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Abstract

This paper considers nonparametric identification of nonlinear dynamic models for panel

data with unobserved voariates. Including such unobserved covariates may control for both

the individual-specific unobserved heterogeneity and the endogeneity of the explanatory

variables. Without specifying the distribution of the initial condition with the unobserved

variables, we show that the models are nonparametrically identified from three periods of

data. The main identifying assumption requires the evolution of the observed covariates

depends on the unoberved covariates but not on the lagged dependent variable. We

also propose a sieve maximum likelihood estimator (MLE) and focus on two classes of

nonlinear dynamic panel data models, i.e., dynamic discrete choice models and dynamic

censored models. We present the asymptotic property of the sieve MLE and investigate

the finite sample properties of these sieve-based estimator through a Monte Carlo study.

An intertemporal female labor force participation model is estimated as an empirical

illustration using a sample from the Panel Study of Income Dynamics (PSID).
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1. Introduction

This paper considers nonlinear dynamic models for panel data with unobserved covariates.

These models take into account the dynamic processes by allowing the lagged value of the

dependent variable as one of the explanatory variables as well as containing observed and un-

observed permanent (heterogeneous) or transitory (serially-correlated) individual differences.

Let Yit be the dependent variable at period t and Xit be a vector of observed covariates for

individual i. We consider nonlinear dynamic panel data models of the form:

(1) Yit = g (Yit−1, Xit, Uit, ξit) ,

where g is an unknown nonstochastic function, Uit is an unobserved covariate correlated

with other observed explanatory variables (Yit−1, Xit) , and ξit stands for a random shock

independent of all other explanatory variables (Yit−1, Xit, Uit). The unobserved covariate Uit

may contain two components as follows:

Uit = Vi + ηit,

where Vi is the unobserved heterogeneity or the random effects correlated with the observed

covariates Xit and ηit is an unobserved serially-correlated component.1 The transitory com-

ponent ηit may be a function of all the time-varying RHS variables in the history, i.e.,

ηit = ϕ
(
{Yiτ−1, Xiτ , ξiτ}τ=0,1,...,t−1

)
for some function ϕ. Both observed explanatory vari-

ables Yit−1 and Xit become endogeneous if the unobserved covariate Uit is ignored. In this

paper, we provide reasonable assumptions under which the distribution of Yit conditional on

(Yit−1, Xit, Uit), i.e., fYit|Yit−1,Xit,Uit , is nonparametrically identified. The nonparametric iden-

tification of fYit|Yit−1,Xit,Uit may lead to that of the general form of our model in equation (1)

under certain specifications of the distribution of the random shock ξit.

In the econometric literature, there are two approaches to tackling the unobserved hetero-

geneity Vi: random effects and fixed effects. In the fixed effect approach, much attention has

been devoted to linear models with an additive unobserved effect. The problem can be solved

1The random effect Vi is usually assumed to be independent of other covariates for convenience so that it
mainly causes an efficiency problem instead of an endogeneity problem especially in a linear panel data model.
In this paper, we consider a more realistic setting where the individual-specific heterogeneity may be correlated
with the covariates from the same individual.
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by first applying an appropriate transformation to eliminate the unobserved effect and then

implementing instrument variables (IV) in a generalized method of moments (GMM) frame-

work. Anderson and Hsiao (1982), Arellano and Bond (1991), Arellano and Bover (1995)

and Ahn and Schmidt (1995) employ an IV estimator on a transformation equation through

first-differencing. Eliminating the unobserved effects is notably more difficult in nonlinear

models and some progress has been made in this area. Chamberlain (1984) considers a con-

ditional likelihood approach for logit models with strictly exogenous assumption. Honoré and

Kyriazidou (2000) generalize the conditional probability approach to estimate the unknown

parameters without formulating the distribution of the unobserved individual effects or the

probability distribution of the initial observations for certain types of discrete choice logit

models. However, their results have to rely on a very strong assumption to match the ex-

planatory variables in different time-periods. Their estimator is consistent and asymptotically

normal but the rate of convergence is not the inverse of the square root of the sample size.

Honoré (1993), Hu (2002) and Honoré and Hu (2004) obtain moment conditions for estimating

dynamic censored regression panel data models.

On the other hand, it is often appealing to take a random effect specification by making

assumptions on the distribution of the individual effects. The main difficulty of this approach

is the so-called initial conditions problem.2 With a relatively short panel, the initial con-

ditions have a very strong impact on the entire path of the observations but they may not

be observed in the sample. One remedy to this problem is to specify the distribution of the

initial conditions given the unobserved heterogeneity. The drawbacks of this approach are

that the corresponding likelihood functions typically involve high order integration and mis-

specification of the distributions generally results in inconsistent parameter estimates. The

2The random effect approach for dynamic models requires the specification on the initial conditions of the
process. Specifically, consider a special case of our model (1), dynamic discrete choice models without observed
covariates Xit, in the following form:

Yit = 1 (γYit−1 + Vi + ξit ≥ 0) .

Then the conditional distribution fYit|Yit−1,Vi
can be specified and the corresponding likelihood function has

the structure

L =

∫
fYi0|Vi

T−1∏
t=1

fYit|Yit−1,Vi
fVidvi,

where fYi0|Vi
denotes the marginal probability of Yi0 given Vi. If the process is not observed from the start

then the initial state for individual i, yi0 cannot be assumed fixed. However, it is not clear that how to derive
the initial condition fYi0|Vi

from fYit|Yit−1,Vi
so it could be internally inconsistent across different time periods

if the evolution of these two process can not be connected. Heckman (1981b) suggested that using a flexible
functional form to approximate the initial conditions.
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associated computational burden of high order integration has been reduced significantly by

recent advances in simulation techniques.3 Hyslop (1999) analyzes the intertemporal labor

force participation behavior of married women using maximum simulated likelihood (MSL)

estimator to simulate the likelihood function of dynamic probit models with a nontrivial error

structure. Wooldridge (2005) suggests a general method for handling the initial conditions

problem by using a joint density conditional on the strictly exogenous variables and the ini-

tial condition. Honoré and Tamer (2006) relax the distributional assumption of the initial

condition and calculate bounds on parameters of the interest in panel dynamic discrete choice

models.

In this paper we adopt the random effect approach for nonlinear dynamic panel data

models without specifying the distribution of the initial condition. We treat the unobserved

covariate in nonlinear dynamic panel data models as the latent true values in nonlinear mea-

surement error models and the observed covariates as the measurement of the latent true

values.4 We then utilize the identification results in Hu and Schennach (2008a), where the

measurement error is not assumed to be independent of the latent true values. Their results

rely on a unique eigenvalue-eigenfunction decomposition of an integral operator associated

with joint densities of observable variables and unobservable variables.

The strength of our approach is that we provide nonparametric identification of nonlinear

dynamic panel data model using three periods of data without specifying initial conditions.

The model may be described in,fYit|Yit−1,Xit,Uit , the conditional distribution of the dependent

variable of interest for an individual i, Yit, conditional on a lagged value of that variable Yit−1,

explanatory variables Xit, and an unobserved covariate Uit. We show that fYit|Yit−1,Xit,Uit

can be nonparametrically identified from a sample of
{
Xit+1, Yit, Xit,Yit−1, Xit−1

}
without

parametric assumptions on the distribution of the individuals’ dependent variable conditional

on the unobserved covariate in the initial period. The main identifying assumption requires

that the dynamic process of the covariates Xit+1 depends on the unoberved covariate Uit but

is independent of the lagged dependent variables Yit, Yit−1, and Xit−1 conditional on Xit and

Uit.

3See Gourieroux and Monfort (1993), Hajivassiliou (1993), Hajivassiliou and Ruud (1994) and Keane (1993)
for the reviews of the literature.

4An ideal candidate for the ”measurement” of the latent covariate would be the dependent variable because
it is inherently correlated with the latent covariate. However, such a measurement is not informative enough
when the dependent variable is discrete and the latent covariate is continuous.
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The identification of fYit|Yit−1,Xit,Uit leads to the identification of the general form of our

model in equation (1).5 We present below two motivating examples in the existing literature.

The specifications in these two types of models can be used to distinguish between dynamic re-

sponses to lagged dependent variables, observed covariates, and unobserved covariates. While

the state dependence Yit−1 reflects that experiencing the event in one period should affect

the probability of the event in the next period, the unobserved heterogeneity Vi represents

individual’s inherent ability to resist the transitory shocks ηit.

Example 1 (Dynamic Discrete-choice Model with an Unobserved Covariate): A binary case

of dynamic discrete choice models is as follows:

Yit = 1
(
X ′itβ + γYit−1 + Vi + εit ≥ 0

)
with ∀i = 1, ..., n; t = 1, ..., T − 1,

where 1 (·) is the 0-1 indicator function and the error εit follows an AR(1) process εit =

ρεit−1 + ξit for some constant ρ. The conditional distribution of the interest is then:

fYit|Xit,Yit−1,Uit =
(
1− Fξit

[
−
(
X ′itβ + γYit−1 + Uit

)])Yit Fξit [− (X ′itβ + γYit−1 + Uit
)]1−Yit ,

where Fξit is the CDF of the random shock ξit, Uit = Vi + ηit, and ηit = ρεit−1. Empiri-

cal applications of the dynamic discrete-choice model above have been studied in a variety

of contexts, such as health status (Contoyannis, Jones, and Rice (2004), Halliday (2002)),

brand loyalty (Chintagunta, Kyriazidou, and Perktold (2001)) , welfare participation (Chay,

Hoynes, and Hyslop (2001)), and labor force participation (Heckman and Willis (1977), Hys-

lop (1999)). Among these studies, the intertemporal labor participation behavior of married

women is a natural illustration of the dynamic discrete choice model. In such a model, the

dependent variable Yit denotes the t-th period participation decision and the covariate Xit

is the wage or other observable characteristics in that period. The heterogeneity Vi is the

unobserved individual skill level or motivation, while the idiosyncratic disturbance εit denotes

the luck and the measurement error. Heckman (1978, 1981a,b) has termed the presence of

Yit−1 ”true” state dependence and Vi ”spurious” state dependence.

5Evdokimov (2009) considers a nonparametric panel data model with nonadditive unobserved heterogeneity:
Yit = m (Xit, Vi)+εit. The model has a different focus since our model explicitly includes lags of the endogenous
dependent variable Yit−1 and a nonadditive εit.
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Example 2 (Dynamic Censored Model with an Unobserved Covariate): In many applications,

we may have

Yit = max
{
X ′itβ + γYit−1 + Vi + εit, 0

}
with ∀i = 1, ..., n; t = 1, ..., T − 1,

with εit = ρεit−1 + ξit. It follows that

(2)

fYit|Xit,Yit−1,Uit = Fξit
[
−
(
X ′itβ + γYit−1 + Uit

)]1(Yit=0)
fξit

[
Yit −X ′itβ − γYit−1 − Uit

]1(Yit>0)
.

where Fξit and fξit are the CDF and the PDF of the random shock ξit respectively. The

dependent variable Yit may stand for the amount of insurance coverage chosen by an individual

or a firm’s expenditures on R&D. In each case, an economic agent solves an optimization

problem and Yit = 0 may be an optimal corner solution. For this reason, this type of censored

regression models is also called a corner solution model or a censored model with lagged

censored dependent variables.6 Honoré (1993) and Honoré and Hu (2004) use a method of

moments framework to estimate the model without making distributional assumptions about

Vi.

Based on our nonparametric identification results, we propose a semiparametric sieve

maximum likelihood estimator (MLE) for the model. We show the consistency of our estimator

and the asymptotic normality of its parametric components. The finite sample properties

of the proposed sieve MLE are investigated through Monte Carlo simulations of dynamic

discrete choice models and dynamic censored models. Our empirical application focuses on

how the labor participation decisions of married women respond to their previous participation

states, fertility decisions, and nonlabor incomes. We develop and test a variety of dynamic

econometric models using a seven year longitudinal sample from the Panel Study of Income

Dynamics (PSID) in order to compare the results with those in Hyslop (1999). In the empirical

application, we examine three different model specifications, i.e., a static probit model, a

maximum simulation likelihood (MSL) model, and a semi-parametric dynamic probit model.

Our results find a smaller significant negative effects on nonlabor income variables and a

6This setting rules out certain types of data censoring. For example, if the censoring is due to top-coding,
then it makes sense to consider a lagged value of the latent variable, i.e., Y ∗it = X ′itβ + γY ∗it−1 + vi + εit and
Yit = max[Y ∗it , ct]. This top-coded dynamic censored model has been considered in Hu (2000, 2002).
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estimated negative effect of children age 0-2 in the the current period and previous period

increases by 30% and decline by 50% respectively.

The paper is organized as follows. We present the nonparametric identification of nonlinear

dynamic panel data models in Section 2. Section 3 discusses our proposed sieve MLE. Section

4 provides the Monte Carlo study. Section 5 presents an empirical application describing the

intertemporal labor participation of married women. Section 6 concludes. Appendices include

proofs of consistency and asymptotic normality of the proposed sieve MLE and discussions

on how to impose restrictions on sieve coefficients in the sieve MLE.

2. Nonparametric Identification

In this section, we present the assumptions under which the distribution of the depen-

dent variable Yit conditional on Yit−1, covariates Xit, and the unobserved covariate Uit, i.e.,

fYit|Yit−1,Xit,Uit , is nonparametrically identified. We start with a panel data containing three

periods, {Xit+1, Yit, Xit, Yit−1, Xit−1} for i = 1, 2, ..., n. The law of total probability leads to

fXit+1,Yit,Xit,Yit−1,Xit−1 =

∫
fXit+1|Yit,Xit,Yit−1,Xit−1,UitfYit|Xit,Yit−1,Xit−1,UitfXit,Yit−1,Xit−1,UitdUit,

where we omit the arguments in the density function to make the expressions concise.

We assume

Assumption 2.1. (Exogeneous shocks) the random shock ξit is independent of ξiτ for any

τ 6= t and {Yiτ−1, Xiτ , Uiτ} for any τ ≤ t.

As shown in the two examples above, this assumption has been used in many existing studies in

the literature. However, it is still stronger than necessary. For the nonparametric identification

of fYit|Yit−1,Xit,Uit , we only need fYit|Xit,Yit−1,Xit−1,Uit = fYit|Xit,Yit−1,Uit , which is implied by

Assumption 2.1. Given equation 1, the condition fYit|Xit,Yit−1,Xit−1,Uit = fYit|Xit,Yit−1,Uit holds

if the random shock ξit is independent of the covariate Xit−1. Assumption 2.1 then implies

fXit+1,Yit,Xit,Yit−1,Xit−1 =

∫
fXit+1|Yit,Xit,Yit−1,Xit−1,UitfYit|Xit,Yit−1,UitfXit,Yit−1,Xit−1,UitdUit.

Furthermore, we simplify the evolution of the observed covariates Xit as follows:
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Assumption 2.2. (Covariate evolution) fXit+1|Yit,Xit,Yit−1,Xit−1,Uit = fXit+1|Xit,Uit.

Assumption 2.2 may be decomposed into two steps. The first step is a Markov-type as-

sumption fXit+1|Yit,Xit,Yit−1,Xit−1,Uit = fXit+1|Yit,Xit,Uit , which implies that the evolution of the

observed covariate Xit+1 only depends on all the explanatory variables in the previous pe-

riod (Yit, Xit, Uit). Such Markov-type assumptions make the model tractable without losing

economic intuitions, and therefore, are widely used in dynamic models. The second step is a

simplification, i.e., fXit+1|Yit,Xit,Uit = fXit+1|Xit,Uit . In nonlinear models, the dependent vari-

able Yit may either be discrete or truncated, while at least part of covariates Xit is continuous.

In those cases, such a simplification may not lose too much generality. Without this simplica-

tion, the nonparametric identification of the model is still feasible using another identification

strategy (see Hu and Shum (2009)), which we do not pursue here.

Assumption 2.2 then implies that

(3) fXit+1,Yit,Xit,Yit−1,Xit−1 =

∫
fXit+1|Xit,UitfYit|Xit,Yit−1,UitfXit,Yit−1,Xit−1,UitdUit.

Based on this equation, we may apply the identification results in Hu and Schennach (2008)

to show the all the unknown densities on the RHS are identified from the observed density on

the LHS. Let Lp(X ), 1 ≤ p < ∞ stand for the space of function h(·) with
∫
X |h(x)|pdx < ∞.

For any 1 ≤ p ≤ ∞ and any given (yit, xit, yit−1), we define operators as follows:

LXit+1,yit,xit,yit−1,Xit−1 : Lp(Xt−1)→ Lp(Xt+1)

(LXit+1,yit,xit,yit−1,Xit−1h)(u) =

∫
fXit+1,Yit,Xit,Yit−1,Xit−1(u, yit, xit, yit−1, x)h(x)dx,

and

Dyit|xit,yit−1,Uit : Lp(U)→ Lp(U)

(Dyit|xit,yit−1,Uith)(u) = fYit|Xit,Yit−1,Uit(yit|xit, yit−1, u)h(u).
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Similarly, we define

(LXit+1,xit,yit−1,Xit−1h)(u) =

∫
fXit+1,Xit,Yit−1,Xit−1(u, xit, yit−1, x)h(x)dx,

(LXit+1|xit,Uith)(x) =

∫
fXit+1|Xit,Uit(x|xit, u)h(u)du,

(Lxit,yit−1,Xit−1,Uith)(u) =

∫
fXit,Yit−1,Xit−1,Uit(xit, yit−1, x, u)h(x)dx.

Eq. (3) is equivalent to the following operator relationship:

LXit+1,yit,xit,yit−1,Xit−1 = LXit+1|xit,UitDyit|xit,yit−1,UitLxit,yit−1,Xit−1,Uit .

Integrating out Yit in Eq. (3) leads to fXit+1,Xit,Yit−1,Xit−1 =
∫
fXit+1|Xit,UitfXit,Yit−1,Xit−1,UitdUit,

which is equivalent to

LXit+1,xit,yit−1,Xit−1 = LXit+1|xit,UitLxit,yit−1,Xit−1,Uit .

with (LXit−1,xit,yit−1,Xit+1h)(u) =
∫
fXit−1,Xit,Yit−1,Xit+1(u, xit, yit−1, x)h(x)dx. We may then

apply the results in Hu and Schennach (2008) to identify fXit+1|Xit,Uit , fYit|Xit,Yit−1,Uit , and

fXit,Yit−1,Xit−1,Uit from fXit+1,Yit,Xit,Yit−1,Xit−1 .

We assume

Assumption 2.3. (Invertibility) For any (xit, yit−1) ∈ Xit × Yit−1, LXit−1,xit,yit−1,Xit+1 and

LXit+1|xit,Uit are invertible.

Intuitively, this assumption guarantees that the observables contains enough information on

the unobserved covariate Uit. The invertibility of LXit−1,xit,yit−1,Xit+1 is imposed on observables

so that it is testable in principle. The invertibility of LXit+1|xit,Uit requires the covariates in

period t+1, i.e., Xit+1 contain enough information on the unobserved covariate Uit conditional

on Xit. For example, we may have Xit+1 = Xit + Uit + h(Xit)εit, where εit is independent

of Xit and Uit and has a nonvanishing characteristic function on the real line. We use Xit+1

instead of Yit+1 for the information on Uit because the dependent variable Yit+1 is discrete

and Uit is continuous in many interesting applications. In that case, the operator mapping

from functions of Uit to those of Yit+1 can’t be invertible. On the other hand, when Yit+1 is

continuous, it would be more reasonable to impose invertibility on the operator mapping from
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functions of Uit to those of Yit+1, while Uit or Vi is allowed to be independent of the observed

covariates Xit.

Note that when the unobserved component Uit is continuous-valued, the invertibility of

LXit+1|xit,Uit implies that the set of the explanatory variables Xit contains a continuous el-

ement Zit. The existence of the continuous component, Zit is essential. It is impossible to

nonparametrically identify a distribution of a continuous unobservable variable only by ob-

served discrete variables. The restriction imposed on the continuous Zit+1 guarantees that the

explanatory variables Xit+1 contains enough information to identify unobserved component

Uit.

This assumption enables us to have

LXit+1,yit,xit,yit−1,Xit−1L
−1
Xit+1,xit,yit−1,Xit−1

= LXit+1|xit,UitDyit|xit,yit−1,UitL
−1
Xit+1|xit,Uit ,

which implies a spectral decomposition of the observed operators on the LHS. The eigenvalues

are the kernel function of the diagonal operator Dyit|xit,yit−1,Uit and the eigenfunctions are the

kernel function fXit+1|Xit,Uit of the operator LXit+1|xit,Uit . In order to make the eigenvalues

distinctive, we assume

Assumption 2.4. (Distinctive eigenvalues) there exist a known function ω (·) such that

E [ω (Yit) |xit, yit−1, uit] is monotonic in uit for any given (xit, yit−1) .

The function ω (·) may be specified by users, such as ω (y) = y, ω (y) = I (y > 0), or

ω (y) = y2. For example, we may have ω (y) = I (y = 0) in the two examples above. In both

cases, E [I (Yit = 0) |xit, yit−1, uit] = Fξit [− (x′itβ + γyit−1 + uit)] , which is monotonic in uit.

Since the identification from the spectral decomposition is only identified up to uit and its

monotone transformation, we make a normalization assumption to pins down the unobserved

covariate uit.

Assumption 2.5. (Normalization) For any given xit ∈ Xit, there exists a known functional

G such that G
[
fXit+1|Xit,Uit(·|xit, uit)

]
= uit.

The functional G may be the mean, the mode, median, or a quantile. For example, we

may have Xit+1 = Xit+Uit+h(Xit)εit with an unknown function h (·) and a zero median inde-

pendent error εit. Then Uit is the median of the density function f(Xit+1−Xit)|Xit,Uit(·|xit, uit).
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Notice that Theorem 1 in Hu and Schennach (2008) implies that all three densities

fXit+1|Xit,Uit , fYit|Xit,Yit−1,Uit , and fXit,Yit−1,Xit−1,Uit are identified under the assumptions in-

troduced above. The model of interest is described in the density fYit|Xit,Yit−1,Uit . The initial

condition at period t−1 is contained in the joint distribution fXit,Yit−1,Xit−1,Uit . The evolution

of the covariates Xit is described in fXit+1|Xit,Uit . We summarize our identification results as

follows:

Theorem 2.1. Under Assumptions 2.1, 2.2, 2.3, 2.4, 2.5, the joint distribution fXit+1,Yit,Xit,Yit−1,Xit−1

uniquely determines the model of interest fYit|Xit,Yit−1,Uit, together with the evolution density

of observed covariates fXit+1|Xit,Uit and the initial joint distribution fXit,Yit−1,Xit−1,Uit.

3. Estimation

The dynamic panel data model (1) specifies the relationship between a dependent variable of

interest for an individual i, Yit, and the explanatory variables including a lagged dependent

variable, a set of possibly time-varying explanatory variables Xit, an unobserved covariate Uit.

If we are willing to make a normality assumption on ξit, then the model in example 1 becomes

a probit model and the model in example 2 becomes a tobit model. The general specification

here covers a number of other dynamic nonlinear panel data model in one framework.

Given that the random shocks {ξit}Tt=0 is exogenous, the conditional distribution fYit|Xit,Yit−1,Uit

is a combination of the function g and the distribution of ξit. In most applications, the func-

tion g and the distribution of ξit have a parametric form. That means the model may be

parameterized in the following form,

fYit|Xit,Yit−1,Uit(yit|xit, yit−1, uit; θ),

where θ includes the unknown parameters in both the function g and the distribution of ξit.

Under the rank condition in the regular identification of parametric models, the nonparametric

identification of fYit|Xit,Yit−1,Uit implies that of the parameter θ, and therefore, the identifi-

cation of the function g and the distribution of ξit. In general, we may allow θ = (b, λ)T ,

where b is a finite-dimensional parameter vector of interest and λ is a potentially infinite-

dimensional nuisance parameter or nonparametric component.7 What is not specified in the

7A participation of α0 into finite-dimensional parameters and infinite-dimensional parameters does not affect
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model is the evolution of the covariate Xit, together with the unobserved component Uit, i.e.,

fXit+1|Xit,Uit , and the initial joint distribution of all the variables fXit,Yit−1,Xit−1,Uit . We con-

sider the nonparametric elements (fXit+1|Xit,Uit , λ, fXit,Yit−1,Xit−1,Uit)
T as infinite-dimensional

nuisance parameters in our semiparametric estimator.

Our semiparametric sieve maximum likelihood estimator (sieve MLE) does not require the

initial condition assumption for the widely used panel data models, such as dynamic discrete-

response models and dynamic censored models. In section 2, we have shown equation (3)

uniquely determines (fXit+1|Xit,Uit , fYit|Xit,Yit−1,Uit , fXit,Yit−1,Xit−1,Uit)
T . While the dynamic

panel data model component fYit|Xit,Yit−1,Uit will be parameterized, the other components are

treated as nonparametric nuisance functions. Eq. (3) implies

α0 ≡ (fXit+1|Xit,Uit , θ, fXit,Yit−1,Xit−1,Uit)
T

= arg max
(f1,θ,f2)T∈A

E ln

∫
f1(xit+1|xit, uit)fYit|Xit,Yit−1,Uit(yit|xit, yit−1, uit; θ)

× f2(xit, yit−1, xit−1, uit)duit,

which suggests a corresponding semiparametric sieve MLE using an i.i.d. sample {xit+1, yit, xit, yit−1, xit−1}ni=1

α̂n ≡
(
f̂1, θ̂, f̂2

)T
= arg max

(f1,θ,f2)T∈An
1

n

n∑
i=1

ln

∫
f1(xit+1|xit, uit)fYit|Xit,Yit−1,Uit(yit|xit, yit−1, uit; θ)

× f2(xit, yit−1, xit−1, uit)duit.

The function space A contains the corresponding true densities and An is a sequence of

approximating sieve spaces.

Our estimator is a direct application of the general semi-parametric sieve MLE in Shen

(1997), Chen and Shen (1998), and Ai and Chen (2003). In the appendix, we provide suf-

ficient conditoins for the consistency of our semiparametric estimator α̂n and those for the
√
n asymptotic normality of the parametric component b̂. The asymptotic theory of the pro-

posed sieve MLE and the detailed development of sieve approximations of the nonparametric

components are also provided in Appendix A.

our sieve MLE. More examples of a partition can be found in Shen (1997).
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4. Monte Carlo Evidence

In this section we present a Monte Carlo study that investigates the finite sample properties

of the proposed sieve MLE estimators in the two different settings, dynamic discrete-choice

models and dynamic censored models. We start with the specification of the models as follows.

Semi-parametric Dynamic Probit Models

First, we adopt a parametric assumption for εit. Suppose that εit has a stationary AR(1) with

an independent Gaussian white noise process, εit = ρεit−1 + ξit, ξit ∼ N(0, 1/2). We have

fYit|Xit,Yit−1,Uit = Φξit

(
X ′itβ + γYit−1 + Uit

)Yit [1− Φξit

(
X ′itβ + γYit−1 + Uit

)]1−Yit ,
with Uit = Vi + ρεit−1.

The density fYit|Xit,Yit−1,Uit is fully parameterized and θ only contain the parametric com-

ponent b = (γ, β). We approximate fXit+1|Xit,Uit , and fXit,Yit−1,Xit−1,Uit by truncated series in

the estimation.

Semi-parametric Dynamic Tobit Models:

We also assume that εit has a stationary AR(1) with an independent Gaussian white noise

process, εit = ρεit−1 + ξit. This gives

fYit|Xit,Yit−1,Uit =
[
1− Φεit

(
X ′itβ + γYit−1 + Uit

)]1(Yit=0)
φεit(yit −X ′itβ − γYit−1 − Uit)1(Yit>0)

(4)

=

[
1− Φ

(
X ′itβ + γYit−1 + Uit

σξ

)]1(Yit=0)

×[
1

σξ
φ

(
yit −X ′itβ − γYit−1 − Uit

σξ

)]1(Yit>0)

,

and the parameter is θ = b = (γ, β, σ2
ξ ).

The data generating process (DGP) for dynamic discrete choice models and dynamic

censored models in the Monte Carlo experiments are generated according to the following
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processes respectively:

Yit = 1 (β0 + β1Xit + γYit−1 + Uit + ξit ≥ 0) with(5)

Uit = Vi + ρεit−1 ∀ i = 1, ..., N ; t = 1, ..., T − 1.

and

Yit = max {β0 + β1Xit + γYit−1 + Uit + ξit, 0} with(6)

Uit = Vi + ρεit−1 ∀ i = 1, ..., N ; t = 1, ..., T − 1.

where Vi ∼ N(1, 1/2). For simplicity in the implementation, the distribution of Uit is truncated

on [0, 2], and our generating processes of covariate evolution have the following form Xit+1 =

Xit + h(Xit)εit + Uit or

fXit+1|Xit,Uit(xt+1|xt, u) =
1

h(xt)
fε

(
xt+1 − xt − u

h(xt)

)
,

where fε is a density function that can be specified under different identification conditions of

Assumption 2.5.8 We consider the mode condition in this paper, and fε(x) = exp(x− ex) in

all simulated data. In addition, we set h(x) = 0.3 exp(−x) to allow heterogeneity and assume

the initial observation (y0, x0) and the initial component ξ0 (=εi0) equal to zero.

We consider five different values of (γ, σ2
ξ , ρ) in the experiments: (γ, σ2

ξ , ρ) = (0,0.5,0),

(0,0.5,0.5), (1,0.5,0), (1,0.5,0.5), (1,0.5,-0.5) and the parameters in the intercept and the ex-

ogenous variable are held fixed: β0 = 0 and β1 = −1. In summary, the data generating

processes are as follows:

DGP I: (β0, β1, γ, σ
2
ξ , ρ) = (0,−1, 0, 0.5, 0)

DGP II: (β0, β1, γ, σ
2
ξ , ρ) = (0,−1, 0, 0.5, 0.5)

DGP III: (β0, β1, γ, σ
2
ξ , ρ) = (0,−1, 1, 0.5, 0)

DGP IV: (β0, β1, γ, σ
2
ξ , ρ) = (0,−1, 1, 0.5, 0.5)

DGP V: (β0, β1, γ, σ
2
ξ , ρ) = (0,−1, 1, 0.5,−0.5).

8This generating process is also adopted in Hu and Schennach (2008a) and it can be adjusted to a variety
of identification conditions, the mean, the mode, median, or a quantile.
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The first two DGPs are not state dependence (γ = 0) while the rest are state dependence

with γ = 1. Three different sample sizes N are considered: 250, 500, 1000. To secure a more

stationary sample, the sampling data are drawn over T = 7 periods but only last three periods

are utilized. A detailed derivation of sieve MLE method is shown in Appendix B.

Tables 1, 2, and 3 present simulation results under the semi-parametric probit model. The

simulation results of DGP I (only allows for unobserved heterogeneity) show that generally

downward bias in the structural model coefficients (β1, γ) for sample sizes N=250 and 500

but upward bias for N=1000. For DGP II, the results have downward bias in the structural

model coefficients in (β0, β1, γ). In addition, with nontrivial transitory component (ρ 6= 0) in

DGP II, the standard errors of β1 are larger except for N=1000. As for DGPs with nontrivial

state dependence, there is less bias for (β0, β1, γ) for DGP III for sample size N=1000 but for

DGP IV & V our results show less bias in sample size N=500. The coefficient estimators of

γ in DGP IV & V have very small bias for sample sizes N=500 and 1000, which means that

our estimation for state dependence is very precise among processes with serial correlation

(ρ 6= 0). In general, there are smaller standard errors in sample size N=1000. For DGPs in

this sample size, the parameters are much less precisely estimated, and the means and medians

of (β1, γ) are quite different, reflecting some skewness in their respective distributions. Our

estimator provides fairly consistent results in this case.

Tables 4, 5, and 6 report the results of estimates for the semi-parametric tobit model.

In the tobit model, there is positive bias in β1 and γ for all DGPs with trivial state depen-

dence except for γ in N=1000. In tobit case, we have additional parameters to estimate, σ2
ξ .

There is downward bias of the parameter in DGP I & II and their standard errors become

smaller as numbers of simulation increase. As for other DGPs in positive state dependence,

estimation results of γ show that there are small bias and precision increase with numbers of

simulation. Also, for those DGPs, the means and medians of β1 are quite different, reflecting

some skewness in distributions. Our sieve MLE estimators tend to perform well. In general,

bias and standard errors in DGPs with state dependence are smaller than those without state

dependence.

There are two nuisance parameters, fXt+1|Xt,Ut and fXt,Yt−1,Xt−1,Ut in our Monte Carlo

simulation and we use Fourier series to approximate the evolution density and the square

root of the initial joint distribution. Since a higher dimensional sieve space is constructed

15



by tensor product of univariate sieve series, approximation series can be formed from several

univariate Fourier series. In the semi-parametric probit model, while in the approximation of

the evolution densities we use three univariate Fourier series with the number of term, in = 5,

jn = 2, and kn = 2, in the approximation of the initial joint distribution we have in = 5,

jn = 2, kn = 2, and ln = 2. As for the semi-parametric tobit model, we have similar choices

of approximation series. The detailed sieve expression of those nuisance parameters can be

found in Appendix B.

In summary, the Monte Carlo study shows that our semiparametric sieve MLE performs

well with a finite sample.

5. Empirical Example

In this section, we apply our estimator to a dynamic discrete choice model, which discribes the

labor-force participation decisions of married women given their past participation state and

other covariates. The advantage of our estimator is that our model may include (i) arbitrary

and unspecified correlated random effects between unobserved time invariant factors such as

skill level or motivation and time-varying X ′its, and (ii) no initial conditions assumption.9 We

will compare our estimates with those in Hyslop (1999), which studied a similar empirical

model with less general assumptions.

5.1. Data Descriptive

In order to provide comparison of the models developed in this paper and by Hyslop (1999),

we also used the data related to waves 12-19 of the the Michigan Panel Survey of Income

Dynamics from the calendar years 1979-85 to study married women’s employment decisions.

The seven-year sample consists of women aged 18-60 in 1980, continuously married, and the

9In Hyslop (1999), a correlated random-effects (CRE) specification for vi is:

vi =

T∑
s=0

(δ1s · (#Kids0-2)is + δ2s · (#Kids3-5)is + δ3s · (#Kids6-17)is) +

T−1∑
s=0

δ4s · ymis + ηi.

An alternative CRE specification can be:

vi = δ1 · (#Kids0-2)i + δ2 · (#Kids3-5)i + δ3 · (#Kids6-17)i + δ4 · ȳmi + ηi,

where x̄i =
T∑
t=0

xit.
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husband is a labor force participant in each of the sample years from. A woman is defined

to be a labor market participant if she works for money any time in the sample year.10 The

sample contains 1752 married women and also includes both the random Census subsample of

families and the nonrandom Survey of Economic Opportunities (SEO) subsample of families.11

The number of possible binary participation sequences over a 7-period panel is 27 = 128

and the sequences can expressed as sequences of zeros and ones of the length 7.12 If we

partition the full sample based on all the observed annual participation outcomes of women

during the seven-year period, the number of subsamples is up to 128. To provide a useful

analysis of the differences of women’s work propensity due to the number of years worked

and the associated participation sequences, we choose a small group of dividing criteria. The

mutually exclusive sub-sample partition is as follows: we have in column (2) women who work

in each year corresponding to a sequence ’1111111’; in column (3), women who never work

during the sample period corresponding to a sequence ’0000000’; in column (4), women who

experience a single transition from employment to nonemployment-that is, six participation

sequences ’1000000’,...,’1111110’; in column (5), women who experience a single transition

from nonemployment to employment corresponding to another six participation sequences

’1000000’,...,’1111110’; and in column (6), women who experience more than a single transition

in their participation status corresponding to the rest of participation sequences.

Table 7 reports the descriptive statistics from the resulting subsamples. The selection of

variables of interest in the table is close to the sample characteristics in Hyslop (1999) and

the variables show similar trends and features. Column (1) presents the characteristics of the

variables for the whole sample. Comparison of the observed annual participation outcomes

with individual’s independent participation decision form a binomial distribution with fixed

probability of 0.7 (the average participation rate) indicates there is strong persistence in the

married women’s annual participation decisions. If there does not exist any persistence, then

about 8 percent of the sample would be expected to work each year, and only 0.02 percent

would not work at all, which are quite different from the sample relative frequencies, 47 percent

10A standard definition of a participant ia that an individual reports both positive annual hours worked and
annual earnings. Hyslop (1995) provided a description of the extent of aggregation bias which results from
ignoring intra-year labor force transition.

11Hyslop (1995) obtains a sample consisted of 1812 observations. The PSID contains an over-sample of
low-income families called the Survey of Economic Opportunity (SEO).

12An ’1’ in the t-th position of the sequence denotes participation in year t, while a ’0’ denotes nonpartici-
pation.
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and 9 percent respectively. In addition, the rest of the columns demonstrate the difference

in the observable variables across the subsamples. For 825 women in the sample whom we

observe employment in each of the seven years (column (2)), they are more likely to be better

educated than average, or be Black, have fewer dependent children (especially children’s age

under 6 years), and their husbands’ labor incomes are lower than average. Women who are

never employed (column (3)) are older, less educated, and their husbands’ labor income are

higher than average. The women in this group have slightly fewer young children, reflecting the

older age of the group. In column (4), women who make a single transition from employment

to nonemployment have fewer dependent children but are more likely to have infant children

(aged 0-2 years), and their husbands have above average earnings. Women who experience a

single transition from nonemployment to employment (column (5)) are less likely to be black

and have significantly more children (aged 0-17 years). The last column (6) indicates women

who experience multiple employment transitions are younger, have more dependent children

of all ages, and their husbands have below-average labor income.

The description of the sample characteristics according to various subsamples suggests

that there are several patterns between observable characteristics of individuals and their

participation behavior. First, there is a negative income effect from husband’s labor income

on women’s willingness for labor market participation (column (2) vs column (3)). Secondly,

In general, the presence of children, especially young children, tends to reduce the participation

of women, except for women who never work in the sample (column (3)). The numbers of

very young and older children between the single-transition subsamples in columns (4) and

(5) are 0.34 and 0.24 (aged 0-2 years) and 0.67 and 1.21 (aged 6-17 years) respectively. The

differences suggest that women leave employment to have children and re-enter employment

as their children reach school age. The life-cycle interpretation is plausible by slight age

difference between women in these groups (35.66 and 35.81). However, the age differences

between these groups in Hyslop (1999) suggesting that the composition of these samples is

determined by more than simply fertility considerations. Finally, the column (6) indicates

that the presence of children in all age group (aged 0-17 years), together with low husband’s

labor income, increases the number of employment transitions of women.
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5.2. Specifications and Estimation Results

According to a theoretic model in Hyslop (1999), the labor-force participation decisions of

married women depend on whether or not their market wage offer exceeds their reservation

wage, which in turn may depend on their past participation state, namely, suppose Yt is the

t-th period participation decision, Wt is the wage, and W ∗0t is a reservation wage then period

t participation decision can be formulated by

(7) Yt = 1(Wt > W ∗0t − γYt−1)

where 1(·) denotes an indicator function that is equal to 1 if the expression is true and 0

otherwise. An empirical reduced form specification for Eq. (7) is the following

Yit = 1(γYt−1 +X ′itβ + Uit + ξit > 0) ∀i = 1, ..., N ; t = 1, ..., T − 1

where Xit is a vector of observed demographic and family structure variables Uit captures the

effects of unobserved factors, and β and γ are parameters. There are two latent sources for

the unobserved term Uit:

Uit = Vi + ρεit−1

where Vi is an individual-specific component, which captures unobserved time invariant factors

possibly correlated with the time-varying X ′its such as skill level or motivation; and εit is a

serially correlated error term, which captures factors such as transitory wage movements.

The estimation results for the various models of labor force participation are presented

in Table 8 which includes estimates from static probit models with random effect (column

1), maximum simulation likelihood (MSL) models with random effect13 (column 2), semi-

parametric dynamic probit models (column 3). While the first two models in columns are

estimated using full seven years of data, the last one is estimated over three-period data. In

addition, the last model is the dynamic models without an initial conditions specification. The

static probit model is estimated by MSL with 200 replications. It allows for individual-specific

random effects but ignores possible dynamic effects of the past employment and potential

13A detailed discussion of MSL models can be found in Hyslop (1999). There are more different specifications
in the paper. Here we only compare the models allowing the three sources of persistence.
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correlation between the unobserved heterogeneity and the regressors. The results are that

permanent nonlabor income has a significantly negative effect, transitory income reduces

the contemporaneous participation, and preschool children have substantially negative effect.

In addition, the variance of unobserved heterogeneity is 0.786. We now turn to dynamic

specifications. The specifications in MSL model contain random effects, a stationary AR(1)

error component, and first-order state dependence (SD(1)). The results show a large and

significant first-order state dependence effect (1.117). The addition of SD(1) and AR(1) error

component reduced the effects of nonlabor income variables largely (-0.007 & -0.004) and the

contemporaneous fertility variables like #Kid3-5t and #Kid6-17t by approximately 50 percent.

But the estimated effects of younger kids in the past and current periods #Kid0-2t−1 and

#Kid0-2t have stronger negative effects on women’s participation decisions (-0.117 & -0.380).

Including state dependence and serial correlation error component reduce the error variance

(0.313) due to unobserved heterogeneity. The estimated AR(1) coefficient ρ is -0.146.14

Next, consider the specifications without an initial conditions assumption. The results

also show that large first-order state dependence effects on the semi-parametric model (1.089).

There exists a strong dependence between married women’s current labor force participation

and past labor force participation and relaxing the initial conditions assumption increase the

negative effects of nonlabor income variables and their significance in the dynamic models.

Permanent income and transitory income both reduce the probability of participation but the

effect of permanent nonlabor income has substantially greater magnitude.

The fertility variables in the model are generally similar to those in column (1) and (2)

but with less magnitude. That is: each of them has a significantly negative effect on married

women’s current labor force participation status, and younger children have stronger effect

than older. In our semi-parametric Probit model, the unobserved heterogeneity and the

AR(1) component have been mixed into the unobserved covariate Uit. They are not identified

so there are no any estimation results.

Although the model allows more flexible approach, its ability to predict the observed

participation outcomes does not increase much. We compare frequencies of the participation

outcomes predicted by the models in Table 9 to assess their fitting ability. Table 9 presents

14A correlated random-effects (CRE) is adopted in Hyslop (1999) to test the exogeneity of fertility with
respect to participation decisions. His results show that there is no evidence against the exogeneity of fertility
decision in dynamic model specifications.
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the frequencies of sample distribution and these predicted outcomes by the various estimated

models over seven years period. Column (2) presents the predicted frequency from static

probit model with random effect. The fraction of the predicted outcomes greatly over-predicts

the frequencies of zero, one and six years worked and greatly under-predicts the frequencies of

seven years worked. The results from the model MSL greatly under-predicts the frequencies of

zero and seven year worked. As a result, the model substantially under-predicts the frequencies

of the outcomes with no change in participation status over periods.

The final column in Table 9 contains the predicted frequencies from the semi-parametric

probit model. The model predicts the frequencies in each participation outcome adequately

for never work, and always work. It over-predicts the frequency of one and six years worked

and under-predict the frequency of two, three, four, and five years worked. This is expected if

there are larger lagged effect of participation decisions. Without initial conditions assumption,

the model predicts the distribution of the number of years worked reasonably well. However,

the predictive power from the model (column 3) without initial conditions assumption relative

to the dynamic model with initial conditions assumption (column 2) is relatively small. One

possible explanation of this is that the source of the serial persistence in participation outcomes

over time is not well identified by those regressors. We might need other important regressors

like child-care cost or welfare benefit from working.

In comparison to the results in the dynamic probit models allowing for CRE, AR(1), and

SD(1) in Hyslop (1999), adding unspecified CRE and avoiding initial conditions have signif-

icant effect on the model. Our results find a smaller significant negative effects on nonlabor

income variables (-0.221 and -0.106 v.s. -0.285 and -0.140, respectively) and a estimated neg-

ative effect of children age 0-2 in the the current period and previous period increases by 30

% (from -0.252 to -0.316) and decline by 50% (from -0.115 to -0.055) respectively. The effects

of relaxing assumptions in Hyslop (1999) are similar to the comparison here.

6. Conclusion

This paper presents the nonparametric identification of nonlinear dynamic panel data models

with unobserved covariates. We show the models are identified using only three periods of data

without initial conditions assumption, and we propose a sieve MLE estimator, which is applied
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to two examples, a dynamic discrete-choice model and a dynamic censored model. Both of

them allow for three sources of persistence, ”true” state dependence, unobserved individual

heterogeneity (”spurious” state dependence), and possible serially correlated transitory error.

Monte Carlo experiments have shown that how to deal with specific implementation issues

and the sieve MLE estimators perform well for these models. Our sieve MLE is shown

to be root n consistent and asymptotically normal. Finally, we apply our estimator to an

intertemporal female labor force participation model using a sample from the Panel Study of

Income Dynamics (PSID).

Appendix

A. Asymptotic Properties of the Sieve Maximum Likelihood

Estimator

This appendix presents the consistency of our estimator and the asymptotic normality of

the parametric component of our estimator. Furthermore, we provide further details on the

implementation of the semiparametric sieve estimator, i.e., how to impose restrictions on the

sieve coefficients.

Our asymptotic analysis relies on regularity restrictions on function containing the pa-

rameters of interest α. Frist, we introduce a typical space of smooth functions, Hölder space.

Given a d × 1 vector of nonnegative integers, a = (a1, ..., ad)
′ and denote [a] = a1 + ... + ad

and let Da denote the differential operator defined by Da = ∂[a]

∂ξ
a1
1 ...∂ξ

ad
d

. Let m denote the

largest integer satisfying γ > γ and set γ = γ + p. The Hölder space Λγ(ν) of order γ > 0

is a collection of functions which are m times continuously differentiable on ν and the γ−th

derivative are Hölder continuous with the exponent p. The Hölder space becomes a Banach

space with the Hölder norm, i.e., ∀g ∈ Λγ(ν)

(8) ‖g‖Λγ = sup
ξ∈ν
|g(ξ)|+ max

a1+...+ad=γ
sup

ξ 6=ξ′∈ν

|Dag(ξ)−Dag(ξ′)|
‖ξ − ξ′‖pE

.

The weighted Hölder norm is defined as ‖g‖Λγ,ω ≡ ‖g̃‖Λγ for g̃(ξ) ≡ g(ξ)ω(ξ) and the corre-

sponding weighted Hölder space is Λγ,ω(ν). Define a weighted Hölder ball as Λγ,ωc (ν) ≡ {g ∈
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Λγ,ω(ν) : ‖g‖Λγ,ω ≤ c < ∞}. Let ε ∈ R, and W ∈ W with W a compact convex subset in

Rdw . Define the following spaces:

F1 = {f1(·|·, ·) ∈ Λγ1,ωc (X × X × U) : f1(·) ≥ 0 and

∫
X
f1(·|x, u)dx = 1, ∀(x, u) ∈ X × U},

M = {λ(·) ∈ Λγm,ωc (R) : 0 ≤ λ(·) ≤ 1, λ(−∞) = 0 and λ(∞) = 1},

F2 = {f(·)1/2
2 ∈ Λγ3,ωc (X × Y × X × U) : f(·)2 ≥ 0 and

∫
X×Y×X×U

f2(·, ..., ·)dxdydxdu = 1},

where γi > 1 ∀i = 1, 2, and γm > 1. Recall that the parameter of the dynamic panel data

model is θ = (b, λ). Suppose that B is a compact set such that its interior containing the true

parametric component of the dynamic panel data model b0. If the dynamic panel data model

component fYt|Xt,Yt−1,Ut is fully parameterized, then we do not need the infinite-dimensional

function space M. In the case, the parameter θ of the dynamic panel data model only

contain a finite-dimensional parameter vector b. Without loss of generality, we assume that

θ contains an unknown function λ. We assume that the parameters of interest fXt+1|Xt,Ut , θ,

and fXt,Yt−1,Xt−1,Ut belong to the spaces, F1, Θ ≡ B×M, and F2 respectively. The following

smoothness and boundedness restrictions to limit the size of the parameter spaces.

Assumption A.1. With γi > 1 ∀i = 1, 2, and γm > 1, we have (i) f1(·|·, ·) ∈ F1, (ii)

λ(·) ∈M, (iii) f(·)1/2
2 ∈ F2.

Set A = F1 ×Θ×F2 and α ≡ (f1, θ, f2)′. Then the true parameter α0 maximizes:

sup
α∈A

E

[
ln

∫
f1(xt+1|xt, ut)fYt|Xt,Yt−1,Ut(yt|xt, yt−1, ut; θ)f2(xt, yt−1, xt−1, ut)dut

]
.(9)

An estimator could then be obtained by maximizing the sample analog of Eq. (9). Define

Q̂n(zt;α) =
1

n

n∑
i=1

ln fZt(zit;α) with(10)

ln fZt(zit;α) ≡ ln

∫
f1(xit+1|xit, ut)fYit|Xit,Yit−1,Ut(yit|xit, yit−1, ut; θ)

× f2(xit, yit−1, xit−1, ut)dut,

where zt is a realization of a random variable Zt ≡ (Xt+1, Yt, Xt, Yt−1, Xt−1). However, when

the function spaces A is large, the estimation method could yield an inconsistent estima-
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tor or a consistent estimator which converges very slowly. Denote Θn ≡ B × Mn. The

sieve spaces An ≡ Fn1 × Θn × Fn2 will be introduced to replace the function spaces A to

overcome the problem, namely, maximizing Q̂n(zt;α) over An, a sequence of approxima-

tion spaces to A. In the sieve approximation, we consider a finite-dimensional sieve An as

follows. Let pk(·) = (p1(·), ..., pk(·))′ be a vector of some known univariate basis function

and pk(·, ..., ·) = (p1(·, ..., ·), ..., pk(·, ..., ·))′ be multivariate basis function generated by tensor

product construction. The sieve spaces are

Fn1 = {f1(xt+1|xt, v) = pkn1(xt+1, xt, ut)
′β1 ∈ F1},

Mn = {λ(ε) = pknλ(ε)′βλ ∈M},

Fn2 = {f2(xt, yt−1, xt−1, ut)
1/2 = pkn2(xt, yt−1, xt−1, ut)

′β2 ∈ F2}.

A consistent sieve MLE α̂n is given by

α̂n = arg max
α∈An

Q̂n(zt;α).(11)

The rest of this appendix show the consistency of α̂n and its convergence rate under different

metrics and the
√
n asymptotic normality of the parametric component b.

A.1. Consistency and Convergence Rates

In this section, we first introduce a strong norm ‖ · ‖s in Newey and Powell (2003) which

would be used to show the consistency of the sieve estimator and then the Fisher norm, ‖ · ‖,

in which the sieve estimator is consistent with a rate faster than n−1/4.

For α ≡ (f1, θ, f2)′,

(12) ‖α‖s = ‖b‖E + ‖λ‖s,ω +

2∑
s=1

‖fs‖s,ω

where ‖b‖E is the Euclidean norm and ‖fs‖s,ω ≡ supξ |fs(ξ)ω(ξ)| with ω(ξ) = (1 + ‖ξ‖2E)−ς/2,

ς > 0. Since the supports of the unobserved variables v and ε could be unbounded, the

weighting function w is introduced to deal with unbounded support and has been used in

Chen, Hansen, and Scheinkman (1997), Chen, Hong, and Tamer (2005) and Hu and Schennach
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(2008a). We make the following assumptions:

Assumption A.2. (i) The data {(Zit)ni=1} are i.i.d.; (ii) The density of Zt, fZt, satisfies∫
ω(ξ)−2fZt(ξ)dξ <∞.

Assumption A.3. (i) b0 ∈ B, a compact subset of Rb; (ii) Assumption A.1 holds under the

norm ‖α‖s.

Assumption A.4. (i) For any α ∈ A, there exists Πnα ∈ An such that ‖Πnα− α‖s = o(1);

(ii) kni → +∞ and kni/n→ 0 for i = 1, λ, 2.

Definition A.1. ln fZt(zt;α) is Hölder continuous with respect to α ∈ An if there exists a

measurable function ch(Zt) with E{ch(Zt)
2} < ∞ such that, for all α1, α2 ∈ A, and Zt, we

have

| ln fZt(zt;α1)− ln fZt(zt;α2)| ≤ ch(Zt)‖α1 − α2‖s.(13)

Assumption A.5. (i) E{| ln fZt(zt;α)|2} is bounded; (ii) There exits a measurable func-

tion h̃(Zt) with E{h̃(Zt)
2} < ∞ such that, for any ᾱ12 = (f̄1, θ̄, f̄2, f̄3) and ω̄(zt, ε) =[

1, ω−1(xt+1, xt, ut), ω
−1(ε), ω−1(xt, yt−1, xt−1, ut))

]′
, we have |h1(zt, ᾱ12, ω̄)| < h̃(Zt). (The

definition of h1(zt, ᾱ12, ω̄) can be found in Eq. (14)).

Applying Theorem 4.1 in Newey and Powell (2003) or Theorem 3.1 of Chen (2007), we

obtain the following lemma.

Lemma A.1. Let α̂n be the sieve MLE for α0 identified in section 2 and Assumptions A.1-A.5

holds, then we have ‖α̂n − α0‖s = op(1).

The proof of Lemma A.1. After checking the conditions in Theorem 4.1 in Newey and

Powell (2003), the only thing we have to show is that ln fZt(zt;α) is Hölder continuous in α.

The difference of ln fZt(zt; ·) at α1 and α2 is given by

ln fZt(zt;α1)− ln fZt(zt;α2)

=
d

dα
ln fZt(zt; ᾱ12)[α1 − α2]

=
d

dt
ln fZt(zt; ᾱ12 + t(α1 − α2))

∣∣∣
t=0

,
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where ᾱ12 = (f̄1, θ̄, f̄2), a mean value between α1 and α2, and ᾱ12 + t(α1−α2) = (f̄1 + t(f11−

f12), θ̄ + t(θ1 − θ2), f̄2 + t(f21 − f22)). Consider

d

dt
ln fZt(zt; ᾱ12 + t(α1 − α2))

∣∣∣
t=0

=
1

fZt(zt; ᾱ12)

(∫
(f11 − f12)fYit|Xit,Yit−1,Ut(yit|xit, yit−1, ut; θ̄)f̄2dut

+

∫
f̄1
d

dθ
fYit|Xit,Yit−1,Ut(yit|xit, yit−1, ut; θ̄)(θ1 − θ2)f̄2dut

+

∫
f̄1fYit|Xit,Yit−1,Ut(yit|xit, yit−1, ut; θ̄)(f21 − f22)dut.

Then we can obtain the bounds for Hölder continuous as follows:

∣∣∣ d
dt

ln fZt(zt; ᾱ12 + t(α1 − α2))
∣∣∣
t=0

≤ 1

|fZt(zt; ᾱ12)|

(∫ ∣∣∣ω−1(xt+1, xt, ut)fYt|Xt,Yt−1,Ut(yt|xt, yt−1, ut; θ̄)f̄2

∣∣∣dut‖f11 − f12‖s(14)

+

∫ ∣∣∣f̄1
d

dθ
fYt|Xt,Yt−1,Ut(yt|xt, yt−1, ut; θ̄)ω

−1(ε)f̄2

∣∣∣dut‖θ1 − θ2‖s

+

∫ ∣∣∣f̄1fYt|Xt,Yt−1,Ut(yt|xt, yt−1, ut; θ̄)ω
−1(xt, yt−1, xt−1, ut)

∣∣∣dut‖f21 − f22‖s

≤ 1

|fZt(zt; ᾱ12)|

(∫ ∣∣∣ω−1(xt+1, xt, ut)fYt|Xt,Yt−1,Ut(yt|xt, yt−1, ut; θ̄)f̄2

∣∣∣dut
+

∫ ∣∣∣f̄1
d

dθ
fYt|Xt,Yt−1,Ut(yit|xt, yt−1, ut; θ̄)ω

−1(ε)f̄2

∣∣∣dut
+

∫ ∣∣∣f̄1fYt|Xt,Yt−1,Ut(yt|xt, yt−1, ut; θ̄)ω
−1(xt, yt−1, xt−1, ut)

∣∣∣dut)‖α1 − α2‖s

≡ h1(zt, ᾱ, ω̄)‖α1 − α2‖s,

where ω̄(zt, ε) ≡
[
1, ω−1(xt+1, xt, v), ω−1(ε), ω−1(xt, yt−1, xt−1, ut)

]′
. The property of Hölder

continuity is ensured by Assumption A.5. A similar proof can also be found in that of Lemma

2 in Hu and Schennach (2008a). Q.E.D.

Lemma A.1 provides a consistency result under the metric ‖ · ‖s but the convergence rate

under the metric is not faster enough to establish our semi-parametric asymptotic normality

and
√
n consistency result. In order to achieve this we consider the Fisher norm ‖ · ‖ in which

α̂n converges at a rate faster than n−1/4. In addition, Lemma A.1 allows us to restrict the sieve

estimator α̂n to local ‖ · ‖s-neighborhood around the true parameter α0. For simplicity, we

can assume the function space A is convex. For any v ∈ V̄ , we define the pathwise derivative
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as:

d ln fZt(zt;α)

dα
[v] ≡ d ln fZt(zt;α+ τv)

dτ

∣∣∣∣
τ=0

a.s. Zt.

In particular, we can have it at the direction [α1 − α2] evaluated at α0 by:

d ln fZt(zt;α0)

dα
[α1 − α2] ≡ d ln fZt(zt;α0)

dα
[α1 − α0]− d ln fZt(zt;α0)

dα
[α2 − α0] a.s. Zt.

Expanding the pathwise derivative of ln fZt(zt;α0) gives:

d ln fZt(zt;α0)

dα
[α− α0]

=
1

fZt(zt;α0)

(∫
(f1 − fXt+1|Xt,Ut)fYt|Xt,Yt−1,UtfXt,Yt−1,Xt−1,Utdut

+

∫
fXt+1|Xt,Ut

d

dθ
fYit|Xit,Yit−1,Ut(θ − θ0)fXt,Yt−1,Xt−1,Utdut

+

∫
fXt+1|Xt,UtfYit|Xit,Yit−1,Ut(f2 − fXt,Yt−1,Xt−1,Ut)dut

)
.

Following the notation, for any α1, α2 ∈ A we define the Fisher norm:

‖α1 − α2‖2 ≡ E

{(
d ln fZt(zt;α0)

dα
[α1 − α2]

)2
}
.

We make the following assumptions to obtain a rate faster than n−1/4.

Assumption A.6. Let kn be the total number of sieve coefficients in the sieve estimator α̂n,

i.e., kn = kn1 +db+knλ+kn2. (knn
−1/2 lnn)× supξ∈(X×X×U∪R∪X×Y×X×U) ‖pkn(ξ)‖2E = o(1).

Assumption A.7. (i) there exist a measurable function c(Zt) with E{c(Zt)4} <∞ such that

| ln fZt(zt;α)| ≤ c(Zt) for all Zt and α ∈ An; (ii) ln fZt(zt;α) ∈ Λτ,ωc (X × Y × X × Y × X )

with τ > dz/2, for all α ∈ An, where dz is the dimension of Zt.

Assumption A.8. A is convex in α0, and fYt|Xt,Yt−1,Ut(Yt|Xt, Yt−1, ut; θ) is pathwise differ-

entiable at θ0.

Assumption A.9. lnN(δ,An) = O(kn ln(kn/δ)) where N(δ,An) is the minimum number of

balls with radius δ under the ‖ · ‖s norm covering An.
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Assumption A.10. There exists c1, c2 > 0,

c1E

(
ln
fZt(zt;α0)

fZt(zt;α)

)
≤ ‖α− α0‖2 ≤ c2E

(
ln
fZt(zt;α0)

fZt(zt;α)

)

holds for all α ∈ An with ‖α− α0‖s = o(1).

Assumption A.11. For any α ∈ A, there exists Πnα ∈ An such that ‖Πnα− α‖ = o(k−µ1
n )

and k−µ1
n = o(n−1/4).

The following lemma is a direct application of Theorem 3.1 of Ai and Chen (2003) and a

similar proof can also be found in that of Theorem 2 in Hu and Schennach (2008b); we omit

its proof.

Theorem A.1. Suppose that α0 is identified and Assumptions A.6-A.11 hold, then ‖α̂n −

α0‖ = op(n
−1/4).

A.2. Asymptotic Normality

In this section, we follow the semiparametric MLE framework of Hu and Schennach (2008b) to

show the asymptotic normality of the parametric component b which represents the parameter

of interest in dynamic panel data models. Let V be the space spanned by A− α0 and V̄ be

completion of V under the Fisher norm ‖ · ‖. It follows that
(
V̄ , ‖ · ‖

)
is a Hilbert space with

the inner product

〈v1, v2〉 ≡ E
{(

d

dα
ln fZt(zt;α0)[v1]

)(
d

dα
ln fZt(zt;α0)[v2]

)}
,

and 〈v, v〉 = ‖v‖. For any fixed and nonzero κ ∈ Rdb , fκ(α − α0) ≡ κ′ (b− b0) is linear in

α− α0 and fκ(α− α0) is a linear functional on
(
V , ‖ · ‖

)
. Shen (1997) and Der Vaart (1991)

show that f(α) ≡ κ′b is a bounded linear functional on V̄ under the operator norm. That is:

|‖fκ‖| ≡ sup
{α∈A:‖α−α0‖>0}

|fκ(α− α0)|
‖α− α0‖

<∞.(15)

By the Riesz representation theorem, there exists v∗ ∈ V̄ such that for any α ∈ A, I have

fκ(α−α0) = 〈α−α0, v
∗〉. and ‖fκ‖ = ‖v∗‖.15 Denote V̄ = Rdb×W andW ≡ Fn1 ×Mn ×Fn2−

15Stein (1956) pointed out that v∗ yields the most difficult one-dimensional sub-problem. Begun, Hall, Huang,
and Wellner (1983) mentioned that v∗ represents a worst possible direction to nonparametric component for
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(fXt+1|Xt,Ut , λ, fXt,Yt−1,Xt−1,Ut)
′.16 We can expand the first pathwise derivative out as follows:

d ln fZt(zt;α0)

dα
[α− α0] =

d ln fZt(zt;α0)

df1
[f1 − fXt+1|Xt,Ut ] +

d ln fZt(zt;α0)

db
[b− b0]

+
d ln fZt(zt;α0)

dλ
[λ− λ0] +

d ln fZt(zt;α0)

df2
[f2 − fXt,Yt−1,Xt−1,Ut ].

For each component bj of b, j = 1, 2, ..., db, we define w∗j ∈ W to be the solution to the

following minimization problem associated with the denominator of the operator norm,

w∗j = arg min
wj=(f1,λ,f2,f3)′∈W

E

[(
d ln fZt(zt;α0)

dbj
− d ln fZt(zt;α0)

df1
[f1]

− d ln fZt(zt;α0)

dλ
[λ]− d ln fZt(zt;α0)

df2
[f2]

)]
.

Define w∗ = (w∗1, ..., w
∗
db

),

d ln fZt(zt;α0)

df
[w∗] =

(
d ln fZt(zt;α0)

dh
[w1], ...,

d ln fZt(zt;α0)

df
[w∗db ]

)
,

and

Dw∗(zt) ≡
d ln fZt(zt;α0)

d′b
− d ln fZt(zt;α0)

df
[w∗].(16)

With these notation, we have

‖fκ‖2 = sup
{α∈A:‖α−α0‖>0}

|fκ(α− α0)|2

‖α− α0‖
= κ′

(
E{Dw∗(Zt)

′Dw∗(Zt)}
)−1

κ,

v∗ ≡ (v∗b , v
∗
h) ∈ V with v∗b = (E{Dw∗(Zt)

′Dw∗(Zt))
−1 κ and v∗h = −w∗×v∗b . In addition, fκ(α−

α0) = κ′ (b− b0) = 〈α−α0, v
∗〉 and

d ln fZt (zt;α0)

dα [v∗] = Dw∗(zt)v
∗
b . See Chen (2007) for detailed

discussion about this linear functional approach. Therefore, the asymptotic distribution of

parametric component b̂n reduces to when the linear functional fκ is bounded and what is

estimating parametric component.
16W is a function space of nonparametric components.
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the asymptotic distribution of 〈α̂n − α0, v
∗〉. That is:

κ′
(
b̂n − b0

)
= 〈α̂n − α0, v

∗〉

=
1

n

n∑
i=1

d ln fZt(zit;α0)

dα
[v∗] + op(n

−1/2)

=
1

n

n∑
i=1

κ′
(
E{Dw∗(Zt)

′Dw∗(Zt)
)−1

Dw∗(zit)
′ + op(n

−1/2),

and
√
n(̂bn − b0)→ N(0, (E{Dw∗(Zt)

′Dw∗(Zt)})−1).

We make the following sufficient conditions for the
√
n−normality of b̂n which are also

conditions in Ai and Chen (2003) and Hu and Schennach (2008b):

Assumption A.12. (i) E{Dw∗(Zt)
′Dw∗(Zt)} is positive-definite and bounded; (ii) b0 ∈

int(B).

Assumption A.13. There is a v∗n = (v∗b ,−Πnw
∗ × v∗b ) ∈ An − α0 such that ‖v∗n − v∗‖ =

op(n
−1/4).

We use the
√
n consistency results in the previous section to focus on a smaller neighbor

of α0, Define Non ≡ {α ∈ An : ‖α − α0‖s = o(1), ‖α − α0‖ = o(n−1/4)} and No ≡ {α ∈ A :

‖α− α0‖s = o(1), ‖α− α0‖ = o(n−1/4)}.

Assumption A.14. There exits a measurable function ĥ(Zt) with E{ĥ(Zt)
2} <∞ such that,

for any ᾱ = (f̄1, θ̄, f̄2), we have

∣∣∣∣h2(zt, ᾱ, ω̄)

∣∣∣∣+

∣∣∣∣h1(zt, ᾱ, ω̄)

∣∣∣∣2 < ĥ(Zt).(17)

(The definition of h2(zt, ᾱ, ω̄) can be found in Eq. (20)).
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For f̃ = f1, λ, f2, denote

dfZt(zt;α0)

df̃
[pkni ] =

(
dfZt(zt;α0)

df̃
[pkni1 ], ...,

dfZt(zt;α0)

df̃
[pknikni

]

)′
∀i = 1, λ, 2,

dfZt(zt;α0)

db
=

(
dfZt(zt;α0)

db1
, ...,

dfZt(zt;α0)

dbdb

)′
,

dfZt(zt;α0)

dα
[pkn ] =

((
dfZt(zt;α0)

db

)′
,

(
dfZt(zt;α0)

df1
[pkn1 ]

)′
,

(
dfZt(zt;α0)

dλ
[pknλ ]

)′
,(

dfZt(zt;α0)

df2
[pkn2 ]

)′)′
,

(18)

and

Ωkn = E

{(
dfZt(zt;α0)

dα
[pkn ]

)(
dfZt(zt;α0)

dα
[pkn ]

)′}
.

Assumption A.15. The smallest eigenvalue of the matrix Ωkn is bounded away from zero,

and ‖pknij ‖s,ω for j = 1, 2, ..., kni uniformly in kni.

Assumption A.16. For all α ∈ Non, there exists a measurable function h(Zt) with E|h(Zt)| <

∞ such that

∣∣∣∣d4 ln fZt(zt; ᾱ+ t(α− α0))

dt4

∣∣∣∣
t=0

≤ h(Zt)‖α− α0‖4s.(19)

Theorem A.2. Suppose that α0 is identified and Assumptions A.6-A.11 and A.12-A.16 hold,

then
√
n(̂bn − b0)⇒ N(0, V −1) where V = E{Dw∗(Zt)

′Dw∗(Zt)}.

The proof of Theorem A.2. The likelihood function fZt(zt;α) has a similar expression

as the likelihood function in Hu and Schennach (2008a). The proof there can directly apply

to our case. We prove the results by showing an envelop condition on the second derivative

31



of the likelihood function (Assumption A.15). Consider the term

∣∣∣∣ sup
α∈Non

d2 ln fZt(zt; ᾱ1)

dαdα′
[vn, α− α0]

∣∣∣
≤ sup
α∈Non

∣∣∣∣ 1

fZt(zt; ᾱ1)

d2fZt(zt; ᾱ1)

dαdα′
[vn, α− α0]

− d ln fZt(zt; ᾱ1)

dα
[vn]

d ln fZt(zt; ᾱ1)

dα
[α− α0]

∣∣∣∣
≤ sup
α∈Non

(∣∣∣∣ 1

fZt(zt; ᾱ1)

d2fZt(zt; ᾱ1)

dαdα′
[vn, α− α0]

∣∣∣∣
+

∣∣∣∣d ln fZt(zt; ᾱ1)

dα
[vn]

∣∣∣∣∣∣∣∣d ln fZt(zt; ᾱ1)

dα
[α− α0]

∣∣∣∣).
Then

d ln fZt(zt; ᾱ1)

dα
[α− α0]

=
1

fZt(zt; ᾱ12)

(∫
[f1 − fXt+1|Xt,Ut ]fYt|Xt,Yt−1,Ut(yt|xt, yt−1, ut; θ̄)f̄2dut

+

∫
f̄1
d

dθ
fYt|Xt,Yt−1,Ut(yt|xt, yt−1, ut; θ̄)[θ − θ0]f̄2dut

+

∫
f̄1fYt|Xt,Yt−1,Ut(yt|xt, yt−1, ut; θ̄)[f2 − fXt,Yt−1,Xt−1,Ut ]dut

)
.

Therefore, similar to the derivation of Hölder continuity, we obtain

∣∣∣∣d ln fZt(zt; ᾱ1)

dα
[α− α0]

∣∣∣∣ ≤ h1(zt, ᾱ, ω̄)‖α1 − α2‖s.

and

∣∣∣∣d ln fZt(zt; ᾱ1)

dα
[vn]

∣∣∣∣ ≤ h1(zt, ᾱ, ω̄)‖vn‖s,

where h1(zt, ᾱ1, ω̄) is defined in Eq. (14) and Assumption A.1. We expand out the term
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1
fZt (zt;ᾱ1)

d2fZt (zt;ᾱ1)

dαdα′ [vn, α− α0]:

1

fZt(zt; ᾱ1)

d2fZt(zt; ᾱ1)

dαdα′
[vn, α− α0]

=
1

fZt(zt; ᾱ12)

{∫
[vn]f1 [θ − θ0]

d

dθ
fYt|Xt,Yt−1,Ut(yt|xt, yt−1, v; θ̄)f̄2dv

+

∫
[vn]f1 [f2 − fXt,Yt−1,Xt−1,Ut ]fYt|Xt,Yt−1,Ut(yt|xt, yt−1, ut; θ̄)dv

+

∫
[vn]θ[f1 − fXt+1|Xt,Ut ]

d

dθ
fYt|Xt,Yt−1,Ut(yt|xt, yt−1, ut; θ̄)f̄2dut

+

∫
[vn]θ[θ − θ0]

d2

dθ2
fYt|Xt,Yt−1,V (yt|xt, yt−1, ut; θ̄)f̄1f̄2dut

+

∫
[vn]θ[f2 − fXt,Yt−1,Xt−1,Ut ]

d

dθ
fYt|Xt,Yt−1,Ut(yt|xt, yt−1, ut; θ̄)f̄1dut

+

∫
[vn]f2 [f1 − fXt+1|Xt,Ut ]fYt|Xt,Yt−1,Ut(yt|xt, yt−1, ut; θ̄)dut

+

∫
[vn]f2 [θ − θ0]

d

dθ
fYt|Xt,Yt−1,Ut(yt|xt, yt−1, ut; θ̄)f̄1dut

}
.

Denote
[
ω−1(xt+1, xt, ut), ω

−1(ε), ω−1(xt, yt−1, xt−1, ut)
]
≡
[
ω̄−1

1 , ω̄−1
λ , ω̄−1

2

]
.
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The absolute value of the term can be bounded through

∣∣∣∣ 1

fZt(zt; ᾱ1)

d2fZt(zt; ᾱ1)

dαdα′
[vn, α− α0]

∣∣∣∣(20)

≤ 1

fZt(zt; ᾱ12)

{∫ ∣∣∣ω̄−1
1 ω̄−1

λ

d

dθ
fYt|Xt,Yt−1,Ut(yt|xt, yt−1, ut; θ̄)f̄2

∣∣∣dut‖[vn]f1‖s‖[θ − θ0]‖s

+

∫ ∣∣∣ω̄−1
1 ω̄−1

2 fYt|Xt,Yt−1,Ut(yt|xt, yt−1, ut; θ̄)
∣∣∣dut‖[vn]f1‖s‖[f2 − fXt,Yt−1,Xt−1,Ut ]‖s

+

∫ ∣∣∣ω̄−1
λ ω̄−1

1

d

dθ
fYt|Xt,Yt−1,Ut(yt|xt, yt−1, ut; θ̄)f̄2

∣∣∣dut‖[vn]θ‖s‖[f1 − fXt+1|Xt,Ut ]‖s

+

∫ ∣∣∣ω̄−1
λ ω̄−1

λ

d2

dθ2
fYt|Xt,Yt−1,Ut(yt|xt, yt−1, ut; θ̄)f̄1f̄2

∣∣∣dut‖[vn]θ‖s‖[θ − θ0]‖s

+

∫ ∣∣∣ω̄−1
λ ω̄−1

2

d

dθ
fYt|Xt,Yt−1,Ut(yt|xt, yt−1, ut; θ̄)f̄1

∣∣∣dut‖[vn]θ‖s‖[f2 − fXt,Yt−1,Xt−1,Ut ]‖s

+

∫ ∣∣∣ω̄−1
2 ω̄−1

1 fYt|Xt,Yt−1,Ut(yt|xt, yt−1, ut; θ̄)
∣∣∣dut‖[vn]f2‖s‖[f1 − fXt+1|Xt,Ut ]‖s

+

∫ ∣∣∣ω̄−1
2 ω̄−1

λ

d

dθ
fYt|Xt,Yt−1,Ut(yt|xt, yt−1, ut; θ̄)f̄1

∣∣∣dut‖[vn]f2‖s‖[θ − θ0]‖s
}

≤ 1

fZt(zt; ᾱ12)

{∫ ∣∣∣ω̄−1
1 ω̄−1

λ

d

dθ
fYt|Xt,Yt−1,Ut(yt|xt, yt−1, ut; θ̄)f̄2

∣∣∣dut
+

∫ ∣∣∣ω̄−1
1 ω̄−1

2 fYt|Xt,Yt−1,Ut(yt|xt, yt−1, ut; θ̄)
∣∣∣dut

+

∫ ∣∣∣ω̄−1
λ ω̄−1

1

d

dθ
fYt|Xt,Yt−1,Ut(yt|xt, yt−1, ut; θ̄)f̄2

∣∣∣dut
+

∫ ∣∣∣ω̄−1
λ ω̄−1

λ

d2

dθ2
fYt|Xt,Yt−1,Ut(yt|xt, yt−1, ut; θ̄)f̄1f̄2

∣∣∣dut
+

∫ ∣∣∣ω̄−1
λ ω̄−1

2

d

dθ
fYt|Xt,Yt−1,Ut(yt|xt, yt−1, ut; θ̄)f̄1

∣∣∣dut
+

∫ ∣∣∣ω̄−1
2 ω̄−1

1 fYt|Xt,Yt−1,Ut(yt|xt, yt−1, ut; θ̄)
∣∣∣dut

+

∫ ∣∣∣ω̄−1
2 ω̄−1

λ

d

dθ
fYt|Xt,Yt−1,Ut(yt|xt, yt−1, ut; θ̄)f̄1

∣∣∣dut}‖[vn]‖s‖[α− α0]‖s

≡ h2(zt, ᾱ, ω̄)‖[vn]‖s‖[α− α0]‖s.

Combining all the bounds results in

∣∣∣∣ sup
α∈Non

d2 ln fZt(zt; ᾱ1)

dαdα′
[vn, α− α0]

∣∣∣
≤ sup
α∈Non

(∣∣∣∣h2(zt, ᾱ, ω̄)

∣∣∣∣+

∣∣∣∣h1(zt, ᾱ, ω̄)

∣∣∣∣2
)
‖[vn]‖s‖[α− α0]‖s.

Then Assumption A.15 guarantees the envelop condition and help us to control the linear
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approximation of the likelihood function near α0. Q.E.D.

B. Restrictions on the Sieve Coefficients

This appendix describes the sieve MLE method used to estimate nonlinear dynamic panel

data models. We provide detailed derivation of the method based on the likelihood function

in Eq. (3). According to Eq. (3), there are several essential parts in the likelihood function,

fXt+1|Xt,Ut , fYt|Xt,Yt−1,Ut , and fXt,Yt−1,Xt−1,Ut . While the specifications of fYt|Xt,Yt−1,Ut have

been provided in Section 3, fXt+1|Xt,Ut , and fXt,Yt−1,Xt−1,Ut will be treated here. We will show

sieve approximations and their constraints of those nonparametric components in the two

examples. First, we introduce the sieve estimators for the covariate evolution, fXt+1|Xt,Ut , since

we can use the same sieve approximates for them in the examples. Suppose that xt, ut ∈ [0, l1]

and (xt+1 − ut) ∈ [−l2, l2].17 The sieve estimators for the covariate evolution are constructed

by Fourier series as follows:

f1(xt+1|xt, ut) =

in∑
i=0

jn∑
j=0

kn∑
k=0

γijkp1i(xt+1 − ut)p2j(xt)p3k(ut),

where

p1i(xt+1 − ut) = cos
iπ

l2
(xt+1 − ut) or sin

iπ

l2
(xt+1 − ut),

p2j(xt) = cos
jπ

l1
xt, and, p3k(ut) = cos

kπ

l1
ut.

The conditional density restrictions
∫
f1(xt+1|xt, ut)dxt+1 = 1 ∀xt, ut implies that a constant

term in the sieve expression f1(xt+1|xt, ut) equals 1
2l2

.

Next, since fXt+1|Xt,Ut is identified through Assumption 2.5, one thing remained to show

is how to implement the normalization assumption in estimation. Consider the zero mode

case, we have ∂
∂xt+1

f1(xt+1|xt, ut)|xt+1=ut = 0 for all xt, ut. By properties of the trigonometric

functions, sieve coefficients related to terms like sin iπ
l2

(xt+1 − ut) survive. The identification

restrictions impose restrictions on those coefficients.

17While the range of xt can be obtained from data set, the domain of ut depends on the modeling of
unobserved heterogeneity. In our simulation, ut is truncated on [0, 2].
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We consider the following simple case:

f1(xt+1|xt, ut)

=

(
c00 + c01 cos

π

l1
xt + c02 cos

2π

l1
xt

)(
a00 + a01 cos

π

l1
ut + a02 cos

2π

l1
ut

)
+

5∑
i=1

(
ci0 + ci1 cos

π

l1
xt + ci2 cos

2π

l1
xt

)(
a00 + a01 cos

π

l1
ut + a02 cos

2π

l1
ut

)
× cos

iπ

l2
(xt+1 − ut)

+

5∑
i=1

(
di0 + di1 cos

π

l1
xt + di2 cos

2π

l1
xt

)(
a00 + a01 cos

π

l1
ut + a02 cos

2π

l1
ut

)
× sin

iπ

l2
(xt+1 − ut).

Then the density restriction gives c00a00 = 1
2l2

and the identification restriction on the coeffi-

cients are

5∑
i=1

idi0 =
5∑
i=1

idi1 =
5∑
i=1

idi2 = 0.

As for nonparametric series estimator of fXt,Yt−1,Xt−1,Ut , we have to separate it into two

cases to fit into our examples. First, we handle with dynamic discrete choice models and a

sieve estimator of fXt,Yt−1,Xt−1,Ut is given by the following:

fXt,Yt−1,Xt−1,Ut =
(
fXt,Xt−1,Ut|Yt−1=0fYt−1=0

)1−Yt−1
(
fXt,Xt−1,Ut|Yt−1=1(1− fYt−1=0)

)Yt−1 ,

where

(
fXt,Xt−1,Ut|Yt−1=0

)1/2
=

in∑
i=0

jn∑
j=0

kn∑
k=0

âijkqi(xt − xt−1 − ut)qj(xt−1)qk(ut),(21)

and

(
fXt,Xt−1,Ut|Yt−1=1

)1/2
=

in∑
i=0

jn∑
j=0

kn∑
k=0

ãijkqi(xt − xt−1 − ut)qj(xt−1)qk(ut).(22)
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Our choice of q′is and q′js are the orthonormal Fourier series:

q0(ut) =
1√
l1
, qk(ut) =

√
2

l1
cos(

kπ

l1
ut), q0(xt−1) =

1√
l1

and qj(xt−1) =

√
2

l1
cos(

jπ

l1
xt−1)

q0(xt − xt−1 − ut) =
1√
l2

and qi(xt − xt−1 − ut) =
1√
l2

sin(
iπ

l2
(xt − xt−1 − ut)) or

qi(xt − xt−1 − ut) =
1√
l2

cos(
iπ

l2
(xt − xt−1 − ut)).

The density restrictions
∫
fXt,Xt−1,Ut|Yt−1=0dxtdxt−1dut = 1 and

∫
fXt,Xt−1,Ut|Yt−1=1dxtdxt−1dut =

1 amount to
in∑
i=0

jn∑
j=0

kn∑
k=0

(âijk)
2 = 1, and

in∑
i=0

jn∑
j=0

kn∑
k=0

(ãijk)
2 = 1.

We consider the case where in = 5, jn = 2, and kn = 2:

(
fXt,Xt−1,Ut|Yt−1=0

)1/2
=

(
ĉ00 + ĉ01 cos

π

l1
xt−1 + ĉ02 cos

2π

l1
xt−1

)(
â00 + â01 cos

π

l1
ut + â02 cos

2π

l1
ut

)
+

5∑
i=1

(
ĉ00 + ĉ01 cos

π

l1
xt−1 + ĉ02 cos

2π

l1
xt−1

)(
âi0 + âi1 cos

π

l1
ut + âi2 cos

2π

l1
ut

)
× cos

iπ

l2
(xt − xt−1 − ut)

+
5∑
i=1

(
ĉ00 + ĉ01 cos

π

l1
xt−1 + ĉ02 cos

2π

l1
xt−1

)(
b̂i0 + b̂i1 cos

π

l1
ut + b̂i2 cos

2π

l1
ut

)
× sin

iπ

l2
(xt − xt−1 − ut).

We can similarly find the sieve expression of fXit,Yit−1,Xit−1,Uit in dynamic censor models.

Eq. (21) is still applicable for Yt−1 = 0 part,

(
fXt,Xt−1,Ut|Yt−1=0

)1/2
=

in∑
i=0

jn∑
j=0

kn∑
k=0

âijkqi(xt − xt−1 − ut)qj(xt−1)qk(ut).

Suppose that yt−1 ∈ (0, l3]. Consider

(
fXt,Yt−1>0,Xt−1,Ut

)1/2
=

in∑
i=0

jn∑
j=0

kn∑
k=0

ln∑
l=0

ãijklq̃i(xt − xt−1 − ut)q̃j(xt−1)q̃k(ut)q̃l(yt−1).
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The density restriction
∫
fXt,Xt−1,Ut|Yt−1=0 +

(∫
fXt,Yt−1>0,Xt−1,Utdyt−1

)
dxtdxt−1dut = 1 is

in∑
i=0

jn∑
j=0

kn∑
k=0

(âijk)
2 +

in∑
i=0

jn∑
j=0

kn∑
k=0

ln∑
l=0

(ãijkl)
2 = 1.(23)

In the simulation of the censored tobit model in Section 4, our choice of Yt−1 > 0 part is

in = 5, jn = 2, kn = 2, and ln = 2.
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Honoré, B., and E. Kyriazidou (2000): “Panel Data Discrete Choice Models with Lagged

Dependent Variables,” Econometrica, pp. 839–874.
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Table 1: Monte Carlo Simulation of Semiparametric Probit model (n=250)

Parameters

N DGP β0 β1 γ

DGP I: true value 0 -1 0

mean estimate 0.001 -1.091 -0.012

median estimate 0.014 -1.017 -0.005

standard error 0.155 0.569 0.127

DGP II: true value 0 -1 0

mean estimate -0.013 -1.117 -0.014

median estimate -0.005 -1.099 -0.005

standard error 0.112 0.621 0.140

DGP III: true value 0 -1 1

mean estimate 0.005 -1.281 1.023

median estimate 0.001 -1.275 0.901

standard error 0.116 0.605 0.716

DGP IV: true value 0 -1 1

mean estimate -0.015 -1.241 0.923

median estimate 0.007 -1.256 0.880

standard error 0.150 0.788 1.060

DGP V: true value 0 -1 1

mean estimate 0.003 -1.297 1.154

median estimate 0.002 -1.182 0.942

standard error 0.311 0.966 1.350

Note: The simulated date has 7 periods but only last 3 periods
are used to construct the sieve MLE in the semi-parametric probit
model. Standard errors of the parameters are computed by using
sample standard deviation of 100 replications.
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Table 2: Monte Carlo Simulation of Semiparametric Probit model (n=500)

Parameters

N DGP β0 β1 γ

DGP I: true value 0 -1 0

mean estimate 0.013 -1.097 -0.015

median estimate 0.011 -1.080 -0.019

standard error 0.121 0.362 0.111

DGP II: true value 0 -1 0

mean estimate -0.012 -0.983 -0.039

median estimate -0.011 -1.037 -0.043

standard error 0.100 0.529 0.107

DGP III: true value 0 -1 1

mean estimate 0.019 -1.173 0.927

median estimate 0.018 -1.173 0.919

standard error 0.109 0.803 0.672

DGP IV: true value 0 -1 1

mean estimate 0.028 -0.972 1.018

median estimate 0.022 -0.918 1.020

standard error 0.106 0.661 0.870

DGP V: true value 0 -1 1

mean estimate 0.006 -0.971 1.100

median estimate 0.011 -1.000 1.037

standard error 0.089 0.451 0.529

Note: The simulated date has 7 periods but only last 3 periods
are used to construct the sieve MLE in the semi-parametric probit
model. Standard errors of the parameters are computed by using
sample standard deviation of 100 replications.
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Table 3: Monte Carlo Simulation of Semiparametric Probit model (n=1000)

Parameters

N DGP β0 β1 γ

DGP I: true value 0 -1 0

mean estimate -0.010 -1.003 0.008

median estimate -0.004 -0.995 0.005

standard error 0.095 0.499 0.128

DGP II: true value 0 -1 0

mean estimate -0.007 -1.010 -0.013

median estimate -0.008 -1.042 -0.007

standard error 0.093 0.482 0.095

DGP III: true value 0 -1 1

mean estimate -0.001 -1.054 1.025

median estimate -0.011 -1.149 0.953

standard error 0.011 0.676 0.805

DGP IV: true value 0 -1 1

mean estimate 0.005 -0.801 1.104

median estimate 0.008 -0.771 1.069

standard error 0.098 0.600 0.468

DGP V: true value 0 -1 1

mean estimate -0.021 -0.815 1.084

median estimate -0.006 -0.850 1.036

standard error 0.111 0.435 0.529

Note: The simulated date has 7 periods but only last 3 periods
are used to construct the sieve MLE in the semi-parametric probit
model. Standard errors of the parameters are computed by using
sample standard deviation of 100 replications.
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Table 4: Monte Carlo Simulation of Semiparametric Tobit model (n=250)

Parameters

N DGP β0 β1 γ σ2
ξ

DGP I: true value 0 -1 0 0.5

mean estimate -0.012 -0.858 0.006 0.463

median estimate 0.001 -0.949 -0.013 0.439

standard error 0.103 0.396 0.118 0.218

DGP II: true value 0 -1 0 0.5

mean estimate 0.016 -0.932 0.025 0.495

median estimate 0.004 -0.934 0.018 0.489

standard error 0.101 0.353 0.127 0.182

DGP III: true value 0 -1 1 0.5

mean estimate -0.018 -0.835 0.968 0.458

median estimate -0.001 -0.911 0.992 0.453

standard error 0.147 0.339 0.362 0.189

DGP IV: true value 0 -1 1 0.5

mean estimate -0.02260 -0.906 0.912 0.486

median estimate -0.025 -0.891 0.922 0.470

standard error 0.111 0.357 0.471 0.210

DGP V: true value 0 -1 1 0.5

mean estimate 0.013 -0.981 0.934 0.478

median estimate 0.015 -1.023 0.916 0.489

standard error 0.120 0.276 0.300 0.151

Note: The simulated date has 7 periods but only last 3 periods are used
to construct the sieve MLE in the semi-parametric Tobit models. Standard
errors of the parameters are computed by using sample standard deviation of
100 replications.
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Table 5: Monte Carlo Simulation of Semiparametric Tobit model (n=500)

Parameters

N DGP β0 β1 γ σ2
ξ

DGP I: true value 0 -1 0 0.5

mean estimate 0.010 -0.890 0.004 0.483

median estimate 0.007 -0.873 0.006 0.472

standard error 0.116 0.465 0.097 0.168

DGP II: true value 0 -1 0 0.55

mean estimate -0.012 -0.885 0.011 0.480

median estimate -0.018 -0.896 0.004 0.481

standard error 0.112 0.356 0.101 0.170

DGP III: true value 0 -1 1 0.5

mean estimate 0.021 -0.803 1.016 0.483

median estimate 0.015 -0.845 1.009 0.498

standard error 0.106 0.376 0.254 0.180

DGP IV: true value 0 -1 1 0.5

mean estimate 0.009 -0.861 0.991 0.443

median estimate 0.018 -0.908 0.972 0.445

standard error 0.120 0.262 0.261 0.161

DGP V: true value 0 -1 1 0.5

mean estimate -0.012 -0.935 0.930 0.476

median estimate -0.015 -0.965 0.937 0.467

standard error 0.128 0.278 0.289 0.166

Note: The simulated date has 7 periods but only last 3 periods are used
to construct the sieve MLE in the semi-parametric Tobit models. Standard
errors of the parameters are computed by using sample standard deviation of
100 replications.
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Table 6: Monte Carlo Simulation of Semiparametric Tobit model (n=1000)

Parameters

N DGP β0 β1 γ σ2
ξ

DGP I: true value 0 -1 0 0.5

mean estimate 0.013 -0.850 0.021 0.479

median estimate 0.011 -0.947 0.009 0.480

standard error 0.103 0.377 0.121 0.141

DGP II: true value 0 -1 0 0.5

mean estimate 0.017 -0.874 -0.001 0.478

median estimate 0.021 -0.896 -0.017 0.472

standard error 0.099 0.291 0.127 0.165

DGP III: true value 0 -1 1 0.5

mean estimate 0.001 -0.739 1.002 0.508

median estimate -0.006 -0.810 1.011 0.502

standard error 0.115 0.340 0.313 0.167

DGP IV: true value 0 -1 1

mean estimate 0.010 -0.857 1.019 0.501

median estimate 0.014 -0.897 1.009 0.496

standard error 0.088 0.324 0.269 0.152

DGP V: true value 0 -1 1 0.5

mean estimate -0.003 -0.968 0.923 0.500

median estimate -0.010 -0.982 0.907 0.478

standard error 0.092 0.271 0.254 0.153

Note: The simulated date has 7 periods but only last 3 periods are used
to construct the sieve MLE in the semi-parametric Tobit models. Standard
errors of the parameters are computed by using sample standard deviation of
100 replications.
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Table 7: Sample Characteristics

Single Single

Variables Full Employed Employed Transition Transition Multiple
Sample 7 years 0 years from Work to Work Transitions

(1) (2) (3) (4) (5) (6)

Age 35.38 35.22 39.90 35.66 35.81 33.65

(0.22) (0.31) (0.80) (0.84) (0.65) (0.44)

Education18 12.99 13.34 11.88 12.85 13.04 12.74

(0.05) (0.08) (0.17) (0.18) (0.14) (0.10)

Race (1=Black) 0.21 0.24 0.23 0.17 0.16 0.19

(0.01) (0.01) (0.03) (0.03) (0.02) (0.02)

No. Children19 0.25 0.20 0.24 0.34 0.24 0.33

aged 0-2 years (0.01) (0.01) (0.03) (0.02) (0.02) (0.02)

No. Children 0.27 0.22 0.26 0.26 0.33 0.36

aged 3-5 years (0.01) (0.01) (0.03) (0.02) (0.02) (0.02)

No. Children 0.96 0.92 0.96 0.67 1.21 1.01

aged 6-17 years (0.02) (0.03) (0.07) (0.06) (0.06) (0.04)

Husband’s Labor20 27.30 25.85 32.59 28.49 29.93 26.40

Income ($1000) (0.38) (0.49) (1.73) (1.26) (1.48) (0.64)

Participation 0.71 1 0 0.51 0.54 0.57

(0.01) – – (0.02) (0.02) (0.01)

No. years worked21

zero 9.34 – 100 – – –

one 5.90 – – 20.79 14.54 10.40

two 5.51 – – 15.73 15.86 9.98

three 6.29 – – 12.92 14.54 14.97

four 7.18 – – 11.24 12.33 20.37

five 9.39 – – 15.73 20.26 24.32

six 9.29 – – 23.60 22.47 19.96

seven 47.10 100 – – – –

Sample size 1752 825 164 153 196 414

Note: Standard error of means σ/
√
n in parentheses. Sample selection criteria: continuously married couples,

aged 18-60 in 1980, with positive husband’s annual earnings and hours worked each year.

18Years of Education are imputed from the following categorical scheme: 1 =’0-5 grades’ (2.5 years); 2 =’6-8’
(7 years); 3 =’9-11’ (10 years); 4 =’12’ (12 years); 5 =’12 plus non-academic training’ (13 years); 6 =’some
college’ (14 years); 7 =’college degree, not advanced’ (16 years); 8 =’college advanced degree’ (18 years).
Education is measured as the highest level reported in the 1980-86 surveys.

19Sample averages: child variables based on 8 observations from waves 12-19 of the PSID; participation and
male earnings based on 7 observations form 1979 to 1985.

20The amounts are computed in constant (1987) dollars deflated by the consumer price index (CPI).
21Column percentages.
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Table 8: Estimates of Married Women’s Participation Outcomes

Static MSL, RE Semi-parametric

Probit+RE AR(1)+SD(1) Probit

(1) (2) (3)

yt−1 – 1.117 1.089

– (0.528) (0.077)

ymp -0.312 -0.007 -0.221

(0.045) (0.017) (0.012)

ymt -0.1060 -0.004 -0.106

(0.026) (0.028) (0.056)

#Kid0-2t−1 -0.022 -0.117 -0.055

(0.010) (0.013) (0.048)

#Kid0-2t -0.330 -0.380 -0.316

(0.021) (0.145) (0.061)

#Kid3-5t -0.400 -0.206 -0.137

(0.015) (0.027) (0.028)

#Kid6-17t -0.120 -0.056 -0.062

(0.011) (0.037) (0.011)

Cov. Parameters

σ2
v 0.786 0.313 –

(0.071) (0.323) –

ρ – -0.146 –

– (0.140) –

Note: Bootstrap standard errors are reported in parentheses, using 100
bootstrap replications. The models in the first two columns are estimated
using full seven years of data but the last two columns are estimated over
three-period data.
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Table 9: Predicted Frequencies of Married Women’s Participation Outcomes

Sample Static MSL, RE Semi-parametric

Distribution Probit+RE AR(1)+SD(1) Probit

(1) (2) (3) (4)

No. years worked

zero 9.34 12.32 6.26 12.25

— (0.003) (0.005) (0.003)

one 5.90 15.15 5.20 10.07

— (0.005) (0.005) (0.004)

two 5.51 7.09 5.70 2.96

— (0.005) (0.005) (0.004)

three 6.29 6.14 7.19 2.69

— (0.005) (0.006) (0.003)

four 7.18 6.57 9.11 2.74

— (0.005) (0.006) (0.003)

five 9.39 8.42 12.91 3.72

— (0.006) (0.007) (0.004)

six 9.29 21.93 19.72 26.42

— (0.006) (0.009) (0.004)

seven 47.10 22.38 33.92 39.15

— (0.004) (0.008) (0.004)

Total 100 100 100 100

Note: Frequencies are computed as average values of 1000 predicted outcomes of 7
periods. They are reported in percentages and their standard deviations are reported
in parentheses. The unobserved covariate Uit in the Semi-parametric Probit model
is generated using the estimated parameters (σ2

v, ρ) in column (2).
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