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Truth-telling and trust in sender-receiver games

with intervention

Mehmet Y. Gurdal Ayca Ozdogan Ismail Saglam∗

Department of Economics, TOBB University of Economics and Technology,

Sogutozu Cad. No: 43, Sogutozu 06560 Ankara, Turkey.

Abstract. Recent experimental studies find excessive truth-telling in strategic information transmission

games with conflictive preferences. In this paper, we show that this phenomenon is more pronounced in

sender-receiver games where a truthful regulator randomly intervenes. We also establish that intervention

significantly increases the excessive trust of receivers.
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JEL Classification Numbers: C72, C90, D83

1 Introduction

In their seminal work, Crawford and Sobel (1982) introduce and study strategic information trans-

mission between two parties who have aligned or conflictive interests.1 They assume that a better

informed party (sender) transmits a non-verifiable and costless message to the other party (receiver)

who then takes a payoff relevant action. Their results show that (i) as the (nonconflictive) interests

of the two parties become less aligned, less information is transmitted, and (ii) if interests of the two

parties diverge even by an arbitrarily small amount, no information is transmitted.

∗Corresponding Author: Fax: +(90) 312 292 4213.

E-mail addresses: mygurdal@etu.edu.tr (M.Y. Gurdal), aozdogan@etu.edu.tr (A. Ozdogan), is-

mail.saglam@etu.edu.tr (I. Saglam).
1Among many economic environments, information exchange in Cournot duopolies (Novshek and Sonnenschein,

1982), legislative relationships between committees and floors (Gilligan and Krehbiel, 1987), grade inflation and letters

of recommendation for the promotion of college graduates (Rosovsky and Hartley, 2002), communication between biased

securities analysts and investors (Blanes i Vidal, 2003), doctor-patient relationships (Ḱószegi, 2006) are some studied

examples that allow for incentives for strategic information transmission.
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Of the two theoretical predictions of Crawford and Sobel (1982), prediction (i) is supported by

Dickhaut et al. (1995) in their pioneering experimental paper on strategic information transmission,

and later by Cai and Wang (2006), who also show that senders are more truthful whereas receivers

are more trustful than what the theory predicts in the most informative sequential equilibrium. Cai

and Wang (2006) explain this overcommunication phenomenon using a behavior type analysis (see for

example Stahl and Williams, 1994, 1995; Nagel, 1995; Costa-Gomes et al., 2001; and Crawford, 2003

among others) and quantal response equilibrium concept (McKelvey and Palfrey, 1995, 1998).

A recent strand of experimental literature studies the second theoretical prediction of Crawford

and Sobel (1982). As such, Gneezy (2005) shows that in a sender game where the preferences are

conflictive but only the sender knows the payoff structure, the probability of lying is higher, the higher

is the resulting gain to the sender or the lower is the resulting loss to the receiver. Sánchez-Pagés

and Vorsatz (2007) consider a sender-receiver game where the sender who observes the true state

of the world can choose to tell the truth or to lie whereas the receiver can trust or distrust. They

establish in their baseline game that when preferences are conflictive but not too unequal, senders

tell the truth significantly more frequently than predicted by the cheap-talk equilibrium consistent

with purely material incentives. To understand the non-material roots underlying this phenomenon,

Sánchez-Pagés and Vorsatz (2007) design a punishment game which permits the receiver to costly

punish the sender once the outcome of the baseline game is observed. Thus they are able to show that

excessive truth-telling in the baseline game can be explained in terms of normative social behavior. In

a similar setup, Sánchez-Pagés and Vorsatz (2009) further show that when the sender is also allowed

to choose a costly option of remaining silent, excessive truth-telling observed in the benchmark game

can be attributed to lying aversion. Peeters et al. (2008) deal with the same phenomenon of excessive

truth-telling from a different angle again with the help of two related games. While a baseline game

is designed as similarly to those in Sánchez-Pagés and Vorsatz (2007, 2009), a reward game allows the

receiver to give a reward of a fixed amount to the sender once the baseline game was played and the

histories were observed by the players. Peeters et al. (2008) find that in the baseline game senders

tell the truth significantly more often than, whereas receivers trust almost as often as, predicted by

the theory. Moreover, the excessive truth-telling disappears under the rewarding environment, while

the trust frequency increases significantly.

In this paper, we aim to contribute to the above literature, dealing with prediction (ii) of Crawford

and Sobel (1982), by studying the robustness of excessive truth-telling phenomenon with respect to

the random intervention of a truthful regulator in situations where the transfer of strategic information

is under some degree of control. This modified game with the random intervention of a regulator is
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equivalent to a behavioral game in which a sender can be of either a strategic (standard rational)

type or a behavioral (honest) type, with the probability distribution over the types being common

knowledge.2 An example of sender-receiver games involving a mix of behavioral and nonbehavioral

types can be potentially found in currency exchange markets of emerging economies with current

account problems. The objectives of a central bank (the sender) in such an economy may involve to

strongly intervene in the forex market if the publicly known probability of the outflow of hot money is

sufficiently high and to weakly intervene, only to dampen the volatility of exchange rates, otherwise. In

the first situation, the central bank may choose to act nonstrategically while in the second situation it

may strategically transmit information to the public or investors (the receiver) to ensure that exchange

rates move in the opposite direction of the public’s expectations.

Obviously, in sender-receiver games the awareness of intervention (or the presence of behavioral,

in addition to conventionally studied strategic, type of senders) can induce an increased level of trust

among those who are on the receiving side. At the same time, strategic senders can exploit this regu-

lated situation if they adjust their actions based on the updated trust levels. So these opposing effects

make the overall effect of intervention unclear. When a regulatory authority occasionally intervenes

forcing the submitted messages to be truthful (or when some of the senders behave nonstrategically),

how are the overall frequencies of truth-telling and trust affected? Motivated with this question, in

this paper we study experimentally the behavior of subjects in a sender-receiver game under regulatory

intervention and under no intervention. As usual, we will consider two games corresponding to these

two situations.

Our Benchmark Game is identical to the sender-receiver games in Sánches-Pagés and Vorsatz

(2007, 2009) and Peeters et al. (2008). In particular, the sender observes Nature’s realization of a

payoff table that could be of two equally likely types, over which the sender and the receiver have

opposing interests. Each table involves two outcomes corresponding to two actions of a receiver. After

Nature’s choice of a table type, the sender submits a message, consisting of the type of the actual payoff

table, to the receiver who is entirely uninformed about Nature’s choice. Because of this informational

2In this regard, our experimental paper is closely related to the theoretical model of Landi and Colucci (2008), where

there is uncertainty about both sender’s and receiver’s types. In that model, each player belongs to a family of either a

sophisticated type (the standard rational type) or a mortal (behavioral) type, where mortal types are ‘truth tellers’ and

‘liars’ for senders, and ‘believers’ and ‘inverters’ (of the actions implicitly suggested by senders’ messages) for receivers.

Another related work is by Ottaviani and Squintani (2002), who study the information transmission in sender-receiver

games under the possibility that the sender or the receiver is non-strategic. Their findings establish that the presence

of behavioral types in the model leads to inflation in the equilibrium communication in contrast to the predictions of

conventional models with nonbehavioral types.
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asymmetry, the sender can choose to lie whenever she finds it optimal. After observing the message

of the sender, the receiver takes an action by trusting or distrusting the sender, and consequently the

payoffs of the two players are determined by the actual state chosen by Nature and the action taken

by the receiver.

In the alternative environment, namely the Regulated Game, the sequence of actions are the same

as in the Benchmark Game, yet there is now a regulator which truthfully submits to the receiver

Nature’s choice of payoff table with commonly known probability α ∈ (0, 1/2).3 Thus, a message

about Nature’s choice can be submitted by a strategic sender only with probability 1− α ∈ (1/2, 1).

Behavior predicted in all sequential equilibria of both the Benchmark and the Regulated Game

implies that receivers never receive any relevant information. In the Benchmark Game the sender, who

is always strategic, achieves this by submitting an untruthful message with probability one-half (due

to the symmetric construction of the constant-sum payoff tables with respect to players and actions).

In the Regulated Game, a strategic sender can submit message only with probability 1−α; therefore,

she can achieve the non-informativeness of the message that the receiver will observe, by lying with

probability 0.5/(1 − α) whenever she is to submit any message. The receiver, anticipating that any

communication he receives is only cheap-talk, chooses in both games each of his two actions with

probability one-half so as to maximize his expected payoffs given the prior probabilities on the states

chosen by Nature.4

We conduct our experiments in the Regulated Game when senders are behavioral with probability

0.3. The sequential equilibrium predicts both truth-telling and trust with probability one-half for

the Benchmark Game (Corollary 1 to Proposition 1) whereas truth-telling of strategic senders with

probability 2/7 (28.6%) and trust with probability 1/2 for the Regulated Game (Corollaries 2 and

3 to Proposition 2). However, our results show that in the Benchmark Game senders tell the truth

around 56% of the time while receivers trust 53% of the time. The observed excessive truth-telling

and excessive trust are much higher for the Regulated Game. We find the frequency of truth-telling

of strategic senders as high as 42% (in contrast to the prediction of 28.6%). Given the prior likelihood

of strategic senders, the frequency of truthful messages the receivers get in the Regulated Game is as

high as around 60%, clearly a case against the theoretical prediction of no information transmission

by the two types of senders on average. This is, even more strikingly, despite the excessively high

frequency of trust which we find around 61%.

3We are not interested in the case where α ∈ [1/2, 1], since if α = 1/2 the strategic sender can use cheap talk only

by lying with certainty and if α > 1/2 the receiver would no longer find it optimal to ignore any message he receives.
4The sequential equilibrium in the Regulated Game, which we directly prove in Appendix A, can also be obtained

as a corollary to Proposition 2 in Landi and Colucci (2008).
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Our final analysis deals with the question why we observe an increase in excessive truth-telling and

excessive trust in the presence of a truthful regulator (a behavioral sender). In an attempt to give

a partial answer, we examine the dynamic effects of the intervention of a truthful regulator in early

periods of the experiments which are repeated for 50 period on the future levels of truth-telling and

trust. Our regressions show that the more subjects benefit from telling the truth in the earlier periods

of the Regulated Game, the more likely they will send correct messages in the further periods, while

telling a lie or the truth in the future is found to be entirely random in the Benchmark Game. On

the receiver side, we find that both the number of profitable experiences of trust and the number of

observations of trust experienced by other players in the earlier periods increase the probability of the

receiver’s trusting other players later in the Regulated Game while the first one of these variables has

the opposite effect in the Benchmark Game and the second one has no significant effect.

The paper is organized as follows: In Section 2, we introduce the model and theoretical predictions,

and in Section 3 we present the experimental design. Afterwards, we report our experimental results,

and finally, we conclude in Section 5. (Proofs and the instructions corresponding to the experimental

games are in the Appendix.)

2 Model and Theoretical Predictions

In this section, we introduce the Benchmark and the Regulated Game; and then present the theoretical

predictions. The Benchmark Game is a standard sender-receiver game (also studied by Sánches-Pagés

and Vorsatz, 2007, 2009; and Peeters et al., 2008) with conflicting-interests, in which the sender

privately learns the actual payoff table picked by Nature and is able to reveal this information to the

receiver truthfully or not. Then the receiver, without learning the actual payoff table, takes an action

that determines the payoffs for each player given the actual table that was chosen by Nature. In the

Regulated Game, on the other hand, with some probability, the strategic sender is not allowed to take

any action while the regulator (the behavioral sender) intervenes and reveals her private information

truthfully to the receiver. The receiver, without knowing if the sender is restricted to tell the truth

or not, takes an action given the information communicated by the sender, which determines the final

payoffs (in the actual payoff table) for both players.

Below, we formally present these two games with their equilibrium predictions.
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2.1 Benchmark Game

We denote the sender and the receiver by S and R, respectively. At the beginning of the game, Nature

chooses a payoff table A or B with equal probability, i.e. p(A) = p(B) = 1/2, which determines the

final payoffs of the players. The sender is privately informed about the realized payoff table. After the

sender learns the actual payoff table, she sends a message σS (possibly a mixed strategy) from the set

of possible messages M = {A,B}. For instance, σS(A | B) denotes the probability of sending message

A after learning that the actual payoff table is B. The receiver’s strategy is choosing a (possibly

mixed) action σR from the set of actions {U,D} after observing the message submitted by the sender;

for example σR(U | A) denotes the probability that action U is chosen after observing that the sender

communicated message A.

The payoff tables which are determined by Nature are as follows:

Table 1. Payoff tables

Table A Sender Receiver

Action U x 1

Action D 1 x

Table B Sender Receiver

Action U 1 x

Action D x 1

where x > 1. The game tree that describes the Benchmark Game is given by the following figure.

Next we find the sequential equilibria of this game. Let µ1 = p(A | A) (a belief at information set

H1 in Figure 1) denote the probability that Nature chose table A given that the receiver has observed

message A; and similarly let µ2 = p(A | B) (a belief at information set H2 in Figure 1) denote the

probability that Nature chose table A given that the receiver has observed message B.

Proposition 1 The set of sequential equilibria of the Benchmark Game is the set of strategies

(σS(A | A), σS(A | B);σR(U | A), σR(U | B)) = (p, p; q, q), where p, q ∈ [0, 1] and the supporting be-

lief system (µ1, µ2) = (1
2 ,

1
2 ).

The proof of Proposition 1 can be found in Sánchez-Pagés and Vorsatz (2007). Besides, our next

proposition that will characterize the sequential equilibrium in the Regulated Game will admit the

above proposition as a special case. Proposition 1 states that in equilibrium the sender does not reveal

any information and the receiver takes an action ignoring the messages submitted by the sender.5

From the same proposition, we should also notice that:

5Although there are many sequential equilibria in the characterization of Proposition 1, one can assume that ex-

perimental subjects select some equilibria more often than the others. Sánchez-Pagés and Vorsatz (2007) present the

Agent Quantal Response Equilibrium (AQRE) of McKelvey and Palfrey (1995, 1998) and find the unique logit-AQRE
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Figure 1: The Benchmark Game

Corollary 1 In the Benchmark Game, the probability of sending an untruthful message by the sender

is 1/2. Similarly, the probability of expecting an untruthful message by the receiver is 1/2.

Proof. Omitted as it is straightforward. �

2.2 Regulated Game

In the Regulated Game, with some known probability α ∈ (0, 1), the strategic sender is

not allowed to send any message. The game tree is illustrated in Figure 2. Here, µ1 =

p(actual table is A and sender is strategic | receiver observed message A) is a belief at information set

H1 and µ2 = p(actual table is A and sender is strategic | receiver observed message B) is a belief at

information set H2. In this second game, the receiver, while calculating his beliefs, also takes into

account the possibility that the sender is restricted to tell the truth.

of the Benchmark Game, which is given by (σS(A | A), σS(A | B);σR(U | A), σR(U | B)) = ( 1
2
, 1
2

; 1
2
, 1
2

), with the belief

system (µ1, µ2) = ( 1
2
, 1
2

).
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Figure 2: The Regulated Game

Proposition 2 In any sequential equilibrium of the Regulated Game, the strategies satisfy

σR(U | A) = σR(U | B) = p ∈ [0, 1];

σS(B | A)− σS(B | B) =
α

1− α
and σS(A | B)− σS(A | A) =

α

1− α
;

with the supporting belief system µ1 = 1
2 − k1, where

k1 = p(actual table is A and sender is behavioral | receiver observed message A)

=
α

α+ (1− α)[σS(A | A) + σS(A | B)]
.

Proof. See Appendix A. �

We notice that the above proposition admits Proposition 1 as a direct corollary, since the Regulated

Game boils down to the Benchmark Game when α = 0. Given Proposition 2, we can now derive the

equilibrium level of truth-telling.
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Corollary 2 The probability of sending an untruthful message by the strategic sender is 0.5/(1− α).

Proof. The probability of sending an untruthful message is (0.5)[σS(B | A) + σS(A | B)] =

(0.5)[σS(B | A) + 1− σS(B | B)] = 0.5/(1− α). �

We would like to point out that as α approaches 1/2, i.e., non-strategic and strategic information

transmissions become equally likely, the probability of lying of the strategic sender approaches ‘one’.

Now, we calculate the total probability of receiving untruthful messages.

Corollary 3 The total probability of the receiver’s observing an untruthful message is 0.5.

Proof. We calculate the probability of seeing an untruthful message as

0.5(1− α)[σS(B | A) + σS(A | B)]

= 0.5(1− α)[σS(B | A) + 1− σS(B | B)]

= 0.5(1− α)[1 +
α

1− α
] = 0.5. �

The last corollary predicts the equilibrium behavior of the receiver to be the same in both games.

Also, note that when α = 0, we are back to the Benchmark Game, where the probability of truth-

telling is one-half. As α increases, the probability of lying by the strategic sender rises (and approaches

to 1 as α goes to 1/2). For instance, for α = 1/3, the probability of lying by the strategic sender is as

high as 5/7 (0.714). The strategic sender increases the amount of lying just to even out the expected

excessive truth-telling by the behavioral sender so that the messages receivers get do not contain any

relevant information.

The last point we would like to make is that the equilibrium behavior is independent of the value of

x a long as x > 1, i.e., there is some degree of conflicting interest between the sender and the receiver.

3 Experimental Design and Procedures

We conducted all experimental sessions in the Social Sciences Laboratory at TOBB University of

Economics and Technology during June 6-8, 2011. Students were invited by e-mail and they could

register online for a session they prefer, subject to availability. We ran a total of 8 sessions (each

with 12 subjects), four on the Benchmark and four on the Regulated Game. Each session involved 12

subjects, making a total of 96 subjects. We performed our experiments with the computer software

z-Tree developed by Fischbacher (2007).

9



Our design is based on the setup used in Sánchez-Pagés and Vorsatz (2007, 2008) and Peeters et

al. (2008). The Benchmark Game is based on a sender-receiver game where the interests of a sender

and a receiver diverge in different states which are equally likely to occur. The sender, being informed

about the true state, sends a signal to the receiver who is uninformed. The receiver then takes a

payoff-relevant action. Different states are represented by different payoff tables in Table 1, which are

named as “payoff table A” and “payoff table B”. The variable x in payoff tables A and B in Table 1

was set to 9 for all sessions, while the monetary unit for all payoffs was Turkish Lira (TL). In both

states, there are two available signals that the sender can choose among: “The payoff table is A” or

“The payoff table is B”. After observing the signal the receiver is asked which payoff table he thinks

is more likely to be the correct one. The receiver then chooses among two possible actions: “U” or

“D”. After he chooses the action, the payoffs are realized accordingly and a summary of the period

is shown to both of the parties. This summary includes information about the true state, the signal

sent, the belief of the receiver, the action chosen by the receiver and the payoffs to both the sender

and the receiver.

In the Benchmark Game, subjects in each session played the game described above for 50 periods.

12 subjects in each session were divided into two groups of 6. The formation of the groups was

random, and the identities and the actions of group members remained anonymous. Every subject

was matched only with subjects within the same group, and with each of them she or he played 5

times as a sender and 5 times as a receiver. Thus, a subject played 25 times in both roles while the

order of the matchings and the role assignments were random.6

In the Regulated Game subjects played the same game in the same sequence, however, at each

period there was a 30% chance that the computer would stop the strategic sender from choosing a

message. In such periods of intervention, a correct signal was sent to the receiver while the strategic

sender was told that she will not have a choice over the signal and the system would send the correct

signal to the receiver. Regardless of the intervention, the receiver was given information about the

signal in the same manner. Hence, he was uninformed about the source of the signal and whether

an intervention occurred or not. There was no pre-determined arrangement for the occurrences of

intervention and these occurrences were independent across subjects and periods.

Payments were paid in private at the end of each session in each game. Each subject was paid

twice the average of his or her earnings during 50 periods plus a participation fee of 5 TL. The average

earnings of the subjects were 4.9938 TL (exactly 5 TL in the Benchmark Game and 4.9875 TL in the

6This matching protocol generates 1200 sender decisions and 1200 receiver decisions for both games. Out of 4800

period observations in total, 6 are dropped due to errors in type assignment.
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Regulated Game). At the time of the experiment, 1 TL corresponded to 0.6325 USD.

4 Results

We present in Figure 3 the histograms for truth-telling frequencies calculated by measuring the share

of the correct signals of the senders among signals initiated by themselves. In the Benchmark Game,

all signals are initiated by senders hence each sender has 25 (out of 50) chances to lie. But, in the

Regulated Game, a strategic sender could initiate the signals only when the computer did not intervene.

As can be seen from the left hand side histogram, majority of the strategic senders in the Benchmark

Game sent correct messages in around 50-60% of all observations, the average frequency being 55.5%.

Compared to them, conditional on no intervention, the strategic senders in the Regulated Game sent

correct messages (as shown in the right hand side histogram in Figure 3) less often with the average

frequency of truth-telling being 42% and one third of the population (16 out of 48) telling the truth

30% of the time or less often.

Figure 3: Truth-telling Frequencies

In Figure 4, we present the evolution of correct messages both for the Benchmark and the Regulated

Game. Note that overall truth-telling in the Regulated Game also includes the correct messages sent

through computer intervention which makes the overall percentage of truth 59.7% . For both games,

we observe that the overall percentage of correct messages seems to be oscillating around its mean.
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The theoretical predictions presented in Section 2 imply that the senders will lie or tell the truth

with equal frequencies (50%) in the Benchmark Game. As a result, the best reply for the receivers

would be disregarding the signal and choosing randomly among actions U and D. For the Regulated

Game, these predictions imply that in case of no intervention (which occurs with probability 0.7), the

strategic senders will lie with probability 0.714 (5/7 is the exact value predicted). This would make

the overall probability of an incorrect signal 0.5, leaving the receivers uninformed. Hence, the best

replies for the receivers would be the same as in the Benchmark Game.

Figure 4: Evolution of the Overall Percentage of Correct Signals

The frequency with which correct signals were sent is found to be higher than the theoretical

prediction for both games. This observation is consistent with most of the previous studies. The

frequency of truth-telling in similar benchmark (baseline) games with the same equilibrium predictions

was found to be 55.07% and 50.6% in Sánchez-Pagés and Vorsatz (2007) over the last forty rounds

when x = 2 and x = 9 respectively; 53.4% in Peeters et al. (2008) when x = 6 but the lowest payoff

was 2; 51.67% and 53.9% in Sánchez-Pagés and Vorsatz (2009) when x = 5 for two different cost

specifications of the model respectively.

In the Benchmark Game, we observe a probability around 55.5% of a message being correct. On

the other hand, for the Regulated Game, given the strategic sender behavior and the prior likelihood

of an intervention, the posterior probability of a message being correct is around 59.7%. In Figure

12



5, we present the histograms for trust frequencies in the Benchmark and the Regulated Game, by

measuring in each game the share of the signals trusted by the receivers among all signals received by

them; and in Figure 6 we present the cyclical evolution of trust frequencies in the two games.7 For the

Benchmark Game, the distribution is relatively concentrated around 50% with the mean being 53.7%.

For the Regulated Game the distribution is more scattered and the trust level is generally higher

with the mean being 61.3%. This difference between the results in the two games is also statistically

significant (p-value < 0.01 in a two sample Wilcoxon rank-sum test).

Figure 5: Trust Frequencies

The theoretical predictions imply that in both games a receiver will behave in the same way by

treating messages as cheap talk and will choose actions U and D with equal frequencies. This implies

an overall trust frequency of 50% for both games. For the Benchmark Game, the actual value of this

frequency is slightly above the predicted value. For the Regulated Game, there is a larger difference

between the actual and the predicted frequencies of trust. For both the Benchmark and the Regulated

Game, these frequencies are significantly different from the predicted value of 50% (p-values less than

0.01 in one sample test of proportions for both games).

For the Benchmark Game, the overall behavior can be summarized as the senders behaving slightly

more truthful and the receivers trusting slightly more often than predicted by the theory. For the

7The receiver is said to be trusting the sender (whether strategic or nonstrategic) if he takes the action that gives

the highest payoff with respect to the table signalled by the sender.
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Regulated Game, the absolute differences between the predicted and actual frequencies of truth-telling

and trust are much higher. The overall behavior in this game can be summarized as the senders not

fully exploiting the intervention system and the receivers trusting much more often than the predicted

values.

Figure 6: Evolution of the Percentage of Signals Trusted by the Receivers

When the first 10 periods in which the subjects may be assumed to be learning the rules of the

games are excluded, the overall frequency of correct messages (including both deliberate truth-telling

and computer intervention) is found to be around %58.5 over the last 40 periods. This value is slightly

above the frequency observed in the Benchmark Game (56.1%) for the same time span, however the

difference is not significant (p-value = 0.288 in a Wilcoxon rank-sum test). Even though the frequency

of correct messages received is very similar in both games, the frequency of trust over the last 40

periods is much higher for the Regulated Game than for the Benchmark Game (62.7% versus 53.6%,

p-value less than 0.01 in a Wilcoxon rank-sum test). To summarize, during the last 40 periods, both

games induce similar frequencies of correct signals which is above 50%, but the overall trust level is

much higher in the Regulated Game.

We also focus on the effect of experience in earlier periods on the likelihood of truth-telling and

trust on later periods. In the case of truth-telling we look at the effects of profitable truth-telling

experiences a subject accumulates in the role of a sender and truth-telling frequencies of other senders
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Table 2: Effect of Experience on Truth-Tellinga

Dependent Variable: Correct Signal

Benchmark Regulated

Profitable truth-telling experience 0.025 0.106∗∗∗

(0.016) (0.030)

Profitable truth-telling experience - normalized 0.368∗ 0.696∗∗∗

(0.212) (0.208)

Observed truth-telling -0.003 0.021

(0.020) (0.017)

Observed truth-telling - normalized -0.053 -0.026

(0.264) (0.269)

Male 0.083 0.078 -0.094 -0.097

(0.075) (0.075) (0.079) 0.079

N 600 600 425 425

Prob > chi2 0.193 0.164 0.002 0.005

Pseudo R2 0.014 0.015 0.043 0.033

aThe table reports the marginal effects of the different variables on telling a lie and the clustered robust standard errors

are given in parenthesis. ***, **, * denote 1, 5, and 10% confidence levels, respectively.

with whom the same subject interacts in the role of a receiver on the subject’s truth-telling tendency

in later periods. Similarly, in the case of trust, we look at the effects of profitable trust experiences and

the observed trust frequencies of other subjects on a subject’s likelihood of trusting senders’ messages

in later periods.

To this end, we conduct several logistic regression results of which are summarized in Tables 2 and

3. Below we explain these results in more detail.

Table 2: In constructing our variables, we divide each game in two halves. The dependent variable

is correct signal which is equal to 1 if a subject (as a sender) told the truth and 0 otherwise, and this

variable only includes observations from the second half of the game. Our independent variables are
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Table 3: Effect of Experience on Trustinga

Dependent Variable: Trust

Benchmark Regulated

Profitable trust experience −0.028∗∗ 0.057∗∗∗

(0.011) (0.016)

Profitable trust experience - normalized −0.324∗∗ 0.685∗∗∗

(0.134) (0.219)

Observed trust 0.002 0.036∗∗

(0.008) (0.014)

Observed trust - normalized 0.048 0.094

(0.137) (0.116)

Male 0.035 0.034 0.188∗∗∗ 0.166∗∗∗

(0.046) (0.045) (0.057) 0.061

N 600 600 600 600

Prob > chi2 0.071 0.034 0.000 0.000

Pseudo R2 0.009 0.045 0.074 0.069

aThe table reports the marginal effects of the different variables on telling a lie and the clustered robust standard errors

are given in parenthesis. ***, **, * denote 1, 5, and 10% confidence levels, respectively.

profitable truth-telling experience, observed truth-telling, profitable truth-telling experience - normalized

and observed truth-telling - normalized. The first one of these counts the number of periods during

the first half that the subject lied in the role of a sender and earned 9 TL, the highest payoff in the

two games.8 The second one counts the number of periods during the first half of the game that the

subject saw a correct message in the role of a receiver. Since the role assignment was not balanced for

subjects during the first and the second half of each game, we need normalized measures to account

for subject experience. Consequently, we constructed profitable truth-telling experience - normalized

8Note that in the Regulated Game, we excluded the periods where the signal was sent by the computer.
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which is profitable truth-telling experience divided by “total chances to lie in the first half of the

game”, and observed truth-telling - normalized which is observed truth-telling divided by “the number

of times the subject was a receiver in the first half of the game”. We also control for the gender of

the subjects. Regardless of the variable we use for measuring profitable truth-telling experience, we

see that the more subjects benefit from telling the truth, the more likely they will send correct signals

in the further periods during the Regulated Game with the effects being significant at 1% level. This

effect does not exist in the Benchmark Game where the experience in the first half of the game does

not seem to affect the propensity of truth-telling in the second half. It appears that telling a lie or

telling the truth remains as a random choice throughout the Benchmark Game rather than a strategy

shaped (to some extent) by previous experience.

Table 3: The dependent variable here is trust which is equal to 1 if a subject (as a receiver) trusted

the receiver’s message and 0 otherwise, and it includes observations from the second half of the game,

only. The independent variables we use here are profitable trust experience, observed trust, profitable

trust experience - normalized and observed trust - normalized. The first one of these is equal to the

number of times in the first half of the game that the subject played as a receiver, trusted the sender’s

message and obtained a high payoff. The second one counts the number of times in the first half of the

game that the subject played as a sender and her message was trusted by the receiver. The variable

profitable trust experience - normalized is profitable trust experience divided by “number of times the

subject was a receiver in the first half of the game” and observed trust - normalized is observed trust

divided by “total chances to lie in the first half of the game”. Controlling for the gender effects, we

find that profitable experiences of trust in early periods and observing trust among others increases

the likelihood of trusting others later in the Regulated Game while only profitable experiences of trust

has a significant (but opposite) effect for the Benchmark Game. Interestingly, the receivers in our

Benchmark Game seem to have always made correct dynamic calculations so that the end-of-the-

game average of their trust experience was around the theoretical prediction of trusting the sender,

on the average, once in every two plays, irrespective from the trust experiences and observations they

had accumulated in the earlier parts of the game.

5 Concluding Remarks

A growing literature on experimental economics has established overcommunication in strategic trans-

mission games involving fully strategic agents with conflictive preferences. In those games, the sender

of a strategic information is observed to tell the truth more often than predicted by the theoretical
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model of Crawford and Sobel (1982). In this paper, we have studied whether this phenomenon is stable

with respect to the random intervention of an honest regulator in the transmission game. To this end,

we designed a Regulated Game, in addition to our Benchmark Game which we borrowed from the

earlier literature. This new game allowed a truthful regulator to submit the private information of a

strategic sender with a commonly known probability.

While the sequential equilibria of both the Benchmark Game and the Regulated Game predict

no information transmission, our results showed that a strategic sender exhibited excessive truth-

telling in both games. More interestingly, the size of excessive truth-telling by strategic senders was

much higher in the presence of random intervention. Besides, the average communication level by the

strategic and non-strategic senders was also excessively high. These findings clearly show that the

recent literature experimentally invalidating the theoretical predictions is robust with respect to the

inclusion of a behavioral sender type in the information transmission game.

On the receiver end of our information transmission games, we observed excessive trust behavior.

More interestingly, the receivers seem to have correctly perceived in the Regulated Game the overco-

munication of strategic senders. Indeed, we found that the average trust level of receivers was 22%

higher than foreseen by the sequential equilibrium while the strategic senders’ excessive truth-telling

exceeded the theoretically predicted level by 20%. From the perspective of economic policy, our results

may suggest that in principal-agent settings intervention pays to a honest regulator acting on behalf

of the informationally inferior agents.

Finally, we analysed the dynamic roots of excessive truth-telling and trust in the two strategic

games. Our regressions showed that under intervention the more a strategic sender found truth-telling

profitable in the earlier rounds of experiments, the more likely she told the truth in the subsequent

rounds. In the Benchmark Game, however, the past experience of strategic senders did not have a

predictive power to explain their overcommunication in the future. We also showed that profitable

experiences of trust in early periods as well as observing trust among other players increase the likeli-

hood of trust later in the Regulated Game, while we found an opposite effect of profitable experiences

of trust for the Benchmark Game.

Appendix A. Proof of Proposition 2

We will first find the best response correspondences of the receiver and the strategic sender. At

information set H1 in Figure 2, the receiver observes that the message that has been sent is A, which

might have come from a strategic sender who could reveal his information truthfully or untruthfully,
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or from a behavioral sender who observed the actual table is A and had been restricted to send a

truthful message. Let the beliefs at information set H1 be defined as:

µ1 = p(actual table is A and sender is strategic | receiver observed message A)

k1 = p(actual table is A and sender is behavioral | receiver observed message A)

Then, the receiver’s expected payoff by choosing U is:

µ1 + k1 + (1− k1 − µ1)x

On the other hand, if the receiver plays D, his expected payoff is:

µ1x+ k1x+ (1− k1 − µ1)

So, the best response correspondence of the receiver at information set H1 is given by:

σR(U | A) ∈


{1} if µ1 ≤ 1

2 − k1

[0, 1] if µ1 = 1
2 − k1

{0} if µ1 ≥ 1
2 − k1

At information set H2, we define the beliefs of the receiver as:

µ2 = p(actual table is A and sender is strategic | receiver observed message B)

k2 = p(actual table is A and sender is behavioral | receiver observed message B)

Thus, the receiver’s expected payoffs from playing U and D, are as follows. If the receiver plays U ,

his expected payoff is:

µ2 + k2x+ (1− k2 − µ2)x

If the receiver plays D, his expected payoff is:

µ2x+ k2 + (1− k2 − µ2)

Then, the best response correspondence of the receiver at information set H2 is given by:

σR(U | B) ∈


{1} if µ2 ≤ 1

2

[0, 1] if µ2 = 1
2

{0} if µ2 ≥ 1
2
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Now we find the best response correspondence of the strategic sender who knows that the actual payoff

table is A. The expected payoff from sending the message A (telling the truth) is:

σR(U | A)x+ [1− σR(U | A)]

The expected payoff from sending the message B (revealing the information untruthfully) is:

σR(U | B)x+ [1− σR(U | B)]

Thus, the best response correspondence of the sender who knows that the actual payoff table is A

becomes:

σS(A | A) ∈


{1} if σR(U | A) ≥ σR(U | B)

[0, 1] if σR(U | A) = σR(U | B)

{0} if σR(U | A) ≤ σR(U | B)

Similarly, we can find the best response correspondence of the strategic sender who knows that the

actual payoff table is B. The expected payoff from sending the message A is

σR(U | A) + [1− σR(U | A)]x,

whereas the expected payoff from sending the message B is

σR(U | B) + [1− σR(U | B)]x.

So, the best response correspondence of the sender who knows that the actual payoff table is B

becomes:

σS(A | B) ∈


{1} if σR(U | A) ≤ σR(U | B)

[0, 1] if σR(U | A) = σR(U | B)

{0} if σR(U | A) ≥ σR(U | B)

The beliefs µ1 (that Nature chose table A and the sender was strategic given that the receiver has

observed message A) and k1 (that Nature chose table A and the sender was behavioral given that the

receiver has observed message A) are calculated as follows:

µ1 =
σS(A | A)(1− α) 1

2

σS(A | A)(1− α) 1
2

+ α
2

+ σS(A | B)(1− α) 1
2

=
σS(A | A)(1− α)

[σS(A | A) + σS(A | B)](1− α) + α

k1 =
α

α+ (1− α)[σS(A | A) + σS(A | B)]
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Similarly, the beliefs µ2 (that Nature chose table A and the sender was strategic given that the receiver

has observed message B) and k2 (that Nature chose table A and the sender was behavioral given that

the receiver has observed message B) are given by:

µ2 =
σS(B | A)(1− α) 1

2

σS(B | A)(1− α) 1
2

+ α
2

+ σS(B | B)(1− α) 1
2

=
σS(B | A)(1− α)

[σS(B | A) + σS(B | B)](1− α) + α

k2 =
α

α+ (1− α)[σS(B | A) + σS(B | B)]

To complete the proof, we make the following three claims.

Claim 1. µ1 = 1
2 − k1 and µ2 = 1

2 in any equilibrium.

Proof of Claim 1. Suppose for a contradiction that µ1 >
1
2 − k1. Then, by substituting 1 − σS(B |

A) ≡ σS(A | A) and 1−σS(B | B) ≡ σS(A | B) in the definition of µ1, we get that µ2 <
1
2 . With these

beliefs (µ1 >
1
2 − k1 and µ2 <

1
2 ), the best reply of the receiver is σR(U | A) = 0 after observing the

message A and σR(U | B) = 1 after observing the message B. In turn, the best reply of the strategic

sender is σS(A | A) = 0 after learning that the actual payoff table is A and σS(A | B) = 1 after

learning that the actual payoff table is B. Given the strategies of the sender, we calculate µ1 = 0,

which contradicts with µ1 >
1
2 − k1.

Now, suppose that µ1 <
1
2 − k1. Then, by substituting 1− σS(B | A) ≡ σS(A | A) and 1− σS(B |

B) ≡ σS(A | B) in the definition of µ1, we get that µ2 > 1
2 . With these beliefs (µ1 < 1

2 − k1

and µ2 >
1
2 ), the best reply of the receiver is σR(U | A) = 1 after observing the message A and

σR(U | B) = 0 after observing the message B. In turn, the best reply of the strategic sender is

σS(A | A) = 1 after learning that the actual payoff table is A and σS(A | B) = 0 after learning that

the actual payoff table is B. Given the strategies of the sender, we calculate µ2 = 0, a contradiction.

Therefore, the only possibility is µ1 = 1
2 − k1, which necessitates µ2 = 1

2 .

Claim 2. σR(U | A) = σR(U | B) = p ∈ [0, 1].

Proof of Claim 2. Suppose not. Then either σR(U | A) > σR(U | B) or vice versa. If σR(U | A) >

σR(U | B), then the best response of the sender is σS(A | A) = 1 after learning that the payoff table

is A and σS(A | B) = 0 after learning that the payoff table B, which results in µ2 = 0, which is a
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contradiction by Claim 1. If, on the other hand, σR(U | A) < σR(U | B), we arrive to the contradiction

that µ1 = 0. Thus, σR(U | A) = σR(U | B) = p ∈ [0, 1].

Given that σR(U | A) = σR(U | B) = p ∈ [0, 1], the best reply of the sender dictates that σS(A | B)

and σS(A | A) can be any mixed strategy.

Claim 3. In any sequential equilibrium of the Regulated Game, the strategic sender’s strategies satisfy

σS(B | A)− σS(B | B) =
α

1− α
and σS(A | B)− σS(A | A) =

α

1− α
.

Proof of Claim 3. For consistency of beliefs, the only possibility is µ1 = 0.5− k1, which necessitates

µ2 = 0.5. Note that given that µ2 = 0.5, σS(B | A) − σS(B | B) = α/(1− α), which also implies

σS(A | B)− σS(A | A) = α/(1− α).

This completes the proof of Proposition 2. �

Appendix B. Instructions (Regulated Game)9

Welcome!

Thank you for your participation. The aim of this study is to understand how people decide in certain situations.

From now on, talking to each other is prohibited. If you have a question please raise your hand. This way, everyone

will hear the question and the answer.

The experiment will be conducted on the computer and you will make all your decisions there. You will earn a

reward in the game that will be played during the experiment. This reward will depend on your decisions as well the

decisions of other participants. The reward and the participation fee will be paid in cash at the end of the experiment.

We start with the instructions.

In this experiment, you will play a game that will last for 50 rounds. Before the first round, the system will divide

the participants to two groups of 6 people. These groups will stay the same throughout the experiment. A participant

in a given group will only play with participants from that group, but will not learn the identities of other participants

in the group.

Let us now describe the game on more detail. Please do not hesitate to ask questions.

At the beginning of each round, you will match with another participant from your group. In this matching, one

participant will be determined as ‘sender’ and the other participant will be determined as ‘receiver’. All of you will play

25 times as a sender and 25 times as a receiver. At the end of the game all group members will have been matched with

each other equal number of times. So, you will play 5 times as a sender and 5 times as a receiver with each member in

the group. The order of matchings and role assignments are randomly determined.

9Instructions for the Benchmark Game have minor differences and do not include the parts describing computer

system intervention to the message. We did not include the pictures referred in the text here since the experimental

software is built on Sánches-Pagés and Vorsatz (2007) which already includes the screenshots of the software.
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At each round, after the matchings and the role assignments are completed, the system will choose one among the

A and B tables below. Each table is equally likely to be chosen by the system. The earnings in that round will depend

on the table chosen by the system and the action chosen by the receiver.

Table A Sender Receiver

Action U 9 1

Action D 1 9

Table B Sender Receiver

Action U 1 9

Action D 9 1

Sender’s task:

At the beginning of each round, the sender will be informed about the table chosen by the system in that round. the

sender is the first to make a decision in the game. She will tell the receiver which payoff table is chosen by the system

(see picture 1). She is free to send correct or wrong message.

But, at some rounds, system will not allow the sender from sending a message and the receiver will be told the

correct table chosen by the system. The probability of this happening is 30%. During such rounds, the sender will

observe that the system is sending the message on behalf of her but will not be able to make a choice (see picture 2).

The receiver will not learn, during any of the rounds, whether the message is sent by the sender or the system.

Receiver’s task:

The receiver will first see the message sent to him (picture 3). On the screen that he observes this message, the receiver

will also be asked which table he believes is more likely to determine the earnings in that round.

On the next screen, the receiver will choose one among the actions U and D. (picture 4). On this screen, at the top,

he can see how earnings are determined in tables A and B. At the bottom of this, he can see the message he received

and the belief he stated on the previous screen.

After the receiver makes his choice, the earnings will be determined by the actual table chosen by the system and

the choice of the receiver.

At the end of each round, on the summary screen (picture 5 for the receiver and picture 6 for the sender) players

can see

- the table chosen by the system,

- the message received by the receiver,

- the action chosen by the receiver,

- the sender’s earnings,

- the receiver’s earnings.

Payments:

Based on your earnings in each round, we will calculate your average earning. You can see this on the summary table

located at the bottom of the screen. We will pay you twice the average of your earnings. In addition to this, you will

receive a participation fee of 5 TL. Nobody else, other than yourself, will be allowed to observe your earnings. You can

leave the room after you receive your payment.
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