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Abstract

We start from an aggregate random coe¢ cients nested logit (RCNL) model to

provide a systematic comparison between the tractable logit and nested logit (NL)

models with the computationally more complex random coe¢ cients logit (RC) model.

We �rst use simulated data to assess possible parameter biases when the true model is

a RCNL model. We then use data on the automobile market to estimate the di¤erent

models, and as an illustration assess what they imply for competition policy analysis.

As expected, the simple logit model is rejected against the NL and RC model, but

both of these models are in turn rejected against the more general RCNL model.

While the NL and RC models result in quite di¤erent substitution patterns, they give

robust policy conclusions on the predicted price e¤ects from mergers. In contrast,

the conclusions for market de�nition are not robust across di¤erent demand models.

In general, our �ndings suggest that it is important to account for sources of market

segmentation that are not captured by continuous characteristics in the RC model.
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1 Introduction

Discrete choice models of product di¤erentiation have gained considerable importance in

empirical work. Because they treat products as bundles of characteristics, they o¤er the

possibility to uncover rich substitution patterns with a limited number of parameters. Berry

(1994) developed a framework to estimate a class of discrete choice models with aggregate

sales data. His framework includes the logit and nested logit models, and the full random

coe¢ cients logit model of Berry, Levinsohn and Pakes (1995) (hereafter BLP).

The logit and nested logit models have been popular because of their computational

simplicity, since they can be transformed to simple linear regressions of market shares on

product characteristics. At the same time, they have long been criticized because they yield

too restrictive substitution patterns. The logit model assumes that consumer preferences are

uncorrelated across all products, implying symmetric cross-price elasticities. The nested logit

model allows preferences to be correlated across products within the same group or �nest�. It

thus entails a special kind of random coe¢ cients on group dummy variables (Cardell, 1997).

It allows products of the same group to be closer substitutes than products of di¤erent

groups, but the aggregate substitution patterns remain restrictive: cross-price elasticities

within the same group are still symmetric, and substitution outside a group is symmetric

to all other groups. In contrast, BLP�s full random coe¢ cients logit model incorporates

random coe¢ cients for continuously measured product characteristics (and not just for the

group dummy variables in the nested logit model). This creates potentially more �exible

substitution patterns, where products tend to be closer substitutes as they have more similar

continuous characteristics. However, the random coe¢ cients model is computationally more

demanding, and several recent papers have studied a variety of problems relating to its

numerical performance; see Knittel and Metaxoglou (2008), Dubé, Fox and Su (2011) and

Judd and Skrainka (2011).

Against this background it is a particularly timely question whether and when the popular

logit and nested logit models can be used as reasonable alternatives to the computationally

more demanding full random coe¢ cients logit model. In this paper we provide a systematic

comparison between these demand models, and as an illustration assess how they perform

in competition policy analysis. To accomplish this, we start from a general random coe¢ -

cients nested logit model (RCNL) that covers the logit, nested logit (NL) and full random

coe¢ cients logit (RC) as special cases. The RCNL model thus includes both the random

coe¢ cients for continuously measured characteristics as in the RC model, and the random

coe¢ cients or �nesting parameters�for the group-speci�c dummy variables of the NL model.

The RCNL model serves as a benchmark to assess the relative performance of the RC and
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NL models.

To motivate our analysis, we begin with a simulation experiment for two data generating

processes behind a RCNL model: one in which the groups or nests are good proxies for the

continuous characteristics, and one in which they are not. We use the simulated datasets

to compare the RCNL model with the misspeci�ed logit, NL and RC models. We �nd that

the NL model overestimates the nesting parameter when the groups are good proxies for the

continuous characteristics. Furthermore, the RC model overestimates the random coe¢ cient

for the continuous variable.

We then turn to our main empirical analysis. We collected a unique dataset on the au-

tomobile market for nine European countries covering around 90% of the car sales in the

European Union during 1998�2006. The market is commonly classi�ed in various di¤erent

segments (subcompact, compact, intermediate, standard, luxury, SUV and sports) and car

manufacturers typically promote their models as belonging to one of these segments. Hence,

the segments may proxy for observed product characteristics such as the size, engine perfor-

mance and fuel e¢ ciency. But it is also possible that they capture intrinsically unobserved

features shared by di¤erent car models. Our dataset is therefore particularly interesting to

compare the performance of the logit, NL, RC and RCNL models. Consistent with earlier

�ndings, the logit model is rejected against both the NL and RC models. More importantly,

in the general RCNL model the nesting parameters become quantitatively smaller (consis-

tent with the results of our simulation experiment), but they remain highly signi�cant and

economically important. Furthermore, the random coe¢ cients relating to car size become

insigni�cant, while the random coe¢ cients relating to engine power and fuel e¢ ciency re-

main signi�cant. These various �ndings suggest that the nesting parameters may proxy for

random coe¢ cients of some of the observed continuous characteristics, but also capture other

unobserved dimensions of consumer preferences.

To illustrate the implications of our �ndings, we present own- and cross-price elasticities

for the di¤erent models, and we perform policy counterfactuals common in competition pol-

icy: market de�nition and merger simulation. In terms of substitution patterns, the NL and

RC model yield quite di¤erent results. In particular, there is much stronger substitution

within segments in the NL model and much larger substitution to other (especially neigh-

boring) segments in the RC model. Despite these di¤erent substitution patterns, merger

simulations of two domestic mergers yields fairly robust conclusions across di¤erent demand

models: while the simple logit clearly appears inappropriate, the NL, RC and RCNL all tend

to give robust conclusions. In sharp contrast, the conclusions for market de�nition are not

robust: the RC suggests a wide market de�nition at the level of all cars (similar to the logit),

whereas the NL and RCNL suggest a more narrow de�nition at the level of the segments.
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We draw two implications for competition policy. First, the lack of robustness in market

de�nition should not be attributed to the RC model per se, but rather to the arbitrariness

in selecting candidate markets (as segments) in the market de�nition approach. Second, the

robustness in merger simulation suggests the simple NL model can be su¢ cient to obtain

reliable policy conclusions, despite the di¤erent substitution patterns from the RC model.

More generally, one can draw two implications for the choice of demand model in ap-

plied work. First, the choice between the tractable NL model and the computationally more

complex RC model may depend on the application. In our analysis of hypothetical domestic

mergers consumer heterogeneity regarding the cars domestic/foreign origin is particularly

relevant, and the NL model captures this reasonably well. In other applications, the most

relevant aspects of consumer heterogeneity may not be captured well by nesting parameters

for groups or subgroups. In these cases, it is appropriate to estimate RC models with random

coe¢ cients for the most relevant continuous characteristics.

Second, our results imply that it can be important to account for sources of market seg-

mentation that are not captured by continuously measured product characteristics. Adding

a nested logit structure to BLP�s random coe¢ cients model is a tractable way to accomplish

this, since it gives closed-form expressions for the integrals in the choice probabilities. But

one may also consider other tractable models from McFadden�s (1978) generalized extreme

value model (GEV). Examples are Small�s (1987) model of ordered alternatives and Bres-

nahan, Stern and Trajtenberg�s (1997) �principles of di¤erentiation model�, which allows

for segmentation in more than one dimension without imposing a hierarchical structure. In

principle, BLP�s framework can of course also incorporate random coe¢ cients on group dum-

mies. But this is more complicated because it increases the dimensionality of the integrals

that need to be simulated, and in practice it often proves di¢ cult to estimate the coe¢ cients

as precisely as in the closed form GEV models. For example, Nevo (2001) estimates a rich

demand model for the U.S. cereals market. His model includes three random coe¢ cients for

the segments (all-family, kids and adult), but two of these are estimated rather imprecisely.

Our comparison of alternative discrete choice models is timely for several related rea-

sons. First, a few recent papers have thoroughly studied several (often commonly known)

numerical di¢ culties with the aggregate random coe¢ cients model. Knittel and Metaxoglou

(2008) mainly focus on global convergence problems, in particular the role of starting values

and di¤erent optimization algorithms. Dubé, Fox and Su (2011) focus on the properties of

BLP�s �inner loop�contraction mapping algorithm for inverting the market share system.

They stress the importance of a tight convergence criterion for the contraction mapping,

and suggest a mathematical program with equilibrium constraints (MPEC) as an alterna-

tive approach. Reynaerts, Varadhan and Nash (2010) explore alternative algorithms to the
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contracting mapping to invert the market share system. Judd and Skrainka (2011) focus on

problems of pseudo-Monte Carlo integration to compute the aggregate market share system,

in particular without variance reduction methods. They consider a variety of alternative in-

tegration methods. We draw from these �ndings in our own empirical analysis, by cautiously

considering multiple starting values, using a tight inner loop contraction mapping and taking

a large number of Halton draws for approximating the integrals.1

Second, there is a large and rapidly growing empirical literature estimating aggregate

discrete choice models of product di¤erentiation, with applications in industrial organiza-

tion, international trade, environmental and public economics, marketing, �nance, etc. A

complete review of the applied aggregate discrete choice literature is beyond the scope of this

introduction, so we limit attention here to early work. Much of this work has actually also

looked at automobiles. Bresnahan (1981) and Feenstra and Levinsohn (1995) are important

contributions preceding the seminal work of Berry (1994) and BLP. Verboven (1996) and

Fershtman and Gandal (1998) are early applications of Berry�s (1994) aggregate nested logit

model. Nevo (2001), Petrin (2002) and Sudhir (2001) are early applications with interesting

extensions of BLP�s full random coe¢ cients model. In recent years, academic work appears

to focus more exclusively on the random coe¢ cients models, whereas competition policy

practitioners often use the logit and nested logit models. Our �ndings on the automobile

market suggest that the nested logit model may not only be a reasonable approximation

in competition policy, but also in other applications where the market segments are the

most relevant di¤erentiating dimensions, for example an analysis of trade liberalization. In

contrast, applications on quality discrimination or environmental policy would warrant esti-

mating BLP�s random coe¢ cients logit model, since the relevant random coe¢ cients (engine

power and fuel e¢ ciency) are not well-captured by the nesting parameters.2

The rest of this paper is organized as follows. Section 2 presents the model and con-

ducts Monte Carlo experiments. Section 3 uses the dataset for the European car market to

estimate the logit, NL, RC and RCNL models and the implied price elasticities. Section 4

draws implications for competition policy analysis, applying market de�nition and merger

simulation. Conclusions follow in section 5.
1We do not however consider Dubé, Fox and Su�s (2011) alternative MPEC approach, because we have

a large number of products/markets, implying a large number of nonlinear constraints in their constrained
optimization algorithm. Nor do we pursue Judd and Skrainka�s (2011) alternative integration methods here.

2Wojcik (2000) also compares the NL and RC model. She claims the NL model is likely to be superior,
but Berry and Pakes (2001) raise serious methdological problems with her comparison. Our approach is
rather di¤erent from Wojcik since we start from a more general model that covers the NL and RC models
as special cases. Furthermore, we follow prediction excercises in the spirit of those advocated by Berry and
Pakes (2001). Our conclusions are much more nuanced since we focus on identifying circumstances where
the NL may, or may not, be a reasonable alternative.
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2 The model

2.1 Demand

We consider a random coe¢ cients nested logit model (RCNL) that contains the logit, nested

logit (NL) and random coe¢ cients logit (RC) as special cases. There are T markets, t =

1; : : : ; T . In each market t there are Lt potential consumers. Each consumer i may either

choose the outside good 0 or one of the J di¤erentiated products, j = 0; : : : ; J . Consumer

i�s conditional indirect utility for the outside good is ui0t = "i0t. For products j = 1; : : : ; J it

is

uijt = xjt�i + �jt + "ijt; (1)

where xjt is a 1�K vector of observed product characteristics (including price), �i is a K�1
vector of random coe¢ cients capturing the individual-speci�c valuations for the product

characteristics, �jt refers to unobserved product characteristics (to the econometrician), and

"ijt is a remaining individual-speci�c valuation for product j.

The random coe¢ cients vector, �i, can be speci�ed as follows. Let � be a K � 1 vector
of mean valuations of the characteristics, � be a K � 1 vector with standard deviations of
the valuations, and �i be a K � 1 vector with standard normal random variables. We then

specify

�i = � + ��i; (2)

where � is a K � K diagonal matrix with the standard deviations � on the diagonal.3

The individual valuations for the products j, "ijt, may be modeled as iid random variables

with an extreme value or �logit� distribution, as in BLP. Here, we suppose that the "ijt
follow a more general �nested logit�distribution, which allows preferences to be correlated

across products in the same group or segment. More speci�cally, following Berry�s (1994)

discussion of Cardell (1997), suppose we can assign each product j to a group g, where

the groups g = 0; : : : ; G are collectively exhaustive and mutually exclusive and group 0 is

reserved for the outside good 0. Write

"ijt = � igt + (1� �)"ijt; (3)

where "ijt is iid extreme value and � igt has the (unique) distribution such that "ijt is extreme

value. The parameter � is a �nesting� parameter, 0 � � � 1, and can be interpreted as

a random coe¢ cient proxying for the degree of preference correlation between products of

3In principle, one may also specify non-zero o¤-diagonal elements in � to allow consumer valuations to
be correlated across characteristics.
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the same group.4 As � goes to one, the within-group correlation of utilities goes to one,

and consumers perceive products of the same group as perfect substitutes relative to other

products. As � goes to zero, the within-group correlation goes to zero, and the model reduces

to the simple logit.

Using (2) and (3) and de�ning the mean utility for product j, �jt � xjt� + �jt, we can
write consumer i�s conditional indirect utility (1) as

uijt = �jt + xjt��i + � igt + (1� �)"ijt:

Indirect utility can thus be decomposed as the sum of three terms: a mean utility term �jt

common to all consumers; an individual-speci�c term xjt��i relating to continuous product

characteristics xjt; and an individual-speci�c term � igt+ (1� �)"ijt relating to the products�
discrete characteristics, the groups or nests. If �k = 0 for all elements in � (or in �), we

obtain the standard nested logit model. If � = 0, we obtain BLP�s random coe¢ cients logit

model. And if all �k = � = 0, the simple logit model results.

Each consumer i in market t chooses the product j that maximizes her utility. The

aggregate market share for product j in market t is the probability that product j yields

the highest utility across all products (including the outside good 0). The predicted market

share of product j = 1; : : : ; J in market t, as a function of the mean utility vector �t and the

parameter vector � = (�; �; �), is the integral of the nested logit expression over the standard

normal random variable vector �i:

sjt(�t; �) =

Z
�

exp ((�jt + xjt��) = (1� �))
exp (Ig= (1� �))

exp Ig
exp I

�(�)d�; (4)

where Ig and I are McFadden�s (1978) �inclusive values�de�ned by

Ig = (1� �) ln
XJg

k=1
exp ((�kt + xkt��) = (1� �)) ;

I = ln
�
1 +

XG

g=1
exp Ig

�
;

and Jg is the number of products in segment g (such that
PG

g=1 Jg = J). If � = 0, we obtain

BLP�s random coe¢ cients logit model:

sjt(�t; �) =

Z
�

exp (�jt + xjt��)

1 +
PJ

k=1 exp (�kt + xkt��)
�(�)d�:

4One can extend the nested logit model to group-speci�c nesting parameters �g, g = 1; : : : ; G.
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We approximate the integral over �i in (4) by simulating R draws over the density of �:

sjt(�t; �) =
1

R

XR

i=1

exp ((�jt + xjt��i) = (1� �))
exp (Ig= (1� �))

exp Ig
exp I

: (5)

To estimate the demand parameters �, we follow Berry (1994), BLP and the subsequent

literature. We equate the observed market share vector (i.e. unit sales per product divided

by the number of potential consumers Lt) to the predicted market share vector, st = st(�t; �).

We solve this system for �t in each market t, using a slight modi�cation of BLP�s contraction

mapping for the nested logit model; see Brenkers and Verboven (2006). Since the error

term enters additively in �t, this gives a solution for the error term �jt for each product

j = 1; : : : ; J in market t. We can then interact this with a set of instruments providing the

moment conditions to proceed with GMM, as we discuss in more detail in section 3.

2.2 Monte Carlo experiments

Set-up To compare the di¤erent demand models, we begin with a Monte Carlo experiment.

We assume a data generating process according to the most general RCNL model and will

estimate the logit, NL, RC and RCNL model with the generated data sets. We mainly focus

on the consequences from estimating misspeci�ed models, and do this by comparing two

data generating processes: one where a product�s group is informative about an omitted

continuous characteristic, and one where it is not. We also take the opportunity to comment

on the numerical performance of the di¤erent models, in light of the above recent literature

on these issues.

We generate 500 datasets, each consisting of T = 50 independent markets and J = 25

products per market. Each product j in each market t has one continuous characteristic,

x1jt and one discrete characteristic, djt, a dummy variable referring to the product�s group or

nest (either group 0 or group 1). So the observed product characteristics vector (including a

constant) is xjt = (1; x1jt; djt). Furthermore, each product has an unobserved characteristic

�jt.

To generate the data, we assume that �jt is normally distributed, �jt s N(0; 1), and

uncorrelated with xjt. Hence, the observed product characteristics are exogenous. It will be

convenient to treat the group dummy variable djt as the realization of a latent continuous

variable d�jt: the correlation between d
�
jt and x

1
jt measures the extent to which the product�s

group is informative about the continuous characteristic, for which the NL model omits the
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random coe¢ cient. More speci�cally, assume that 
x1jt
d�jt

!
s N

 
0

0
;
1 &xd

&xd 1

!
;

and djt = 1fd�jt>0g. To consider the implications of omitting a random coe¢ cient for x1jt in

the NL model, we consider &xd = 0 and &xd = 0:9, i.e. no or strong correlation between x1jt
and d�jt.

We specify consumer preferences for the product characteristics xjt = (1; x1jt; djt) as

follows. We set the mean valuations to � = (�5;�1;�1) and their standard deviations to
� = (0; �1; 0), with either �1 = 0:25 or �1 = :5.5 Furthermore, we set the nesting parameter

associated with the product group djt equal to � = 0:3. The true model is thus a RCNLmodel,

where consumers are heterogeneous for the continuous characteristic x1jt (through the random

coe¢ cient �1) and for the discrete characteristic djt (through the nesting parameter �, and

not through a �BLP-type�random coe¢ cient). Consumers have homogeneous preferences

for the constant.

The market shares are computed from the market share equation (5), using the generated

observed and unobserved product characteristics (xjt and �jt) and the assumed parameters

� = (�; �; �). To approximate the integral in (5), we take R = 500 independent standard

normal draws per market (and we use the same draws to estimate the di¤erent demand

models).

For each of the 500 generated datasets, we use GMM to estimate the correctly speci�ed

RCNL model and the three other misspeci�ed models. We generate the set of instruments

from within the model, following Chamberlain�s (1987) approach as applied in Berry, Levin-

sohn and Pakes (1999). Given the demand parameters � = (�; �; �), this instrument vector

is the expected value of @�jt(�)=@�
0. This includes the characteristics vector itself (x1jt) and

nonlinear functions of the characteristics and the parameters.

To summarize, we generate 500 datasets of 1,250 observations (T = 50 and J = 25)

under four scenario�s, where (i) &xd = 0 or &xd = 0:9 and (ii) �1 = 0:25 or �1 = 0:5. (i) If

&xd = 0, the product�s group djt is not informative about x1jt: a probit regression of djt on

x1jt implies 51.6% correct classi�cations, which is only slightly above a random classi�cation

rule. If &xd = 0:9, djt is quite informative about x1jt, implying 85.6% correct classi�cations.

(ii) If �1 = 0:25, consumers are relatively homogeneous regarding x1jt, so that omitting the

5We set the constant to a low value of �0 = �5 to obtain a relatively large share of the outside good, as
in most empirical studies. For the data generating process where &xd = 0, we obtain an average share of the
outside good equal to 0.82, and for &xd = 0:9, we obtain an average share of the outside good equal to 0.79
(with standard deviations of 0.1).
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random coe¢ cient for x1jt in the NL model may not be consequential. In contrast, if �1 = 0:5,

consumers are relatively heterogeneous regarding x1jt, so that omitting the random coe¢ cient

for x1jt may have stronger e¤ects on the parameters estimates.

Results Table 1 shows the results from estimating the correctly speci�ed RCNL and the

three other misspeci�ed models under our four scenario�s. For each demand model and

scenario, we present the mean and standard deviation of the parameter estimates (as obtained

from the 500 di¤erent datasets). Numbers in bold indicate that the parameter estimate is

signi�cantly di¤erent from the true value (on the left column).

We �rst have a look at the parameter estimates of the correctly speci�ed RCNL model.

For all four scenario�s the parameter estimates are plausible: the means are very close to the

true parameters, the standard deviations are quite small and the distribution (not shown) is

approximately normal. This con�rms that our estimation procedure, with analytical deriv-

atives and a tight contraction mapping convergence criterion, works well in practice.

The parameter estimates for the logit, NL and RC logit give interesting results on the

e¤ects of estimating misspeci�ed models. In the logit and RC models there are parameter

biases in each of the four scenario�s. Most interestingly, consider the two bottom panel sce-

nario�s with �1 = 0:5. The RC (which imposes � = 0 and thus ignores consumer heterogeneity

for the groups) underestimates the mean valuation of x1jt (b�1 � �1:3 < �1) and overesti-
mates the standard deviation of the valuation of x1jt (b�1 � 0:65 > 0:5). The mean valuation
parameter for the group dummy is not biased when &xd = 0 (left part, b�d = �:99 � �1),
but it is upward biased when &xd = 0:9 (right part, b�d = �:48 > �1).
In contrast with the logit and RC models, the NL model does not result in notable biases

if either &xd = 0 or �1 = 0:25 (top and bottom left panels). The NL model only results in

biases if both &xd = 0:9 and �1 = 0:5 (bottom right panel). In this scenario the NL model

underestimates the mean valuation for the group (b�d = �1:43) and overestimates the nesting
parameter b� = 0:48. Intuitively, when the group is quite informative about x1jt, the nesting
parameter captures part of the omitted random coe¢ cient for the continuous characteristic

x1jt.

3 Empirical analysis

3.1 Dataset for the European car market

We make use of a unique dataset on the automobile market maintained by JATO. The data

are at the level of the car model (e.g. VW Golf) and include essentially all passenger cars

9



Table 1: Monte Carlo Results: Di¤erent Demand Models under Di¤erent Scenario�s

Parameter True Value Logit NL RC RCNL Logit NL RC RCNL
&xd = 0 &xd = 0:9

�0 -5 -6.18 -5.01 -6.23 -5.00 -6.37 -4.87 -6.42 -5.00
(0.05) (0.24) (0.06) (0.25) (0.06) (0.37) (0.07) (0.38)

�d -1 -1.00 -1.00 -1.00 -1.00 -0.44 -1.06 -0.44 -1.00
(0.10) (0.10) (0.11) (0.10) (0.11) (0.18) (0.11) (0.17)

�1 -1 -1.34 -0.98 -1.37 -1.00 -1.35 -0.95 -1.38 -1.00
(0.04) (0.08) (0.04) (0.08) (0.07) (0.11) (0.08) (0.11)

� 0.3 0.28 0.30 0.32 0.30
(0.06) (0.06) (0.08) (0.08)

�1 0.25 0.30 0.25 0.31 0.24
(0.12) (0.07) (0.11) (0.09)

�0 -5 -6.02 -4.56 -6.22 -5.01 -6.22 -3.98 -6.41 -5.02
(0.05) (0.25) (0.06) (0.25) (0.06) (0.40) (0.07) (0.40)

�d -1 -1.00 -0.99 -1.00 -1.00 -0.51 -1.43 -0.48 -0.99
(0.10) (0.10) (0.10) (0.10) (0.12) (0.20) (0.11) (0.17)

�1 -1 -1.20 -0.80 -1.31 -1.00 -1.22 -0.68 -1.34 -1.00
(0.04) (0.08) (0.04) (0.07) (0.07) (0.11) (0.08) (0.11)

� 0.3 0.36 0.30 0.48 0.30
(0.06) (0.06) (0.08) (0.08)

�1 0.5 0.67 0.50 0.63 0.50
(0.06) (0.05) (0.06) (0.06)

% correctly classi�ed 51.55 85.63
(1.07) (0.94)

The table reports the empirical means and standard deviations (in parentheses) of the estimated parameters.
Biased parameter estimates (signi�cantly di¤erent from the true value) appear in bold. The estimates are
based on 500 random samples of 50 markets and 25 products, generated using the true values of the RCNL
model.
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sold during nine years (1998�2006) in nine West-European countries. This covers around

90% of the sales in the European Union. The countries are Belgium, France, Great Britain,

Germany, Greece, Italy, Portugal, Spain, and the Netherlands. For each model/country/year

we have information on sales, de�ned as total new registrations. For models introduced or

eliminated within a given year, we know the number of months with positive sales in the

given year. We exclude the models with extremely small market shares, e.g. Bentley Arnage

or Kia Clarus. This results in a dataset of 18,643 model/country/year observations or on

average about 230 models per country/year.

We combine the sales data with information on the list prices and various characteristics

referring to the base model: vehicle size (curb weight, width and height), engine attributes

(horsepower and displacement) and fuel consumption (liter/100km or e/100 km). We start

from JATO�s classi�cation to assign each model to one of seven possible marketing segments:

subcompact, compact, intermediate, standard, luxury, SUV and sports. Furthermore, we

assign the models to their brands�perceived country of origin. For example, the Volkswagen

Golf is perceived of German origin even if produced in Spain. We construct a dummy

variable for whether a model is of foreign or domestic origin in each country. Our two-level

nested logit model will use the marketing segments and foreign origin dummy to de�ne the

groups (e.g. subcompact) and subgroups (e.g. domestic subcompact, foreign subcompact).

Table 2 provides summary statistics for sales, price and the product characteristics used

in our empirical demand model. We show the summary statistics for all countries and for

France and Germany separately (since we will focus on these countries when we present our

counterfactuals).

Since our empirical analysis will focus on comparing the nested logit and random coef-

�cients logit models, it is informative to provide background on how the continuous char-

acteristics relate to the marketing segments. Table 3 (top panel) shows summary statistics

for our four characteristics by marketing segment. Cars belonging to the same marketing

segment tend to have similar horsepower, fuel consumption, width, and height. Horsepower

and fuel consumption show a higher dispersion within a segment than width and height, but

their segment averages also vary more widely. For example, average horsepower varies from

48.7kW in the subcompact to 134kW in the luxury segment, whereas average width varies

from 162.5cm in the subcompact to 182.3 in the luxury segment. Table 3 (bottom panel)

summarizes how well the four characteristics predict to which segment each model belongs.

For each segment pair (e.g. subcompact�compact) we estimate a probit explaining segment

assignment as a function of the four characteristics, and we ask how often the probit correctly

classi�es the di¤erent car models. The table shows that the continuous variables predict the

SUV extremely well, with over 95% correct classi�cations with respect to any other segment.
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Table 2: Summary Statistics

All countries France Germany

Mean St. Dev. Mean St. Dev. Mean St. Dev.

Sales (units) 5,785 14,694 8,440 19,931 11,432 21,074
Price/Income 1.19 0.94 0.90 0.53 0.95 0.63
Horsepower (in kW) 88.8 40.9 87.7 37.4 92.8 44.6
Fuel e¢ ciency (e/100 km) 8.4 2.1 8.5 2.3 8.8 2.6
Width (cm) 173.0 8.5 173.1 8.5 173.4 8.6
Height (cm) 148.3 13.8 149.2 14.2 148.2 14.1
Foreign (0-1) 0.92 0.28 0.86 0.35 0.71 0.45
Months present (1-12) 9.89 2.55 9.70 2.65 9.77 2.56

The table reports means and standard deviations of the main variables. The total number of
observations (models/markets) is 18,643, where markets refer to the 9 countries and 9 years.

Classi�cation is also quite accurate for most other segments, for example for the luxury seg-

ment there are over 89% correct classi�cations with respect to any other segment. The lowest

number of correct classi�cations occurs for a few �neighboring segments�(on the diagonal),

e.g. 76.6% correct classi�cations between compact and intermediate, 77.9% between inter-

mediate and standard. But even in these instances the characteristics predict the segments

quite well.

In sum, this preliminary evidence indicates that a limited number of characteristics

(horsepower, fuel consumption, width and height) have quite good, but not perfect pre-

dictive power for the classi�cation in marketing segments. We will bear this in mind when

comparing the NL and RC models.

3.2 Speci�cation

To estimate the logit, NL, RC and RCNL demand models we slightly modify the model

discussed in section 2: (i) we treat price separately since it is an endogenous characteristic

and since we allow its random coe¢ cient to follow the empirical distribution of income; (ii)

we consider a two-level instead of one-level nested logit; and (iii) we allow the error term to

include �xed e¤ects for the car models and markets.

First, we start from the following version of the above utility speci�cation (1):

uijt = xjt�i � �ipjt + �jt + "ijt:

12



Table 3: Summary Statistics by Segment

Segment Subc Comp Interm Stand Lux SUV Sport

Mean of the characteristics

Sales (units) 11,155 7,450 5,009 4,632 2,889 2,205 1,517
Price/Income 0.55 0.81 1.04 1.39 2.13 1.61 1.85
Horsepower (in kW) 48.7 70.1 84.6 99.6 134.0 113.7 126.6
Fuel e¢ ciency (e/100 km) 6.4 7.2 8.0 8.7 10.4 11.2 9.6
Width (cm) 162.5 171.4 175.3 175.1 182.3 179.4 175.1
Height (cm) 149.1 144.2 144.9 142.6 145.3 175.9 133.6
Foreign (0-1) 0.92 0.92 0.93 0.91 0.89 0.96 0.86
Months present (1-12) 9.72 9.87 9.88 9.77 9.94 10.11 10.03
Number of observations 3,788 4,095 2,656 1,711 1,764 2,521 2,108

Correct classi�cations into di¤erent marketing segments (in percent)

Subcompact - 93.7 99.4 99.9 100.0 95.5 97.6
Compact - 76.6 91.1 97.7 99.7 92.8
Intermediate - 77.9 91.4 99.7 91.0
Standard - 90.0 99.9 84.4
Luxury - 99.7 88.9
SUV - 99.9
Sports -

The top panel of the table reports means of the main variables by segment in the top panel. The bot-
tom panel of the table reports the percentage of correctly classi�ed car models, based on binary pro-
bit of a segment dummy per pair on four continuous characteristics (i.e. horsepower, fuel e¢ ciency,
width and height). Subc=subcompact, Comp=compact, Interm=intermediate, Stand=standard,
Lux=Luxury, SUV=Sport Utility Vehicle.
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The vector of observed product characteristics, xjt, includes horsepower, fuel e¢ ciency,

width, height and a dummy variable for the product�s country of origin (domestic or for-

eign). The corresponding random coe¢ cients are speci�ed as before, i.e. �ik = �k + �k�ik
for characteristic k. Price pjt enters slightly di¤erently: its random coe¢ cient is speci�ed as

�i = �=yi, where yi is the income of individual i. In the RC and RCNL model we treat yi as

a random variable with a known distribution equal to the empirical distribution of income.

In the NL model we treat yi as non-random and set it equal to mean income in market t,

yi = yt. In sum, for the non-price characteristics we estimate both the mean valuations

�k and the standard deviations �k; for price we only estimate � so that heterogeneity in

willingness to pay follows the empirical distribution of income.6

Second, the product-speci�c taste parameter "ijt follows the distributional assumptions

of the two-level nested logit model (instead of the one-level nested logit of section 2). The

upper level consists of the above seven di¤erent market segments (subcompact, compact,

standard, intermediate, luxury, SUV and sports) and one separate segment for the outside

good. The lower level divides every segment in two subsegments according to the models�

country of origin (domestic or foreign). In four countries there are only foreign cars, so the

subsegments of domestic cars are empty (Belgium, Greece, Portugal and the Netherlands).

There are now two nesting parameters, � = (�1; �2). The nesting parameter �1 measures

correlation of preferences across cars of the same subsegment, and �2 measures correlation

of preferences across subsegments of the same segment. For the model to be consistent with

random utility maximization, 0 � �2 � �1 � 1. If �1 = �2, the model reduces to a one-level
nested logit where the segments are the nests; if �1 > �2 = 0, the model reduces to a one-level

nested logit where the subsegments are the nests. If �1 = �2 = 0, the model reduces to a

simple logit. Assuming that consumers choose the product that maximizes utility, we obtain

a two-level nested logit version of the aggregate market shares (4).

Finally, we exploit the panel features of our data set to specify the error term, capturing

unobserved product characteristics. More precisely, we assume that �jt = �j + �t + ��jt,

where �j re�ects time-invariant car model �xed e¤ects, �t captures country-speci�c �xed

e¤ects, interacted with a time trend and squared time trend, and ��jt captures remaining

unobserved characteristics. Since our data are at the annual level, we also include a set of

dummy variables for the number of months each model was available in a country within a

given year (for models introduced or dropped within a year).

6This utility speci�cation approximates BLP�s Cobb-Douglas speci�cation � ln(yi � pj) when the price
is small relative to (capitalized) income. It is particularly convenient when studying countries with di¤erent
exchange rates, since local price is simply expressed relative to local income; see Goldberg and Verboven
(2001).
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3.3 Identi�cation and estimation

To estimate the demand parameters � = (�; �; �; �), we follow Berry (1994), BLP and the

subsequent literature. As discussed above, we solve the system st = st(�t; �) for �t in each

market t, to obtain a solution for the error term ��jt for each product j = 1; : : : ; J in market

t:

�jt(st; �; �; �) = xjt� + �j + �t +��jt: (6)

In the (two-level) NL model the left-hand side has an analytic solution,

�jt(st; �; �; �) = ln sjt=s0t � �1 ln sjjhgt � �2 ln shjgt + �pjt=y;

so that a linear estimator can be used. In the RC and RCNL model �jt(st; �; �; �) should

be computed numerically by solving the system st = st(�t; �) for �t, which makes estimation

considerably more complex.

For all models, we can proceed with GMM by interacting the error term with a vector of

instrumental variables zjt that is uncorrelated with the error term. Since there are 2K + 3

parameters (K mean valuations �k, K standard deviations �k, the price parameter � and

the two nesting parameters �1 and �2), we need at least 2K +3 instruments in zjt. Price pjt
does not qualify as an instrument since it is likely to be correlated with ��jt. For example,

a positive demand shock for product j in market t will not only increase the demand for

the product, but it may also induce the �rm to raise its price. Failure to account for this

endogeneity issue will lead to an estimated price coe¢ cient (�) that is downward biased. Our

identi�cation assumption is that the observed product characteristics xjt are uncorrelated

with the unobserved product characteristics ��jt (which is weaker than the often adopted

assumption that xjt is uncorrelated with �jt). As discussed in BLP, one may use alternative

functions of these characteristics as instruments to estimate the 2K + 3 parameters. More

speci�cally, following previous practice, our vector of instrumental variables zjt includes: (i)

the vector of product characteristics xjt; (ii) the sum of the characteristics of other products

of competing �rms, (iii) the sum of the characteristics of other products of the same �rm.

For the NL and RCNL model we also include these sums over products belonging to the

same subsegment and segment, following Verboven (1996).

The GMM objective function includes a weighting matrix to account for heteroskedas-

ticity (obtained from the residuals using a two-step procedure). To minimize the GMM

objective function with respect to the parameters � = (�; �; �; �) we �rst concentrate out

the linear parameters � (which includes a set of dummy variables for the market �xed e¤ects

�t). We do not directly estimate the more than 200 car model �xed e¤ects �j, but instead
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we use a within transformation of the data (Baltagi, 1995). Standard errors are computed

using the standard GMM formulas for asymptotic standard errors.

A few recent papers have studied several numerical di¢ culties with estimating the RC

model (and a fortiori the RCNL model): global convergence problems and the role of starting

values and di¤erent optimization algorithms (Knittel and Metaxoglou, 2008), problems with

numerically solving �t using BLP�s contracting mapping (Dubé, Fox and Su, 2011), and

problems with approximating the integral over the logit probabilities using simulation (Judd

and Skrainka, 2011).

We draw lessons from this recent literature and proceed as follows. First, to approximate

the integral (4) using the simulator (5), we make use of Halton draws over the density

N(0; 1). This provides a more e¤ective coverage of the density domain than pseudo-random

draws. In particular, we take a large number of 500 Halton draws for each of the 81 markets

(country/years).7 Second, to ensure the GMM objective function is smooth, we use a tight

tolerance level of 1e�12 to invert the shares using BLP�s contraction mapping. This tolerance

level is considerably stricter than typically used in the literature.8 Third, we program analytic

derivatives of the gradient of the objective function. While this is particularly tedious for

the RCNL model, it greatly improves accuracy and computation time. Finally, even if the

GMM objective function is smooth, it may not be globally convex. To minimize the function

with respect to the nonlinear parameters (�; �; �), we use di¤erent starting values, using

a stringent convergence criterion of 1e�6 and carefully examining the gradient the solution

path and the Hessian eigenvalues. We use a BFGS algorithm, which is an e¢ cient procedure

that uses information at di¤erent points to obtain a sense of the curvature of the objective

function. We usually obtain the same optimum, except for very high or low starting values

but in these cases the value of the objective function at convergence is always higher.9

3.4 Parameter estimates

Table 4 shows the parameter estimates for the four di¤erent demand models. The logit model

imposes � = � = 0 and yi = yt. The NL model assumes � = 0 and yi = yt and estimates �.

The RC model assumes � = 0, estimates � and allows yi to follow the empirical distribution

7Halton draws can be very e¤ective compared to pseudo-random draws. For example, Bhat (2001) and
Train (2000) report that the simulation variance in the estimated parameters is lower with 100 Halton draws
than with 1000 pseudo-random draws.

8For the NL and RCNL we use a slightly modi�ed version of BLP�s contraction mapping; see Brenkers
and Verboven (2006).

9The log condition number of the Hessian matrix is, at worst, 1.9, which means that only 2 (of a total
of 16) decimal places of accuracy are being lost in the calculation of the Hessian, thus suggesting accurate
results.
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of income. Finally, the RCNL estimates both � and �, and allows yi to follow the empirical

distribution of income.

In the simple logit model both the price parameter (�) and the mean valuation para-

meters (�) have the expect signs and are all signi�cantly di¤erent from zero. However, as

is well-known, the model is very restrictive since it imposes symmetric cross-price elastic-

ities. Furthermore, demand is inelastic for almost 20% of the car models across countries

and years. This is inconsistent with oligopolistic pro�t maximizing behavior unless marginal

costs would be negative.

In the NL model the upper nest level consists of the seven marketing segments and the

lower nest level consists of the segments and origin (domestic/foreign). The price parameter

(�) and the mean valuation parameters (�) again have the expected sign and are signi�cantly

di¤erent from zero, with the exception of the parameter for width, which is now insigni�cant.

The nesting parameters are estimated very precisely, �1 = 0:65 and �2 = 0:48. Their magni-

tudes are consistent with the requirements of random utility maximization (0 � �2 � �1 � 1)
and imply that consumer preferences show the strongest correlation across cars from both the

same marketing segment and origin (domestic/foreign), and show weaker but still important

correlation across cars from the same segment but a di¤erent origin. This is consistent with

earlier work for a more limited set of countries (Goldberg and Verboven, 2001 and Brenkers

and Verboven, 2006).10 As documented below, this implies more plausible cross-price elastic-

ities than the simple logit model. Furthermore, the implied own-price elasticities are higher

than in the simple logit: demand is now inelastic for only 3% of the car models. This may

seem surprising at �rst, since the price coe¢ cient � is closer to zero than in the simple logit

model. However, the elasticities do not only depend on � but also on the nesting parameters

�1 and �2.

In the RC model we estimate the price parameter (�) and the means (�) and standard

deviations (�) for the valuations of the other characteristics (including the constant). The

price parameter (�) is again signi�cantly estimated with the expected sign (negative e¤ect).

Consumers have a negative and signi�cant mean valuation for fuel consumption, and hetero-

geneity is limited so that almost all consumers dislike fuel ine¢ cient cars. Consumers have

a positive and signi�cant mean valuation for width, and the standard deviation implies that

about 10% of consumers dislike large cars. Consumers have a negative mean valuation for

cars from foreign origin. The standard deviation is relatively large, so that 25% of consumers

actually prefer foreign cars. The mean valuation for height is insigni�cantly di¤erent from

10We also estimated a two-level NL model with the reverse nesting structure, where origin de�nes the
upper level and origin/segment the lower level of the nests. This led to estimates of �1 and �2 inconsistent
with random utility maximization, in line with the results of other studies on the car market.
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zero, and the mean valuation for horsepower is unexpectedly negative. However,for both

characteristics we �nd substantial and signi�cant heterogeneity: about 50% of consumers

have a positive valuation for height and about 30% have a positive valuation for horsepower.

Finally, we estimate a signi�cant standard deviation for the constant, indicating there is

signi�cant heterogeneity in the valuation of new cars relative to the outside good. Over-

all, the random coe¢ cients show evidence of signi�cant consumer heterogeneity in several

dimensions, in particular height, horsepower and foreign origin. Yet it is striking that the

random coe¢ cients are estimated much less precisely than the two nesting parameters in the

NL model.

In the RCNL model we combine the previous two models, so we include both the nest-

ing parameters and the random coe¢ cients. Both the price parameter (�) and the mean

valuation parameters (�) have the expected signs and are estimated signi�cantly with the

exception of the horsepower parameter, which is insigni�cant. The most interesting �ndings

relate to the estimated nesting parameters (�) and random coe¢ cients (�) in comparison

with the NL and RC models.

First, compared with the NL model, the nesting parameters remain highly signi�cant, but

their magnitude becomes smaller. This is consistent with the results from our Monte Carlo

study, where we found an overestimate of the nesting parameters if the random coe¢ cients

are important and the groups are correlated with the characteristics for the omitted random

coe¢ cients. Furthermore, we can no longer reject the hypothesis that �1 = �2 (P-value

0.0967) and the random coe¢ cient for foreign origin is insigni�cant. So the model reduces

to a one-level nested logit with no need to divide the seven segments into domestic and

foreign subgroups, and it seems at �rst that there is no longer consumer heterogeneity for

foreign origin. However, the subsegment parameter �1 captures similar e¤ects as the random

coe¢ cient for foreign origin, suggesting it is not sensible to include both. Indeed, in a one-

level nested logit where we constrain �1 = �2 (so that the subgroups are no longer relevant),

the random coe¢ cient for foreign origin becomes signi�cant again (as in the RC model). We

show these results in Table A.1 in the Appendix.11

Second, compared with the RC model, the random coe¢ cients for horsepower and fuel

e¢ ciency remain signi�cant, but this is no longer the case for width, height and the constant.

Intuitively, the nesting parameter for the segments captures a lot of the heterogeneity relating

to the car dimensions and the outside good, but not much of the heterogeneity relating to

11In this case, the one-level nested logit with a random coe¢ cient for foreign origin seems preferable to a
two-level nested logit model, since it does not impose the consumer heterogeneity to enter in a hierarchical
way. Nevertheless, we base our subsequent discussion on the two-level nested logit. The implied price
elasticities and competition policy counterfactuals are very similar in the one-level nested logit model (not
shown).
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horsepower and fuel e¢ ciency.

Table 4: Parameter Estimates for Alternative Demand Models

Logit Nested Logit RC Logit RC Nested Logit

Param. St. Er. Param. St. Er. Param. St. Er. Param. St. Er.

Mean valuations for the characteristics in xjt (�)

Price/income -1.76 0.17 -1.00 0.03 -5.52 0.66 -2.75 0.18
Horsepower (kW/100) 2.30 0.24 1.34 0.08 -3.67 1.86 0.57 0.77
Fuel (e/10,000 km) -11.48 1.43 -6.13 0.52 -20.77 3.06 -4.68 0.73
Width (cm/100) 2.51 0.55 -0.10 0.29 3.64 0.83 1.26 0.50
Height (cm/100) 3.46 0.35 1.17 0.19 0.27 1.32 2.12 0.46
Foreign (0/1) -1.21 0.03 -0.47 0.04 -3.66 0.89 -0.57 0.14

Standard deviations of valuations for the characteristics in xjt (�)

Horsepower (kW/100) n/a n/a 4.67 0.83 0.92 0.41
Fuel (e/10,000 km) n/a n/a 1.15 1.69 1.66 0.57
Width (cm/100) n/a n/a 1.93 0.71 0.10 1.74
Height (cm/100) n/a n/a 4.83 0.55 0.15 1.11
Foreign (0/1) n/a n/a 5.46 1.05 0.22 0.84
Constant n/a n/a 1.18 0.43 0.21 3.00

Nesting parameters (�1 and �2)

Subsegment �1 n/a 0.65 0.03 n/a 0.57 0.03
Segment �2 n/a 0.48 0.03 n/a 0.47 0.07

Model �xed e¤ects Yes Yes Yes Yes
Market �xed e¤ects Yes Yes Yes Yes
Income distribution No No Yes Yes
Random coe¢ cients No No Yes Yes
# inelastic demands 3,514 (19%) 556 (3%) 0 0
�2 test �1 = �2 n/a 83.04 n/a 2.76
Prob.>�2 n/a (0.00) n/a (0.10)

The table shows the parameter estimates and standard errors for the di¤erent demand models. The logit
and NL models assume equal income (��=yt), the RC and RCNL models allow for heterogeneous income
(��=yi). The total number of observations (models/markets) is 18,643, where markets refer to the 9
countries and 9 years.

Since the logit, NL and RC are all restricted versions of the RCNL model, we can compare

their statistical performance using likelihood ratio tests adapted to the GMM context.12

Table 5 reports LR values and asymptotic P-values for all pairs of models, except the NL

12Following Hayashi (2000), we de�ne the likelihood ratio statistic (LR) as the di¤erence between the
value of the objective function of the restricted model (re-estimated using the second-stage weighting matrix
of the unrestricted model) and the value of the objective function of the unrestricted model. Under the null
hypothesis, the statistic is asymptotically �2 distributed with degrees of freedom equal to the number of
restrictions.
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Table 5: Likelihood Ratio Tests for Alternative Demand
Models

Logit Nested Logit RC Logit

Logit �

Nested Logit 584.08 �
(0.0000)

RC Logit 34.08 n/a �
(0.000)

RC Nested Logit 534.10 30.61 423.84
(0.0000) (0.0002) (0.0000)

The table reports �2 statistics and P-values (in parentheses) of
likelihood ratio tests for di¤erent model pairs.

and RC which are not nested in each other. Each restricted model is rejected against the more

general models. The logit is clearly rejected against any other model. More interestingly, both

the NL and RC models are rejected against the more general RCNL model. In fact, the NL

appears to provide a better �t than the RC logit relative to the RCNL, since the �2 statistic

is lower for the NL than the RC model (30.61 versus 423.84). We already observed above

that the individual random coe¢ cients in the RC model are much less precisely estimated

than the two nesting parameters in the NL model. The likelihood ratio tests thus indicate

that the random coe¢ cients of the RC model are also jointly less signi�cant than the nesting

parameters of the NL model.

Summary We can summarize our empirical results in the following four points. (i) It

appears important to include the nesting parameter relating to the seven marketing seg-

ments since it remains highly signi�cant after including the random coe¢ cients. (ii) It does

not seem appropriate to include an additional subnesting parameter relating to the origin

within each segment, since the random coe¢ cient for origin captures this well. (iii) It is

relevant to include random coe¢ cients for horsepower and fuel e¢ ciency, but not those for

the dimensions width and height since these are captured well by the marketing segments.

(iv) It is striking that the nesting parameters (re�ecting heterogeneity regarding segments

and subsegments) are estimated much more precisely than the random coe¢ cients (re�ect-

ing heterogeneity regarding continuous characteristics). While these �ndings apply to our

dataset of the European car market, they can also be useful as a guide for interpretations in
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other applications.

3.5 Substitution patterns

We have already commented on the number of inelastic own-price elasticities implied by our

estimates. We now provide a more systematic discussion on the substitution patterns. We

consider own-price and cross-price elasticities at the level of the individual products and at

the level of the entire segments.

Product-level price elasticities First consider the product-level own- and cross-price

elasticities. We average these by segment, and distinguish between cross-price elasticities

with respect to other products in the same subsegment, in a di¤erent subsegment within the

same segment, and in a di¤erent segment. Table 6 shows these average product-level elas-

ticities for Germany in 2006 (the largest country in the most recent year of our dataset). In

the logit and NL model the own-price elasticities tend to increase more or less proportionally

with price as one moves to higher segments, resulting in an average own-price elasticity that

is almost 4 times higher in the luxury than in the subcompact segment. The near propor-

tional relationship follows from the functional form assumption: price enters utility linearly

with a homogeneous valuation across consumers (��=yt). In contrast, in the RC and RCNL
models the price elasticities increase much less than proportionally, by a factor of 2.2 and

2.3 in the respective models. This follows from the less restrictive functional form: price

still enters utility linearly, but consumer valuations are heterogeneous (��=yi). Hence, price
insensitive consumers are more likely to purchase high priced cars.

The cross-price elasticities show even more striking di¤erences across the estimated mod-

els. In the logit model, they are extremely small even with respect to cars from the same

subsegment or segment (always <0.01). In contrast, in the NL and RCNL models the cross-

price elasticities are quite high with respect to products of the same subsegment (about

0.1�0.4) and they are still relevant with respect to products of other subsegments in the

same segment (about 0.05). In the RC model, the cross-elasticities with respect to products

of the same subsegment are still sizeable, mainly because of the magnitude and signi�cance

of the foreign ownership random coe¢ cient. But they are negligible with respect to products

of other segments within the same segment (usually <0.01). These �ndings illustrate the

importance of accounting for consumer heterogeneity relating to the marketing segments (as

done only in the NL and RCNL models) and the domestic/foreign origin (as done in all

models except the simple logit).
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Table 6: Product-level Price Elasticities in
Germany for Alternative Demand Models

Own- Cross-price elasticity
Segment same same di¤er

subseg seg seg
Logit

Subcompact -0.76 <0.01 <0.01 <0.01
Compact -1.09 <0.01 <0.01 <0.01
Intermediate -1.49 <0.01 <0.01 <0.01
Standard -1.94 <0.01 <0.01 <0.01
Luxury -2.94 <0.01 <0.01 <0.01
SUV -2.32 <0.01 <0.01 <0.01
Sports -2.73 <0.01 <0.01 <0.01

Nested Logit
Subcompact -1.23 0.02 0.01 <0.01
Compact -1.74 0.03 0.02 <0.01
Intermediate -2.38 0.05 0.03 <0.01
Standard -3.04 0.13 0.05 <0.01
Luxury -4.64 0.17 0.07 <0.01
SUV -3.73 0.05 0.04 <0.01
Sports -4.40 0.08 0.03 <0.01

RC Logit
Subcompact -2.85 0.03 <0.01 <0.01
Compact -3.66 0.02 <0.01 0.01
Intermediate -4.38 0.03 <0.01 0.01
Standard -4.96 0.04 0.01 0.01
Luxury -6.24 0.06 0.03 0.01
SUV -5.67 0.04 <0.01 0.01
Sports -6.13 0.02 <0.01 0.02

RC Nested Logit
Subcompact -2.57 0.03 0.03 <0.01
Compact -3.33 0.05 0.05 <0.01
Intermediate -3.90 0.06 0.06 <0.01
Standard -4.54 0.15 0.09 <0.01
Luxury -5.75 0.17 0.11 <0.01
SUV -5.01 0.07 0.06 <0.01
Sports -5.42 0.10 0.05 <0.01

The table reports product-level own- and cross-price
elasticities, based on the parameter estimates in Table
4. Elasticities are averages by segment for Germany
in 2006. Cross-price elasticities are averaged across
products from the same subsegment, from a di¤er-
ent subsegment within the same segment, and from
di¤erent segments.
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Segment-level price elasticities Now consider the segment-level price elasticities, i.e.

the e¤ect of a joint 1% price increase of all cars in a given segment on demand in the various

segments. Table 7 reports these segment-level own- and cross-price elasticities. We can

summarize these results as follows. First, as is well-known, both the logit and NLmodel imply

fully symmetric substitution patterns at the segment-level (i.e. identical cross-elasticities per

row). For example, a price increase of all compact cars by 1% raises the demand in all other

segments by 0.02% (more precisely, by 0.017%). In sharp contrast, the RC model implies

more intense substitution to �neighboring segments�. Taking the same example, a price

increase of all compact cars by 1% has the highest e¤ect on the demand for subcompact

(+0.76%) and compact cars (+0.66%), and lowest e¤ects on the demand for luxury (0.26%)

and SUV cars (+0.39%). Finally, the RCNL model implies cross-price elasticities somewhere

in between the NL and RC model, though closer to the NL model: the cross-price elasticities

to other segments are fairly (but not completely) symmetric, and they are somewhat higher

than in the NL model, but not nearly as high as in the RC model.

We stress that, even though the substitution patterns of the most general RCNL model

appear to be better approximated by the NL model than by the RC model, this does not

necessarily mean that the NL model should be preferred over the RC model. The main

message is that it is important to account for consumer heterogeneity regarding the marketing

segments. The NL model is one simple way to capture this, but there may be alternative

ways. For example, one may consider adding random coe¢ cients for the segments at an

increased computational cost.

Summary We can summarize the di¤erences in the estimated substitution patterns across

models as follows. First, the own-price elasticities at the product level increase roughly

proportionally with price in the logit and NL model, but less than proportionally in the RC

and RCNL model. This is because the latter two models allow for consumer heterogeneity

in the price parameter. Second, the product-level cross-price elasticities show that products

of the same segment are strong substitutes in the NL and RCNL model, but not in the logit

and RC models. Finally, the segment-level cross-price elasticities show that there is quite

strong substitution across segments (especially the neighboring ones) in the RC model, but

only weak (and symmetric) substitution in the logit, NL and RCNL models.

4 Implications for competition policy analysis

The previous section showed how the di¤erent demand models generate quite di¤erent sub-

stitution patterns. But how relevant are the found di¤erences for applications in industrial
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Table 7: Segment-level Price Elasticities in Germany for Alternative
Demand Models

Segment Subc Comp Interm Stand Lux SUV Sport

Logit

Subcompact -0.77 0.02 0.02 0.02 0.02 0.02 0.02
Compact 0.02 -1.12 0.02 0.02 0.02 0.02 0.02
Intermediate 0.01 0.01 -1.41 0.01 0.01 0.01 0.01
Standard 0.01 0.01 0.01 -1.75 0.01 0.01 0.01
Luxury 0.01 0.01 0.01 0.01 -2.59 0.01 0.01
SUV 0.01 0.01 0.01 0.01 0.01 -2.24 0.01
Sports <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 -2.05

Nested Logit

Subcompact -0.44 0.01 0.01 0.01 0.01 0.01 0.01
Compact 0.01 -0.64 0.01 0.01 0.01 0.01 0.01
Intermediate <0.01 <0.01 -0.81 <0.01 <0.01 <0.01 <0.01
Standard <0.01 <0.01 <0.01 -1.00 <0.01 <0.01 <0.01
Luxury <0.01 <0.01 <0.01 <0.01 -1.48 <0.01 0.01
SUV <0.01 <0.01 <0.01 <0.01 <0.01 -1.28 <0.01
Sports <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 -1.17

RC Logit

Subcompact -1.72 0.67 0.47 0.19 0.07 0.33 0.29
Compact 0.75 -2.77 0.66 0.54 0.26 0.39 0.41
Intermediate 0.29 0.39 -3.47 0.43 0.30 0.45 0.42
Standard 0.12 0.32 0.44 -3.55 0.56 0.43 0.45
Luxury 0.05 0.16 0.32 0.61 -4.05 0.86 0.67
SUV 0.15 0.18 0.37 0.43 0.92 -4.13 0.75
Sports 0.08 0.11 0.20 0.25 0.42 0.49 -4.36

RC Nested Logit

Subcompact -1.08 0.04 0.04 0.04 0.04 0.04 0.04
Compact 0.04 -1.42 0.05 0.06 0.06 0.06 0.05
Intermediate 0.03 0.03 -1.65 0.04 0.04 0.04 0.04
Standard 0.03 0.03 0.04 -1.90 0.05 0.05 0.05
Luxury 0.03 0.04 0.05 0.06 -2.37 0.08 0.07
SUV 0.03 0.04 0.05 0.06 0.08 -2.12 0.07
Sports 0.02 0.02 0.03 0.03 0.04 0.04 -2.03

The table reports the segment-level own- and cross-price elasticities (when
all products in the same segment raise their price by 1%), based on the
parameter estimates in Table 4. The elasticities refer to Germany in
2006. Subc=subcompact, Comp=compact, Interm=intermediate, Stand=standard,
Lux=Luxury, SUV=Sport Utility Vehicle.
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organization or related �elds? To address this question, we consider two areas of competition

policy, market de�nition and merger simulation, and we ask whether the di¤erent demand

models yield robust conclusions.

Much of competition policy still heavily relies on market de�nition and an assessment

of the �rms�market shares within the de�ned market. It is simple and widely applicable

to mergers and horizontal or vertical agreements because it makes few assumptions about

oligopoly behavior. However, the choice of candidate relevant markets can often be quite

arbitrary and arti�cial. Furthermore, because it is not based on a speci�c model of oligopoly

behavior, it cannot make precise predictions about market power e¤ects, and it cannot in-

corporate other considerations in an integrated framework. In merger cases, one increasingly

resorts to simulation analysis to assess market power e¤ects and incorporate e¢ ciencies or

other elements; see e.g. Werden and Froeb (1994), Hausman, Leonard and Zona (1994), Nevo

(2000) and Peters (2006). While merger simulation may in principle extend to other types

of competition investigations, this is di¢ cult in practice because it requires the speci�cation

of an appropriate oligopoly model for the speci�c competition issue under investigation.

These relative advantages and disadvantages of market de�nition and merger simulation

have been widely discussed. We will instead look at this from a di¤erent angle: we ask to

which extent both approaches are sensitive to the adopted demand model. If one approach

gives more robust conclusions across demand models, this provides a new motivation to

prefer it over the other approach.

4.1 Market de�nition

Market de�nition in the European car market is not only relevant for the evaluation of

mergers, but also for the implementation of the Block Exemption Regulation for the selective

and exclusive distribution system. According to this Regulation, automobile manufacturers

may impose selective or exclusive distribution to their dealers, provided they have market

shares below 30% or 40%. Some niche manufacturers such as Mercedes or BMW may meet

these thresholds if markets are de�ned widely to include all cars, but not if they are de�ned

narrowly at the level of the marketing segments. Hence, it is important to know whether

the segments by themselves can be considered relevant markets.

According to the SSNIP test, the relevant market is the smallest group of products for

which a hypothetical monopolist could pro�tably impose a small, non-transitory but signi�-

cant increase in price (typically 5%-10%). Since the pro�tability of a price increase depends

on the extent of substitution to other goods, the estimated demand model is of central im-

portance. We will apply the SSNIP test to the various estimated demand models and ask
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whether the seven marketing segments can be considered as separate relevant markets, or

whether a broader market de�nition is appropriate. For each of the four estimated demand

models, we �rst compute all products�implied marginal costs assuming multiproduct price-

setting �rms (following BLP, Nevo, 2000 and others). Given the estimated demand systems

and the marginal costs, we then ask whether a 10% price increase by all products in a given

marketing segment raises total pro�ts in the considered segment.

Table 8 shows the SSNIP-test results for France and Germany in 2006. The logit model

suggests that none of the seven marketing segments can be considered as separate relevant

markets. For example, a joint 10% price increase in the compact segment in France reduces

pro�ts by 0.6%. The RC model yields a similar conclusion: only the subcompact segment

can be de�ned as a relevant market in both France and Germany. In sharp contrast, the NL

and RCNL model imply that all marketing segments constitute separate relevant markets.

A joint 10% price increase in the compact segment in France would raise pro�ts by 7.21%

according to the NL model and even by 10.84% according to the RCNL model. This narrow

market de�nition follows, of course, from the high signi�cance of the nesting parameter for

the segments in the NL and RCNL models.

Should we conclude that the RCmodel fails to de�ne the markets narrowly at the segment

level, in contrast with the more general RCNL model against which it was rejected? The

answer may be yes, since we found that the RCmodel omits important unobservables relating

to the marketing segments that are captured in the more general RCNL. However, proper

caution is warranted. First, the RCNL model is itself restrictive since it imposes largely

symmetric substitution across the segments. For example, a variant of the RCNL model

where consumers would be more likely to substitute to neighboring segments might lead

one to conclude that market de�nition should include the neighboring segments. Second,

the RC model may itself also give rise to �narrow�market de�nitions, albeit not at the

�segment-level�. For example, one may de�ne relevant markets of car models that are not

necessarily in the same marketing segment but that share similar horsepower, height and

origin (the dimensions for which we estimated most consumer heterogeneity). Such a market

de�nition process would however be somewhat tedious. As another simpler example, one

may de�ne two neighboring segments as the relevant market in the RC model (as suggested

by the above cross-price elasticities). Our SSNIP-test results at the level of neighboring

segments (not shown) con�rm that neighboring segments constitute relevant markets in the

RC model: a joint 10% price increase raises pro�ts for compact+intermediate (+1.6%) but
not for, e.g., compact+luxury (�1.2%).
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Table 8: Relevant Market De�nition in France and Germany

Segment Logit Nested Logit RC Logit RC Nested Logit

France Germany France Germany France Germany France Germany
Subcompact -0.1 -0.2 5.0 6.7 4.5 4.9 8.8 11.0
Compact -0.6 -0.5 7.2 8.7 -5.1 -1.4 10.8 12.6
Intermediate -1.0 -1.0 7.4 8.4 -8.6 -5.3 10.4 10.4
Standard -1.6 -1.5 13.5 11.1 -7.8 -5.1 16.3 13.3
Luxury -3.4 -3.2 16.2 15.0 -9.5 -5.9 16.6 15.2
SUV -2.4 -2.6 16.5 15.7 2.9 -5.9 18.1 16.0
Sports -1.4 -2.4 10.1 13.9 -11.2 -9.1 12.6 14.2

The table reports percentage pro�t increases implied by a joint 10% price increase of all prod-
ucts in the same segment, based on the parameter estimates in Table 4 and assuming marginal
costs implied by multiproduct Bertrand competition. The e¤ects refer to France and Germany in
2006. Subc=subcompact, Comp=compact, Interm=intermediate, Stand=standard, Lux=Luxury,
SUV=Sport Utility Vehicle.

4.2 Merger simulation

We consider the e¤ects of two hypothetical mergers. The �rst merger is between the two

French manufacturers PSA (Peugeot and Citroën) and Renault, and the second merger is

between the two German manufacturers BMW and Volkswagen (Volkswagen, Audi, Seat and

Skoda). As shown in Table 9, PSA and Renault are strong in their home market France, with

a combined market share of 56% (mainly due to the mass segments). BMW and Volkswagen

are slightly less strong in their home market Germany, with a combined market share of

41%. But they have a particularly strong presence in speci�c segments, i.e. the standard

segment (71%) and the luxury segment (58%).

We �rst compute the products�marginal costs assuming multiproduct price-setting �rms,

as we also did to implement market de�nition. Given the estimated demand systems and

the marginal costs, we then predict the new Nash equilibrium resulting from the changed

ownership structure after the merger. Intuitively, a merger will entail high price e¤ects if the

merging �rms sell close substitutes with respect to each other (low cross-price elasticities)

and weak substitutes with respect to outsider �rms (low own-price elasticities).

Table 9 shows the predicted price e¤ects of the two mergers in the �rms�home markets.

We also brie�y comment on the e¤ects in the foreign markets, and show these results in Table

A.3 of the Appendix. We show the percentage price increases both for the entire market

and for each of the seven marketing segments (using price indices, where postmerger market

shares are the weights).

For both mergers, the logit model predicts very small domestic price e¤ects, despite the
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merging �rms�strong domestic market presence. In sharp contrast, the NL, RC and RCNL

models give robust conclusions. The PSA�Renault merger would result in large aggregate

price increases in France (between 8.3% and 20.2%).13 The BMW�VW merger entails more

modest price increases in its home country Germany, but the results are again robust across

all models except the logit model (between 1.9% and 3.0%). In particular, the predicted

price increases are the largest in the standard segment, where the German producers have

the strongest presence (between 4.9% and 10.0%). While the NL, RC and RCNL give

robust conclusions regarding the predicted merger e¤ects, the NL model gives more precise

predictions than the RC model, as shown by the smaller con�dence intervals in Table A.3 of

the Appendix. This follows from the fact that the nesting parameters were estimated more

precisely than the random coe¢ cients.

The predicted price e¤ects in the foreign markets are much smaller. But there is again a

notable di¤erence between the logit model and the other three models (where the predicted

e¤ects are between 0.4% and 0.6% for the BMW�VW merger in France, and between 0.2%

and 0.4% for the PSA�Renault merger in Germany).

In sum, these �ndings show that it is clearly inappropriate to use a simple logit model with

its symmetric substitution patterns. But it does not appear important whether to generalize

the model to a NL, RC or RCNL model, since they give robust conclusions.

4.3 Summary

We can summarize our �ndings on market de�nition and merger simulation as follows.

Merger simulation yields fairly clear conclusions across di¤erent demand models: the sim-

ple logit model is clearly inappropriate, but a generalization to the NL, RC or RCNL gives

robust conclusions. In contrast, market de�nition depends more heavily on the adopted de-

mand model. In particular, the RC model suggests a too wide de�nition at the level of all

cars (similar to the logit model), whereas the NL and RCNL models suggest a more narrow

de�nition at the level of the segments. We discussed that this lack of robustness should not

be attributed to the RC model per se, but rather to the arbitrariness in selecting candidate

relevant markets in the market de�nition approach.

13The overall predicted price increases are most close for the NL and the RC model (15.5% and 20.1%).
They are somewhat lower for the RCNL model (20.2%), but the bootstrapped 95% con�dence intervals show
a small overlap, as shown in Appendix in Table A.3.
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Table 9: The E¤ects of Two Hypothetical Mergers in France and
Germany

France All Subc Comp Interm Stand Lux SUV Sport

PSA�Renault merger in France

Domestic market shares (in percent)

PSA 33.4 35.3 38.8 46.0 - 19.1 - 37.3

Renault 22.7 29.8 20.9 17.8 - 9.5 - 13.5

Predicted domestic price increase (in percent)

Logit 0.9 1.6 0.9 0.75 0.0 0.2 0.0 0.5

Nested Logit 15.5 31.2 13.5 12.8 0.0 2.1 0.0 7.0

RC Logit 20.2 37.1 22.6 24.1 0.6 4.8 0.1 14.0

RC Nested Logit 8.3 15.9 8.0 8.2 -0.1 1.5 -0.1 4.5

Germany VW-BMW merger in Germany

Domestic market shares (in percent)

BMW 10.6 2.1 7.9 - 39.6 25.3 15.2 10.8

VW 30.8 23.1 36.3 53.8 31.3 32.4 12.0 21.4

Predicted domestic price increase (in percent)

Logit 0.3 0.3 0.4 0.3 0.6 0.3 0.2 0.2

Nested Logit 2.9 0.6 2.8 0.1 10.0 4.3 1.6 1.1

RC Logit 2.2 0.6 2.0 1.8 4.9 3.2 1.7 1.5

RC Nested Logit 1.9 0.6 1.8 0.5 5.8 3.0 1.1 0.9

The table reports percentage price increases for two hypothetical mergers, PSA�
Renault and BMW�VW, in their domestic markets France and Germany, based
on the parameter estimates in Table 4 and assuming multiproduct Bertrand
competition. The e¤ects refer to France and Germany in 2006. 95% con-
�dence intervals, based on a bootstrapping procedure, are shown in Appen-
dix in Table A.4. For example, the 95% con�dence interval for the over-
all predicted price increase after the PSA�Renault merger is [0.7�1.8]% for the
logit, [12.5�18.3]% for the NL, [14.6�27.2]% for the RC and [5.4�15.7]% for
the RCNL model. Subc=subcompact, Comp=compact, Interm=intermediate,
Stand=standard, Lux=Luxury, SUV=Sport Utility Vehicle.
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5 Conclusion

We started from a general aggregate RCNL model to provide a systematic comparison be-

tween the simple logit and NL models and the computationally more complex RC model.

We �rst used simulated data to document parameter biases from estimating a NL or RC

model, when the true model is in fact a RCNL model. We then use data on the automobile

market to estimate the di¤erent models, and as an illustration assess what they imply for

competition policy analysis. Our main �ndings on the advantages and disadvantages of the

NL and RC model can be summarized as follows.

In terms of the statistical performance, both the NL and the RC model are rejected

against the more general RCNL model. The NL model appears to be less strongly rejected

(much lower �2) than the RC model, and the nesting parameters of the NL model (�) drop

by only a modest amount after including random coe¢ cients on continuous variables (�) in

the RCNL model. Furthermore, the nesting parameters are estimated more precisely than

the random coe¢ cients, suggesting that the marketing segments capture a substantial part

of consumer heterogeneity.

In terms of substitution patterns, the NL and RC model yield quite di¤erent results.

The own-price elasticities increase nearly proportionally with price in the NL model and

less than proportionally in the RC model, because the latter model allows for consumer

heterogeneity in the price parameter. Furthermore, products within the same segment are

much closer substitutes in the NL model, whereas there is strong substitution to other

segments (especially to neighboring ones) in the RC model.

Despite the rather di¤erent substitution patterns the NL and RC model generate quite

robust conclusions on the predicted price e¤ects from mergers. In sharp contrast, the con-

clusions for market de�nition are not robust: markets are de�ned narrowly at the segment

level in the NL model, and at the wider level of all cars in the RC model (similar to the

logit). This suggests two implications for competition policy. First, the lack of robustness

in market de�nition should not be attributed to the RC model per se, but rather to the

arbitrariness in selecting candidate relevant markets. Second, the robustness in merger sim-

ulation suggests the simple NL model can be su¢ cient to obtain reliable policy conclusions,

despite the di¤erent substitution patterns.

More generally, one can draw two implications for the choice of demand model in applied

work. First, the choice between the tractable NL model and the computationally more com-

plex RC model may depend on the application. In our merger analysis we considered two

domestic mergers. A particularly relevant aspect of consumer heterogeneity is then the cars�

domestic/foreign origin, which the NL model captures reasonably well. In other applications,
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the most relevant aspects of consumer heterogeneity may not be captured well by nesting

parameters for groups or subgroups. In these cases, it is appropriate to estimate RC models

with random coe¢ cients for the most relevant continuous characteristics.

Second, our �ndings show that it is important to account for sources of market segmen-

tation that are not captured by the continuously measured characteristics in the RC model.

We established this by adding a nested logit structure to BLP�s random coe¢ cients model.

But in future research one may also consider other tractable models.
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6 Appendix

Table A.1: Parameter Estimates for Constrained One-Level RCNL model

Constrained One-Level RCNL

Param. St. Er.

Mean valuations for the characteristics in xjt (�)

Price/income -2.73 0.06
Horsepower (kW/100) 1.20 0.29
Fuel (e/10,000 km) -0.45 0.03
Width (cm/100) 0.12 0.01
Height (cm/100) 0.20 0.01
Foreign (0/1) -0.67 0.03

Standard deviations of valuations for the characteristics in xjt (�)

Horsepower (kW/100) 0.50 0.23
Fuel (e/10,000 km) -1.49 0.19
Width (cm/100) n/a
Height (cm/100) n/a
Foreign (0/1) 0.55 0.05
Constant n/a

Nesting parameters (�1 = �2)

Segment �1 0.56 0.01

Model �xed e¤ects Yes
Market �xed e¤ects Yes
Income distribution Yes
Random coe¢ cients Yes
# inelastic demands 0

This table shows the parameter estimates and standard errors for a constrained version of the
RCNL of Table 4. We constrain �1 = �2.(so there is only one level of nesting) and the standard
deviations for the valuations of width, height, and the constant are set equal to 0. The total
number of observations (models/markets) is 18,643, where markets refer to the 9 countries and
9 years.
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Table A.2: Product-level Price Elasticities in
France for Alternative Demand Models

Own- Cross-price elasticity
Segment same same di¤er

subseg seg seg
Logit

Subcompact -0.73 <0.01 <0.01 <0.01
Compact -1.14 <0.01 <0.01 <0.01
Intermediate -1.39 <0.01 <0.01 <0.01
Standard -1.94 <0.01 <0.01 <0.01
Luxury -2.97 <0.01 <0.01 <0.01
SUV -2.22 <0.01 <0.01 <0.01
Sports -2.15 <0.01 <0.01 <0.01

Nested Logit
Subcompact -1.18 0.02 0.01 <0.01
Compact -1.81 0.04 0.03 <0.01
Intermediate -2.21 0.06 0.04 <0.01
Standard -3.08 0.11 0.11 <0.01
Luxury -4.63 0.19 0.09 <0.01
SUV -3.59 0.06 0.06 <0.01
Sports -3.43 0.07 0.05 <0.01

RC Logit
Subcompact -2.99 0.05 <0.01 <0.01
Compact -3.64 0.03 <0.01 0.01
Intermediate -4.11 0.02 <0.01 0.01
Standard -5.33 0.03 0.03 0.01
Luxury -5.52 0.05 0.03 0.01
SUV -4.55 0.03 0.03 0.01
Sports -5.20 <0.01 <0.01 0.02

RC Nested Logit
Subcompact -2.48 0.03 0.03 <0.01
Compact -3.43 0.06 0.07 <0.01
Intermediate -4.02 0.09 0.09 <0.01
Standard -5.08 0.17 0.17 <0.01
Luxury -6.73 0.23 0.16 <0.01
SUV -5.61 0.09 0.09 <0.01
Sports -5.21 0.10 0.09 <0.01

The table reports product-level own- and cross-price
elasticities, based on the parameter estimates in Ta-
ble 4. Elasticities are averages by segment for France
in 2006, instead of for Germany as in Table 6 of the
main text. Cross-price elasticities are averaged across
products from the same subsegment, from a di¤erent
subsegment within the same segment, and from dif-
ferent segments.
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Table A.3: The E¤ects of Two Hypothetical Mergers in France and
Germany - Foreign Market

France All Subc Comp Interm Stand Lux SUV Sport

BMW�VW merger in France

Foreign market shares (in percent)

BMW 3.1 0.9 2.7 - 29.2 15.8 7.9 5.6

VW 11.8 7.8 16.1 20.2 28.3 19.4 5.6 11.3

Predicted foreign price increase (in percent)

Logit 0.0 0.0 0.1 0.0 0.2 0.1 0.0 0.0

Nested Logit 0.6 0.2 0.6 0.0 4.7 1.5 0.2 0.6

RC Logit 0.5 0.3 0.5 0.4 1.8 1.0 0.6 0.5

RC Nested Logit 0.4 0.2 0.5 0.1 2.7 1.1 0.2 0.4

Germany PSA-Renault merger in Germany

Foreign market shares (in percent)

PSA 6.1 11.3 4.3 5.7 - 0.9 - 13.8

Renault 4.2 8.3 4.1 2.3 - 0.2 - 5.0

Predicted foreign price increase (in percent)

Logit 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0

Nested Logit 0.4 1.5 0.4 0.2 0.0 0.0 0.0 0.6

RC Logit 0.2 0.9 0.2 0.1 -0.0 0.0 -0.0 0.2

RC Nested Logit 0.2 0.6 0.2 0.1 0.0 0.0 0.0 0.3

Similar to Table 9, the table reports percentage price increases for two hypo-
thetical mergers, BMW�VW and PSA�Renault, but now in their respective for-
eign markets, France and Germany, instead of the domestic markets. The re-
sults are based on the parameter estimates in Table 4 and assuming multi-
product Bertrand competition. The e¤ects refer to France and Germany in
2006. Subc=subcompact, Comp=compact, Interm=intermediate, Stand=standard,
Lux=Luxury, SUV=Sport Utility Vehicle.
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Table A.4: The E¤ects of Two Hypothetical Mergers in France and Germany - Con�dence
Intervals

France All Subc Comp Interm Stand Lux SUV Sport

PSA�Renault merger in France

Domestic market shares (in percent)

PSA 33.4 35.3 38.8 46.0 - 19.1 - 37.3

Renault 22.7 29.8 20.9 17.8 - 9.5 - 13.5

95 % Con�dence Interval for predicted domestic price increase

Logit 0.7;1.8 1.3;1.9 0.7;1.1 0.6;0.9 0.0;0.0 0.1;0.2 0.0;0.0 0.4;0.6

Nested Logit 12.5;18.3 24.9;37.2 11.1;15.9 10.2;15.4 0.0;0.0 1.5;2.7 0.0;0.0 5.3;8.6

RC Logit 14.6;27.2 28.3;48.7 15.6;31.2 14.8;35.3 0.3;0.9 2.9;7.3 0.0;0.3 9.8;19.0

RC Nested Logit 5.4;15.7 10.2;30.7 5.2;16.1 5.3;16.7 -0.3;0.0 0.9;3.04 -0.2;0.0 2.8;9.3

Germany VW-BMW merger in Germany

Domestic market shares (in percent)

BMW 10.6 2.1 7.9 - 39.6 25.3 15.2 10.8

VW 30.8 23.1 36.3 53.8 31.3 32.4 12.0 21.4

95 % Con�dence Interval for predicted domestic price increase

Logit 0.3;0.4 0.2;0.3 0.3;0.5 0.2;0.3 0.5;0.8 0.3;0.4 0.2;0.2 0.2;0.2

Nested Logit 2.7;3.0 0.5;0.6 2.6;3.0 0.1;0.1 9.5;10.5 4.1;4.5 1.3;1.7 1.0;1.2

RC Logit 1.9;2.5 0.5;0.8 1.7;2.4 1.6;2.1 4.2;5.8 2.7;3.8 1.5;2.0 1.3;1.8

RC Nested Logit 1.6;2.4 0.4;0.8 1.4;2.3 0.2;0.8 5.0;7.0 2.6;3.6 0.8;1.6 0.7;1.1

The table reports the 95 percent con�dence intervals for the percentage price increases reported in Ta-
ble 9 for two hypothetical mergers, PSA�Renault and BMW�VW, in their domestic markets France and
Germany, based on the parameter estimates in Table 4 and assuming multiproduct Bertrand competition.
The 95% con�dence intervals are based on a bootstrapping procedure. Subc=subcompact, Comp=compact,
Interm=intermediate, Stand=standard, Lux=Luxury, SUV=Sport Utility Vehicle.
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