper was

managed under controlled access regulations. Under this system an annual total allowable

catch (TAC) was selected by managers and enforced with fishery closures and a per-trip

endorsement program.17 The endorsement program restricts landings of red snapper on

each fishing trip, during red snapper openings. Vessel operators held either a class 1 permit

16Harvested quantities within each output category are aggregated linearly. The aggregation procedure
assumes that optimal input choices and aggregate output levels can be chosen independently of the mix
of species within each output category. The harvest technology is thus assumed to exhibit weak output
separability. Linear aggregation implies a constant rate of transformation among species within each output
group. These assumptions are consistent with fishing practices as described to us by reef fish fishermen.
Nonetheless, it should be noted that output aggregation could bias the results that follow.
17The red snapper TAC was set at 4.65 million pounds in 2005 and 2006. Stock concerns led to reductions

in the TAC in 2007, to 3.315 million pounds, and a further reduction in 2008, to 2.55 million pounds.
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to land 2,000 pounds per trip, a class 2 permit to land 200 pounds per-trip, or no permit at

all. Vessels that do not own an endorsement permit are prohibited from landing red snapper

at any time.

In an effort to spread the annual red snapper harvest more evenly throughout each year,

red snapper landings were permitted during the first 10 days of each month. When the

cumulative fleet harvest reached the annual TAC, the fishery was closed until the following

year. The implications for fishing behavior during the controlled access management period

(1/1/05-12/31/06) are summarized in the following table.18

Regulation Opt. landings/discards KT necess. cond.

1. li = 0 l∗i = 0, d
∗
i > 0 c∗i (h

∗, x) = 0

2. li = 200 (2, 000) l∗i > 0, d
∗
i = 0 ηpi − c∗i (h

∗, x) ≥ 0

3. li = 200 (2, 000) l∗i > 0, d
∗
i > 0 c∗i (h

∗, x) = 0

Beginning in January 2007 red snapper controlled access regulations were replaced with

individual fishing quotas (IFQs). Under the IFQ program, vessel operators can legally land

any quantity of red snapper as long as they possess quota to cover landings. The IFQ program

was begun by issuing red snapper quota gratis to qualifying fishermen. The amount of quota

that was distributed was based on historical participation, i.e., history of red snapper landings

during designated qualifying years. Therefore, vessels that held class 1 endorsement permits

under the controlled access regime tended to receive larger shares of red snapper IFQ. The

implications for fishing behavior during the IFQ management period (1/1/07-08/31/08) are

summarized in the following table.

Regulation Opt. landings/discards KT necess. cond.

1. li = 0 l∗i = 0, d
∗
i > 0 c∗i (h

∗, x) = 0

2. li =∞ l∗i > 0, d
∗
i = 0 ηpi − c∗i (h

∗, x) ≥ 0

Grouper species are also heavily regulated. Red grouper is managed as part of a shallow

water grouper complex, which includes Black, Gag, Red, Yellowfin, Scamp, Yellowmouth

groupers, Rock Hind and Red Hind. The shallow water grouper fishery is closed when a red

18A minimum size restriction of 15” total length was in place during 2005-06. The length restriction was
reduced to 13” total length in 2007-08.
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grouper TAC of 5.31 million pounds is reached, or when a TAC of 8.80 million pounds for

all shallow water groupers is reached (the closure occurs at the first date either constraint

is met). In addition, measures are used to protect fish during heightened spawning activity.

The red and gag grouper fisheries are closed from February 15 through March 15 of each

year. An aggregate trip limit of 6,000 pounds of shallow water and deep water groupers

combined was introduced for the 2006 fishing season.

Deep water groupers and tilefishes, hereafter DWG, are also managed under controlled

access regulations. Fishermen face a per-trip limit of 6,000 pounds and the fishery is closed

when the annual TAC is reached. The commercial deepwater grouper TAC is currently set

as 1.02 million pounds. The commercial tilefish TAC is currently set at 440,000 pounds.

There are no size limits for deepwater grouper species or tilefish since these fish do not

survive retrieval from the depths in which they are caught. The behavioral implications of

regulations on groupers and other species are summarized in an extended appendix available

from the authors upon request.

4 Results

Tables 2, 3, and 4 of the appendix report median values, standard deviations, and 95%

confidence intervals of the posterior parameter distribution The individual parameter distri-

butions are consistent with our assumptions for the structure of the harvest technology, and

profit maximizing harvest choices under a costly targeting technology.

The results suggests that trip-level costs are increasing and concave in the fuel price;

the posterior median value of βw is 0.504, with 95% confidence interval [0.488, 0.526]. The

posterior distribution for βK has median value 1.119, and 95% confidence interval, [1.095,

1.156]. The result is consistent with trip-level costs that are increasing and convex in vessel

length. At first glance this result seems counterintuitive. One would expect capital to be a

normal input in production. However, larger boats tend to harvest more fish per trip, i.e.,

have a larger hold capacity, which can yield a return to scale. Moreover, larger vessels are

better-able to fish in sever weather conditions. They can harvest more fish annually than

19



smaller boats, and therefore incur lower average fixed operating costs.19 This advantage is

not reflected in the trip-level data. It is also possible that our proxy for capital services,

which is a stock variable, does not fully reflect the capital services available for production

on a fishing trip.

The posterior median for γv is 3.090 (c.i. [2.953, 3.247]), and the posterior median for σ
2
v

is 4.686 (c.i. [3.655, 6.029]). The results indicate considerable variation in targeting ability

across skippers in our data, which is not uncommon in the analysis of harvesting performance

(e.g., Squires and Kirkley, 1999).

The latent harvest share parameters πi are generally well-identified (Table 3 in the appen-

dix). The fitted minimum target cost-shares vectors are reported in in Figure 3, also in the

appendix. Simulations that follow below suggest that the fitted values of ϕst are generally

consistent with landing patterns and available biological information on stock abundance

across space and time. Although it is tempting to view ϕst as an index of absolute stock

abundance, we feel this interpretation is premature.

Finally the posterior median for η is 0.5461 which means that crews receive roughly 45%

of the trip revenue. The posterior median is very close to the value from the log book data;

the median crew share reported in the 2005-08 log book data is 44.21%.

Further interpretation of the results may be best-accomplished by examining their impli-

cations for fishing behavior. Space constraints do not permit a comprehensive demonstration.

The following simulations highlight some of the more interesting aspects of fishing (target-

ing) behavior, and the influence of regulations in the reef fish fishery, that are implied by

our estimation results.

4.1 Simulations

This section reports the results from several simulation exercises. In each simulation we

draw with replacement a random sample of 1,000 vectors from the posterior parameter

distribution.20 For each draw, we use a numerical optimization routine to solve for the profit

maximizing harvest and discard vectors for a representative vessel operation (equation (2)).

19A 1% increase in vessel length correlates with a 3% increase in harvest size per trip.
20We do not incorporate optimization error in our simulations.
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We solve the optimization problem for each subregion of the reef fish fishery thus obtaining

optimal landings and discards for (s, t) combinations, prices p, w and landing restrictions, l.

Variable profits, also quasi-rent to the vessel capital, captain and crew labor shares, marginal

costs etc. are also calculated in our investigation and predictions of fishing behavior.

Our baseline simulation assumes a 40 foot vessel and prices equal to the mean of the

sample data (see Table 1 in the appendix). We impose a per-trip landings of constraint of

5,000 pounds. The date chosen for the baseline simulation is the midpoint of the 2006 fishing

season. Regulations in 2006 included red snapper landing limits under the endorsement

program and closures for grouper species. Our baseline scenario assumes a 2,000 pound red

snapper landings constraint. The effects of a grouper closure are considered separately.

Figure 2: Profits simulations. Solid lines in panels (a)-(c) denote median values, dashed

lines indicate 95% c.i.’s. Panel (a) is per-trip profits on a 10,000 pound summer trip; (b)

is percent change in profit between summer and winter; (c) is percent change in profit with

low red snapper price; (d) is median targeting cost under mean and 25% higher fuel price.
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Panel (a) of Figure 2 reports median variable trip profits (solid lines) and 95% c.i.’s

(dashed lines) under our baseline conditions. Variable profits per trip vary around $5,000-

$7,000 over much of the Gulf. Lowest variable profits are indicated in the far western regions

of the fishery. Red snapper is a key species in the western region, and is the highest priced

among the seven targeted species, averaging $3.19 per pound landed. The 2,000 pound

landings limit however constraints the profit potential for this species.21 If we run the model

without the 2,000 pound limit on red snapper landings, the variable profits flatten out at

roughly $10,000 per trip across all subregions of the fishery.

The model predicts that the 2,000 pound red snapper landings constraint binds in all

subregions of the fishery. In the western and central subregions the remaining 3,000 pounds

of landed fish is made up of vermilion snapper and gag grouper, with a smaller amount

of Other Species landed in subregions 18-21. In eastern subregions a smaller amount of

vermilion snapper is landed and no landings of Other species are recorded. Remaining

landings are comprised largely of gag grouper and red grouper in subregions 3-7. Targeting

of red snapper and gag grouper is explained by the relatively high dockside prices for these

species, which are set a $3.19 and $3.10 per landed pound respectively in the baseline case.

The remaining variation in targeting behavior is due to spatial variation in targeting costs

as measured, as measured by ϕst. The fitted lowest-target-cost share for red snapper exceeds

0.70 in the far western subregions of the fishery, and declines monotonically toward the

eastern subregions. Interaction between the 2,000 pound red snapper landing limit and ϕst

explains the decline in variable profits for s > 14.

The model predicts median red snapper discards that range from 200 pounds in subregion

16 to 550 pounds in subregion 20. Discarding red snapper occurs when optimal harvests

exceed the 2,000 pound landing limit. Under the weak output disposibility technology,

discarding avoids the targeting costs that would otherwise be required to harvest only what

is landed. With fitted values of ϕi,st in western subregions s = 16− 20 well above 0.50 (see

Figure ?? in the appendix), harvesting 2,000 pound of red snapper on a 5,000 pound trip

21Fishing vessels are mobile and we would expect to see only small variation in per-trip profits across
space. The higher returns in the eastern region do not reflect the impacts of periodic grouper closures.
Moreover a vessel with a 200 pound endorsement permits, or no red snapper landings permit will have a
different earning profile. Taking these considerations into accout, we can conclude that profit opportunities
do not vary substantially with s..
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requires costly targeting. The model suggesting discarding overages is preferred.

The model predicts fairly substantial discards of Other species, h7 (as high as 1,500

pounds in subregions 1-4). These discards arise because of the per-trip landings constraint

assumed in the baseline simulation. At 5,000 pounds total landings, estimated variable profit

margins for landed species at roughly $1.12 per pound, whereas marginal profits for Other

species is less than $1.

When we simulate harvest behavior without the 2,000 pound red snapper landings con-

straint optimal landings are comprised almost entirely of red snapper. Only in subregions 5-8

are positive landings of gag grouper indicated. Red snapper discards are zero in the absence

of the red snapper landings constraint, although discards of Other species and vermilion

snapper are indicated. It should be emphasized that the predicted discards arise due to the

total trip landings constraint assumed in the baseline model.

Our second simulation examines seasonal effects on harvest behavior and variable trip

profits. We solve for optimal harvests and discards on a trip that originates January 1, 2006.

Prices are unchanged from the baseline levels, and the 2,000 pound limit on red snapper

landings remains in place.

Economic and regulatory conditions are unchanged in the second simulation. The model

predicts differences in the landings mix, discards, and profits due to the seasonal variation

in the minimum-target-cost harvest vector ϕst. Panel (b) of Figure 2 reports the percentage

difference in variable profits between a winter and a summer trip, in other words, the gain

from fishing in winter (solid curve denotes the median value and dashed lines indicate 95%

c.i.’s). We find that winter fishing earns slightly lower variable profits in the western subre-

gions, but yields between 2-5% higher profits in the eastern subregions. We also find that

optimal landings mix in the winter includes larger shares of vermilion snapper in the central

subregions and larger shares of gag grouper throughout the Gulf.

Our empirical estimation reveals that ϕi,st for red snapper and gag grouper exhibit sum-

mer troughs or winter peaks. Thus the harvest vector that minimizes targeting costs will

be comprised of larger shares of red snapper and gag grouper during winter fishing. The

model also predicts an increase in the harvest of red snapper. However, under the 2,000

pound landings limit, overages are discarded at sea. The model predicts that in the western
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subregions of the fishery, winter discards of red snapper are 200-700 pounds higher than

during summer fishing.

In a third simulation we reduce the red snapper price by 25% below the baseline value (of

$3.19 per pound). Panel (c) reports the percentage change, decline, in variable profits across

subregions. The results indicate variable profit declines in the range of 14%-18% in western

subregions and 12%-13% in eastern subregions. The mix of landed species is unchanged

in western subregions 13-21. This is explained by the importance of red snapper in the

western Gulf. In the east however the model predicts that a 25% drop in the red snapper

price has important implications for targeting behavior. Under the lower red snapper price,

red snapper landings decline in subregions 1-12. Eastern Gulf fishermen land instead larger

quantities of vermilion snapper, red grouper, and gag grouper. Our model predicts that the

red snapper price decline does not significantly alter discarding behavior.

A fourth simulation considers the effects of a closure of the red and gag grouper fisheries.

Panel (d) in Figure 2 reports the percent profit decline for the case of p3 = p4 = 0. The

results find that the closure policy causes reductions in variable profits vary widely across

subregions. Losses are greatest, in excess of 10%, in subregions 4-9 which is considered to be

the heart of the grouper fishery. Losses are smaller in the central region where shallow water

groupers are a less important target species, and increase again in the western region where

high-priced gag groupers comprise a important share of landings. The results indicate that

when the red and gag grouper fisheries close, landings of vermilion snapper (h2) and deep

water groupers and tilefishes (h5) increase. Not surprisingly, the model predicts positive

discards of red grouper in subregions 5-7, i.e., when red grouper landings are prohibited

fishermen can either incur added costs to avoid them or discard the red grouper intercepted

by their gear.

The results reported above by no means exhaust the economic and regulatory impacts

that can be examined by our model. We consider in a fifth simulation exercise the impact

of an increase in the price of fuel. The annual average fuel price in our data rose from $2.27

in 2005 to $3.75 in 2008, and it is therefore reasonable to expect that fuel prices affected

the reef fish targeting behavior in our data. The simulations find that a 40% fuel price

increase reduced per-trip variable profits by 5%-10% relative to baseline levels. The model
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predicts that higher fuel prices impact targeting behavior. We find that the median targeting

cost component,
h
1 +

Pm
i=1 γv

¡
θi − ϕi,st

¢2i
decline by 2%-5% depending on the subregion

under the higher fuel price. Intuitively, targeting efforts will be dampened under higher

fuel prices and the optimal harvest share will more closely mirror the minimum-target-cost

vector ϕst. This is because adjusting the harvest mix in response to price differentials at the

dock becomes more costly when the fuel price rises. Our simulations indicate, for example,

that landings of gag are reduced by 200-300 pounds across the fishery. Landings of vermilion

snapper increase primarily in the central subregions and landings of red grouper increase

under in subregions 2-7. The model predicts, also rather intuitively, that at-sea discards

decline under high fuel prices.

Recall that the empirical specification for ϕst includes a time index y to capture longer

term trends in stocks conditions in the fishery. This allows us to examine longer term trends

in targeting behavior. Simulations that varied y for example, from 2005 through 2008,

indicated only minor changes in variable profits and targeting behavior. The results are not

reported here.

We construct a final simulation to examine the changes in fishing behavior that accompa-

nied a switch from controlled access to individual transferable quotas (ITQs) for red snapper.

To represent this policy switch we introduce a quota user cost which we assume arbitrarily

to be equal to 50% of the baseline red snapper price, and drop the 2,000 pound landing con-

straint. Under ITQs trip limits on landings are no longer required; landings are restricted

only at the seasonal level by the aggregate ITQ holdings of the vessel operation. We evaluate

optimal harvests and discards for a mid 2007 season trip, which was the first year of the red

snapper ITQ program.

First, the results indicate a reduction in trip variable profits ranging from 15% in eastern

subregions and increasing to 33% in western subregions.22 The reduction in variable profits

or capital quasi rents conforms with theoretical predictions, that property rights-based man-

agement programs provide incentives to reduce oversized fishing fleets. An important results

for managers, however relates to the stark variability in losses across regions. Because tar-

22Looses in variable profits are offset by increases in resource rents generated under the red snapper ITQ
program. These rents would be determined as the quota rental times the total red snapper landings.
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geting costs vary across subregions, substitute target species and red snapper fishing costs do

as well. Our model suggests that introducing ITQ for a single species in a multiple-species

fishery can significantly alter harvests and discards of species managed under the status

quo. In particular, our model predicts that red snapper landings increase above the 2,000

pounds in the far western subregions. Vermilion snapper landings also increase in subregions

10-17 where these two species tend to be harvest complements. The addition of the red

snapper quota rental substantially lowers the residual price for fishermen at the dock. Our

model predicts that eastern landings of red snapper fall to zero when a quota rental is in-

troduced; optimal landings instead include substantially higher shares of vermilion snapper,

gag grouper and red grouper.

A less anticipated impact on fishing behavior is a predicted increase in red snapper

discards. Results indicate positive red snapper discards in subregions 7-16, ranging from 150

pounds per trip to over 1,000 pounds per trip (subregions 13 and 14). This result is due to

the 5,000 pound per-trip landings constraint. At a substantially reduced red snapper price

and a 5,000 pound trip limit on landings, the marginal profit from landing red snapper falls

below marginal profits from landing other species such as vermilion snapper and red and gag

groupers.

5 Conclusions

We have introduces a new approach for studying spatial-temporal fishing behavior in marine

fisheries. We estimate a structural behavioral model that provides a direct link from the in

situ fish stock, prices and species-specific regulations, to outcomes of interest to managers,

e.g., species-specific harvests, discards and fishing profits. A parametric cost function and

Kuhn Tucker necessary conditions for profit maximizing targeting of multiple fish species

under landings restrictions is specified for estimation. Markov Chain Monte Carlo methods

are used to simulate the posterior likelihood function. We estimate a latent, lowest-target-

cost harvest share vector that summarizes the costly targeting technology and corresponding

profit opportunities for fishermen across space and time. The fitted model is used to pre-

dict the effects of changes in economic conditions and regulations on spatial and temporal
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landings, discards, and fishing profits in the Gulf of Mexico reef fish fishery.

Our results demonstrate complex interactions between the economic and regulatory en-

vironment and the multiple-species harvesting behavior of Gulf reef fish fishermen. Not

surprisingly, we find that per-trip landings limits used to control aggregate fishing mortal-

ity redirect fishing effort toward unregulated species, in pattern that vary spatially with

stock conditions. We are also able to investigate the effects of model fundamentals on the

incentives to discard fish at sea.

Several policy lessons emerge from our analysis of the Gulf reef fish fishery. For example,

replacing controlled access management with individual fishing quotas for a single species,

is likely to redirect effort toward species without a quota rental, and may enhance incentives

to discard fish at sea. We also find, not surprisingly, that closures for individual species

cause fishermen to substitute toward unregulated species, and can enhance incentives to

discard fish. Less obvious findings relate to the impact of increased fuel prices on targeting

and discard behavior. Our model predicts that when the price of fuel rises, Gulf reef fish

fishermen may be inclined to target higher priced species, and more willing to land a mix

of species that moderates targeting costs. On the flip side, targeting is enhanced and at-sea

discards will increase when fuel prices decline. Overall the results demonstrate the need to

consider behavioral responses and policy design inclusive of the complete biological, economic

and regulatory environment of marine fisheries.

An important attribute of our model is that optimal responses of fishermen to varying

economic and other regulatory conditions is incorporated explicitly. Our results demonstrate

clearly the benefits of a structural approach for policy analysis. Moreover, because we are

able to link fishing behavior directly to stock conditions, prices and regulations, the model

is ideally suited to investigate ex ante impact of alternative forms of regulations. Methods

based on the discrete choice RUM framework require a second layer model to complete the

link from fundamentals to trip-level behavior. Our approach avoids discretizing the fishing

ground and/or the choice set of fishing inputs and outputs; our approach provides a rich

framework to characterize fishing behavior at any spatial or temporal scale. Taken together

these attributes suggest that our model can be a powerful tool to improve the design of

fisheries management policies.
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For example, our model can guide the design of fishery closure policies, property rights-

based management, marine reserves, etc. Designing a system of marine reserves requires

knowledge of trade-offs between ecological preservation across a spatially heterogeneous fish-

ing ground and pursuit of economic rents. Our model measures directly, the short term cost,

or foregone profits of closing subregions of a fishery. A useful extension of our model would

link our costly targeting technology, and our lowest-target-cost share vector, to measures of

absolute stock abundance. This would allow a fully dynamic analysis of spatial behavior and

spatial management policies. Evaluating changes in stock abundance in areas surrounding

marine protected areas, and stock effects due to large scale redistribution of fishing effort

across space and time are examples.
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7 Appendix

7.1 Prior specifications

With the exception of the targeting skill parameter, all priors are assumed to be diffused. A

hierarchical prior captures heterogeneity in fishing skill. We assume

γv ∼ N
¡
γ̄, σ2γ

¢
.

Following standard methods (e.g., Chib and Carlin, 1999) we use conventional conjugate

priors for the hyperparameters of this distribution, i.e.,

σ2γ ∼ IG (2.5, 3) ,

γ̄ ∼ N (0, 1000) ;

in the above IG(.) and N(.) denote the inverse gamma and normal distribution, respectively.

7.2 Random Walk M-H Algorithm

Here we simply present the Random Walk Metropolis Hastings (RWMH) algorithm. For

further details on the Metropolis-Hastings (M-H) algorithm we refer the reader to (Chib, and

Greenberg, 1995). The M-H algorithm is similar in spirit to acceptance/rejection sampling

and consists in three steps:

1. At iteration ω, sample a candidate value for the parameters from a candidate density

q∗ω ∼ δ (q|qω−1)

2. Draw a random number u such that

u ∼ U (0, 1)

3. Accept or reject the candidate based on the following decision rule. Let

a =
φ (q∗ω|.) δ (qω−1|q∗ω)
φ (qω−1|.) δ (q∗ω|qω−1)
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where φ (q|.) denotes the posterior distribution of q according to the data. Then if u ≤ a,

set qω = q∗ω otherwise qω = qω−1.

In the RWMH algorithm the candidate density is normal so that

q∗ω ∼ N
¡
qω−1, σ

2
q

¢
.

In the above, σ2q is the variance os spread of the normal distribution. The main idea

behind the M-H algorithm is to replicate the stationary property of the Markov chain.

Indeed a can be interpreted as the "jump" probability from one candidate to the next. This

probability is pending on the value of the spread. The art of the RWMH algorithm dwells

in setting the value of this spread. We follow the recommendation of Gelman and Gilks

(1995) and specify the spreads of our candidate generating density so that the acceptance

rate is close to 50 percent for single valued parameters and between 25 and 50 percent for

multi-valued parameters.

7.3 Estimation algorithm

We use a Gibbs sampler to simulate draws from the posterior of the joint posterior density.

The following algorithm describes the procedure.

Using the Gibbs sampler we repeatedly cycle through each conditional density, drawing

from each one in turn. When the number of cycles grows large, the draws converge in

distribution to that of the complete joint posterior (Gelfand and Smith, 1990). Our Gibbs

sampler consists of seven steps or "blocks".

Step 1: β|Γ−β, Z As this posterior conditional is of unknown form we use the RWMH

algorithm explained above. For further reference Γ−β indicates the entire set of parameters

less the parameter β.

Step 2: Σ|Γ−Σ, Z. Likewise the form of the conditional posterior for Σ is unknown. We

again use the RWMH algorithm to draw from this unknown posterior.

Step 3: γv|Γ−γj , Z The vector of vessel specific skills is drawn using a RWMH algorithm.

Unlike other parameters the prior on these parameters is non diffuse. Hence the value of

the prior has to be accounted for in computing the acceptance probability (see Kim, et al.,
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2002).

Step 4: σ2γ|γv, γ̄. Given our conjugate prior for σ2γ|γv, γ̄, the posterior conditional follows:

σ2γ|γv, γ̄ ∝ IG (c, d) ,

where,

c = 2.5 + V

d =

"
1

3
+
1

2

VX
v

(γv − γ̄)0 (γv − γ̄)

#−1
.

Recall V denotes the number of skippers.

Step 5: γ̄|γv, σ2γ. The conditional posterior of γ̄ follows

γ̄|γv, σ2γ ∝ N (Dγdγ, Dγ) ,

with

Dγ =
£
V/σ2γ + (1000)

−1¤−1
and

dγ =
VX
v

γv/σ
2
γ.

Step 6: π|Γ−π, Z. These coefficients are drawn using a RWMH step.

Step 7: η|Γ−η, Z. For this parameter we also use the RWMH step. Since η enters

multiplicatively a change of variable is requried.
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Variable Mean Std. dev. Min. Max.

Var. costs (non-labor) 799.89 700.05 20.43 3,997.43

Red snapper (p1) 3.19 0.28 1.61 4.03

Verm. snapper (p2) 2.40 0.15 1.70 3.14

Red grouper (p3) 2.42 0.18 1.94 2.91

Gag grouper (p4) 3.10 0.21 2.55 3.80

DWG/Tilefishes (p5) 2.32 0.32 0.83 3.42

Coastal pelagic/sharks (p6) 1.76 0.33 0.16 3.42

Other species (h7) 1.81 0.64 0.51 4.68

Fuel price 2.67 0.66 1.47 5.08

Vessel length 35.66 9.26 20 67

Red snapper (h1) 469.39 1,243.46 0 16,131.80

Verm. snapper (h2) 280.13 814.43 0 6,395.21

Red grouper (h3) 366.06 768.97 0 8,619.08

Gag grouper (h4) 157.30 472.25 0 6,921.44

DWG/Tilefishes (h5) 69.83 385.25 0 6,917.91

Coastal pelagic/sharks (h6) 78.56 382.02 0 4,000.00

Other species (h7) 406.34 767.30 0 9,024.62

Total trip harvest 1,854.61 2,102.17 31.60 17,267.73

Table 1: Sample data descriptive statistics. Table reports mean, standard deviation

(Std. dev.) minimum and maximum values for the sample data. There are

1,508 observations on 149 separate vessels.
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Variable description Parm. Median Std. dev. 95% c.i.

Constant β0 -2.292 0.021 [-2.334, -2.253]

Fuel price βw 0.504 0.009 [0.488, 0.526]

Vessel length βK 1.119 0.015 [1.095, 1.156]

Sub-region βs 1.170 0.012 [1.146, 1.194]

Sub-region2 βss -0.080 0.019 [-0.116, -0.037]

Red snapper β1 0.109 0.004 [0.102, 0.116]

Verm. snapper β2 0.132 0.008 [0.120, 0.148]

Red grouper β3 0.251 0.007 [0.239, 0.265]

Gag grouper β4 0.249 0.012 [0.220, 0.269]

DWG/Tilefishes β5 0.231 0.010 [0.208, 0.245]

Coastal pelagic/sharks β6 0.269 0.011 [0.246, 0.291]

Other species β7 0.138 0.007 [0.126, 0.153]

Crew shares η 0.546 0.005 [0.536, 0556]

Targ. cost (mean) γ̄ 3.090 0.074 [2.953, 3.247]

Targ. cost. (var.) σ2γ 4.686 0.603 [3.655, 6.029]

Table 2: Posterior parameter distribution. Table reports the median, standard

deviation (Std. dev.) and 95% confidence intervals of the posterior

parameter distribution.
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Red. snp. Verm. snp. Red grp. Gag grp.

Const.
-2.415

[-2.670,-2.197]

-29.515

[-31.359, -26.999 ]

-4.619

[-5.529, -4.028]

-8.419

[-9.905, -6.904]

s
3.606

[2.882, 4.645]

118.057

[107.384, 126.184]

39.112

[33.940, 45.253]

52.150

[42.046, 61.485]

s2
0.919

[-0.005, 1.714]

-122.049

[-131.372, -110.715]

-85.761

[-96.180, -73.394]

-86.897

[-103.396, -72.352]

y
0.635

[0.323, 1.036]

0.619

[0.339, 0.925]

0.227

[-0.056, 0.556]

-1.118

[-1.346, -0.739]

y2
-0.960

[-1.263, -0.397]

0.524

[0.098, 0.936]

0.182

[-0.368, 0.752]

0.464

[-0.081, 0.850]

t− t2
-3.305

[-3.683, -2.864]

3.151

[2.601, 3.599]

1.710

[1.210, 2.639]

-2.706

[-3.179, -2.035]

DWG/Tile. CP/Sharks Other

Const.
-5.868

[-10.125, -4.739]

-4.709

[-5.114, -4.291]

1.299

[1.110, 1.449]

s
1.522

[0.766, 2.698]

0†

[0,0]

-10.484

[-11.355, -9.085]

s2
0†

[0,0]

0.343

[0.000, 0.731]

7.974

[6.500, 9.059]

y
1.491

[0.703, 2.240]

-0.300

[-0.937, 0.725]

-0.566

[-0.870, -0.366]

y2
-2.248

[-5.351, -1.131]

0.199

[-0.774, 0.812]

0.104

[-0.199, 0.433]

t− t2
8.464

[3.315, 24.927]

4.980

[3.802, 6.740]

-0.683

[-1.124, -0.161]

Table 3: Posterior parameter distribution: Latent stock share model Table reports

median values, and 95% confidence intervals (in square brackets). † - a

value of zero was imposed during estimation.
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Equation Parm. Median 95% c.i.

Cost equation σ20 0.512 [0.485, 0.543]

Red snapper σ21 1.009 [0.967, 1.058]

Verm. snapper σ22 2.365 [2.168, 2.516]

Red grouper σ23 1.017 [0.973, 1.061]

Gag grouper σ24 1.347 [1.269, 1.407]

DWG/Tilefishes σ25 0.765 [0.735, 0.794]

Coastal pelagic/sharks σ26 3.247 [2.945, 3.561]

Other species σ27 1.009 [0.964, 1.059]

Table 4: Posterior parameter distribution: Variance matrix. Table reports the median,

and 95% confidence intervals of the posterior parameter distribution.
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Figure 3: Panels (a)-(f) report the median values (solid line) and 95% confidence intervals

for ϕi,st where s = 1− 21, and t is the midpoint of the 2006 fishing season.
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